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Capacity Bounds and Estimates for the Finite
Scatterers MIMO Wireless Channel

Alister G. Burr

Abstract—We consider the limits to the capacity of the mul-
tiple-input–multiple-output wireless channel as modeled by the fi-
nite scatterers channel model, a generic model of the multipath
channel which accounts for each individual multipath component.
We assume a normalization that allows for the array gain due to
multiple receive antenna elements and, hence, can obtain mean-
ingful limits as the number of elements tends to infinity. We show
that the capacity is upper bounded by the capacity of an identity
channel of dimension equal to the number of scatterers. Because
this bound is not very tight, we also determine an estimate of the
capacity as the number of transmit/receive elements tends to in-
finity which is asymptotically accurate.

Index Terms—Finite scatterers channel model, multiple-input–
multiple-output (MIMO) capacity.

I. INTRODUCTION

F
OLLOWING the work of Telatar [1], Foschini and

Gans [2] and many others, it is now well known that

multiantenna wireless systems, that is multiple-input–mul-

tiple-output (MIMO) channels, can attain capacities many times

greater than the Shannon limit for single-input single-output

(SISO, or scalar) channels. Spectrum efficiencies in the hun-

dreds of bits/s/Hz have been quoted. It is also well-established

that these capacities depend critically upon the multipath envi-

ronment in which the system operates and in particular on the

number of resolvable multipath components, their amplitudes,

and their spatial distribution.

The original capacity estimates of [1] and [2] were obtained

using the independent Rayleigh-fading model of the MIMO

channel. However, another channel model, which we here

call the finite scatterers model, has been quite widely used

to describe the multipath environment, accounting for each

distinct multipath signal. Raleigh and his co-workers [3], [4]

have made use of a more complete spatiotemporal version

of the model to devise optimum spatiotemporal signalling

schemes over a time-dispersive MIMO channel. The spatial, or

geometrically-based single-bounce model [5], [6] is in effect

a special case and ray-tracing models [7] are also closely

related. The concepts behind the model are in fact implicit in

the well-known GWSSUS model of the scalar time-dispersive

multipath model [8].

In this paper, we focus on the implications of this model for

the capacity of the MIMO wireless channel and derive bounds
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and estimates for this capacity. Part of the motivation for this

stems from the results of [1] and [2] which suggest that capacity

increases indefinitely with the number of transmit/receive an-

tenna elements. (These results were derived from the indepen-

dent Rayleigh model.) This raises the question of whether this

unlimited capacity is available in real scenarios and if not, what

factors limit it. The finite scatterers model provides a means

of taking into account the specific multipath environment. This

will assist in identifying the possible benefits of MIMO systems

in practical implementation.

Shiu et al. [9] have considered the effect of fading correlation

caused by a limited number of scatterers, using a restricted ver-

sion of the finite scatterers model. They show that capacity is re-

duced by fading correlation and depends on angular spread, an-

tenna element distribution and spacing, but they do not consider

the effect of number of scatterers. Similarly, Chuah et al. [10]

show that in correlated fading capacity continues to increase

with number of antennas, but less rapidly than in independent

fading. Again, however, they do not consider a finite number of

multipath components. Loyka [13] also considers the effect of

correlated fading, but does not relate this to the multipath envi-

ronment. Raleigh and Cioffi in the work cited above [4] show

that the capacity slope [variation of capacity with signal-to-

noise ratio (SNR)] is limited by the number of scatterers, but

do not bound the capacity itself. Boelcskei et al. [11] use a

model similar to but more general than ours, which considers

clusters of scatterers rather than individual discrete scatterers.

Their focus, however, is on OFDM systems and they do not

bring out the results given here. Sayeed [12] describes an inter-

esting and related model which incorporates the effect of limited

multipath, but does not explicitly model individual scatterers.

Gesbert et al. [18] describe what is effectively a double-bounce

scattering model, which can exhibit interesting properties de-

scribed as “pinhole” effects and some features of which can be

accounted for in our model in the manner described in the next

section. Müller [14] uses a new theory of random matrices to de-

rive the capacity in the limit as number of antennas and number

of scatterers tends to infinity, but maintaining a constant ratio.

In this paper, we will consider the capacity of a MIMO

channel with a finite number of scatterers, a case which is

well described by the finite scatterers model. The number of

transmit/receive elements will be allowed to tend to infinity.

For this reason, we will use a channel normalization, different

from that of [1] and [2], which compensates for the increasing

array gain which would otherwise necessarily result in infinite

capacity for infinite numbers of receive elements. (Our nor-

malization may also be regarded as an alternative definition of

SNR.)

0733-8716/03$17.00 © 2003 IEEE
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Fig. 1. Concept of the finite scatterers channel model, illustrating (a) typical
single scatterered path p, (b) reflected path, and (c) double scattered path.

The next section, then, describes the finite scatterers model as

we will apply it, including this channel normalization, pointing

out also the limits of its applicability in practical scenarios. We

then derive an upper bound on the capacity of the channel and

show that a similar bound applies to all channels normalized

as we have described. We also derive capacity estimates which

are asymptotically accurate as the number of antennas tends to

infinity.

II. FINITE SCATTERERS CHANNEL MODEL

The concept of the finite scatterers model is illustrated in
Fig. 1. Its fundamental assumption is that the signal travels from
transmitter to receiver via a number, normally finite, of discrete
paths, referred to as multipath components, or simply multi-

paths. These are treated according to ray-optical concepts, al-
though diffraction can also be treated using concepts from the
geometrical theory of diffraction (GTD) [15]. Fig. 1 illustrates
some of the possible mechanisms, including scattering from a
single scatterer [path (a)] and multiple reflections [path (b)].
Path (c) in Fig. 1 includes both single scattering and double
scattering: i.e., further scattering of the scattered signal from a
second scatterer.

Note that this model describes the radio environment
separately from the antenna arrays, unlike the independent
Rayleigh-fading model, in which the propagation between
transmit/receive antenna elements are described directly. Thus,
the model can be used to predict propagation between any pair
of antenna arrays and does not require array sizes or geometries
to be defined a priori. In this paper, we take an idealized
view of the antenna elements, treating transmit elements as
ideal uncoupled isotropic radiators and assuming that receive
elements sample the electromagnetic field without perturbing
it and similarly are isotropic and uncoupled. For any given
real antenna array it is usually possible to allow for deviations
from this ideal by multiplying by appropriate transformation
matrices [16]. We also assume that the sources and scatterers
are distant from one another and from the receiving array
in comparison with the dimensions of the array, which is
equivalent to assuming that we operate in the far field of both
scatterers and sources.

In the finite scatterers model, each path is indexed by an in-
teger and has a defined angle of departure (AoD) from the
transmitting array , angle of arrival (AoA) at the receiving
array , and path gain defined as the ratio of the elec-
tric/magnetic field at the location of the receiving array to that

at the transmitting array. In accordance with the term “finite,”
we will for the most part in this paper assume that there is a fi-
nite number of multipaths, , so that . However, the
model could be extended to an infinite number, with .
In general, each multipath also has a time delay , but in this
paper we will neglect this, which is equivalent to assuming that
the signal bandwidth is narrow compared with the overall co-
herence bandwidth of the channel.

This model fits well with the spatial or “single-bounce”
channel models [5], [6], and with ray-tracing models. In the
former, the AoA and AoD are defined by the scatterer location
[as in path (a) in Fig. 1]; in the latter there is a set of distinct
paths which can be traced out [as in path (b) in Fig. 1], although
in many cases there may be a potentially infinite number of
such paths. However, multiply-scattered paths like (c) in Fig. 1
pose a potential problem for the model, in that they have a
single AoD but two (or more) AoAs. This problem will be dealt
with here by treating such paths as a pair of components, which
in the case illustrated would have the same AoDs but different
AoAs. (Note that due to reciprocity it is equally possible to
have multiple AoDs with the same AoA.) However, we will see
later that such paths raise particular issues for channel capacity.
Channel models like that of [11], which deal with clusters
of scatterers rather than individual scatterers, could also in
principle be covered, by grouping many scatterers into a single
cluster, but this would not be very illuminating compared with
the approach of [11]. However, space does not allow a more
detailed examination here.

The signals applied to the transmit elements are described as
a length column vector and similar the received signals as a
length column vector, where and are the number of
transmit and receive antenna elements, respectively. Let the re-
sponse of the receive array to a signal from AoA be .
Similarly, we can express the signal transmitted in a direction

as , where is the vector of signals at the trans-
mitter. Hence, the signal transmitted at the AoD of the th mul-
tipath is , where denotes transpose and
the corresponding received vector is .
Hence, the complete received signal from all paths, neglecting
noise at the receiver is

(1)

where and are, respectively, ( ) and (
) matrices whose columns are and ,

. is an ( ) diagonal matrix whose diagonal el-
ements are , .

Where it is necessary to assume any particular array geom-
etry in this paper we will suppose that both transmit and receive
arrays are linear with constant element spacings , , respec-
tively. Then, the transmit and receive antenna response vectors
referred to above are given by

(2)

where here is the wavelength.
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Including noise, the relationship of receive vector to
transmit vector is commonly written

(3)

where is the channel matrix and is the vector of thermal
noise. We assume that each element of the noise vector is a com-
plex Gaussian variable of power , .

Performance is evaluated, as in most other works, in terms of

the ratio of total transmit power to noise power per receiver

. In this paper, in common with works such as [14] and [17],

but unlike [1] and [2], we assume a normalization which ensures

that the total receive power is the same as total transmit power,

averaged over random instances of the channel matrix, that is

(4)

This has the effect of separating the array gain, due purely to

the increase in antenna gain from more antenna elements, from

any gain due to MIMO effects specifically. It is also equiva-

lent to defining the SNR as the ratio of average total received

signal power to noise power per element. Such a normalization

is necessary here to allow us to consider limiting cases as the

number of transmit/receive elements tends to infinity. In these

cases, the approach used in [1] and [2] would result in infinite

receive power and, hence, no limit could be obtained.

Substituting from (1) into (4) we have that in order to maintain

this normalization

(5)

assuming that the transmit and receive elements are isotropic

and, hence, the terms of have unit magnitude.

III. CAPACITY AND CAPACITY BOUNDS

A. Capacity of the MIMO Channel

We determine the capacity of the MIMO channel in the same
way as [1] and [2]: we decompose the channel into a set of or-
thogonal eigenmodes, using the singular value decomposition,
then calculate the sum of the capacities of the uncoupled chan-
nels formed by these modes. We may write

(6)

where and are unitary matrices whose columns are the
eigenvectors at transmitter and receiver respectively, the super-
script denotes the Hermitian, or conjugate transpose and
is a diagonal matrix whose diagonal elements are the square
roots of the eigenvalues of (also known as the singular

values). The total channel capacity, assuming that the channel
is unknown at the transmitter, can then be obtained [1], [2] as

(7)

where the ’s are the eigenvalues and is the channel
bandwidth. (Note that when occurs without a subscript it
refers to wavelength; with a subscript it is an eigenvalue.) As
noted above, we assume here that is small compared with
the channel coherence bandwidth, i.e

(8)

Equation (6) assumes that the channel is unknown at the trans-
mitter and, hence, that the transmit power is equally dis-
tributed between the eigenmodes. in (7) is the capacity
due to the th eigenmode.

B. Upper Bound on Average Channel Capacity

In this section, we derive an upper bound on average capacity

which applies to any MIMO channel for which the normaliza-

tion of (4) holds. The sum of the eigenvalues of a matrix is given

by its trace, that is

trace (9)

The function in (6) is monotonically increasing and

convex, that is, its slope is positive but decreases monotonically

with increasing argument. Let . Then, making

use of the convexity property

(10)

with equality if and only if . Then, the average capacity

(11)

If , that is is the average of the eigenvalues,

then the second term in this result is zero. From (4) and (9)

(12)

and, therefore, the average is unity. Then

(13)

This is the capacity of the ( ) identity channel: that is,

the channel whose matrix .
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Fig. 2. Simulation of a spatial, single-bounce channel model.

It is clear from the decomposition given in (1) and is also

shown in [4], that the rank of is upper bounded by

(14)

That is, if , it is the number of multipaths that

limits the rank. Moreover, paths like (c) in Fig. 1, which we have

treated as two multipaths, in fact contribute only once to the

rank, because either or has a repeated column. Hence,

is upper bounded by the number of multipaths which have

distinct angles of both arrival and departure.

If , the number of nonzero eigenvalues is rather

than and, hence, (11) may be rewritten as

(15)

The second term is zero if

(16)

Then

(17)

which is the capacity of an ( ) identity channel.

C. Simulation of Finite Scatterers Channel

A simulation of a simple spatial, single-bounce model has

been established in order to check the tightness of the bound

of (17) in some very simple cases.

We assume that a fixed number of scatterers are distributed

within a square region, as shown in Fig. 2. The distribution

within the region is random with uniform density. We place

uniform linear, -spaced transmitting and receiving antenna

arrays on opposite sides of the square, as shown by “T” and

“R” in the figure. For a uniform linear array (ULA) the transmit

and receive response vectors are given by (2). Note that for a

-spaced ULA the response vector depends on ; the

Fig. 3. Simulation (“+”) and bounds (solid lines) for capacity of spatial
channel, SNR 10 dB, equal numbers of transmit/receive elements, i.i.d path
gains. Colored lines are bounds derived from (n � n ) identity channel,
black line is bound for (n � n ) channel.

advantage of this distribution of scatterers is that it results in an

approximately uniform density of angles of arrival and depar-

ture for the multipaths. We further assume that the path gains

, are independent complex Gaussian variables,

i.e., that the multipaths are independently Rayleigh fading, as in

the conventional GWSSUS model [8]. Initially, we assume that

all paths have the same root-mean-square (rms) gain and, hence,

from (5)

(18)

Monte Carlo simulations have been performed for a given

number of scatterers, assigning random locations to the

scatterers and random complex Gaussian values for the path

gains. AoAs and AoDs were then computed from the geometry

of Fig. 2, from which the channel matrix was computed

using (1), (2), and (18). Hence, capacity was calculated by

performing a singular value decomposition on and using (7).

A capacity distribution is obtained by repeating this procedure

for many randomly chosen instances of scatterer locations and

path gains.

Fig. 3 shows the results of this simulation for a range of re-

ceive/transmit antenna sizes and numbers of scatterers. In all

cases, the number of transmit and receive elements were the

same. The SNR as defined above is 10 dB. The number of

random instances for each point is 500. The overall bound based

on (13) and the bounds for various numbers of scatterers are also

shown. We note that the bounds are not very tight, even asymp-

totically as the number of antenna elements increases.

Moreover, in Fig. 3, we assume that the mean amplitudes of

the signals from all scatterers is the same, neglecting variations

in path loss and effective scatterer cross section. In Fig. 4, we

include the effect of log-normal shadow fading on each path, in

addition to the Rayleigh fading for eight scatterers. We note that

the bound is still less tight, even though we have ensured that the

normalization of (4) still applies.
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Fig. 4. Simulation of capacity of spatial channel, SNR 10 dB, eight scatterers,
with and without log-normal fading compared with bound for eight scatterers.

D. Estimate of Asymptotic Capacity Distribution

In this section, we attempt to overcome the slackness of the

bound obtained in Section III-B by deriving an estimate of the

capacity which, we will argue, is asymptotically accurate as ,

. We will assume that linear, -spaced arrays are

used at both transmitter and receiver, although it is to be ex-

pected that the estimate will still be valid for most other array

geometries provided the element spacing remains constant as

the array size increases.

Consider the matrix whose eigenvalues are the squares

of the singular values referred to in Section III-A. Using (1)

(19)

Consider first the innermost product in this expression

(20)

Using (2)

(21)

If is an integer (in practice the

probability of this is vanishingly small unless ),

then . Otherwise it is bounded as . If

then . This

will generally be the case unless paths such as (c) in Fig. 1 exist.

Using this result in (19), extending it to and using

the fact that is diagonal, we have

(22)

is a diagonal matrix whose diagonal elements are the mul-

tipath power gains, , . The eigenvalues of a

diagonal matrix are simply the diagonal elements and, hence,

has eigenvalues, with values ,

. Substituting these values into (7) gives an esti-

mate of the capacity of the channel as the number of antenna

elements, ,

(23)

We have shown that this is asymptotically accurate provided

all paths have distinct angles of arrival and departure. We now

take the case in which some paths do not have distinct angles of

arrival. If for some , , , then will have

a pair of off-diagonal elements . We then

find that takes the form

. . .

...
. . .

...

...
. . .

...

(24)

The eigenvalues of this are

(25)

In other words, the two paths which have the same AoA con-

tribute to a single eigenmode whose eigenvalue is given by the

sum of the two path gains. It is easy to see that the same will

apply to two paths which have the same AoD at the transmitter.

Assuming that the multipaths are subject to independent

Rayleigh fading, we can obtain the mean capacity from (23)

(26)

where denotes the mean (power) gain of the th multipath

and denotes the incomplete Gamma function, defined

as

(27)

If all paths have equal mean power gains, then from (5)

, and (26) becomes

(28)

For , SNR 10 dB gives 7.98 bits/s/Hz. On the assump-

tion of log-normal fading, standard deviation 8 dB, in addition

to the Rayleigh, as in Fig. 4, the mean capacity is 4.5 bits/s/Hz.
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Fig. 5. Simulation results of Fig. 4 compared with asymptotic estimates from
Section III-D.

Fig. 6. Cumulative distribution function of capacity with eight scatterers and
32 transmit/receive antenna elements, SNR 10 dB, compared with estimate, with
and without log-normal shadow fading, standard deviation 8 dB.

Fig. 5 compares the simulation results shown in Fig. 4 with these

asymptotic estimates, showing that they are much closer than

the bound of Section III-B, especially in the log-normal fading

case. Fig. 6 shows the distributions of capacity, from which the

capacity for given availability (outage capacity) can be calcu-

lated. We observe that the distribution, as well as the mean, is

very close to the estimate.

We may note that neither the bounds nor the asymptotic esti-

mates depend on the antenna element spacing. Fig. 7 compares

the results of simulations with different element spacings with

the asymptotic estimate. We observe that in the limit they ap-

pear to be approaching the same bound, although with spacing

less than they do so more slowly. Larger spacings, how-

ever, have little effect on capacity in this case because in the

scenario simulated the angle spread at both transmitter and re-

ceiver is large. This result confirms that with a limited number

Fig. 7. Capacity with linear transmit/receive arrays with different element
spacings (as a fraction of a wavelength) compared with asymptotic estimate.

of scatterers it is not possible to increase the limiting capacity

by increasing the element spacing.

IV. CONCLUSION

We have analyzed the capacity of the finite scatterers channel

model and have shown that under a channel normalization

which compensates for receive array gain, average capacity

is upper bounded by the capacity of an identity channel of

dimension equal to the number of multipath components which

have distinct angles of departure/arrival at the transmit/receive

antenna. However, having compared this bound with the result

of a simulation of a simple scenario, we find that it is not tight

and, therefore, we derive an estimate of the capacity which

is asymptotically accurate as the number of receive/transmit

antenna elements tends to infinity. This is much closer to the

simulation results in terms of average capacity and we note

also that it can estimate the probability distribution function

of the capacity quite accurately. It can also allow for the case

where multipath components have different amplitudes, which

is illustrated here by assuming log-normal fading, as well as

Rayleigh fading of the components.
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