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ABSTRACT

We present capacity results for three classes of wireless ad
hoc networks, using a general framework that allows their
unified treatment. The results hold with probability going to
1 as the number of nodes in the network approaches infinity,
and under a general model for channel fading.

We first study asymmetric networks that consist of n
source nodes and around n? destination nodes, communi-
cating over a wireless channel. Each source node creates
data traffic that is directed to a destination node chosen at
random. When % < d < 1, an aggregate throughput that in-

creases with n as n? is achievable. If, however, 0 < d < %,
bottlenecks are formed and the aggregate throughput can
not increase faster than n?.

We also consider cluster networks, that consist of n client
nodes and around n? cluster heads, communicating over a
wireless channel. Each of the clients wants to communicate
with one of the cluster heads, but the particular choice of
cluster head is not important. In this setting, the maximum
aggregate throughput is on the order of n?, and it can be
achieved with no transmissions taking place between client
nodes.

We conclude with the study of hybrid networks. These
consist of n wireless nodes and around n? access points. The
access points are equipped with wireless transceivers, but
are also connected with each other through an independent
network of infinite capacity. Their only task is to support
the operation of the wireless nodes. When 1 < d < 1,
an aggregate throughput on the order of n? is achievable,
through the use of the infrastructure. If, however, 0 < d <
%, using the infrastructure offers no significant gain, and the
wireless nodes can achieve an aggregate throughput on the

order of n? by using the wireless medium only.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless Communication
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1. INTRODUCTION

Ongoing research on wireless ad hoc networks can be clas-
sified in two main areas: on the one hand, there is intense
activity toward the development of protocols, for example on
the media access [2], the routing [3], and higher [11] layers.
On the other hand, there is also significant interest toward
the establishment of the capacity of such networks, i. e.,
theoretical bounds on how much traffic they can support [8,
10, 9, 16, 14, 13, 6, 7, 17]. The work of this paper falls into
this second line of investigation.

Research in the capacity of wireless networks has been
significantly accelerated by the publication of the seminal
paper of Gupta and Kumar [8]. There, the authors inves-
tigate the asymptotic behavior of the capacity of a class of
two-dimensional random networks as the number of nodes n
approaches infinity, under a uniform traffic assumption. The
authors present a scheme that achieves with high prob-
ability (w. h. p.), ie., with probability approaching 1
as n approaches infinity, a rate of communication equal to
(nlog n)_%7 up to a multiplicative constant, from each node
to its randomly chosen destination. The authors also show
that, with high probability, the n nodes cannot send data
to their destinations with a per-node rate of communication
greater than (nlog n)_%7 up to a (different) multiplicative
constant.

In [8], and in other works that follow the same approach,
such as [16, 13, 7], it is assumed that each of the n nodes
picks one of the other n — 1 nodes as the destination for its
traffic. This implies that there are approximately as many
destinations as there are sources. This is a good assumption
for many scenarios. For example, if the network is used for
supporting unicast two-way communication between a large
number of users, it is indeed true that there will be roughly
as many destinations as there are sources. On the other
hand, there are many conceivable applications for which the
assumption is inappropriate. As an example, consider a sen-
sor network consisting of n sensor nodes and m actuator
nodes, to whom the sensor nodes would like to send infor-
mation, upon the sensing of an event. If m is dramatically



different from n, then the induced traffic patterns will be
fundamentally very different from those of [8].

Continuing along the tangent of [8], the authors of [10]
and [9] consider the case of wireless ad hoc networks with
infrastructure support. These networks consist of a collec-
tion of all-wireless nodes and a second collection of nodes
that can also transmit and receive over the wireless chan-
nel but in addition are connected with each other through
a wired infrastructure of infinite capacity. These nodes do
not have any traffic requirements of their own, but are there
to support the communication of the wireless nodes, in the
same way that base stations support the communication of
mobile terminals in cellular network. Such networks are also
called hybrid, as they clearly share feature of both pure ad
hoc networks and cellular networks. They are of great the-
oretical and also practical interest, as it is expected that
future generation wireless systems will move from a purely
cellular to a hybrid topology.

In this work we study three classes of wireless ad hoc
networks, following the line of investigation initiated in [§]
and continued in [10, 9]. The three classes are studied under
a general framework that permits their unified treatment. In
all cases we assume a general model for channel fading. In
the spirit of [8], all our results hold with high probability, i.
e., with probability approaching 1 as the number of nodes
in the network approaches infinity.

We start by considering asymmetric networks. These
consist of n source nodes and m destination nodes, each
equipped with a wireless transceiver and communicating
over a wireless channel, without the help of any infrastruc-
ture. Each source node creates data (with rate A, common
for all source nodes) that must be delivered to one of the
destination nodes, chosen randomly. Because m is different
from n, on the average the volume of traffic leaving each
source node is different from the volume of traffic arriving
at a destination node. As a result, when m is around n?
with 0 < d < %, bottlenecks form around the destinations,
and the aggregate throughput is only around n¢. On the

1
other hand, when 5 < d < 1, the aggregate throughput can

increase like n%, and no bottlenecks are formed. Rather, as
in the case of [8], all part of the network are more or less
equally congested.

We proceed to study cluster networks. These consist
of n client nodes and m cluster heads. Each of the n client
nodes needs to maintain a bi-directional data traffic (of rate
A, common for all client nodes) with one of the cluster heads,
but the choice of cluster head is not important. We show
that if m is around n? the maximum achievable aggregate
throughput is around n? for all 0 < d < 1. Furthermore,
this throughput can be achieved without the clients having
to forward each other’s traffic. Finally, the performance
of the network is limited by the formation of bottlenecks
around the cluster heads.

We conclude by studying hybrid networks, continuing
the work in [10, 9]. These consist of n wireless nodes and m
access points. The access points are equipped with wireless
transceivers, but are also connected with each other through
an infrastructure network of infinite capacity. The n wire-
less nodes would like to communicate with each other, but
are free to use the infrastructure network to support their
communication needs. We show that when m is on the or-
der of n¢ with % < d < 1, an aggregate throughput on the
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order of n¢ is achievable. This throughput can be achieved
by a scheme that does not require communication between
wireless nodes. If, however, 0 < d < %, it is best for the
wireless nodes to ignore the presence of the infrastructure
and route their packets exclusively using each other. In that
case, an aggregate throughput on the order of n? is achiev-
able. These results are similar to those reported in [10],
however they are different in a few critical ways: Firstly,
we require that the aggregate throughput is divided equally
among the wireless nodes, so that no node is deprived of
bandwidth in order to maximize the aggregate throughput.
Also, we assume a more realistic channel model that includes
a general model of fading, and we assume a totally random
topology.

The rest of the work is organized as follows: In Section 2
we present detailed models for the three types of networks,
along with an overview of our results. In Sections 3, 4, and 5
we provide proofs for the results, for asymmetric networks,
cluster networks, and hybrid networks respectively. We con-
clude in Section 6.

2. NETWORK MODELSAND OVERVIEW
OF RESULTS

2.1 Signal Propagation and Transceivers

In the following, we study networks of nodes equipped
with transceivers used for communication over a wireless
channel of bandwidth W. Here we list our assumptions re-
garding the signal propagation and the transceivers.

We assume that nodes cannot transmit and receive simul-
taneously (in other words, communication is half-duplex).
Each node Z; can transmit with any power P; < Py, where
Py is a global maximum. When node Z; transmits with
power P;, node Z; receives the transmitted signal with power
GijPi, where Gi; = K fi;|Z; — Z;|~“. K is a constant, the
same for all nodes, |Z; — Z;| is the distance between nodes
Z; and Zj, a > 2 is the decay exponent, and the factor f;;
is the fading coefficient, a non-negative random variable
that models fading, and does not change with time.

We assume that the expectation E[f;;] = 1, and that
fij = fji. Distinct fading coefficients are independent and
identically distributed (iid). We also assume that their com-
plementary cumulative distribution function F°(z) has a
thin, exponentially decaying tail. Formally:

F¢(z) = P[fi; > z] < exp|—qz]| Vz > 21,

(1)

for some real and positive parameters ¢, z1. In addition,
we assume that there is a median value f,, > 0 such that
P[fij > fm] > 3. Both of these assumptions are satisfied
by most distributions used to model fading, for example
the Nakagami, Ricean and Rayleigh distributions, and the
trivial distribution, for which P[f;; = 1] = 1.

Let {Z; : t € T} be the set of transmitting nodes at a
given time, each node Z; transmitting with power P;. Let
us assume that node Z;, j € 7 is receiving a data packet
from Z;, ¢ € T. Then the signal to interference and
noise ratio (SINR) at node Z; will be

N+ Xrer, ki Gy Py’

where 7 is the thermal noise power at the receiver, which
is assumed the same for all nodes. We assume that the

Vi
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Figure 1: Lower and upper bounds on the order o of
asymmetric networks, versus the destination expo-
nent d. The open line intervals AB and BC represent
lower bounds on the order and come from (5), and
the open line interval AD represents an upper bound
and comes from (6).

transmission of the packet will be successful if and only if,
for the whole period of transmission, the transmission rate
used, R;, satisfies the inequality

(2)

where log, (z) denotes the base-2 logarithm of z. With I' =
1, the receiver achieves Shannon’s capacity. With I' > 1, (2)
approximates the maximum rate that meets a given BER
requirement under a specific modulation and coding scheme
such as coded MQAM [4].

1
R; < fr(v;) = Wlog, (1 + f%‘)

2.2 Asymmetric Networks

We consider a set of n source nodes X1, Xa,..., X,, and
m destination nodes Yi, Y2, ..., Y,,, placed randomly,
uniformly and independently, in the two-dimensional area
{(@,9) : Jal, [yl < 1} -

We use the symbols <, >aq, <4, >a to denote that the
corresponding inequality only holds asymptotically, i.e.,
for sufficiently large n. For example, f(n) <, g(n) means
that there is a no such that f(n) < g(n) for all n > nog.
Using this notation, we make the assumption that:

Dlnd <am <, Dgnd,

®3)

where 0 < d < 1 and 0 < D1 < D>. We call d the destina-
tion exponent.

Each source node is creating data traffic with a fixed data
rate A\ bps, that must be delivered to one of the destina-
tion nodes. Each source selects its destination randomly,
uniformly, and independently of the others. Both types of
nodes are allowed to transmit and receive, as well as store
data packets on their way to their destination.

The fundamental difference of this network from previ-
ously considered networks, such as the one in [8], is not
that there are two types of nodes (sources and destinations),

LA preliminary study of these networks appeared in [17].
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but the fact that their numbers n and m are different. In
fact, because m is polynomially smaller than n, the traffic
is asymmetric: on the average more packets are arriving at
each destination, than there are leaving each source. There-
fore, we will call such networks asymmetric networks. In
this work we determine the effects of the relation of n and
m, as expressed in (3), on the performance of asymmetric
networks.

In particular, we define the capacity C(n) of the net-
work as the supremum of all rates A\(n) that are uniformly
achievable by all sources in the network, multiplied by their
number n. In other words, the capacity is the supremum of
all achievable aggregate throughputs, under the requirement
that source nodes create traffic with the same rate. Since the
locations of the nodes, the destination of each data stream,
and the fading coefficients are random, the capacity of the
network is a random variable. We also define the order o
of the network to be the supremum of all exponents s for
which C(n) > n® with high probability:

=1}. (4)
In other words, the order of the network is the largest expo-
nent with which the capacity is guaranteed to be increasing,
ignoring factors that are smaller than polynomial, such as
poly-logarithmic factors of the form ki (logn)*2. Under this
setting, the following theorem can be shown to hold:

o=sup{s: lim P[C(n) > n®]

THEOREM 1. In asymmetric networks the capacity C(n)
is bounded with high probability as follows:

3a— 6] [Wafmb 2
>
¢l 2 {304 - 5} { 676 log 2 }
1
[ 2 } nf o ifi<d<l,
% 4k (D14+2D5) | (logn)2 (5)
2 I
[Légm} e ifo<d< i,
40&D2W d
< | — .
C(n) < { Tog 2 }n logn (6)

Consequently, we have that:

o =d, when0<d<%,

o <d, when%<d<1.

As will be shown in the proof of the theorem, the upper
bound on the capacity originates from the need of the nodes
to share the area around the destinations. When d < %,
bottlenecks are formed around the destinations, limiting the
capacity of the network. If, however, % < d < 1, no bottle-

necks are formed around the destinations, and the capacity

increases at least as fast as n%, but not faster than n.

An important practical implication of Theorem 1 is that
designers of networks should avoid traffic patterns that are
characterized by an extreme convergence of traffic streams.
Although this is intuitively clear without any need for math,
Theorem 1 provides a quantitative rule: the number of des-
tinations should be at least on the order of n%, where n is
the number of sources.
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Figure 2: The order of cluster networks versus the
cluster head exponent d.

2.3 Cluster Networks

Cluster networks consist of a set of n client nodes X,
Xo,..., Xn, and m cluster heads Yi, Y2, ..., Y, placed
randomly, uniformly and independently, in the area {(z,y) :
lz],|y| < 1}, and communicating over a wireless channel of
bandwidth W. Regarding the relative numbers of mobile
nodes and access points, we assume that (3) continues to
hold:

Din <am <4 Dgnd7

where 0 < d < 1 and 0 < D1 < D3. We now call d the
cluster head exponent.

Regarding the traffic model, we assume that each client
wants to establish a bi-directional communication (with rate
A(n) in each direction) with any of the cluster heads. This
model approximates well the traffic patterns that exist in
wireless networks that operate using hierarchical, clustering
protocols, as for example Bluetooth [15]. It also approxi-
mates well a scenario in which each of the cluster heads is
connected to the outside world through a data connection
of infinite capacity, and clients are interested in sending to
and receiving data packets from the outside world.

We define the capacity C(n) of the network as the
supremum of all rates A(n) that are uniformly achievable by
all data streams in the network, multiplied by their number
2n (there are two data streams for each client, one for the
uplink connection to its selected cluster head, and another in
the opposite direction). As in the previous case, the capacity
is a random variable, whose statistics depend on n. The
order o of cluster networks is defined as:

o=sup{s: lim P[C(n) >n°]=

1}.

THEOREM 2. In cluster networks the capacity is bounded
with high probability as follows:
WDiqfm 3a—6]__ao nd
C > 2 )
(n) 2 {900(10g Q)klf} {3& - 5} (logmn)?

(7)

4aDs W

log 2 (8)

C(n) < [

} n®logn.
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Therefore, the order o is equal to the cluster head exponent
d: o=d.

The theorem shows that, ignoring poly-logarithmic fac-
tors of the form ki (log n)k2, the capacity increases with n
roughly as n?. The upper bound of (8) comes from the need
of the network to share the area around the cluster heads.
Therefore, the larger d is, the faster capacity increases with
n.

In the context of networks that use clustering, the theorem
suggests that, from a capacity perspective, it is important
that the size of clusters remains bounded. However, that
would imply that the number of clusters increases linearly
with n. If network designers are not willing to accept such
a large number of clusters, they should be ready to sacrifice
part of the capacity. The exact tradeoff is very simple, and
is captured by Theorem 2.

In the context of networks where the cluster heads are
gateways to the outside world, the theorem suggests that
there is no limit to how many access points are needed: the
greater the investment of the network provider (i. e., the
larger d is), the larger the capacity is going to be. Again,
the tradeoff is very simple and is captured by Theorem 2.

2.4 Hybrid Networks

Hybrid networks consist of a set of n wireless nodes
X1, Xo,..., X»n, and m access points Y1, Y3, ..., Y, placed
randomly, uniformly and independently, in the same two-
dimensional area {(z,y) : |z|,|y| < 3}, and communicating
over a wireless channel of bandwidth W. Regarding the rela-
tive numbers of wireless nodes and access points, we assume
that (3) continues to hold:

Dlnd <am <, Dgnd,

where 0 < d < 1and 0 < D1 < D2. We now call d the ac-
cess point exponent. We assume that the access points
are connected with each other through a data link of in-
finite capacity that does not consume any of the available
bandwidth W.

Regarding the traffic model, each wireless node is the
source of a single stream, and the destination of a single
stream. A node cannot be the source and destination of the
same stream. Apart from this restriction, all other com-
binations of sources and destinations are equally probable.
The access points do not have any communication needs of
their own, but are there to support the communication of
the wireless nodes.

This network shares important common characteristics
with both pure wireless ad hoc networks and also pure cellu-
lar networks: On the one hand, it partly consists of a large
number of wireless nodes that communicate over a wireless
channel and can route each other’s traffic, as in wireless ad
hoc networks. On the other hand, the wireless nodes are
supported by a set of access points that form an indepen-
dent network with infinite capacity and do not have any
traffic needs of their own; their role is similar to that of base
stations in cellular networks.

As in the previous cases, we define the capacity C(n) of
the network as the supremum of all rates A that are uni-
formly achievable by all data streams in the network, mul-
tiplied by their number n. The order o of hybrid networks
is defined as:

o=sup{s: lim P[C(n) > n’]

1}.
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Figure 3: Lower bounds on the order of hybrid net-
works versus the access point exponent d. The open
interval AB comes from (9), and the open interval
CD comes from (10).

THEOREM 3. In hybrid networks the capacity is bounded
with high probability as follows:
1 Diqfm - d
C(n) >+ W Daqf, 3a—6 s n ’
2 1900(log 2)k1I" | |3 —5 (logn)?

(9)

w

10~ ° 3a—6 Wqfm

648 3a—-5 T (10)

C(n)z[ } n?(logn) 3.

Consequently, the order is bounded as follows:

o > max{d, %}

The theorem suggests that there is a minimum investment
that is required in order for the infrastructure to have an
effect on the performance of the network. In particular, if
there are n wireless nodes, more than n? access points are
needed. A very similar result was first reported in [10]. Our
setup, however, is different in a number of critical ways:
Firstly, we require that all wireless nodes are guaranteed
the same throughput, and no nodes are allowed to starve
in order for the aggregate throughput to be maximized. In
addition, the locations on the access points are random, and
we assume a more realistic channel model, that includes a
general fading model.

3. ASYMMETRIC NETWORKS

In this section we prove Theorem 1. We first show the
lower bound of (5), by constructing a scheme that works w.
h. p. and whose aggregate throughput exceeds that lower
bound. We then show the upper bound of (6) by calculat-
ing the aggregate throughput that would be hypothetically
achieved if interference could be removed from the useful
signal of each receiver. We start with two technical lemmas:

3.1 Technical Lemmas

A simple question to ask is how many source nodes se-
lect a certain destination node as the sink for their packets.
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Clearly, since there are n sources and m destinations, on the
average -~ sources will be sending packets to each destina-

tion. In fact, something much stronger holds:

LEMMA 1. (Number of sources per destination) Let b; be
the number of sources that have selected destination Y;. Then
for any e >0, w. h. p.,

lfenl‘dgbig 1+e€
2 1

. 1—
Vi nt=d.

Proof: We make use of Chernoff’s bounds [12]: Let X be
a binomially distributed random variable, with parameters
k (the number of Bernoulli experiments) and p (the prob-
ability of success of each Bernoulli experiment). Then, for
any ¢ € (0,1],

52
— 0)kp] < exp(—kp7).

P[X < (1 (11)

Also, for any ¢ > 0,
PIX > (1+ 8)kp] < exp[—kpf(5)],

where f(9) (1 + d)log(l + ) — 6. By calculating the
derivative, we immediately have that f(4) > 0 for § > 0.
Since each source chooses its destination independently of
the others, b; follows the binomial distribution, with number
of experimentb equal to n and probability of success equal

(12)

to E We have
) 1—¢ 14
P {bz < D n }
n
< ) _ .
<a P[bz <1 e)m] (using (3))
2
n e .
< exp(fai) (using (11))
<o exp(— ¢ n'~%). (using (3)) (13)
Sa €XPp 2D, g

Similarly, but using (12) instead of (11), we arrive at:

l1te 1-a fle) 1-a
P {b > — D } <aq exp| Dy " ]. (14)
We note the basic inequality P(Uj_1E;) < >0, P(E;),

typically referred to as the union bound. Then:

1—e€ nl-d 1+e nl=d v
Pl——— <b; < ——
[D2 b D Vi
G 1—€ 1 4
> 1—Z{P{bi<—n }
i=1 D2
+ P {bz > 156 - d}} (union bound)
1

1-— € 1-d
1—
m{ {b1< DQn }—l—

|:b1 > ! —i—lenkd}} (symmetry)
> 1—-m {exp(f;ﬁnlfd)Jr
exp[f%?nlfd]} (using (13), (14))
— 1. (for n — o0)



Note that this lemma is closely related to the well-known
Coupon Collector’s Problem [5]. To see the connection, let
n be the number of coupons a collector purchases and m
be the number of distinct types of coupons that exist. The
lemma gives uniform upper and lower bounds on the number
of coupons collected from each type, when m is polynomially
smaller than n.

O

Another simple question to ask is how large the fading co-
efficients f;; (where 1 <14 < j < n + m) between the n 4+ m
source and destination nodes are expected to be. Although
arbitrarily large values are possible, because the comple-
mentary distribution function of the fading coefficients has
an exponentially thin tail, w. h. p. all coefficients will be
relatively small, as the next lemma shows:

LEMMA 2. (Bound on fading coefficients) W. h. p.,

max

3
i< = .
1§i<j§n+m{f]} T q logn

Proof: Let Fj;(xz) = {fi; > xlogn}. Then:

1<
P[_max {fi} <zlogn]
= 1— PlUici<i<ntmFij@)]
> 1- Z P[F;j(z)] (union bound)
1<i<j<n+m
>, 1o BEWOERZD e (mmetry, (1)
>, 1—n>"%. (using (3))
Setting x = %, the result follows. m]

3.2 Céll Lattice
Let |z] be the greatest integer that is less than or equal

to x. Let L(L)%J = r, where k1 is a constant to be

%1l
specified later. As shown in Fig. 4, we divide the square
region {(z,y) : |z|, [y| < 1}, where all the nodes are placed,
in a regular lattice of g(n) = r? cells. The following will

hold:

n 2 n

<. g(n) = , 15
2k1logn Sag(n)=r"< kilogn (15)

n l n
Indeed, gl(n) = L(kllogln)2j2 < e Also, let z(n) =
(51ea7)? — (535a7) 2], so that 0 < x(n) < 1. We then

_1
note that g(n) = [1 — Jzz(n)(k1 ﬁ,gn) 2]21161 ggn >q le?ogn.
We denote the cells by c1, c2, ...,cqn). In addition,

each cell is identified by its coordinates (v1, v2) in the lattice,
where 1 < w1, v2 < r; the cell on the lower left corner has
coordinates (1,1). We define the coordinates of a node to
be the coordinates of the cell in which the node lies (so two
nodes may have the same coordinates). We call two cells
neighbors if they share a common boundary edge, so that
each cell has at most four neighbors. We call two nodes
neighbors, if they lie in the same or neighboring cells.

Since there are n sources and g(n) cells, each cell will con-
tain ﬁ sources on the average. By applying the Chernoff
bounds, we can derive a much stronger result:

LEMMA 3. (Number of source nodes in cells) Let s; be the
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ar (r,n)

Ci

- rcdls

- (1)

=

(11) = rcells

Figure 4: Partition of the square region {(z,y) :
lz],|y] < 3} into a regular lattice of r* cells. We
define s; as the number of source nodes in cell c¢;,
M; as the number of source nodes lying in cells who
share the same x-coordinate with ¢; (the shaded cell
column) and N; as the number of destination nodes
lying in cells who share the same y-coordinate with
¢ (the shaded cell row).

number of source nodes in cell c;. Then:

k

kilogn . 2n1771
Pl——=— < s; <4dkilogn Vi| >, 1— .
2 kilogn
Proof: Let us concentrate on a particular cell ¢;. Since

each source is placed in the cell with probability ﬁ

independently of the others, s; is binomially distributed.
Then:

and

Pl < Blogm,

< P[si<%(n)] (using (15))

< expl-g o] (using (11) with o = 5

< exp[f%logn] (using (15))

= n_%l. (16)

In a similar manner, but using (12) instead of (11), it may
be shown that

k
Plsi > 4k1logn] <, n "M < now . (17)

Combining (16) and (17) with the union bound, and using
(15), we arrive at the result. |
The fading coefficient between a source node and a des-
tination node lying in the same cell may be arbitrarily low.
However, the next lemma shows that, for a sufficiently large
value of k1, a second source node lying in the same cell that



can act as a relay (because its fading coefficients with the
other two nodes are large enough) will be available w. h. p.

LEMMA 4. (Intra-cell communication) Let E;, where i =
1,...,m be the event that there is a source node X; lying in
the same cell with destination node Y;, such that there is no
third source node Xy lying in the same cell with the fading
coefficients fx;x,, fx,v; > fm. Then:

QnI_le
kilogn’
(18)

k
P(UM\E;) < (4k1 Do log n)n?~ 2 (osd-log3)

Proof: Let the event

A= {’“1% < s; < 4k logn w}.

We have:
PUZ B
= PUPEJA] P(A) + P[UIEi|A°] P(A°)
< P[UL,E;|A] + P[A9]
<a Don“P(Ei|A) + P[AY]
(union bound, symmetry, (3))
k1
Dyn®P(E1|A) + 2 © (using Lemma 3)
>a 2 1 k1 logn g
3 kylogn in_%
< Dyn(4k; 1 D= o4
- 2n” 4k ogn)(4) kilogn
k1 2n1_%1
— 4k+ Do 1 d— - (log 4—log 3) )
( k1 Do ogn)n =+ 71{:1 logn

The last inequality comes from noting that there are at
most 4k logn source nodes for which a relay to Y; may or
may not exist. However, there are also at least ’“112& source
nodes, and the probability that each of them will be able to
act as a relay is at least i. a

By Lemma 3, for a sufficiently large value of k1, there are
around logn source nodes per cell w. h. p. Therefore, a
source node that wants to send a packet to a neighboring
cell, will always be able to find a source node in that cell
such that the fading coefficient between the two nodes is
greater or equal to the median:

LEMMA 5. (Inter-cell communication) Let F; with ¢ =
1,...,n be the event that source node X; has a neighbor-
ing cell in which all source nodes have fading coefficients
with node X; which are strictly smaller than the median fr,.
Then:

ki log2
2

P[UI'F)] <o 4n'~

Proof: We will use conditioning on the event A, as in
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Figure 5: Examples of routes that follow the rules

of Section 3.3

Lemma 4. Then:

P Ui Fi
< PUF|Al 4 P(A°)
k1
n o'~ .
Sa P[UZ F1|A]+W (uSIHg Lemma 3)
k1
1 k1, oanl=%
< 4n(z)z 8"
- n(2) kilogn
_ k1
= 4n17k1120g2 n_ * .
kilogn

The last inequality comes by noting that there are n sources,
each with at most 4 neighboring cells, and that under the
conditioning on A each of these neighbors will have at least

E1logn gource nodes. O
3.3 Routing Protocol
We now set k1 = 9 > max{8, ﬁ, @} For this

selection of ki, the right hand sides of both (18) and (19)
go to 0. Therefore, w. h. p. the following routing rules are
acceptable:

(i) If a source node X; has data packets (possibly not cre-
ated at X;) that must be delivered to a destination node Y;
lying in the same cell, and fx;v; < fm, X; will transmit the
data packets to another source node Xj lying in the same
cell, for which fXij > fm and fx,v, > fm. Node X will
then transmit the packet to the destination node Y;. By
Lemma 4, such a node exists w. h. p.

(ii) If the destination node Y; of a source node Xj; lies in a
different cell from X;, the packets of X; are routed through
intermediate cells. In particular, only communication be-
tween source nodes who lie in neighboring cells and whose



mutual fading coefficient is greater than the median is al-
lowed. In addition, the packets are first transmitted along
cells whose x-coordinate is the same as the x-coordinate of
the source, until they arrive at a cell whose y-coordinate
is the same as the y-coordinate of the destination. Then,
the packets are transmitted along cells whose y-coordinate
is the same as the y-coordinate of the destination, until they
arrive at a source node lying in the same cell with the desti-
nation. The existence of relays is guaranteed by Lemma 5,
and our selection of k1. Once the packets arrive at the cell
of the destination, they are delivered to the destination as
specified by rule (i).

Following the spirit of [8], our routing protocol is using
transmissions over as small distances as possible. In ad-
dition, as in [16], the routing protocol counters fading by
taking advantage of the large number of source nodes that
exist in each cell. To evaluate its performance, we must cal-
culate the load that the routing protocol creates for each
cell. The next two lemmas address this issue:

LEMMA 6. Let M; be the number of source nodes whose
z-coordinate is the same as the z-coordinate of cell ¢;. Let
N; be the number of destination nodes whose y-coordinate
is the same as the y-coordinate of cell ¢;. The following
inequalities will hold w. h. p., for all i:

M; < A(kinlogn)?, (20)
ADs(krlogn)Znd™3 if L <d<1,

Ni Do ocdecl (D
(1—2d)D; if0<d<3.

Proof: For M; to be greater than 4(kinlog n)% for some

i, it is necessary that the number of nodes in one of the cells
is greater than 4k; logn. By Lemma 3 and our choice of ki,
this does not occur, w. h. p., so (20) follows immediately.

Regarding N;, we note that because the destination nodes
are placed independently and uniformly in the cells, N; fol-
lows the binomial distribution, with number of tries m and
probability of success % (there are r2 cells and success is
declared if a destination node is placed in a row containing
r of them).

We consider first the case 1

5 <d <1, and we focus on a
particular cell ¢;. We have:

PIN; > 4D (ks 1ogn)% nd=3]

<o PN > 2T (using (3), (15))
< exp[—@] (using (12))
<  exp {ff(l)Dl[kl logn]%ndfé} (using (3), (15)).

By coupling the last inequality with the union bound, and
noting that there are polynomially many cells, we arrive at
(21) for the case 3 <d < 1.

For the case 0 < d < %, we again use the Chernoff bound

of (12), which can be written in the following different but
equivalent form:
exp|dkp]
We set
1
B n 2
1 —_ 2
(140 = 5o | gt (23)
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where B will be specified shortly. We note that § >, 0 and

that ks = le} a (1+6)7 <. B. We then have:

P[N; > B]

< Plaso?]

ko &
<o o |PPR] g F D oy (22), 29)
<a (logn)k2nk2(d__)

Combining the last inequality with the union bound, we
have that

P[N; <BVi]>1- K pka(d—b)

n
1
k1 logn( ogn)

follows by setting
[m]

Equation (2

4D
B = (1—2d§D1'

1) for the case 0 < d < %

LEMMA 7. (Number of routes arriving at a cell) Let r;
be the number of routes (each corresponding to a source)

arriving, and possibly terminating, at cell c¢;. Then w. h.
p., for all i, the following bound holds:
< ronme(n) 41+ 2P2)(kinlogn): ifL<d<1,
Ti S Tmax(N) = .
2057 QQL[;?Din d zf0<d<%.

Proof: Let r;1 be the number of routes that cross ¢; while
on their vertical leg (see Fig. 5). The sources of those routes
share a common z-coordinate with c;. Also, let r;2 be the
number of routes that cross ¢; while on their horizontal leg.
Clearly, the destination nodes of these routes share a com-
mon y-coordinate with ¢;. Each route crossing ¢; will be-
long to one or both of the two types of routes, so necessarily
r; < ri1 + ri2. Therefore, it suffices to bound both r;; and
ri2 uniformly for all cells ¢;.

Bounding 741 is straightforward: since each node is the
source of a single stream, r;1 < M;. To bound r;2, we note
that, by Lemma 1, at most 1+€ 1= routes can be termi-
nating at each destlnatlon Wlth hlgh probability. Therefore
rio < 1+€ 1=dN; w. h. p. Combining these inequalities we

have that ri < M; + wN w. h. p., for all cells c;.
The result follows by settmg € = 2 and using the bounds of
Lemma 6. m

Since there are n routes, each requiring around (logn)i
hops, and the total number of hops must be shared by Toum
cells, on the average each cell will be required to relay around
(nlog n)% routes. Therefore, Lemma 7 implies that when
d> %, no cell will have to carry more that its ‘fair share’ of
the traffic, up to a multiplicative constant. If, however, d <
%, then there are so few destinations, that a few unlucky cells
(those on the same column of cells with a destination) will
be required to serve around n' ~¢ routes, which is much more
than their ‘fair share’ of traffic. In those cells, bottlenecks
will form.

3.4 TimeDivision

We divide the g(n) = 72 cells into nine regular sub-lattices,
such that any two cells belonging in the same sub-lattice are
separated by at least two cells belonging to different sub-
lattices. In Fig. 6 we have shaded the cells belonging to one
of the 9 sub-lattices.



We divide time into frames, and each frame into nine slots,
each slot corresponding to a sub-lattice. At any time during
that slot, only one node from each cell of the corresponding
sub-lattice is allowed to receive (but many nodes in that cell
may receive consecutively in the same slot). Because of the
way we constructed the routing protocol, the transmitter of
that transmission will have to lie in the same cell, or in one
of the four neighboring cells. All transmissions will be with
the maximum power Fp.

LEMMA 8. (Lower bound on the SINR) The SINR ~y; atl
any source or destination node Zj; that is receiving is lower
bounded w. h. p. by

[

] ~a "fmin 55_% .
% >a Ymin (1) {36175 25 | logn

Proof: We first bound the interference I;. For this, we
first note that by Lemma 2, w. h. p. no fading coefficient
is greater than 2logn. Next, let g = % be the length of
the sides of the cells, and let ¢ be the cell in which the
receiving node lies. Working as in [1], we note that the
rest of the cells in the same sub-lattice are located along
the perimeters of concentric squares, whose center is cell cy.
For example, there are 8 cells along the perimeter of the
first square (fewer if the cell is at the edge of the network).
Irrespective of the coordinates of ¢, all the cells of its sub-
lattice are located along the perimeters of at most \_%IJ
squares. There are at most 8i interferers corresponding to
the i-th square, whose distance from the receiver will be
at least xo(3: — 2). Consequently, the interference at the
receiver is upper bounded by

L=

3. ] 8iK Py
I, < |Zlogn 0
N e E w0 (31 — 2)]°
< |2 10gn SKfO 14+ (38i-2)"7
q 1 o i=2
< §1ogn @[ur/ (3z + 1) da]
L4 1 Ty 0
(3. ]8KP, [3a—5
< |21 . 2 2
< [ogn| ER RS @y )

We also need a lower bound on the power of the useful
signal. Clearly, since the maximum possible distance that
the useful signal will need to travel, under the routing as-
sumptions, is v/5zo, and the fading coefficient between the
transmitter and the receiver is greater than f,,, the power
of the useful signal S; is bounded w. h. p. as follows:

S; > K Py fm(V5z0) . (26)

Combining (25) with (26), and noting that the thermal noise
remains bounded, and therefore becomes negligible as n —
00, we arrive at (24). O

We now assume that all transmitters transmit with rate
fR(Ymin). By Lemma 8, w. h. p. all transmissions will be
successful.

3.5 Lower Bound

Proof of (5): We first calculate the throughput that is
achieved by the scheme we have developed. We start by not-
ing that the nodes of each cell are allowed to receive during
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Figure 6: One of the 9 sub-lattices of cells appears
shaded. Only nodes in that sub-lattice are allowed
to receive in the corresponding slot, and only from
nodes in the same or neighboring cells. The neigh-
bors of cell ¢ are lightly shaded. The cells belonging
to the same sub-lattice as cell ¢, may be placed in
at most |“Z!| concentric squares of increasing size,

3
centered at cg.

only 1 out of 9 slots, and with rate equal to fr(Ymin(n)).
The number of routes that will be crossing each cell ¢; is
upper bounded by Tmax(n), determined by Lemma 7. Most
of these routes will require one reception, however a few of
these, in particular those whose destination lies in cell ¢,
will require three transmissions. Therefore, each route, and
its associated source node, is guaranteed a rate of communi-
cation A(n) = fr(Ymin) [3 X 9 X rmax(n)]”". Multiplying by
n, and substituting for Ymin(n) and rmax(n) from Lemmas 8
and 7 respectively, we see that our scheme achieves an aggre-
gate throughput equal to the lower bound of (5). Since the
capacity is the supremum of the aggregate throughputs of
all possible schemes, it will necessarily be greater than the
aggregate throughput of our scheme, and the result follows.
O

One might think that our scheme performs very poorly
in the case d < %, because our simplistic routing protocol
creates bottlenecks that a more sophisticated protocol would
avoid. However, the upper bound of (6) shows that this is
not the case: Any other scheme would also not avoid the
formation of bottlenecks, and would not perform better by
more than a poly-logarithmic factor.

3.6 Upper Bound

Having determined the lower bound of (5), we now estab-
lish the upper bound of (6). We start with a straightforward
technical lemma:

LEMMA 9. Let dmin be the minimum of all distances be-
tween all mn source-destination pairs. Then Pldmin < x] <
mnmz?.



Proof: Let H;;(x) be the event {|X; — Y;| < x}. Then:

Pldmin < 2] = P[Ui;Hij(2)]
< Z Z P[H;;(x)] (union bound)
i=1j=1
= nmP[H11(z)] (using symmetry)
< nmrz>.

The last inequality comes from noting that the nodes are
placed in a square with surface area equal to 1, and that
nodes X; and Y7 will be within distance x of each other if
Y1 is placed on the intersection of the square with a disk of
radius x, centered at node Xj. a
Proof of (6): The capacity is less than the aggregate
throughput T'(n) that would have been achieved if all des-
tination nodes were receiving, for all time, using the whole
bandwidth, and without experiencing interference from com-
peting transmissions. Lemmas 2 and 9 allow us to bound
T(n) in a straightforward manner, and w. h. p.:

1 Kd_ ¢ 2logn
) < miWlogy(1+ 5 ———
3K 34
< 1 1+ — 1
< mWlog,(1+ ann ogn)
daD, W d lo
= log 2 nologn.

The first inequality comes from assuming that all desti-
nations receive all the time and with no interference, and
by using the bound on the value of the fading coefficients
of Lemma 2. The second inequality comes by applying
Lemma 9 with £ = n™3. The last one comes from (1)
and using simple properties of the logarithm function. Since
C(n) < T(n), the result follows. O

4. CLUSTER NETWORKS

In this section we prove Theorem 2. We start by noting
that, because of the similarities between asymmetric and
cluster networks, no real work is needed to prove (8). In-
deed, the technique used in the proof of (6) can be used
almost verbatim, by simply considering upper bounds on
the aggregate throughput received at the cluster heads, as
opposed to the destination nodes.

We next present a proof of (7). As was the case with
(5), the proof is constructive, i.e., we define a communica-
tion scheme and show that the scheme achieves a prescribed
aggregate throughput, w. h. p.

As in Section 3, we divide the square region {(z,y) :
|z|, ly| < 1}, where all the nodes are placed, in the regu-
lar lattice of g(n) = r? cells of Fig. 4. However, we now set

r=|( k?ll:;n)%j It is straightforward to show that

Dlnd

2k1 logn

Dlnd
a < .
<ag(n) < kilogn

(27)

Our first step is to uniformly bound the number of nodes
per cell. Let s; and d; be the numbers of client nodes and
cluster heads respectively in cell ¢;. Then:
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LEMMA 10. (Number of nodes in cells)

1 - _
52_11711 “logn < s; < 45_11”1 “logn Vi) —n—oo 1, (28)

k1

D 2D =%
gdi§4ulogn Vi] >q 1 — Ln °
D1 kl

Pl

kilogn
P[—2

. (29)

logn

Proof: Again, we make use of Chernoff’s bounds of (11)
and (12). To prove (28), let us concentrate on a particular
cell ¢;. Then:

Pl[s; < %g—llnl_dlogn]
n .
< Plsi< —QQ(n)] (Using (27))
< expl——"—] (Using (11) with § = = )
P8 BUY WIS
< exp[f;—Dllnl*d logn]. (Using (27)) (30)

In a similar manner, but using (12) instead of (11), it may
be shown that

ﬂnlfd logn]. (31)

. ki 14
Pls; > 4D1n logn] <4 exp[—f(1) D

‘We then note that

1k 1.4 ki 1_q )
- — I <5 <4—= !
2D1n ogn < s; < Dln ogn Vi

g(n)

> 1=

i=1

Pl
1k 14
{P[sZ <3 D" log n]

+ P[s; > 4%n1_d log n]} (by the union bound)
1

Dlnd k,‘l 1—d
> _ M
> o 1Ogn{exp[ 8D, log n]+
k _
expl£(0) o'~ lognl b (by (21), (30), (31)
— 1. (for n — c0)

Equation (29) follows in a similar manner. |

Lemma 10 guarantees that, for sufficiently large k1, the
number of cluster heads in each cell will be on the order of
log n. Therefore, client nodes may be restricted to transmit
to only cluster heads lying in the same cell with them, and
still be able to find a cluster head with which they have a
sufficiently strong channel, despite the presence of fading.
The next lemma formalizes this idea:

LEMMA 11. Let F; be the event that there is no cluster
head Y; lying in the same cell as client node X;, such that
the fading gain between them is equal or greater than fm.
The probability of the event Uj—, F; is upper bounded by

k1

_klogz 2Dy pdT s
PlU E] <,n'" = . 2
[ViziFi] Sa m k1 logn (32)



Proof: Let A= {kll% <d; Vi}.

PlUL, F
< PlUL Fi|A] + P(A°)
2D nd*%1
« PUL,FJ|A ! ing (2
<o PUIFilA]+ T (using (29))
1N\ oDy pd
< nf=z -—
- 2 k1 logn
e 2D1nd_%.
- k1 logn

The third inequality comes from the union bound, and by
noting that conditioning on A means that there are at least
Qlﬁﬁ cluster heads in the same cell with client X;, and the
fading coefficient between any of them and X; will be less
than the median with probability at most 5. ]

We now set k1 = 9 > max{8d, ;=5 }. For this choice of
k1, the right hand side of (29) goes to 1 and the right hand
side of (32) goes to 0. We are now ready to prove our lower
bound:

Proof of (7): It suffices to specify a transmission scheme
and show that w. h. p. the aggregate throughput T'(n) of
that scheme exceeds the lower bound.

By Lemma 11, w. h. p. for every client node there is a
cluster head in the same cell, such that the fading coefficient
between the two is equal or greater than f,,,. We restrict that
client node to transmit to and receive from only that cluster
head.

In addition, we impose on the nodes the time division
scheme of Section 3.4: time is divided in frames, and each
frame in 9 slots. At any time during a slot, only a single
node (either a cluster head or a client node) from each cell
of the corresponding sub-lattice is allowed to transmit, and
with maximum power. Since the receiver necessarily lies in
the same cell, the lower bound on the SINR of Lemma 8
continues to hold. Therefore, if the transmitter transmits
with rate fr(Ymin(n)), where ymin(n) is given by (24), w. h.
p- all transmissions will be successful.

By (28), w. h. p. there are less than [4;—11n1_d log n] client

nodes in each slot. We divide each slot in 2 x [4£Ln'~logn]
time intervals, each of which is devoted to the transmission
of a packet either from or to a client node. Some of these
time intervals will be wasted, however (28) shows that the
aggregate throughput is not reduced by more than a factor
of 8 (the ratio of the upper and lower bounds) because of
this underutilization.

Each stream of data is guaranteed a rate of communica-
tion equal to A(n) = fr(Ymin(n))[2 X 9 X 4;—11n1’dlog n]~h
Multiplying by 2n for the total number of streams, and sub-
stituting for Ymin(n) from Lemma 8, we arrive at the needed
inequality. m|

Ignoring constants, the upper and lower bounds of The-
orem 2 differ only by a poly-logarithmic factor (logn)?, so
both bounds are relatively tight. This implies that we can
achieve an aggregate throughput very close to the capacity
without resorting to multihop routing between the source
nodes over the wireless channel. Therefore, our scheme is
more closely related to traditional cellular schemes than to
pure ad hoc schemes such as the one introduced in [8]. On
the other hand, in contrast to traditional cellular schemes,
the scheme requires that each source node is allowed to com-
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municate with any of around log n cluster heads, in order to
bypass the effects of fading.

5. HYBRID NETWORKS

In this section we prove the bounds (9) and (10) of The-
orem 3. In fact, no new work is needed: Because of similar-
ities of hybrid networks with previously studied networks,
we can apply already known results.

For example, because of the similarities between cluster
and hybrid networks, the wireless nodes can use for their
communication the scheme that was developed in Section 4,
for proving the lower bound of (7). In particular, wireless
nodes do not transmit to each other, but rather transmit di-
rectly to an access point near by. The packet is then trans-
mitted through the infinite capacity network to an access
point close to its destination, and is then transmitted one
more time through the use of the wireless interface to the
destination. All the analysis of Section 4 goes through, if
we substitute client nodes with wireless nodes and cluster
heads with access points. The only difference is that, be-
cause each packet must be transmitted twice, the aggregate
throughput is one half of the throughput achieved in cluster
networks. Equation (9) follows immediately.

To derive (10), we consider the opposite extreme. In par-
ticular, we note that the n wireless nodes are free to ignore
the wireline infrastructure of the access points, and estab-
lish a communication scheme using only themselves. This
case has been studied independently in [16]. In that work it
is shown (Eq. (4) of [16]) that, under uniform traffic condi-
tions, it is possible to achieve a per-node throughput equal
to:

M) = 102" 30— 6 Wqfm
2T 17648 3a—5 T

M

n"3% (logn)~

Multiplying by the number of nodes n, we derive the lower
bound of (10).

6. CONCLUSIONS

We present capacity results for three classes of wireless
ad hoc networks: asymmetric, cluster and hybrid networks.
Although the three networks have fundamentally different
topologies and therefore different applications, they have im-
portant underlying similarities, that permit a largely unified
treatment.

We first consider asymmetric networks, that consist of n
source nodes and m destination nodes, communicating over
a wireless medium, without any help from a wired infras-
tructure. When m is around n? with % < d <1, an aggre-

gate throughput that increases like n? is achievable. If, on
the other hand, d < %, the maximum aggregate through-
put increases like n?, and the performance of the network is
constrained by the existence of bottlenecks around the des-
tinations. Although we do not prove this, it is intuitively
clear that similar results hold when we have n destinations
and n? sources.

This result has an important implication that network
designers should consider. Specifically, a certain amount of
asymmetry on the traffic does not have an adverse effect,
but beyond a certain point, the capacity of the network is
reduced by the formation of bottlenecks. For applications in
which the number of destinations m is a design parameter,



and it is useful to minimize m (because, for example, desti-
nations are more expensive) the network has a “sweet-spot”:

m should be around n2. Using more destinations will not
improve the performance significantly, but using fewer will
severely reduce it.

We next consider cluster networks, in which n client nodes
are interested with communicating with n? cluster heads,
and the choice of cluster head for each client is not impor-
tant. Many interesting applications fall within this frame-
work. For example, this traffic model approximates well the
control traffic that is induced by the use of clustering proto-
cols, such as Bluetooth [15]. Another application is a sensor
network that consists of n sensors and n? databases con-
taining identical information, that the sensors would like to
access. A final application is next generation cellular net-
works, in which n mobile users would like to communicate
with the outside world through n? base stations.

In this context, we make two discoveries: Firstly, the max-
imum aggregate throughput that is possible is around n¢.
In other words, the network has no “sweet-spot”: the larger
the investment in cluster heads, the better the performance.
Ideally, we would like the number of cluster heads to scale
linearly with n, i.e., be on the order of n, so that the ca-
pacity scales also linearly with n. If, however, network de-
signers are not prepared to consider such a large investment
on cluster heads, they should be ready to sacrifice part of
the capacity. The second discovery is that, irrespective of
the value of d, the capacity can be achieved even if clients
do not transmit to each other. In other words, advanced
ad hoc routing protocols are of no use here, and designers
should focus on the efficient handling of bottlenecks around
the cluster heads. Those bottlenecks are unavoidable.

We finally consider hybrid networks. These consist of n
wireless nodes, and an infinite-capacity network of n ac-
cess points, that are also equipped with wireless transceivers.
The access points have no communication need of their own,
but are there to facilitate the communication between net-
work nodes. Such networks were first studied in [10, 9], and
are of great practical interest, as it is expected that future
generation cellular systems will be using this hybrid topol-
ogy. )

Our main find is that more than n2 access points are
needed for the infinite-capacity infrastructure to have any
effect on the performance of the network. When d < %,
the wireless nodes should ignore the available infrastructure,
and use each other for communication. That way, an aggre-

gate throughput on the order of n? is achievable. If, how-
ever, % < d < 1, the wireless nodes should not depend on
each other for routing their traffic, but rather should make
heavy use of the infrastructure. A similar result was first
reported in [10], however our result is different in a number
of important ways: for example, we require that all nodes
share the resources equally, we adopt a random topology,
and we use a more realistic channel model that incorporates
a general model for fading.
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