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Capacity Bounds for a Cognitive MIMO Gaussian
Z-Interference Channel

Yong Peng, Student Member, IEEE, and Dinesh Rajan, Senior Member, IEEE

Abstract—In this paper, we compute an achievable rate of a
multiple-input–multiple-output (MIMO) Gaussian Z-interference
channel (ZIC), as shown in Fig. 1, when transmit node C has im-
perfect cognitive knowledge of the signal sent by transmit node A.
First, we compute the capacity of this channel, assuming noncausal
but noisy knowledge at node C of node A’s signal. We then compute
the achievable rate for a causal cognitive strategy: This achievable
rate is derived using a two-phase transmission scheme, in which
node C uses a combination of a linear MMSE (LMMSE) estimator
and a dirty-paper code, and node D employs a combination of
an LMMSE estimator and a partial interference canceler. The
achievable rate is studied in two different cases: 1) Node C op-
erates in full-duplex mode, and 2) node C operates in half-duplex
mode. To quantify the performance of the proposed strategy, we
compute simple lower and upper bounds on the capacity of this
channel. Similar to an interference channel, the achievable rate of
the cognitive ZIC nonmonotonically varies with the interference.
Specifically, the achievable rate first decreases with the channel
gain between nodes A and D and then begins to increase beyond
a certain threshold. The difference in the achievable rate between
full- and half-duplex transmissions is also numerically evaluated.

Index Terms—Achievable rate, dirty-paper coding (DPC),
interference mitigation, random-coding error exponent.

I. INTRODUCTION

CONSIDER a Z-channel, as shown in Fig. 1, in which

the primary transmitter (node A) communicates with its

intended receiver (node B). There is also a secondary trans-

mitter (node C) that wishes to communicate with its receiver

(node D) on the same frequency as the primary nodes. Each

node has multiple antennas. Furthermore, node C can cogni-

tively monitor the interfering signal from node A, hence reduc-

ing its effect at node D. We call nodes C and D the cognitive

transmitter and receiver, respectively. We focus on the case

when nodes C and D are relatively closer to node A than node B.

Such a scenario might occur, for instance, when node A is a

cellular base station and nodes C and D are two nearby nodes,

whereas node B is at the cell edge. Since we assume that node B

is much farther away from the other nodes, we do not explicitly

consider the interference that node C causes at node B. Since
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Fig. 1. System model.

node D receives a combination of both the intended signal from

node C and the interfering signal from node A and node B is

interference free, this system model is sometimes also referred

to as a Z-interference channel (ZIC) [1]–[4], a “Z” channel

[5], [6], or a one-sided interference channel. Since we also

assumed that node A’s signal is cognitively known at node C,

we call the network in Fig. 1 a Gaussian cognitive ZIC.

Cognitive radio has been identified as a promising method for

its efficient utilization of spectrum [7]–[10]. Research on cogni-

tive spectrum sharing has broadly been classified into underlay,

interweave, and overlay schemes [11]. In underlay schemes,

the cognitive user selects a strategy (spread signal over very

large bandwidths as in ultrawideband systems) to ensure that

the additional interference to the primary user is minimized. In

interweave systems, the cognitive user adaptively detects and

utilizes the time-varying spectral holes due to inactivity of the

primary user. In overlay schemes, simultaneous transmissions

of primary and cognitive users are typically allowed using

variations of dirty-paper coding (DPC) [12], [13]. This paper

fits in the latter category and proposes a noisy version of DPC.

A simple model for a cognitive radio channel is constructed

using two transmitter–receiver pairs, with one pair being the

primary and the other being cognitive. Capacity bounds of

cognitive radio networks have intensively been studied for the

single-antenna case [11], [14]–[17]. An achievable region and

an outer bound for a multiple-input–multiple-output (MIMO)

Gaussian cognitive channel is derived in [18]. A new transmis-

sion scheme for the Gaussian MIMO cognitive radio channel

is proposed in [19], where the channel gains are no longer

deterministic and are only imperfectly known at the transmitter.

For the ZIC, the achievable region and sum capacity without

cognition are studied in [2] and [3], where the two receive

nodes can cooperate through a rate-limited relay link. In [6],

the capacity region of the Gaussian ZIC is investigated when

the crossover channel gain is small (less than the direct channel

gain). With cognition, the capacity bounds of compound non-

ergodic fading channels with side information at the cognitive

transmitter for finite alphabet channels is derived in [20]. The

0018-9545/$26.00 © 2010 IEEE
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capacity region of a discrete memoryless cognitive ZIC with

side information of the interference at the cognitive transmitter

is evaluated in [21].

In all these prior works [2], [3], [6], [11], [14]–[21] on

cognitive radio channels, the authors assume that the cogni-

tive transmitter has perfect and noncausal side information

of the interference. The cognitive radio channel with causal

side information is considered in [22], where the achievable

rates of a standard two-user single-input–single-output (SISO)

interference channel with cognition are evaluated for both non-

causal and causal cases. The authors have also assumed that the

cognitive transmitter can obtain perfect side information from

the primary transmitter.

In this paper, we compute the achievable rates of the MIMO

Gaussian cognitive ZIC.1 Our study differs from the previous

works in two key aspects.

1) We investigate transmission schemes of the MIMO

Gaussian cognitive ZIC, where only partial and causal

side information of the interference is available at the

cognitive transmitter.

2) Unlike [22], the primary users do not cooperate with

the cognitive users in any fashion, and the cognitive

users can only estimate the interference from the primary

transmitter based on the observed signal. Furthermore, we

assume that the primary receiver is far apart such that the

interference created by the cognitive transmitter can be

neglected.

Specifically, let node A communicate with its receiver, i.e.,

node B, at rate R using the transmit signal with covariance

matrix Q. Let the covariance matrix of the transmit signal of

node C be equal to P. A simple lower bound RCD,lb on the rate

that nodes C and D can communicate is

RCD,lb = log

⎛

⎝

∣

∣

∣InR
+ HADQH

†
AD + HCDPH

†
CD

∣

∣

∣

∣

∣

∣
InR

+ HADQH
†
AD

∣

∣

∣

⎞

⎠ (1)

which is achieved by treating the signal from node A as noise at

node D. Similarly, a trivial upper bound on this rate is obtained

(if either node C or D has perfect noncausal knowledge of

node A’s signal) as

RCD,ub = log
∣

∣

∣
InR

+ HCDPH
†
CD

∣

∣

∣
. (2)

We first compute the capacity of this channel when the signal

from node A is noncausally observed at both nodes C and D,

with certain Gaussian observation noise. We show that the inter-

ference at node D can be written as the linear combination of the

following: 1) a linear MMSE (LMMSE) estimate of node A’s

signal based on the observations of node A’s signal at nodes C

and D and 2) a residual noise. We prove that by using DPC at

node C and interference cancellation at node D, in conjunction

with these LMMSE estimators, the interference in part 1 can be

eliminated completely. Furthermore, this scheme achieves the

channel capacity extended from [24] for the Gaussian partial

1An earlier version [23] of this paper discussed the SISO full-duplex trans-
mission case.

side-information case. For simplicity, we refer to this scheme

as noisy DPC.

We then apply the noisy DPC derived in Section II to the

MIMO Gaussian cognitive ZIC, where the interference from

node A can only be causally observed at nodes C and D. We

compute achievable rates and outer bounds on the capacity of

this channel in two different cases: 1) Node C operates in full-

duplex mode, and 2) node C operates in half-duplex mode.

The achievable rate is derived by applying a combination of

a causal noisy DPC at the transmitter and interference cancella-

tion at the receiver. We use a two-phase transmission strategy.

In phase 1, node C obtains causal knowledge of the interference

from node A. Then, node C attempts to decode node A’s

signal based on the portion of the codeword it observed. In

phase 2, node C is in transmit mode only. Node D attempts

to decode node A’s signal based on the codeword it observed

after phase 2. The probability of decoding errors is bounded

using Gallager’s random-coding exponent [25]. These decoding

errors result in a noisy estimate of the interference at nodes C

and D. We use this noisy estimate to compute an achievable

rate RCD by applying the results from the noncausal case. We

evaluate the increase of RCD by using the proposed causal

transmission schemes in Section III. The numerical results also

allow us to quantify various components of the gain (noisy

DPC/interference cancellation) in various channel conditions.

Our main contributions are summarized in the list that

follows.

1) We derive the capacity of a MIMO Gaussian channel with

additive Gaussian interference when the interference is

noncausal but imperfectly known at the transmitter and

the receiver.

2) We propose novel transmission schemes for the cognitive

Gaussian ZIC that significantly increase the cognitive

user’s achievable rate using partial and causal knowledge

of the interference.

The rest of this paper is organized as follows: We evaluate

the capacity of a MIMO Gaussian channel with noncausal noisy

side information in Section II. We then apply the results to the

cognitive Gaussian ZIC and quantify the increase of achiev-

able rates in Section III. Numerical examples are provided in

Section IV, and Section V concludes this paper.

II. CAPACITY OF A MULTIPLE-INPUT–MULTIPLE-OUTPUT

GAUSSIAN CHANNEL WITH NOISY SIDE INFORMATION

In [12], Costa considered a single-user/single-antenna

Gaussian channel with independent additive interference at the

receiver and assumed that the interference is perfectly known

at the transmitter. He proposed a new coding strategy, which

is commonly referred to as DPC, that achieves rates as if

the interfering source is not present. Following Costa’s work,

several extensions of DPC have been studied, e.g., colored

Gaussian noise [26], arbitrary distributions of interference [13],

deterministic sequences [27], and capacity of the Gaussian

broadcast channel [28]–[30]. The case when the interference is

perfectly known to the encoder and a noisy version is known to

the decoder is considered in [31], mainly focusing on discrete

memoryless channels. The only result in [31] for a Gaussian
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Fig. 2. Gaussian channel with noisy side information of the interference at
both the encoder and the decoder.

channel reveals no additional gain due to the presence of

the noisy estimate at the decoder, since perfect knowledge is

available at the encoder, and DPC can be used. In contrast,

in this section, we study the case when only noisy knowledge

of the interference is available at both the transmitter and the

receiver with multiple antennas.

A. Channel Model

Consider a MIMO Gaussian channel with additive interfer-

ence, as depicted in Fig. 2. Let there be nT transmit antennas,

nR receive antennas, and nI antennas at the interfering source.

The complex received signal matrix for n uses of the channel,

i.e., Y ∈ C
nR×n, is corrupted by both the Gaussian noise

Z0 ∈ C
nR×n and an independent interference signal matrix

S ∈ C
nI×n and is given by

Y = H0X + H3S + Z0 (3)

where H0 ∈ C
nR×nT and H3 ∈ C

nR×nI are the channel ma-

trices from the transmitter to the receiver and from the inter-

ference to the receiver, respectively, and X ∈ C
nT ×n is the

transmitting signal matrix. Side information M1 = H1S + Z1

and M2 = H2S + Z2 of the interference is assumed to be non-

causally known at the transmitter and the receiver, respectively,

where H1 ∈ C
nT ×nI and H2 ∈ C

nR×nI represent, respec-

tively, the transmitter–interference and receiver–interference

channels, and Z1 ∈ C
nT ×n and Z2 ∈ C

nR×n are the respective

Gaussian noises corrupting S at the transmitter and the receiver.

We assume that the channel matrices Hi, i = 0, 1, 2, and 3 are

all deterministic and are known to both the transmitter and the

receiver. Since we assume noncausal noisy side information of

S at the transmitter and the receiver, we do not restrict ourselves

to the case that S is somehow known to the receiver through

the same channel H3 as (3); hence, we distinguish H2 and

H3.2 Furthermore, we assume that each element of the complex

Gaussian noises Zi, i = 1, 2, and 3 is zero-mean unit-variance

independent identically distributed (i.i.d.), with independent

equal-variance real and imaginary parts.

The transmitter sends an index W ∈ {1, 2, . . . ,K} to the

receiver in n uses of the channel at rate R = (1/n) log K nats

per transmission. Based on the index W and the partial side

information M1, the transmitter picks one codeword from an

(enR, n) codebook to transmit. For each of the n transmissions,

2In Section III, we set H2 = H3, since the receiver uses its received signal
to estimate the interference.

the transmit signal vector x ∈ C
nT ×1 and the interfering signal

vector s ∈ C
nI×1 are both independently generated with the

following distributions: x ∼ N (0,P) and s ∼ N (0,Q), where

the covariance matrix P of the transmit signal vector is deter-

mined based on H0 to achieve MIMO channel capacity [32].

The transmit signal has an average power constraint PT , i.e.,

1

n
E

[

tr(X†X)
]

=
1

n
tr(P ⊗ In) = tr(P) ≤ PT (4)

where In is the identity matrix of size n, and ⊗ represents the

Kronecker product. Similarly, the average power of the interfer-

ence signal S is constrained by PI , which can be expressed as

1

n
E

[

tr(S†S)
]

=
1

n
tr(Q ⊗ In) = tr(Q) ≤ PI . (5)

Letting Ŵ be the estimate of W at the receiver, an error occurs

if Ŵ �= W .

B. Channel Capacity and Achievability

Theorem 1: Considering a channel with the received signal

given in (3), let independent partial side information M1 =
H1S + Z1 and M2 = H2S + Z2 of the interference S be

available at the transmitter and the receiver, respectively. The

covariance matrices of the signals at the transmitter and the

interfering source for each of the channel uses are, respectively,

P and Q, and each element of the noise matrices Zi, i =
1, 2, and 3 are zero-mean unit-variance i.i.d. Gaussian. The

capacity of this channel is given by

C = log

⎛

⎝

∣

∣

∣
InR

+ H3QΦH
†
3 + H0PH

†
0

∣

∣

∣

∣

∣

∣InR
+ H3QΦH

†
3

∣

∣

∣

⎞

⎠ (6)

where Φ = (InI
+ (H†

1H1 + H
†
2H2)Q)−1.

1) Capacity Outer Bound: Let y ∈ C
nR×1, m1 ∈ C

nT ×1,

and m2 ∈ C
nR×1 be the received signal vector and the trans-

mitter and receiver side partial information of the interfer-

ence signal vectors, respectively, for one use of the channel.

Since both x ∼ N (0,P) and s ∼ N (0,Q) are independently

generated for each channel use and all elements in Zi’s are

zero-mean unit-variance i.i.d. Gaussian, we can express the

distributions of the vectors as y ∼ N (0,Ny), where Ny =

InR
+ H0PH

†
0 + H3QH

†
3, m1 ∼ N (0,N1), where N1 =

InT
+ H1QH

†
1, and m2 ∼ N (0,N2), where N2 = InR

+

H2QH
†
2. It is clear that the channel capacity cannot exceed

maxp(x|m1,m2) I(x;y|m1,m2), which is the capacity when

M1 and M2 are known at both the transmitter and the receiver.

Thus, a capacity bound is given by

I(x;y|m1,m2)

= I(x;y,m1,m2) − I(X;m1,m2)

≤ I(x;y,m1,m2) (7)

= H(x) + H(y,m1,m2) − H(x,y,m1,m2)

= log(2πe)2(nT +nR)|P|
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×

∣

∣

∣

∣

∣

∣

Ny H3PH
†
1 H3PH

†
2

H1PH
†
3 N1 H1PH

†
2

H2PH
†
3 H2PH

†
1 N2

∣

∣

∣

∣

∣

∣

− log(2πe)2(nT +nR)

×

∣

∣

∣

∣

∣

∣

∣

∣

P PH
†
0 0 0

H0P Ny H3PH
†
1 H3PH

†
2

0 H1PH
†
3 N1 H1PH

†
2

0 H2PH
†
3 H2PH

†
1 N2

∣

∣

∣

∣

∣

∣

∣

∣

(8)

= log

⎛

⎝

∣

∣

∣InR
+ H3QΦH

†
3 + H0PH

†
0

∣

∣

∣

∣

∣

∣
InR

+ H3QΦH
†
3

∣

∣

∣

⎞

⎠ . (9)

Note that the inequality in (7) is actually a strict equality

since I(x;m1,m2) = 0. The detailed derivation from (7)–(9)

is given in the Appendix.

2) Proof of Achievability: We now show that the capacity

bound in (9) is achievable. The proof is based on a direct

application of DPC by treating the LMMSE estimation of the

interference at the receiver as side information; hence, we only

outline the key steps. Using LMMSE, the interference at the

receiver, i.e., H3S, can be expressed as

H3S = H3A1M1 + H3A2M2 + Ẑ (10)

where A1 = (InI
+ Q(H†

1H1 + H
†
2H2))

−1QH
†
1 and A2 =

(InI
+ Q(H†

1H1 + H
†
2H2))

−1QH
†
2 are the LMMSE coeffi-

cient matrices, and Ẑ is the residual estimation error.

Since S, M1, and M2 are all Gaussian matrices, the esti-

mation noise matrix Ẑ is also Gaussian and is orthogonal to

M1 and M2 due to LMMSE. This channel can be treated as

a Gaussian channel with perfect side information H3A1M1 at

the transmitter and perfect knowledge of part of the interference

H3A2M2 at the receiver. Therefore, the transmitter can apply

DPC to remove H3A1M1 from the received signal. The re-

ceiver can directly subtract H3A2M2 from the received signal.

Thus, the remaining noise of the channel is Ẑ + Z0. Letting ẑ

be the estimation noise vector at any time instant, after some

algebra, the covariance N̂ of ẑ is found to be

N̂ = H3QΦH
†
3. (11)

Since Ẑ and Z0 are independent of each other, the covariance

matrix of the total noise is InR
+ N̂. The achievable rate is then

given by log(|InR
+ N̂ + H0PH

†
0|/|InR

+ N̂|), which is ex-

actly the channel capacity expression given in (9). For easy ref-

erence, we call this capacity-achieving scheme the noisy DPC.

C. Special Case: SISO

We now briefly discuss the single-antenna case and compare

it with Costa’s standard DPC model. To simplify the compar-

ison with [12], we normalize the channel gains instead of the

Gaussian channel noises to 1.

Fig. 3. SISO Gaussian channel with noisy side information at both the
encoder and the decoder.

Consider a SISO Gaussian channel with partial side infor-

mation, as shown in Fig. 3(a), where Z0 ∼ N (0, N0), Z1 ∼
N (0, N1), and Z2 ∼ N (0, N2) are the noise variable added

to the channel, the side information at the transmitter, and the

side information at the receiver, respectively. By normalizing

the variance Z0, Z1, and Z2 to 1, the equivalent channel

gains between the transmitter and the receiver and between

the interfering source and the receiver are h0 = h3 = 1/
√

N0.

The observation channels between the transmitter and the in-

terfering source and between the receiver and the interfering

source have channel gains h1 = 1/
√

N1 and h2 = 1/
√

N2,

respectively. The channel model after normalizing the noise

variances is depicted in Fig. 3(b).

Therefore, we can express the capacity of the SISO

Gaussian channel with partial side information in terms

of N0, N1, and N2 by substituting H0 and H3 with

1/
√

N0 in (6) and by substituting H1 and H2 with 1/
√

N1

and 1/
√

N2, respectively. The resultant capacity is given

by I(X;Y |M1,M2) = C(P/(µQ + N0)), where 0 ≤ µ =
1/(1 + (Q/N1) + (Q/N2)) ≤ 1. Letting N2 = ∞ and N1 =
∞, we can obtain the channel capacities when the observation

of the interference is available either at the transmitter or the

receiver, and those capacities are, respectively

I(XY |M1) =C

(

P

QN1

/

(Q + N1) + N0

)

(12)

I(XY |M2) =C

(

P

QN2

/

(Q + N2) + N0

)

. (13)

Note that when N1 = 0, the channel model further reduces

to Costa’s DPC channel model [12]. Furthermore, by setting

N1 = N2 in (12) and (13), we can see that the observation of

S made at the transmitter and the receiver are equivalent in the

achievable rate, as long as the corrupting Gaussian noises have

the same statistics.
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III. COGNITIVE MULTIPLE-INPUT–MULTIPLE-OUTPUT

GAUSSIAN Z-INTERFERENCE CHANNEL

We present our main results in this section. First, we intro-

duce the cognitive system model of interest. Then, we apply

noisy DPC to the causal case and provide practical transmission

schemes that can increase the achievable rate of the Gaussian

cognitive ZIC.

A. System Model

The considered cognitive ZIC model is shown in Fig. 1.

We make similar assumptions as in Section II that all the

channel gains are deterministic and that the noises are all i.i.d.

Gaussian with covariance matrices normalized to identity. In

Fig. 1, nodes A and B are the primary transmitter and receiver,

respectively. Node A transmits an index V ∈ {1, 2, . . . , L}
using nI antennas to the receiver in n uses of the channel at rate

R = (1/n) log L nats per transmission. The codeword node A

transmits is from an (enR, n) random Gaussian codebook, i.e.,

each element of the codeword is randomly generated according

to Gaussian i.i.d. across time and with covariance matrix Q ∈
C

nI×nI across different antennas. The covariance matrix Q is

determined by the channel matrix HAB between nodes A and B,

which can achieve the MIMO Gaussian channel capacity.

Nodes C and D are the cognitive transmitter and receiver, with

nT and nR antennas, respectively. We assume that nodes C

and D are relatively closer to node A than node B. The channel

matrices between nodes C and D, nodes A and C, and nodes A

and D are HCD ∈ C
nR×nT , HAC ∈ C

nT ×nI , and HAD ∈
C

nR×nI , respectively. Similarly, the covariance matrix P ∈
C

nT ×nT of node C’s transmit symbols across different antennas

is determined by HCD. Letting PA and PC be the average

power constraints of nodes A and C, respectively, which are

defined similarly as in (4) and (5).

It is clear that if noncausal noisy side information is avail-

able at the transmitter/receiver, using the noisy DPC scheme

proposed in Section II can significantly increase the achievable

rate. However, the noncausal assumption is not realistic for

interference channels in practice. In Section III-B, we show

that, in the causal case, we can also apply noisy DPC to obtain

higher achievable rates under certain channel conditions.

B. Achievable Rates

Theorem 2: Consider a Gaussian ZIC, as shown in Fig. 1. If

node C can operate in full-duplex mode, then it can communi-

cate with node D at the rate given by

RCD = max(RCD,1, RCD,2, RCD,3, RCD,4) (14)

where RCD,1, RCD,2, RCD,3, and RCD,4 are given in (24), (28),

(32), and (33), respectively. If node C is constrained to operate

in half-duplex mode, then it can communicate with node D at

the rate given by

R′
CD = max

(

R′
CD,1, R

′
CD,2, RCD,3, RCD,4

)

(15)

where R′
CD,1 and R′

CD,2 are given in (25) and (29),

respectively.

Proof: We construct four different transmission schemes

and compute the maximum achievable rate across all schemes.

These four schemes are as follows:

1) noisy DPC at node C with partial interference cancella-

tion at node D;

2) only noisy DPC at node C;

3) only partial interference cancellation at node D;

4) baseline transmission without interference mitigation at

nodes C and D.

Schemes 3 and 4 have been well studied in the literature.

Our main contribution lies in schemes 1 and 2, which are

based on an extension of the noncausal noisy DPC proposed in

Section II to the causal case. We first qualitatively explain the

proposed causal noisy DPC scheme. As noted in Section III-A,

node A chooses its codeword from an (enR, n) random

Gaussian codebook under certain channel conditions. Node C

can decode the message node A sent by using the first m sym-

bols (0 < m < n,m ∈ N). The upper bound on the decoding

error probability can be calculated by using the theory of error

exponents [25]. Node C can then use the decoded signal to es-

timate the remaining n − m symbols that node A transmits and

treat it as the noisy side information. Therefore, we can apply

the results in Section II to compute the increased achievable rate

of the cognitive ZIC.

We now elaborate the derivations of the achievable rates

under each of the four schemes for both full- and half-duplex

transmissions.

Scheme 1 (Noisy DPC at Node C With Partial Interference

Cancellation at Node D): We first evaluate the full-duplex

achievable rate of scheme 1 and then extend the result to the

half-duplex case.

Full-duplex: The proposed scheme has two phases:

Phase 1 lasts for m symbol periods, and phase 2 lasts for n − m
symbol periods. The covariance matrices of the signal trans-

mitted by node C at each time instant across all antennas are

P1 = (n/m)αP and P2 = (n/n − m)(1 − α)P in phases 1

and 2, respectively, where 0 ≤ α ≤ 1 is the power-allocation

factor.

The total achievable rate between nodes A and C in phase 1

is given by

RAC(m) = m log
∣

∣

∣InT
+ HACQH

†
AC

∣

∣

∣ . (16)

For values of m such that nR ≤ RAC(m), node C can

decode node A’s signal using the symbols received in phase 1

with an error probability bounded by Pe,C ≤ exp(−mEC(m)),
where EC(m) is Gallager’s random-coding error exponent

[25]. The error exponent EC(m) can be computed as a special

case of [33] for the deterministic MIMO Gaussian channel and

is given by

EC(m) = max
0≤ρ≤1

r≥1,0<|II−rQ|≤1

(1 + ρ) (rPA + log |InI
− rQ|)

+ ρ log

∣

∣

∣

∣

∣

InR
+

HAC(Q−1 − rInI
)−1H

†
AC

1 + ρ

∣

∣

∣

∣

∣

− ρn

m
R (17)

where ρ and r are free parameters to be optimized [25].
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Thus, the estimate of node A’s codeword at node C, i.e.,

M̃1, is a combination of the true codeword matrix S and an

estimation noise matrix Z̃1, i.e., M̃1 = S + Z̃1. Let z̃1 be the

estimation noise vector at one time instant across different

antennas. The covariance matrix Ñ1 of z̃1 can be computed as

Ñ1 = Pe,CE
[

(s − s̃)(s − s̃)†
]

= 2Pe,CQ (18)

where s is the random Gaussian vector that node A transmits

at one time instant, and s̃ is its false estimate at node C. Node

C can then apply noisy DPC by treating M̃1 as the noisy side

information to reduce the interference of the remaining n − m
transmissions.

The total achievable rate RAD(m,α) between nodes A and

D during phases 1 and 2 is given by

RAD(m,α)= m log

⎛

⎝

∣

∣

∣
InR

+HADQH
†
AD+HCDP1H

†
CD

∣

∣

∣

∣

∣

∣InR
+HCDP2H

†
CD

∣

∣

∣

⎞

⎠

+ (n−m) log

⎛

⎝

∣

∣

∣InR
+HADQH

†
AD+HCDP2H

†
CD

∣

∣

∣

∣

∣

∣InR
+HCDP2H

†
CD

∣

∣

∣

⎞

⎠ .

(19)

For values of m such that nR ≤ RAD(m,α), node D can

decode node A’s message with error probability Pe,D ≤
exp(−nED(m,α)) at the end of phase 2, where ED(m,α)
is the random-coding error exponent for node D to decode

node A’s signal. The computation of ED(m,α) is more in-

volved since node D experiences time-varying interference as

a result of node C using different powers in phases 1 and 2.

Applying [34] and assuming deterministic channel matrices,

ED(m,α) is given in (20), shown at the bottom of the page,

where Ξ = HAD(Q−1 − rI−1
nI

)−1H
†
AD. Similar to the case of

node C, we can express node D’s estimation of node A’s

codeword as M̃2 = S + Z̃2, where Z̃2 is the estimation noise

matrix. Letting z̃2 be the estimation noise vector at one time

instant across different antennas, the covariance matrix of z̃2

is Ñ2 = 2Pe,DQ. Node D can thus treat M̃2 as its noisy side

information and apply noisy DPC to partially cancel out the

interference.

We now apply the result in Theorem 1 to calculate the

achievable rate for scheme 1. Recall that we assumed that the

channel noise covariance matrices are all normalized to identity

when calculating the channel capacity for the noncausal case.

To utilize the result in (6), we also normalize the estimation

noise covariance matrices of the causal case. Let U1 be a scaled

version of the unitary matrix that can normalize Ñ1 to InT
, i.e.,

U1Ñ1U
†
1 = InT

. Equivalently, we can express the noisy side

information at the transmitter as M̃1 = U1S + U1Z̃1, where

U1 can be interpreted as the channel matrix between nodes A

and C. Similarly, at node D, let U2 be a scaled version of the

unitary matrix that can normalize Ñ2 to InR
; we can express the

noisy side information at the receiver as M̃2 = U2S + U2Z̃2.

Thus, we can calculate the achievable rate for the causal case by

simply replacing the channel matrices H1, H2, and H3 in (6)

with the corresponding equivalent channel matrices U1, U2,

and HAD, respectively. Since U1Ñ1U
†
1 = InT

, we have

U
†
1U1 = Ñ−1

1 =
1

2Pe,C

Q−1. (21)

Since U2Ñ2U
†
2 = InR

, we have

U
†
2U2 = Ñ−1

2 =
1

2Pe,D

Q−1. (22)

After obtaining the noisy side information of node A in

phase 1, node C can apply DPC, and node D can apply partial

interference cancellation in phase 2. Substituting H
†
1H1 and

H
†
2H2 in (6) with the values of U

†
1U1 and U

†
2U2 computed

in (21) and (22), respectively, and replacing H3 by HAD, the

achievable rate RCD,1b(m,α) in phase 2 is given by

RCD,1b(m,α)

= log

⎛

⎝

∣

∣

∣
InR

+ µTR(m,α)HADQH
†
AD + HCDP2H

†
CD

∣

∣

∣

∣

∣

∣InR
+ µTR(m,α)HADQH

†
AD

∣

∣

∣

⎞

⎠

(23)

where

µTR(m,α)=
1

1+0.5 exp (mEC(m))+0.5 exp (nED(m,α))
.

Since node D can go back to cancel node A’s interference at

the end of phase 2, the achievable rate RCD,1a(m,α) can be

calculated using similar method as in calculating (23) and is

given by

RCD,1a(m,α)

= log

⎛

⎝

∣

∣

∣InR
+ µR(m,α)HADQH

†
AD + HCDP1H

†
CD

∣

∣

∣

∣

∣

∣
InR

+ µR(m,α)HADQH
†
AD

∣

∣

∣

⎞

⎠

where

µR(m,α) =
1

1 + 0.5 exp (nED(m,α))
.

ED(m,α) = max
0≤ρ≤1

r≥1,0<|II−rQ|≤1

(1 + ρ) (rPA + log |InI
− rQ|)

+ρ log

⎛

⎝

m

n

∣

∣

∣(1 + ρ)
(

InR
+ HCDP1H

†
CD

)

+ Ξ
∣

∣

∣

∣

∣

∣(1 + ρ)
(

InR
+ HCDP1H

†
CD

)∣

∣

∣

+
n − m

n

∣

∣

∣(1 + ρ)
(

InR
+ HCDP2H

†
CD

)

+ Ξ
∣

∣

∣

∣

∣

∣(1 + ρ)
(

InR
+ HCDP2H

†
CD

)∣

∣

∣

⎞

⎠ − ρR (20)
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Thus, the average achievable rate RCD,1 using scheme 1 with

full-duplex transmission is given by

RCD,1 = max
0<m<n
0≤α≤1

m

n
R′

CD,1a(m,α) +
n − m

n
R′

CD,1b(m,α)

s.t. nR ≤ RAC(m) and nR ≤ RAD(m,α). (24)

If there are no values of m, 0 < m < n, such that nR ≤
RAC(m) and nR ≤ RAD(m,α), we set RCD,1 = RCD,lb.

Half-duplex: In half-duplex transmission, node C has to

be silent in phase 1 to obtain the noisy side information from

node A. Hence, by setting RCD,1a(m,α) = 1 and α = 0 in

(24), the achievable rate R′
CD,1 using scheme 1 with half-

duplex transmission is given by

R′
CD,1 = max

0<m<n
s.t. nR≤RAC(m) and nR≤RAD(m,0)

n − m

n

× log

⎛

⎝

∣

∣

∣InR
+µTR(m,0)HADQH

†
AD+ n

n−m
HCDPH

†
CD

∣

∣

∣

∣

∣

∣
InR

+µTR(m,0)HADQH
†
AD

∣

∣

∣

⎞

⎠.

(25)

Note that there is no constraint that node C must use code-

words of length n − m since node A uses codewords of length

n. Node C can code over multiple codewords of A to achieve

its desired probability of error.

Scheme 2 (Only Noisy DPC at Node C): Scheme 2 is similar

to scheme 1, except that node D does not apply partial interfer-

ence cancellation. This scheme is potentially superior in case

the channel quality between nodes A and D is not as good as

the channel quality between nodes A and C.

Full-duplex: The calculation of the achievable rate of

scheme 2 is similar to scheme 1, except that ED(m,α) does not

exist since node D does not decode node A’s signal. In phase 1,

the achievable rate RCD,2a(m) is given by

RCD,2a(m) = log

⎛

⎝

∣

∣

∣
InR

+ HADQH
†
AD + HCDP1H

†
CD

∣

∣

∣

∣

∣

∣InR
+ HADQH

†
AD

∣

∣

∣

⎞

⎠.

(26)

In phase 2, node C uses noisy DPC to reduce the interference,

and the achievable rate R′
CD,2b(m) is given by

RCD,2b(m)

= log

⎛

⎝

∣

∣

∣
InR

+µT (m)HADQH
†
AD+HCDP2H

†
CD

∣

∣

∣

∣

∣

∣InR
+µT (m)HADQH

†
AD

∣

∣

∣

⎞

⎠ (27)

for values of m such that nR ≥ RAC(m), where

µT (m) =
1

1 + 0.5 exp (mEC(m))
.

Thus, the average achievable rate RCD,2 using scheme 2 with

full-duplex transmission is

RCD,2 = max
0<m<n

s.t. nR≤RAC(m)

m

n
RCD,2a(m) +

n − m

n
RCD,2b(m).

(28)

Half-duplex: Since node C has to be silent in phase 1 to

obtain the noisy side information, we set RCD,2a(m) = 0 in

(28). The average achievable rate R′
CD,2 using scheme 2 with

half-duplex transmission is then given by

R′
CD,2 = max

0<m<n,

s.t. nR≤RAC(m)

n − m

n

× log

⎛

⎝

∣

∣

∣InR
+ µT (m)HADQH

†
AD + n

n−m
HCDPH

†
CD

∣

∣

∣

∣

∣

∣
InR

+ µT (m)HADQH
†
AD

∣

∣

∣

⎞

⎠.

(29)

We set RCD,2 = R′
CD,2 = RCD,lb if no values of m satisfy

nR ≤ RAC(m).
Scheme 3 (Only Partial Interference Cancellation at

Node D): Scheme 3 is similar to scheme 1, except that node C

does not apply noisy DPC. This scheme is potentially superior

if the channel quality between nodes A and C is worse than the

channel quality between nodes A and D. This scheme is also

similar to a multiple-access channel (formed by nodes A, C,

and D), except that node D decodes node A’s signal only to in-

crease the achievable rate between nodes C and D. Furthermore,

since node C does not employ any decoding, the achievable rate

is the same, even if node C can only operate in half-duplex

mode. Following similar derivations as shown in scheme 1,

the achievable rate RCD,3a(m,α) in phase 1 using scheme 3

is given by

RCD,3a(m,α)

= log

⎛

⎝

∣

∣

∣InR
+ µR(m,α)HADQH

†
AD + HCDP1H

†
CD

∣

∣

∣

∣

∣

∣
InR

+ µR(m,α)HADQH
†
AD

∣

∣

∣

⎞

⎠

(30)

and the achievable rate RCD,3b(m,α) in phase 2 is given by

RCD,3b(m,α)

= log

⎛

⎝

∣

∣

∣InR
+ µR(m,α)HADQH

†
AD + HCDP2H

†
CD

∣

∣

∣

∣

∣

∣
InR

+ µR(m,α)HADQH
†
AD

∣

∣

∣

⎞

⎠ .

(31)

The average achievable rate RCD,3 using scheme 3 for both

full- and half-duplex transmissions is then given by

RCD,3 = max
0<m<n
0≤α≤1

m

n
RCD,3a(m,α) +

n − m

n
RCD,3b(m,α)

s.t. nR ≤ RAD(m,α). (32)

We set RCD,2 = R′
CD,2 = RCD,lb if no values of m satisfy

nR < RAD(m,α).
Scheme 4 (Baseline Transmission Without Interference

Mitigation at Node C or D): Since neither node C nor D

does interference mitigation, the achievable rate RCD,4 of

scheme 4 is

RCD,4 = RCD,lb. (33)

�
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Remark 1: A closed-form expression of the random-coding

error exponent for a MIMO Gaussian block-fading channel

is given in [33]. However, since no channel knowledge is

assumed at the transmitter in [33], the total power PT is

equally allocated to all transmit antennas with covariance

matrix Q = (PT /nT )InT
. Thus, instead of optimizing r, which

is shown inside both logarithm and matrix inversion operation,

the authors made the approximation of optimizing β = nT −
rPT for analytical tractability [33, eqs. (7) and (8)]. Since we

assumed perfect channel-state information and optimal power

allocation, we cannot make similar approximations to derive

closed-form expressions of the error exponents. Instead, we

numerically calculate the optimal error exponent and analyze

the resultant achievable rate. The closed-form expression of

the error exponent for the SISO case is provided in [25, eqs.

(7.4.33) and (7.4.35)], using similar approximations as in [33].

Since the result in [25] can easily be applied to the single-

antenna situation of our case, we omit the expression for sim-

plicity and refer the interested reader to the original literature.

Remark 2: The random-coding error exponent for the

MIMO Gaussian deterministic channel case is also discussed

in [32], where the parameter r is set to 0. However, as stated in

[25], this choice of r is not optimal, since the codewords with

small power would dominate the bound on error probability

with r = 0 in the calculation, these codewords are not included

in the ensemble of codes. Furthermore, the Gaussian codewords

we choose are optimal in maximizing the error exponent only

if the rate approaches the channel capacity [33]. Otherwise, a

distribution concentrated on a “thin spherical shell” yields bet-

ter results [25], [32]. However, we use the Gaussian codewords

due to mathematical tractability.

Remark 3: The covariance matrices Ñ1 and Ñ2 are, in

general, not Gaussian. However, it is known that, for a given

noise variance, the capacity of an additive noise channel is

minimized if the noise is Gaussian. Thus, by modeling the

decoding error as Gaussian, we derive an achievable rate using

noisy DPC, which serves as the lower bound on the capacity.

IV. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illus-

trate the increase in the achievable rate using noisy DPC. We

consider both SISO and MIMO cases. In the SISO case, let

hAB, hCD, hAC, and hAD denote the complex channel gains

between nodes A and B, C and D, A and C, and A and D,

respectively. We set |hAB| = 0.25, |hCD| = 1, and the average

power constraints PA = PC = 100. In the MIMO case, let each

node have two antennas, and PA = PC = 10. Let HAB be the

channel matrix between the primary transmitter and receiver:

nodes A and B. The real and imaginary parts of all elements

in HAB, HCD, HAC, and HAD are independently generated

according to N (0, 1). We multiply the factors λAB, λAC, and

λAD to HAB, HAC, and HAD, respectively, and change their

values to vary the channel qualities. We also set λAB = 0.25,

λCD = 1, and n = 50, unless otherwise specified.

Fig. 4(a) and (b) shows the variation of RCD and R′
CD with

respect to the channel gains between nodes A and D in the

SISO and MIMO cases, respectively. In the SISO case, as we

Fig. 4. Variation of achievable rates with (a) |hAD| for different values of
|hAC| in the SISO case and (b) λAD for different values of λAC in the MIMO
case (FD: full-duplex; HD: half-duplex).

can see from Fig. 4(a), the achievable rates with full-duplex

transmission are greater than the lower bound when |hAD| > 0,

since all values of |hAC| are greater than |hAB|; hence,

scheme 2 (noisy DPC at node C) can be applied to increase the

achievable rate in phase 2 (interference cancellation at node D

is not possible for small values of |hAD|). However, for half-

duplex transmission, since node C has to be silent in phase 1 to

apply noisy DPC, the fractional penalty on the rate loss cannot

always be compensated by the gains due to better decoding.

Thus, only when |hAC| is sufficiently large (|hAC| = 2), using

scheme 2 alone under half-duplex assumption increases the

achievable rate. Notice also the nonmonotonic variation of RCD

and R′
CD with |hAD|, which can be explained as follows. The

interference of the channel increases with |hAD|; when |hAD| is

small, the transmitter side interference cancellation (scheme 2)

cannot offset the increased interference. Although RCD and

R′
CD can be greater than RCD,lb, they still decrease as |hAD|
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Fig. 5. Variation of achievable rates with (a) |hAC| for different values of
|hAD| in the SISO case and (b) λAC for different values of λAD in the MIMO
case (FD: full-duplex; HD: half-duplex; LB: lower bound).

increases. When |hAD| is large, both noisy DPC and receiver

side partial interference cancellation (scheme 1) can be applied.

Thus, RCD and R′
CD start to increase after some thresholds

when scheme 1 can be applied. Furthermore, when |hAD| is

sufficiently large, node D can decode and subtract node A’s

codeword by treating node C’s signal as interference. Therefore,

RCD and R′
CD will eventually approach RCD,ub. Similar trends

are shown for the MIMO case in Fig. 4(b).

Fig. 5(a) and (b) shows the variation of RCD and R′
CD with

respect to the channel gains between nodes A and C in the SISO

and MIMO cases, respectively. For the SISO case, first consider

when |hAD| = 0.2. Since |hAD| < |hAB|, node D cannot reli-

ably decode node A’s signal. Now, for small values of |hAC|,
node C cannot also decode node A’s signal, and the achievable

rate is then RCD,lb. As |hAC| increases, noisy DPC (scheme 2)

can be applied, as shown in the figure, and RCD immediately

increases when |hAC| > |hAB|. However, R′
CD increases only

Fig. 6. Scheme that achieves the highest rate with different λAC and λAD for
(a) full-duplex transmission and (b) half-duplex transmission.

when |hAC| is sufficiently large due to a similar reason we

explained in illustrating Fig. 4(a). When |hAD| = 0.4, since the

interference increases, the achievable rates decrease. However,

since node D can partially decode node A’s signal (scheme 3),

RCD and R′
CD are both greater than the lower bound, even

when |hAC| is very small. When |hAD| = 0.8, node D can can-

cel out more interference to achieve transmission rates higher

than the case when |hAD| = 0.2 by using scheme 3 alone.

Note, however, that a larger |hAD| value causes more interfer-

ence at node D, which is reflected in the decrease of RCD,lb.

Thus, for a given |hAC|, the achievable rate can be lower or

higher, depending on the value of |hAD|. Similar behavior of

RCD and R′
CD with respect to λAC is observed for the MIMO

case, as shown in Fig. 5(b).

In Fig. 6(a) and (b), the scheme that achieves the highest

transmission rate with respect to different λAC and λAD are

plotted for full- and half-duplex MIMO cases, respectively. In

the full-duplex case, it is clear that, when both λAC and λAD

are small, no scheme can achieve rates larger than RCD,lb;

hence, scheme 4 is optimal. Scheme 3 achieves the highest rate
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Fig. 7. Optimal m with respect to n for different λAC.

when λAD is large, since node D can do partial interference

cancellation. When λAC is large, node C can apply noisy DPC

to increase the achievable rate; thus, scheme 2 is the best. When

both λAC and λAD are large, both nodes C and D can decode

node A’s signal and do interference cancellation; in this case,

scheme 1 achieves the highest transmission rate. Note that there

is no clear-cut threshold of λAC for scheme 1 to be better than

scheme 2, since when λAC is large but λAD is not large enough,

there are fewer values of m and α (such that RAD(m,α) ≥ nR)

for scheme 1 to achieve a larger rate than the lower bound.

However, once λAC is large enough (such that RAC(m) ≥ nR),

the achievable rate of scheme 2 can be optimized over all

possible power allocations between phases 1 and 2. A similar

argument can be used to explain the choices between schemes 1

and 3. In the half-duplex case, when λAD is small, the value of

λAC for scheme 2 to be better than scheme 4 is larger than the

full-duplex case. Since node C cannot transmit in phase 1 in

scheme 2, the rate increase in phase 2 by applying noisy DPC

cannot compensate for the rate loss in phase 1 if λAC is large

enough. Furthermore, unlike the full-duplex case, scheme 3 is

the best, even if both λAC and λAD are large, because when

λAD is large, node D can decode node A’s signal with a small

error probability and cancel out its effect. When scheme 1 is

used in the half-duplex case, there is a rate loss in phase 1. Thus,

scheme 3 achieves the transmission rate that is large enough to

be greater than scheme 1 when λAD is large. However, when

λAC is large while λAD is not large enough, noisy DPC can

provide extra gain to the achievable rate; thus, scheme 1 is the

best within this region of channel gains.

Fig. 7 shows the optimal choice of m with respect to the

codeword length n for different values of λAC. As we can see,

the optimal m almost linearly increases with n. However, the

optimal m decreases with λAC, since as the channel quality

between nodes A and C increases, less time is needed in phase 1

for node C to decode node A’s signal. Furthermore, the optimal

m for the half-duplex transmission is smaller than the full-

duplex transmission, since in the half-duplex case, there is less

time node C can transmit as m increases.

V. CONCLUSION

In this paper, we first considered a MIMO Gaussian channel

where noisy side information of the additive interference is

known to both the transmitter and the receiver. We calculated

the capacity outer bound and proved its achievability. We then

applied this result to a practical cognitive ZIC. We constructed

new coding schemes using noisy DPC and quantified the re-

sultant achievable rates. We also presented numerical examples

that show the significant increase in the achievable rate com-

pared with prior results.

As shown in this paper, the achievable rate is highly de-

pendent on the estimation error. A better lower bound may be

achieved by modeling the estimation error differently. Use of

non-Gaussian codebooks and its impact on the performance

of the cognitive channel should be studied in future work.

Furthermore, it would be interesting to exploit the potential

applications of noisy DPC on other interference networks.

APPENDIX

DERIVATION FROM (7)–(9)

Let

D1 =

⎡

⎣

Ny H3PH
†
1 H3PH

†
2

H1PH
†
3 N1 H1PH

†
2

H2PH
†
3 H2PH

†
1 N2

⎤

⎦ . (34)

We can then write

H(x)+H(y,m1,m2)=log(2πe)2(nT +nR) (|P||D1|) . (35)

Applying the rule for calculating the determination of the block

matrix, we have

H(x,y,m1,m2)

= log(2πe)2(nT +nR)

×

⎛

⎝|P|

∣

∣

∣

∣

∣

∣

D1 −

⎡

⎣

H0P

0

0

⎤

⎦P−1[PH0 0 0 ]

∣

∣

∣

∣

∣

∣

⎞

⎠

= log(2πe)2(nT +nR) (|P||D2|) (36)

where

D2 =

⎡

⎣

InR
+ H3QH

†
3 H3PH

†
1 H3PH

†
2

H1PH
†
3 InT

+ H1QH
†
1 H1PH

†
2

H2PH
†
3 H2PH

†
1 InT

+ H2QH
†
2

⎤

⎦.

(37)

Thus, we can express the channel capacity as I(x;y|m1,m2)=
H(x) + H(y,m1,m2)−H(x,y,m1,m2)=log(|D1|/|D2|).
Again, applying the determination of the block matrix, we have

I(xy|m1,m2) = log

⎛

⎝

∣

∣

∣InR
+ D3 + H0PH

†
0

∣

∣

∣

|InR
+ D3|

⎞

⎠ (38)

in which

D3 =H3QH
†
2−

[

H3QH
†
1 H3QH

†
2

]

D−1
4

[

H1QH
†
3

H2QH
†
3

]

(39)
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where

D4 =

[

InT
+ H1QH

†
1 Θ

Θ† InT
+ H2QH

†
2

]

(40)

where Θ = H1PH
†
2. We now evaluate D−1

4 . Applying block

matrix inversion, we have

D−1
4 =

[

D−1
6 −D−1

6 ΘD−1
5

−D−1
5 Θ†D−1

6 D−1
5

(

InR
+ Θ†D−1

6 ΘD−1
5

)

]

(41)

where D5 = InR
+ H2QH

†
2, and

D6 = InT
+ H1

[

Q − QH2

(

InR
+ H2QH

†
2

)−1

H2Q

]

H
†
1.

(42)

Applying the matrix inversion lemma reversely to (42),

D6 simplifies to

D6 = InT
+ H1Q

(

InR
+ H

†
2H2Q

)

H
†
1. (43)

Now, we substitute D−1
4 in (39) with the expression given by

(41), which yields

D3 = H3Q

[

InI
− D7H

†
1D

−1
6 H1QD7

−H
†
2

(

InI
+ H2QH

†
2

)−1

H2Q

]

H
†
3 (44)

where

D7 = InI
− H

†
2

(

InR
+ H2QH

†
2

)−1

H2Q. (45)

Applying the matrix inversion lemma reversely to (45),

D7 simplifies to

D7 =
(

InI
+ H

†
2H2Q

)−1

. (46)

Substituting D7 in (44) with the expression given by (46)

and again applying the matrix inversion lemma reversely,

D3 simplifies to

D3 =
(

InI
+

(

H
†
1H1 + H

†
2H2

)

Q
)−1

. (47)

Substituting D3 in (38) with the expression given by (47) yields

the capacity outer bound in (9).
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