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10 capacity curves are applied to frame steel buildings located in soft soils of the Mexico City.

11 To do that, the seismic performance of 2D models of low-, mid- and high-rise buildings is

12 assessed. Deterministic and probabilistic nonlinear static and incremental dynamic anal-

13 yses are implemented. Monte Carlo simulations and the Latin Hypercube sampling tech-

14 nique are used. Seismic actions are selected among accelerograms recorded in the study

15 area. Spectral matching techniques are applied, so that the acceleration time histories have

16 a predefined mean response spectrum and controlled error. The design spectrum of the

17 Mexican seismic code for the zone is used as target spectrum. The well-known Park and

18 Ang damage index allows calibrating the capacity-based damage index. Both damage

19 indices take into account the contribution to damage of the stiffness degradation and of the

20 energy dissipation. Damage states and fragility curves are also obtained and discussed in

21 detail. The results reveal the versatility, robustness and reliability of the parametric model

22 for capacity curves, which allow modelling the nonlinear part of the capacity curves by the

23 cumulative integral of a cumulative lognormal function. However, these new capacity-

24 based damage index and capacity models have been tested for and applied to 2D frame

25 buildings only; they have not been applied to 3D building models yet. The Park and Ang

26 and the capacity-based damage indices show that for the analysed buildings, the contri-

27 bution to damage of the stiffness degradation is in the range 66–77% and that of energy

28 loss is in the range 29–34%. The lowest contribution of energy dissipation (29%) is found

29 for the low-rise, more rigid, building. The energy contribution would raise with the duc-
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31 buildings in soft soils of Mexico City show the worst performance so that the use of

32 adequate braced frames to control the displacements could be recommended.

33 Keywords Non-linear structural analysis � Parametric model � Monte

34 Carlo simulation � Steel buildings � Damage assessment

35

363738 1 Introduction

39 The main purpose of this paper is to check the new damage index and the new capacity and

40 fragility models, proposed by Pujades et al. (2015), when they are applied to steel

41 buildings. In fact, this damage index and these parametric and fragility models have been

42 tested only in a single simple reinforced concrete building; thus, the results of this paper

43 will endorse the robustness, reliability and utility of these recent developments. Also, an

44 important goal is to carry out a full probabilistic assessment of the seismic performance of

45 low-, mid- and high-rise frame steel buildings in Mexico City. The method used by Vargas

46 et al. (2013) to assess the seismic performance of a Reinforced Concrete (RC) building has

47 been adopted; due to the regularity in plan and elevation, buildings are modelled as 2D

48 frame structures in these works; applications to 3D building models await further research.

49 Concerning the new capacity model, the parametric model assumes that capacity curves

50 are composed of a linear and a non-linear part. The linear part is defined by the initial

51 stiffness or, equivalently, by a straight line whose slope (m) is defined by the fundamental

52 period of vibration of the building. The non-linear part represents the degradation of the

53 building and can be parameterized by means of the cumulative integral of a cumulative

54 lognormal function and, therefore, it can be defined by two parameters, l and r; the

55 ultimate capacity point (Sdu, Sau) provides the two last parameters of the five fully defining

56 the capacity curve. Figure 1 shows an example of a capacity curve defined by these five

57 parameters. The first derivative of the non-linear part of the capacity curve is also shown in

58 this figure. This first derivative displays the cumulative lognormal function.

59 Concerning the new damage index and fragility model, on the basis of damage

60 observations, many damage indices have been published that can be used to assess

61 expected damage in buildings affected by earthquakes. These damage indices are related to

62 degradation of the overall capacity of the structure to withstand the foreseen seismic loads,

63 and they are usually defined on the basis of variation of specific parameters representing

64 the strength and/or weakness of the building. Thus, for instance, damage indices based on

65 displacement ductility were used by Powell and Allahabadi (1988) and by Cosenza et al.

66 (1993). Bracci et al. (1989) and Bojorquez et al. (2010) focused on energy dissipation;

67 Krawinkler and Zohrei (1983) paid attention to cyclic fatigue. Changes (increases) in the

Fig. 1 Capacity curve as defined by five independent parameters
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68 natural period of the structure have also been used as damage indicators (DiPasquale and

69 Cakmak 1990); and Kamaris et al. (2013) focused on strength and stiffness degradation.

70 Other authors, such as Banon and Veneziano (1982), Park and Ang (1985), Roufaiel and

71 Meyer (1987) and Bozorgnia and Bertero (2001), connected the expected damage to

72 combinations of the above parameters. All these indices should be considered damage

73 pointers and properly fulfil the purpose for which they were developed. However, in many

74 cases, their calculation in practical applications involves Non Linear Dynamic Analysis

75 (NLDA), which has high computational costs. More recently, a new capacity-based

76 damage index was proposed by Pujades et al. (2015). This new damage index, which is

77 based on secant stiffness degradation and energy dissipation, was successfully calibrated

78 using a 2D model of a reinforced concrete frame buildings in such a way that it is

79 equivalent to the well-known Park and Ang damage index (Park et al. 1985; Park and Ang

80 1985) obtained by means of NLDA. The main advantage of the new index is that, once

81 calibrated, it can be obtained in an easy and straightforward way, directly from capacity

82 curves.

83 Concerning the probabilistic assessment of the seismic performance of frame steel

84 buildings in Mexico City, it is well known that variables involved in the seismic assess-

85 ment of structures have high uncertainties. These uncertainties can be organized into

86 aleatory (or random) and epistemic (or knowledge) uncertainties (Wen et al. 2003;

87 McGuire 2004; Barbat et al. 2011). Epistemic uncertainties are due to lack of knowledge

88 about models and/or parameters; aleatory uncertainty is inherent to random phenomena.

89 Uncertainties in the seismic actions and in the properties of the buildings are considered. In

90 relation to seismic actions, aleatory uncertainties are associated with the expected ground

91 motions, and, therefore, they cannot be controlled, but they can be estimated and addressed

92 through probabilistic approaches. In this research, uncertainties in seismic actions are

93 defined by means of a suite of accelerograms whose acceleration response spectra have

94 predefined mean and standard deviation; the design spectra for soft soils in the city of

95 Mexico (NTC-DF 2004) define the mean response spectrum. Regarding structures, aleatory

96 uncertainties are due to unawareness of the precise mechanical and geometrical properties.

97 Certainly, uncertainties in mechanical properties can be reduced by means of lab tests; in

98 this research, the uncertainty model used by Kazantzi et al. (2014) has been adopted; thus,

99 the mass, damping and other geometrical parameters are assumed to be deterministic, and

100 the strength and ductility of structural elements are considered in a probabilistic way.

101 Another important issue is how uncertainties propagate. Because of non-linearity,

102 uncertainties in the response strongly depend on the non-linear relations between inputs

103 and outputs. Thus, to take into account the effect of uncertainties in the response, in

104 deterministic approaches, seismic design standards recommend the use of reduced values

105 for strength of materials and increased actions, by means of safety factors. However, in

106 non-linear systems, it is well-known that the confidence levels associated with the response

107 may be different from those associated with the input variables (Vargas et al. 2013). Thus,

108 in the last two decades, the importance of performing probabilistic non-linear static

109 analysis (NLSA) (ATC-40 1996; Freeman 1998) and non-linear dynamic analysis (NLDA)

110 has been emphasized, (McGuire 2004) and, currently, there is a consensus that proba-

111 bilistic approaches are more suitable than deterministic ones, as they allow the incorpo-

112 ration of uncertainties, including confidence intervals, and thus provide more reliable

113 results. However, NLDA is assumed to be the most appropriate method for assessing

114 expected damage in structures subjected to dynamic actions (Vamvatsikos and Cornell

115 2002). Thus, when the capacity spectrum method (CSM) is used, it should be verified that

116 the results are consistent with those obtained from Nonlinear Incremental Dynamic
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117 Analysis (NLIDA) (Mwafy and Elnashai 2001; Kim and Kurama 2008). In recent studies,

118 probabilistic static and dynamic approaches have been implemented using the Monte Carlo

119 simulation method (Fragiadakis and Vamvatsikos 2008, 2010; Vargas et al. 2013; Kazantzi

120 et al. 2014; Barbat et al. 2016). But, probabilistic analyses require a significant number of

121 NLIDAs and/or NLSAs, entailing a high computational cost. Therefore, it would be useful

122 to take advantage of simplified methods to compare the results obtained by means of

123 NLSA and NLIDA. An example of such a simplified approach is that proposed by Pujades

124 et al. (2015).

125 In this research, both static and dynamic analyses are performed by means of a prob-

126 abilistic approach that uses the Monte Carlo simulation method and the Latin Hypercube

127 Sampling (LHS) technique to optimize the number of samples. This fully probabilistic

128 approach can quantify the expected uncertainties in the response and in the expected

129 damage, produced by uncertainties in the material properties and the seismic actions. The

130 results show how uncertainties in the response and in the expected damage increase with

131 the severity of seismic actions. Moreover, it is shown how, static and dynamic approaches

132 provide consistent results. However, for the buildings analysed in this work, the consis-

133 tency is lower for high-rise buildings. This fact is attributed to the likely influence of higher

134 modes, which are not considered in the static analyses, as adopted herein. Finally, it is also

135 shown that the capacity parametric model and capacity based damage index also hold for

136 steel structures, so capacity curves can be represented by means of a simple model. The

137 expected damage and fragility curves can be analysed directly from capacity curves, in a

138 simple and straightforward way, thus avoiding the large amounts of computation involved

139 in dynamic simulations.

140 2 Buildings

141 2.1 Structural models

142 Three steel buildings are analysed in this paper; namely high- (13 stories), mid- (7 stories)

143 and low-rise (3 stories) buildings, with Special Moment Frames (SMF). Steel W type

144 sections (wide flange American section) are used for beams and columns, which are joined

145 by means of prequalified connections (ANSI/AISC 358-10 2010) of Fully Restrained (FR)

146 type. Buildings were designed as offices, on the basis of the provisions for the México City

147 area of NTC-DF (2004) and AISC-341-10 (2010) seismic codes. Buildings have rectan-

148 gular floors, 3 beams of 5 m, in the transverse direction, and 4 beams of 6 m in the

149 longitudinal direction. For each building, our focus will be on the central frame in the

150 longitudinal direction. The design of the SMFs satisfies the AISC criterion of strong

151 column-weak beam. Figure 2 shows a sketch of the three 2D-models (SMF 3, SMF 7 and

152 SMF 13).

153 NLSAs and NLIDAs were performed with Ruaumoko 2D software (Carr 2002). The

154 weight of the structure, as well as that of the architectural finishes and facilities, were

155 considered dead loads (DL), while live loads (LL) were established according to NTC-DF

156 (2004) provisions for office use. Total gravity loads for non-linear analysis are established

157 as 1.0 DL ? 0.2 LL (PEER/ATC 72-1 2010). Beams and columns were modelled as

158 FRAME type members, with plastic hinges at their ends. Plastic hinges follow the Bi-

159 Linear Hysteresis rule, with hardening and strength reduction based on the ductility factor

160 [see Appendix A—Ruaumoko 2D (Carr 2002)]. Due to the limitations of the adopted
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161 model, which only reproduces failure by bending moment and shear force, the interaction

162 between moment and axial force is not considered. In addition, most of the damage for this

163 type of buildings is expected to occur at the ends of the elements, mainly because of the

164 combined effects of moment and shear. Therefore, the interaction of yield surface is

165 defined for columns and beams by the diagram relating the bending moment with the

166 rotation. Moreover, the values of strength and ductility for the hysteresis rule were cal-

167 culated according to the modified Ibarra–Medina–Krawinkler (IMK) model (Ibarra et al.

168 2005; Lignos and Krawinkler 2011, 2012, 2013). This model establishes strength bounds

169 on the basis of a monotonic backbone curve (Fig. 3a). The backbone curve is defined by

170 three strength parameters (My = effective yield moment, Mc = capping moment

171 strength—or post-yield strength ratio Mc/My—and Mr = j � My, j = 0.4, residual

172 moment) and by four deformation parameters (hy = yield rotation, hp = pre-capping

173 plastic rotation for monotonic loading—difference between yield rotation and rotation at

174 maximum moment, hpc = post-capping plastic rotation—difference between rotation at

175 maximum moment and rotation at complete loss of strength—and hu = ultimate rotation

176 capacity) (Lignos and Krawinkler 2011). The columns of the moment-resisting bays were

177 assumed to be fixed at their bases. P–Delta effects were also considered. The panel zones

178 were modelled by the rotational stiffness in the connections, obtained according to the

Fig. 2 2D building models

Fig. 3 a Modified IMK model: monotonic curve; b an example of the modified IMK model used in the

structural section (W16 9 89) of the SMF3 probabilistic models
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179 model proposed by Krawinkler (1978) and presented in FEMA 355C (2000). In all cases,

180 as recommended for steel structures, for the first and last vibration mode under consid-

181 eration (SAC 1996), 2% Rayleigh damping was assumed. The fundamental periods of the

182 models are 0.632, 1.22 and 1.92 s for SMF3, SMF7 and SMF13 buildings respectively.

183 2.2 Probabilistic variables

184 There are many sources of uncertainties in structural analysis. Even geometric properties,

185 such as thickness, length and width of the structural elements or of the structure itself, can

186 be considered probabilistic variables. Concerning mechanical properties, several parame-

187 ters can be considered in a probabilistic way, such as Young’s modulus, ultimate strength,

188 plastic modulus and so on. However, to make the probabilistic approach clearer and easier,

189 in this study only a few properties are considered in a probabilistic manner. Thus, the

190 probabilistic model for mechanical properties used by Kazantzi et al. (2014) has been

191 adopted so that only uncertainties in strength and ductility are considered. In order to see

192 the influence of uncertainties in mechanical properties on uncertainties in the response, an

193 uncertainty analysis will also be performed. This analysis will show how the most

194 important source of uncertainty is that due to seismic actions, although that due to

195 mechanical properties may also be significant. Thus, in this study, the mass, damping and

196 other geometrical parameters are assumed deterministic, and the strength and ductility of

197 structural elements are considered in a probabilistic way.

198 Concerning strength, all the parameters of the modified IMK model can be obtained

199 from three properties of the sections. That is, plastic modulus, Z, expected yield strength,

200 fy, and modulus of elasticity, E. Moreover, due to the fact that E and Z, for W sections,

201 have low coefficients of variation (COV), and taking into account that E is directly related

202 to fy by means of the strain e, whose value for steel is accurately determined, it is

203 considered that uncertainty in fy can take up the low uncertainties of E and Z, thus avoiding

204 overestimations of uncertainties in the strength parameters. Notably, COV takes values

205 between 1 and 3% (Bartlett et al. 2003) for E, and between 1 and 2% (Jaquess and Frank

206 1999; Schmidt and Bartlett 2002) for Z; uncertainties in fy are higher. Thus, only fy, is

207 defined herein as a random variable for the strength. The mean (l) value, standard devi-

208 ation (r) or COV and the assumed probability distributions for fy are shown in Table 1.

209 The ductility of the structural sections are defined by the deformation parameters hy, hp
210 and hpc of the modified IMK model; for W sections, these parameters can be determined by

211 means of the following multi-variable empirical equations that were developed by Lignos

212 and Krawinkler (2011, 2012, 2013):

hy ¼ ðMy=koÞ=L = (1:17 � Z � fy=6 � E � I)/L ð1Þ

214214 hp ¼ 0:0865

�
h

tw

� ��0:365

�
bf

2 � tf

� ��0:140

�
L

d

� �0:340

�
c1unit � d
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�
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216216

hpc ¼ 5:63 �
h

tw

� ��0:565

�
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2 � tf
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219 In these equations, ko is the initial elastic stiffness; I is the inertia moment; cunit
1 and cunit

2

220 are coefficients for unit conversion. h/tw is the ratio between the web depth and the

221 thickness; L/d is the ratio between the span and the depth of the beam; bf/(2 � tf) is the

222 width/thickness ratio of the beam flange, and rIn is the standard deviation, assuming a

223 lognormal fit of experimental data. Finally, the ultimate rotation capacity is estimated as

224 hu = 1.5 � (hy ? hp), based on the recommendations of PEER/ATC 72-1 (2010). In this

225 study, hy is considered a dependent variable of fy, and hp and hpc are considered random

226 variables with lognormal distributions. Mean (l) values, standard deviations (rIn) and

227 function types used for hp and hpc are shown in Table 1. Uncertainties of hp (Eq. 2) and hpc
228 (Eq. 3) also take into account the randomness of the dimensions of the W sections (Lignos

229 and Krawinkler 2011, 2012, 2013), including uncertainties on I, h, d, tw, bf, tf, and so on, as

230 well as uncertainties on fy.

231 Moreover, in order to avoid unrealistic samples in LHS simulations, both normal dis-

232 tributions of fy and lognormal distributions of hp and hpc were truncated at both ends, the

233 lower and upper limits being determined by the mean value ± 2 times the standard

234 deviation (l ± 2r). The purpose of this truncation is to avoid underestimates or overes-

235 timates of the capabilities of the elements with samples without physical meaning.

236 In summary, a simplified probabilistic approach is proposed for this research. The method

237 uses the modified IMK model for beams and columns, and uncertainties are concentrated on

238 the variables fy, hp and hpc. Thus, it is assumed that these three variables have a major

239 influence on the linear and non-linear structural response of buildings. Besides, the use of

240 these variables is recommended in the new codes for probabilistic seismic performance

241 assessment of steel buildings (PEER/ATC 72-1 2010; FEMA P-58-1 2012).

242 2.3 Correlation analysis

243 Another important issue concerning sampling is the correlation among variables. Two

244 types of correlation have been considered in this research: intra- and inter-element. The

245 intra-element correlation is given by the relation among the three parameters simulated for

246 the same hinge; these correlations can be derived from Eqs. (2) and (3) (Lignos and

247 Krawinkler 2012) and are defined in Table 2.

248 The inter-element correlation is attributed to the consistency in workmanship and the

249 material’s quality among different element sections. Idota et al. (2009) and Kazantzi et al.

250 (2014) proposed a value of 0.65 for the yield strength of beams and columns from the same

251 production batch. Based on these studies, an inter-element correlation of 0.65 has been

252 used herein for the same section type, and a null correlation is assumed for different

253 sections.

254 2.4 Sampling

255 To better represent the physical randomness of the problem for each structural element

256 (column or beam), a random sample of the three parameters (fy, hp and hpc) is generated.

Table 2 Intra-element correla-

tion for random variables of

beams and columns

fy hp hpc

fy 1 0 0

hp 0 1 0.69

hpc 0 0.69 1
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257 Then, the properties of strength and ductility on the hinges of each element are estimated.

258 It is assumed that hinges at both ends of elements are the same. Thus, for instance, the

259 3-storey model, with 27 elements (15 columns and 12 beams) has 81 random variables; the

260 7-storey building with 63 elements (35 columns and 28 beams) has 189 random variables;

261 and the 13-storey model with 117 elements (65 columns and 52 beams) has 351 random

262 variables. In order to assess the seismic behaviour of these three buildings, with a prob-

263 abilistic approach, 200 NLSAs and 200 NLIDAs are performed for each structural model,

264 resulting in 600 NLSAs and 600 NLIDAs. The same structural models are used for both

265 structural analyses: static and dynamic. Figure 3b shows an example of the modified IMK

266 model used in the structural section (W16x89) of the SMF3 probabilistic models.

267 3 Seismic actions

268 To perform probabilistic IDAs, a set of accelerograms representing the characteristics of

269 the study area are needed. The way these acceleration time histories are obtained, is

270 explained first, and the method is then applied to the Mexico City to obtain probabilistic

271 response spectra and compatible acceleration time histories.

272 3.1 Method

273 In a first step, a set of random response spectra are generated by means of LHS simulations.

274 The response spectra meet the following conditions: (1) the mean value is a target spec-

275 trum, (2) the standard deviation in each period has a predefined value, and (3) the spectral

276 ordinates are correlated in such a way that spectra are realistic. As an example, Fig. 4

277 shows a set of five simulated response spectra. The fundamental periods of the studied

278 buildings are also depicted in this figure. Then, a spectral matching technique (Hancock

279 et al. 2006), is used to match the response spectrum of a real accelerogram to each one of

280 the simulated spectra. This way, a set of accelerograms that meet the above conditions can

281 be obtained. Moreover, if the seed accelerogram is chosen properly, the spectrum-matched

282 accelerograms are representative of the seismic actions expected in the area.

283 3.2 Probabilistic response spectra

284 In this study, the design spectrum for area IIIb of the NTC-DF (2004) inMexico City has been

285 taken as the target spectrum. Moreover, the standard deviation has been set to 5% for periods

286 from0 to 2 s, corresponding to the range inwhich the periods of the buildings are situated, and

287 10% for periods greater than 2 s, thus controlling uncertainties in seismic actions.

288 3.3 Probabilistic acceleration time histories

289 A preliminary set of time histories was selected using the method proposed by Vargas et al.

290 (2013). A large database of 2554 accelerograms (three components) recorded in the

291 Mexico City area was used. Thus, four accelerograms with a relatively high compatibility

292 with the target spectrum were selected. Then a spectral matching technique was used to

293 improve the fit between response spectra of seed accelerograms and the target spectrum.

294 Figure 5 shows the seed accelerograms that have been selected, the matched ones and the

295 corresponding response spectra. This large database of Mexican accelerograms was
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296 previously analysed by Diaz et al. (2015). Table 3 shows the characteristics of the four

297 selected accelerograms and corresponding earthquakes. The PGA values are low, with a

298 maximum PGA value of 49.6 cm/s2. This is due to the large epicentral distances of the

299 earthquakes affecting Mexico City.

Fig. 4 Five simulated response spectra. Mean and standard deviation conditions are also shown. The five

simulated spectra are used to match accelerogram acc1 (see Table 3)

Fig. 5 Target spectrum and response spectra of the seed and matched accelerograms (right). Seed and

matched accelerograms (left)
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300 No near-fault seismic actions are expected, as the seismic hazard of the city is dominated

301 by the combined effects of distant, large earthquakes and soil amplification, leading to

302 increased PGA values and long-duration acceleration records. These were the main causes of

303 the destructive 1985Michoacán earthquake. However, as shown below, the newly developed

304 methods are valid for low and high PGAvalues, as both the capacity spectrummethod and the

305 NLIDA, allow any PGA value to be set for seismic actions affecting the buildings.

306 Spectral matching warranties the similarity between the shapes of the response spectra

307 of the matched accelerograms and the code-provided design spectra, but both signals and

308 spectra can be scaled to any PGA value, thus representing any level of seismic intensity

309 well. In fact, in this study, PGA values have been set in the range between 0.05 and 0.7 g.

310 Thus, for each seed accelerogram, the spectral matching technique was used to obtain 5

311 new accelerograms meeting the probabilistic requirements described above. As a result, a

312 set of 20 accelerograms were obtained. This number of accelerograms was considered

313 adequate, as the Mexican seismic code (NTC-DF 2004) suggests that at least four

314 accelerograms should be used. Twenty acceleration time histories was also considered a

315 suitable number to deal with uncertainties in seismic actions, as they represent the pre-

316 assumed probabilistic distributions well (see Figs. 4, 8). The whole set of response spectra

317 corresponding to the 20 compatible accelerograms is shown in Fig. 6.

318 4 Probabilistic IDA

319 In this section, the influence that the randomness of the mechanical properties and the

320 uncertainty of the seismic actions have on the uncertainties of the structural response is

321 analysed and discussed. The analysis is shown for the low-rise buildings; similar con-

322 clusions also hold for mid- and high-rise buildings.

323 4.1 Adequacy of the sampling

324 4.1.1 Mechanical properties

325 As pointed out above, 200 realizations of random structural parameters are used. This

326 number has been determined in the following way. A number of random samples are

327 generated according the truncated predefined probability density function (pdf). After

328 every 20 new samples, the mean value and the standard deviation of the overall samples

Fig. 6 Response spectra of the 20 accelerograms; mean and standard deviations are also depicted

AQ3
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329 are obtained. For more than 200 samples no significant variations are obtained in their

330 mean value and standard deviation so that 200 has been considered an adequate number of

331 samples representing the predefined truncated pdf. In fact, the LHS technique avoids

332 duplicating case combinations, so that fewer samples adequately represent the target pdf

333 (Iman 1999). Moreover, other authors have also used 200 probabilistic models to assess the

334 seismic performance of buildings (Fragiadakis and Vamvatsikos 2008; Kazantzi et al.

335 2008). Figure 7 shows the target normal and normal truncated pdfs together with the

336 histogram of the 200 samples for the fy random variable. A good agreement between

337 histogram and the target pdfs can be seen. Similar plots can be depicted for the other

338 random variables.

339 4.1.2 Seismic actions

340 For each probabilistic IDA, only 20 accelerograms are used. In order to see that 20 time

341 histories adequately represent the foreseen uncertainties, so that actually 20 samples are

342 sufficient for the probabilistic approach, the following analysis is performed. In fact,

343 uncertainties in each acceleration time history affects all the periods of the response

344 spectrum, that is, the response is affected by the uncertainty at all the periods. For each

345 period, these uncertainties have been predefined by means of a normal pdf function that has

346 the target spectrum as a mean value and a predefined standard deviation, which is 5%, in

347 the period range 0–2 s, and 10%, in the period range 2–6 s.

348 To illustrate how these distributions are well fulfilled by the 20 accelerograms, Fig. 8a, b

349 have been obtained as follows. For each one of the twenty response spectra matched by the

350 seed accelerograms, the simulated random values, at each period, have been normalized by

351 the value of the mean spectrum, in such a way that the normalized samples have a unit mean

352 and the predefined standard deviation. Figure 8a corresponds to the samples in the period

353 range (0–2) s and Fig. 8b corresponds to the period range [2–6] s. It can be seen how the

354 twenty selected accelerograms adequately represent the predefined uncertainties with a unit

355 mean (value of the mean target spectrum), and 0.05 and 0.1 standard deviations, respectively

356 for the short and long period ranges. This way it can be seen how the 20 accelerograms

357 adequately represent the predefined mean values and foreseen uncertainties. Moreover,

Fig. 7 Histogram of the 200 samples of the fy and corresponding scaled pdf target functions
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358 several probabilistic approaches in the literature (Kazantzi et al. 2008; Asgarian et al. 2010;

359 Celarec and Dolšek 2013; Vargas et al. 2013) use suites of 15–20 accelerograms. Besides,

360 Vamvatsikos (2014) proposes to limit the computational cost of probabilistic IDA evalua-

361 tions reducing the size of the ground motion records. Thus, if an incremental sampling

362 technique (Sallaberry et al. 2008; Vamvatsikos 2014) or some justified criterion is used, the

363 time histories can be reused. In this research it has been assumed that each accelerogram can

364 be reused, mainly because of the two following reasons: (1) as shown above, (see Fig. 8a, b)

365 the probabilistic spectral matching technique warranties the pre-assumed probability distri-

366 butions in the uncertainties of the 20 seismic actions (see also Fig. 6), and (2) on the basis of

367 the principle that, all the records in the suite have the same probability of occurrence.

368 4.2 Uncertainty in the response

369 A total of 200 SMF3 structural models with the variables obtained from LHS Monte Carlo

370 simulations and the set of 20 compatible seismic actions are used. The analyses are

371 performed in such a way that the influence of the mechanical properties (fy, hp, hpc) and the

372 impact of the seismic actions can be analysed separately.

373 NLIDA has been performed for different PGAs covering the range between 0.05 and

374 0.7 g, with PGA increments of 0.05 g. The following cases are analysed. First, the building

375 is considered as deterministic while the seismic action is considered as probabilistic by

376 using the 20 matched accelerograms; then the seismic action is considered as deterministic

377 by using the acc1 (see Table 3 and Fig. 5), matched to the selected target spectrum as

378 explained above. Thus, the following five cases are considered: (1) the building is con-

379 sidered deterministic and seismic actions probabilistic; (2) seismic action deterministic and

380 building probabilistic by considering uncertainties in the three mechanical properties (fy,

381 hp and hpc). In the following cases, the seismic action is considered in a deterministic way

382 and only uncertainties for one of the mechanical properties are considered according to the

383 following cases: (3) fy, (4) hp and v) hpc. In all these five cases and for each PGA, the

384 standard deviation (r) in the structural response is computed; the roof displacement d is

385 considered a control variable of the response. Figure 9 shows the results obtained. In

386 addition to the uncertainties in the roof displacement for the five cases described above, the

387 overall uncertainty is shown in this figure. This total uncertainty is obtained using the well-

388 known quadratic composition (Vargas et al. 2013). As expected, uncertainties due to

389 uncertainties in hp and hpc are small compared to those induced by uncertainties in fy; but

Fig. 8 Histogram of the samples used to define the seismic actions in a probabilistic way. Scaled target pdf

functions are also shown. a In the period range (0–2) s. b In the period range (2–6) s (see also explanation in

the text)
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390 uncertainties due to hp and hpc have a significant influence when they are combined with

391 those due to fy. The influence of uncertainties in seismic actions is clearly dominant.

392 Probably, with the exception of hpc, uncertainties in the response tend to increase with

393 increasing seismic actions. Similar results, concerning the influence of uncertainties in

394 seismic actions and the increase of uncertainties with increasing seismic actions, were

395 reported for reinforced concrete buildings in Vargas et al. (2013). The increase of

396 uncertainties with increasing actions may be attributed to the fact that, for increasing PGA,

397 the damage also increases, and the structural system becomes unstable, in the sense that

398 small input variations produce considerable differences in the output.

399 5 Parametric model

400 In this section, the parametric model for capacity curves (Pujades et al. 2015) is applied.

401 Deterministic and probabilistic cases are analysed. Mean values of strength-ductility of the

402 sections are used for the deterministic approach and, as pointed out above, 600 models

403 generated by LHS Monte Carlo techniques are used for the probabilistic approach.

404 5.1 Capacity curves

405 Capacity curves have been obtained by means of adaptive pushover analysis (PA) (Sat-

406 yarno 2000) as implemented in the Ruaumoko software (Carr 2002). This method was

407 shown to be independent from the initial loading pattern, as it adapts this pattern at each

408 step of the PA, according to the deformation of the structure. The ultimate capacity is

409 established when one of the following criteria is fulfilled. (1) x2 is less than 10-6 x2 at the

410 first step, being x the tangent fundamental natural frequency in the Modified Rayleigh

411 Method; (2) the Newton–Raphson iteration is not achieved within a specified maximum

412 number of cycles; (3) the stiffness matrix becomes singular and (4) a specified maximum

413 structure displacement is reached. In the NLSAs of the studied buildings, a large number of

414 cycles for the Newton–Raphson method has been considered. Moreover, a large maximum

415 limit for the structure displacement has been considered. Thus, it is expected that failure

Fig. 9 Uncertainties in the roof displacement for the SMF3 building (see the discussion in the text)
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416 criteria be related to criteria (1) or (3) It is worth noting that the failure criterion is usually

417 fulfilled when plasticization occurs in all the pillars of a story.

418 Figure 10 shows the obtained capacity curves. For comparison purposes the 5th, 50th

419 and 95th percentiles are used. The following steps have been carried out to obtain a specific

420 nth percentile: (1) capacity curves are interpolated/extrapolated in such a way that they are

421 defined at the same points in the same interval; a fixed small displacement increment, Dd,

422 is used to this end and the interval between 0 and the maximum ultimate displacement is

423 used; (2) for each spectral displacement, ordinates are sorted from lowest to highest values

424 (3) the nth percentile is computed at each spectral displacement (4) the ultimate dis-

425 placement of the nth percentile is set to the nth percentile of the ultimate displacements.

426 The 5th, 50th and 95th percentiles, computed this way, are shown in Fig. 10. Deterministic

427 capacity curve and the 200 individual probabilistic capacity curves are also shown in this

428 figure.

429 The 50th percentile curves (median) match the deterministic curves well, although the

430 matching is better for SMF3 and SMF7 models. Differences between deterministic and

431 median capacity curves are in the non-linear zone and they can be attributed mainly to non-

432 linearity of the structural response. The fact that individual points of the median curve

433 correspond to different capacity curves can also contribute to these differences.

434 5.2 Capacity model

435 The parametric model for capacity curves/spectra is well-described in Pujades et al. (2015).

436 To test this model, capacity spectra have been preferred rather than capacity curves.

Fig. 10 Deterministic, probabilistic and percentiles of the capacity curves. a SMF 3, b SMF 7 and c SMF

13
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437 Table 4 displays the weights, wi and the normalized amplitudes Ui1, at level i, for the first

438 natural mode. Table 5 shows the total weight, W, of the building and the period, T1, modal

439 participation factor, PF1, and modal mass coefficient, a1, for the first natural mode. Note

440 that Uroof1, PF1 and, a1, are used to transform capacity curves into capacity spectra (ATC

441 40 1996).

442 The five parameters that fully define the capacity spectrum are the initial slope (m), the

443 mean value (l) and the standard deviation (r) of the lognormal function and the ultimate

444 capacity point (Sdu, Sau). m is related to the initial stiffness and to the period of the

445 fundamental mode of vibration; the cumulative lognormal function, defined by l and r, fits

446 the normalized first derivative of the non-linear part of the capacity spectrum.

447 Figure 11 displays the model as applied to the median capacity spectra of the three

448 buildings. Capacity spectra, together with their linear and non-linear parts, are shown

449 (upper part); first derivatives are shown in the lower part of this figure. Figure 12 shows the

450 individual and the deterministic capacity spectra; the obtained fits are also displayed.

451 The five parameters of the deterministic case and 5th, 50th and 95th percentiles are

452 given in Table 6. The mean values of the error vectors (% mean error) defined by the

453 difference, in percentage, between capacity spectra and the corresponding fit, are also

454 provided in this table. Mean errors are very small (always below the 3%). Note the likeness

455 between the parameters of the deterministic and 50th percentile capacity spectra.

456 6 Damage

457 An important issue related to seismic design of new buildings and, specially, related to

458 seismic risk assessment of existing structures and facilities is the expected damage. A

459 widely used damage index is the Park and Ang damage index (Park 1984; Park and Ang

460 1985; Park et al. 1985, 1987). We refer to this damage index as DIPA. According to the

461 Park and Ang studies, structures are damaged because of the combined effects of dis-

462 placements in the nonlinear range due to their response to large stresses and of cyclic drifts

463 in response to cyclic strains. Therefore, damage assessment must take into account also

464 repeated cyclic loads/unloads, in addition to maximum structural response. Displacements

465 in the nonlinear range are related to stiffness degradation and cyclic loadings are related to

466 energy losses. This idea is based on the damage index proposed by Pujades et al. (2015),

467 which is also based on two functions related to stiffness degradation and to energy loss; but

468 now, these functions are computed, in a straightforward way, from capacity curves or

469 capacity spectra. We refer to this new capacity-based-damage index as DICC. DIPA is

470 implemented in many computer programs for structural analysis and it is computed by

471 means of Non-Linear-Incremental-Dynamic-Analysis (NLIDA). The Ruaumoko 2D pro-

472 gram has been used to perform NLIDA and compute DIPA. Further details on DIPA can be

473 found in the Ruaumoko 2D technical manual (Carr 2002).

474 In this section, DIPA and DICC are computed for the analysed steel buildings. Notice

475 that, according to Pujades et al. (2015) DIPA is needed to calibrate the relative contribution

476 to damage of the stiffness degradation and of the energy loss.

477 6.1 Park and Ang damage index (DIPA)

478 Ruaumoko 2D is used to compute DIPA through NLIDA. Notably, the failure or ultimate

479 point in the NLIDA is defined by the first roof displacement that exceeds the ultimate
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480 displacement of the corresponding capacity curve. Usually at this point, DIPA is about 1,

481 which confirms a failure condition.

482 To obtain probabilistic DIPA with NLIDA, the suite of 20 accelerograms, whose

483 response spectra have controlled mean and standard deviation, are used as follows.

484 Accelerograms in the suite are organized and they are numbered between 1 and 20. Then,

485 in each of the 200 IDA, an integer random number, uniformly distributed between 1 and

486 20, is generated. The accelerogram having assigned this random number is used for the

487 corresponding IDA analysis. The adequacy of this procedure for the purpose of this study

488 has been also discussed above (see Sect. 4.1.2 and Fig. 8). To obtain DIPA in a deter-

489 ministic way, the mean of the four matched accelerograms, shown in Fig. 5, is used. This

490 way a deterministic and 200 probabilistic functions, linking the roof displacement, d, and

491 the Park and Ang damage index, DIPA are obtained. Again, the 5th, 50th and 95th per-

492 centiles are used for discussion. The procedure to obtain these percentile curves has been

493 briefly explained above. Figure 13 shows the results obtained for the SMF 3, SMF7 and

494 SMF 13 building models.

495 For the deterministic NLIDAs, the mean of the four matched accelerograms shown in

496 Fig. 5 is used. The d-DIPA functions for the studied buildings are shown in Fig. 13.

497 Observe how deterministic DIPAs are lower than the probabilistic 50th percentile. Because

Table 5 Total weight, W, and period, T1, modal participation factor, PF1, and modal mass coefficient, a1,
for the first natural mode

Building W (kN) T1 (s) PF1 a1

SMF3 2372.9 0.63 1.286 0.891

SMF7 5941.8 1.22 1.350 0.805

SMF13 11,396.3 1.92 1.397 0.754

Fig. 11 Capacity spectrum, linear part and non-linear part (up) and corresponding first derivatives (down).

Fits for the 50th percentile of the probabilistic capacity spectra are also shown. a SMF 3, b SMF 7 and

c SMF 13
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498 of nonlinearity of the structural response, the use of mean, median or characteristic values

499 does not guarantee to get mean, median or characteristic responses. This fact highlights the

500 importance of probabilistic approaches in front of the more frequently used deterministic

501 approaches. Note that, in the case of Fig. 13, the use of mean values, both of the seismic

502 actions and strength parameters, leads to un-conservative results, which emphasizes, even

503 more, the importance of probabilistic approaches.

504 6.2 Capacity-based damage index (DICC)

505 DICC is based on the combination of a stiffness degradation function, K(d), and an energy

506 dissipation function, E(d). The computation of these functions is well-described in Pujades

507 et al. (2015). However, for clarity, a basic explanation of how these functions are defined is

508 also given herein. E(d) is defined by the cumulative integral of the non-linear part of the

509 capacity curve; the obtained function is then normalized, in abscissae and in ordinates, to

510 obtain the normalized ENðdNÞ, ranging between 0 and 1 and also taking values between 0

511 and 1. K(d) is defined by the ratio between the ordinates and abscissae of the non-linear

512 part of the capacity curve; again, normalizing in abscissae and in ordinates, the KNðdNÞ
513 function is obtained. DICC is defined by the following equation:

DICCðdNÞ ¼ aKNðdNÞ þ ð1� aÞENðdNÞ ffi DIPA ð4Þ

515515 where EN(dN) and KN(dN) are the normalized energy and stiffness functions defined above,

516 and a is a parameter that defines the relative contributions to the damage index of the

Fig. 12 Probabilistic capacity spectra and fits. The deterministic case is also shown. a SMF 3, b SMF 7 and

c SMF 13
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517 stiffness degradation and that of the energy loss. The specific value of this parameter a, for

518 a given seismic action, is calibrated by means of a least squares procedure applied to

519 Eq. (4). This way this new damage index, DICC, is equivalent to DIPA. Specific examples

520 of EN(dN), KN(dN), DICC(dN) and DIPA(dN) are shown below, in the following section

521 (Fig. 14), where the results of the calibration of Eq. (4) are discussed.

522 6.3 Results and discussion

523 For the three analysed buildings, the calibration is illustrated for the median capacity

524 curves using median DIPAs. Thus, the KN(dN), EN(dN) and DIPA(dN) functions are used to

525 calibrate the parameter a, by means of a least squares fit of Eq. (4). a values are 0.71, 0.66

526 and 0.67 for SMF3, SMF7 and SMF13 buildings respectively. Figure 14 shows these three

527 cases. Undoing the normalization procedure these functions can be represented as func-

528 tions of the roof displacements d. Figure 15 shows DIPA (d) and DICC(d) for the deter-

529 ministic case and for the 5th, 50th and 95th percentiles capacity curves. The obtained

530 values of a are in the range between 0.66 and 0.71, which is also similar to the range

531 reported by Pujades et al. (2015) for reinforced concrete buildings. Thus, DIPA (median) is

532 well-represented by the new damage index DICC (median) obtained directly from the

533 capacity curves. As explained above, the value of a is directly related to the relative

534 contribution to damage of the secant stiffness degradation, while (1 - a) corresponds to

535 the relative contribution of the energy loss. In the case of the median DICC of Fig. 15,

536 contributions to damage of the stiffness degradation are in the range 66–71%, while the

537 contribution of the energy loss is in the range 29–34%.

Fig. 13 d-DIPA functions obtained with NLIDAs for: a SMF 3, b SMF 7 and c SMF 13
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538 7 Fragility

539 Fragility curves and damage probability matrices are widely used in earthquake engi-

540 neering (FEMA 2016; Milutinovic and Trendafiloski 2003; Lagomarsino and Giovinazzi

541 2006). Porter (2017) is a nice tutorial for beginners (see also Porter et al. 2007). Details of

542 the construction of fragility curves, in the framework of our research, are explained well in

543 Lantada et al. (2009, 2010), Vargas et al. (2013) and Pujades et al. (2012, 2015). In this

544 section, the basics of fragility curves, damage probability matrices and mean damage state

545 are described first; then, the specific damage states thresholds used are introduced; finally,

546 the obtained results are given and discussed.

547 7.1 Basics

548 In the earthquake engineering context, for a given damage condition or damage state, i, and

549 for a level of seismic intensity measure, IM, the fragility curve, Fi(IM), is defined as the

550 probability that this damage state be exceeded, given the seismic intensity SI. Thus,

551 fragility curves are usually given as functions of a variable (SI) linked to the severity of the

552 seismic action such as, for instance, spectral displacement, PGA or macroseismic intensity,

553 among others. The spectral displacement, Sd, is used herein. Fragility curves are com-

554 monly modelled by means of cumulative lognormal functions defined by two parameters,

555 li and bi. li is the median of the lognormal function and is known as i-damage state

556 threshold; bi is related to the dispersion of the lognormal cumulative function. In this

Fig. 14 Energy and stiffness degradation functions and calibration of the DICC (dN) for the median capacity

curve. a SMF 3, b SMF 7 and c SMF 13
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557 research four non-null damage states are considered: (1) slight, (2) moderate, (3) severe

558 and (4) complete.

559 The main hypothesis underlying the construction of fragility curves herein are the

560 following: (a) damage states thresholds, that is li, are determined from capacity curve or

561 from other criterion based, for instance, on observational data or expert opinion, and (b) the

562 assumption that expected damage follows a binomial distribution (Grünthal 1998; Lago-

563 marsino and Giovinazzi 2006) allows determining bi. Be aware that the probability of

564 exceedance in the damage state thresholds, li, is 0.5; To decide the spectral displacements

565 damage thresholds, two procedures are used here. The first one (Lagomarsino and Giov-

566 inazzi 2006) was proposed in the framework of the European Risk-UE project (see

567 Milutinovic and Trendafiloski 2003) and is based on the bilinear form of the capacity

568 curve, which is defined by the yielding point (Sdy, Say) and the ultimate capacity point

569 (Sdu, Sau). Thus, the Risk-UE based damage state thresholds are defined as follows:

l1 ¼ 0:7Sdy; l2 ¼ Sdy; l3 ¼ Sdyþ 0:25 Sdu� Sdyð Þ; l4 ¼ Sdu ð5Þ

571571572 The second one (Pujades et al. 2015) is based on DIPA, or in its equivalent DICC, damage

573 index. Spectral displacements corresponding to damage index (DIPA or DICC) values of

574 0.05, 0.2, 0.4, and 0.65, are allotted to the thresholds of the damage states slight, moderate,

575 severe, and complete, respectively. Recall that these values are based on damage obser-

576 vations (Park et al. 1985, 1987; Cosenza and Manfredi 2000). This way fragility curves for

577 the four damage states are set up.

Fig. 15 DICC and DIPA for the deterministic case and for the 5th, 50th and 95th percentiles. a SMF 3,

b SMF 7 and c SMF 13
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578 Fragility curves easily allow us to obtain damage probability matrices (DPM), that is,

579 the probability of the damage states Pi (Sd). Then the mean damage state can be obtained,

580 D (Sd), also as a function of the same variable used to define fragility curves; often, the

581 normalized mean damage state, MDS (Sd) is used; how DMP, D (Sd) and MDS (Sd) are

582 obtained from fragility curves is shown below. Once the fragility curves, Fk (Sd), k = 1,…,

583 4, are known, for each spectral displacement, Sd, Pj (Sd), define the probability of the

584 damage state j as a function of the spectral displacement, Sd. Equation (6) shows how these

585 probabilities are obtained from fragility curves:

P0 Sdð Þ ¼ 1� F1 Sdð Þ; Pj Sdð Þ ¼ Fj Sdð Þ � Fj þ 1 Sdð Þ j ¼ 1. . .3 P4 Sdð Þ ¼ F4ðSdÞ

ð6Þ

587587588 P0 corresponds to the probability of the null damage state, while indices 1–4 correspond

589 to the four non-null damage states. Then the following equation defines the mean damage

590 state D(Sd) and the normalized mean damage state, MDS(Sd):

D Sdð Þ ¼
X

4

j¼0

jPj Sdð Þ ¼ 4MDS Sdð Þ ð7Þ

592592593 As discussed in Pujades et al. (2015), MDS should not be compared directly with DIPA
594 because MDS has a statistical meaning and is based on the thresholds of the defined

595 damage states, while DIPA must be interpreted as a physical pointer, linked to the pro-

596 gressive degradation of the bearing capacity of the building.

597 7.2 Results

598 Figure 16 shows the fragility curves, Fj, and the normalized mean damage state, MDS, as

599 functions of spectral displacement. In this figure, the first row shows the case based on the

600 Risk-UE project for the median capacity spectra shown in Fig. 11; the second row cor-

601 responds to damage state thresholds based on the median DIPA; row 3 shows the case of the

602 median DICC. Median DIPA and DICC damage indices are shown in Fig. 15. Table 7 shows

603 the parameters of these fragility curves (Sdi, li and bi) for the deterministic and proba-

604 bilistic 5th, 50th and 95th percentiles. The upper part of this table, corresponds to Risk-UE

605 based fragility curves, in the middle the parameters corresponding to fragility curves based

606 on DIPA are given and the lower part shows the parameters of the fragility curves based on

607 DICC. In fact, both indices are almost equivalent as DIPA, has been used to fit DICC. Thus,

608 the corresponding fragility and MDS functions are also similar. The li and bi values in the

609 shadowy area correspond to the fragility curves of Fig. 16. Moreover, Fig. 17 compares the

610 MDS functions, as defined by Eqs. (6) and (7), corresponding to these three cases. It can be

611 seen that Risk-UE based MDSs overestimate the expected damage. However, in the case of

612 the low-rise building SMF3, the Risk-UE based MDS underestimates the damage above

613 the complete damage state. Disagreements between Risk-UE and DIPA based MDS were

614 also found by Pujades et al. (2015).
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615 8 Overview and discussion

616 8.1 Overview

617 In this paper, the parametric model for capacity curves and the new capacity-based damage

618 index and fragility models, recently proposed by Pujades et al. (2015), have been tested

619 and applied to steel buildings. High- (13 storeys), mid- (7 storey) and low-rise (3 storeys)

620 buildings with special moment frames have been evaluated. Also, the seismic response of

621 steel buildings, which are typical of the city of Mexico, has been investigated with

622 deterministic and probabilistic approaches. NLSA and NLIDA are used. The probabilistic

623 approach uses Monte Carlo simulation and optimization sampling techniques, such as the

624 Latin hypercube technique. Uncertainties in the mechanical properties of buildings and in

625 the seismic actions are considered. Only the strength and ductility of the structural ele-

626 ments are considered as random variables and it is assumed that they follow truncated

627 normal or lognormal probability density distributions. For deterministic analyses, mean

628 values of these distributions are used. Seismic actions are chosen according to the design

Fig. 16 Fragility curves and MDS functions obtained for median capacity spectra. Row 1 shows the case

based on the risk-UE project, row 2 shows the case based on DIPA, and row 3 shows the case based on DICC
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629 spectrum foreseen for soft soils in the city of Mexico. Thus, four accelerograms recorded in

630 the study area have been selected, and a spectral matching technique has been applied, so

631 that the response spectra match the design spectrum well. For deterministic analyses, the

632 mean of these four matched accelerograms has been used. For probabilistic analysis, five

633 probabilistic response spectra, with the design spectrum as mean and a predefined standard

634 deviation have been generated. Then, for each generated spectrum, the spectral matching

635 technique is applied to each of the four selected accelerograms, resulting in a suite of 20

636 accelerograms, whose response spectra have the design spectrum as a mean and the pre-

637 defined standard deviation.

638 8.2 Discussion

639 One of the main purposes of this research has been to check the parametric capacity model

640 and the capacity-based damage index for steel buildings. Actually, Pujades et al. (2015)

641 found a very simple analytical model with five independent parameters, fitting capacity

642 curves well. It was shown how the degradation processes (damaging), which can be iso-

643 lated in the nonlinear part of the capacity curve, are well represented by a cumulative

644 integral of a cumulative lognormal function. That is by means of only two parameters. The

645 appropriateness of the model may be clearly seen in the first derivatives of the capacity

646 curves. Certainly, the use of a reinforced concrete building to illustrate the model was ad

647 hoc because, at that moment, studies were being carried out on RC buildings. However, the

648 parametric model wants to be valid for any capacity curve. Thus, this research highlights

649 the validity of this fine model, also for steel buildings. Moreover, focusing on the nonlinear

Fig. 17 Comparison of the median MDS functions. a SMF 3, b SMF 7 and c SMF 13
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650 part of the capacity curve, in the same paper, Pujades et al. (2015) proposed a new and

651 simple damage index, which, like the Park and Ang damage index, is based on the stiffness

652 degradation and on the energy loss. The parameter a is crucial as it separates the contri-

653 bution of the stiffness degradation from that of the energy loss. Values around 0.7 are

654 found for this parameter in the very few studies performed up to date. In fact, this value can

655 be taken as a first quick estimate. Finer estimations require NLIDA. Results show that

656 relatively low variations, around this value of 0.7, are expected, and they are related mainly

657 with the characteristics of the seismic actions. This way, near-fault impulsive strong

658 motions would lead to higher a values. Far-field seismic actions and soft soils would

659 provide long duration seismic actions increasing the contributions to damage of repeated

660 cyclic loads, thus decreasing the a values. Really, future research on more building types,

661 using different seismic actions, can lead to tabulated values of this parameter, facilitating

662 expedite and massive applications of this new damage index. Noticeably, also the fragility

663 curves based on the damage thresholds defined according specific values of this damage

664 index are dependent on the features of the seismic actions, which, on the other hand, would

665 be reasonable.

666 Additional values of this research are the probabilistic approach adopted, as well as the

667 study of the frame steel buildings located in soft soils of the Mexico City. Concerning the

668 probabilistic approach, our results confirm that the probabilistic approach must be pre-

669 ferred because, due to the nonlinearity of the response of the buildings, the use of deter-

670 ministic, even conservative, inputs, can lead to biased outputs; besides, probabilistic

671 approach is richer as it allows obtaining and analyse the uncertainties in the response.

672 Uncertainties in the response increase with the severity of the seismic actions. Concerning

673 to the studied buildings, Fig. 18 shows PGA-d and PGA-DIPA curves obtained with

674 NLIDA.

675 It can be seen how the high-rise frame steel buildings, located in soft soils in Mexico

676 City, would exhibit no good performance, when subjected to likely seismic actions.

677 Ongoing research (Dı́az 2017) shows the adequacy of the use of protecting devices in those

678 buildings. For instance, the use of Buckling Restrained Braced Frames, highly improves

679 their seismic performance. Finally, the use of seismic actions recorded in the study zone,

680 but that, at the same time, are compatible with the design response spectrum also gives

681 reliability to the obtained results.

Fig. 18 PGA-d and PGA-DIPA functions for the three buildings (see explanation in the text)
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682 9 Conclusions

683 Several relevant conclusions of this research are as follows:

684 • Because of nonlinearity both of static and dynamic responses, the use of mean, median

685 or characteristic values does not warranty to get mean, median or characteristic

686 responses. This fact highlights the importance of probabilistic approaches in front of

687 the more frequently used deterministic ones. Note that, in our case (see Fig. 13), the use

688 of mean values, both of the seismic actions and strength parameters, leads to un–

689 conservative results, which emphasizes, even more, the importance of probabilistic

690 approaches, which should be preferred, as they provide more complete, more valuable

691 and richer information.

692 • Uncertainties in the response increase with an increase in the severity of the

693 earthquake. The main source of uncertainty in the response is uncertainty in the seismic

694 action, but the influence of uncertainties in the mechanical parameters was also

695 significant, even though it was lower.

696 • The parametric model for capacity curves, the new damage index based on the secant

697 stiffness degradation and energy loss, and the corresponding fragility model as

698 proposed by Pujades et al. (2015) for reinforced concrete buildings, also provide

699 excellent results for the steel buildings studied herein. This confirms the robustness of

700 the parametric model, the compatibility of the new damage index with the Park and

701 Ang damage index, and the consistency of the fragility model with previous proposals

702 based on expert judgment.

703 • Concerning the damage index for the buildings and seismic actions studied in this

704 research, relative contributions to damage due to secant stiffness degradation and those

705 due to energy loss are respectively about 70 and 30%. The contribution to damage of

706 the energy loss is about 10% greater than that obtained by Pujades et al. (2015) for

707 reinforced concrete buildings. This increase is attributed to longer duration of the

708 accelerograms in Mexico City because of the combined effects of large epicentral

709 distances and soft soils. Longer durations entail greater numbers of hysteretic cycles for

710 the same spectral displacements, thus increasing the contribution to damage of energy

711 dissipation.

712 • For the steel buildings analysed here, static and dynamic analyses provide consistent

713 results. However, differences increase with the height of the buildings; this fact is

714 attributed to the influence of higher modes in the response, which in not captured in the

715 static analysis, as executed here.

716 The results of this research show that the parametric and damage models proposed by

717 Pujades et al. (2015) for reinforced 2D frame reinforced concrete buildings are also valid

718 for 2D frame steel buildings. Thus, this is a promising new tool that can be useful in rapid

719 damage assessments and, in particular, in probabilistic approaches, as it may allow sig-

720 nificant computation time reductions.
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725 (UJAT) and from the ‘Programa de Mejoramiento del Profesorado, México (PROMEP)’. Hidalgo-Leiva DA
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