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Abstract— Network throughput and packet delay are two im-
portant parameters in the design and the evaluation of routing
protocols for ad-hoc networks. While mobility has been shown to
increase the capacity of a network, it is not clear whether the delay
can be kept low without trading off the throughput. We consider a
theoretical framework and propose a routing algorithm which ex-
ploits the patterns in the mobility of nodes to provide guarantees
on the delay. Moreover, the throughput achieved by the algorithm
is only a poly-logarithmic factor off from the optimal. The algo-
rithm itself is fairly simple. In order to analyze its feasibility and
the performance guarantee, we used various techniques of proba-
bilistic analysis of algorithms. The approach taken in this paper
could be applied to the analyses of some other routing algorithms
for mobile ad hoc networks proposed in the literature.
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I. INTRODUCTION

We consider the problem of routing in ad-hoc wireless net-
works. Such a network is comprised of possibly mobile wire-
less nodes which attempt to communicate with each other in the
absence of any fixed communication infrastructure. This ability
of ad-hoc networks to form “networks on the fly” is expected to
play a crucial role in situations such as disaster recovery efforts
after an earthquake or fire, gathering information in a battlefield
or simply forming a short-lived network among people attend-
ing a business meeting.

Routing efficiently in wireless ad-hoc networks poses many
challenges. Some commonly studied problems are: How to
handle the frequent changes in the network topology due to mo-
bility of the users, failure of wireless links caused by obstruc-
tion or fading of signals. How to maintain the long multi-hop
paths between two communicating nodes [7], [12], [13], [15],
[14]. How to reduce the interference among the various users
wishing to transmit which is caused due absence of any central-
ized control [20], [17], [19], [16], [18].

Another direction in the quest for efficient routing protocols
was introduced by the work of Gupta and Kumar [4] which fo-
cused on the capacity of wireless ad hoc networks. They first
show an upper bound on the maximum possible transmission
capacity achievable by any static ad-hoc wireless network and
then illustrate a routing protocol for a random network which
has capacity close to the optimum. Such a result, though it ig-
nores a lots of issues which arise in practical settings, offers
important theoretical insights into the problem.
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Gupta and Kumar [4] show that the average available
throughput per node decreases as the square root of the num-
ber of nodes n, in a static ad-hoc network. Equivalently, the
total network capacity increases as at most

√
n. Their result

holds quite generally. In particular, it holds irrespective of the
network topology, power control policy or any transmission
scheduling strategy.

Given this limitation on the achievable throughput, a natural
question which arises is whether the average throughput avail-
able per node can be increased. There are two approaches dis-
cussed in the literature.

1) Add relay-only nodes in the network: This increases the
total network capacity, thus increasing the share available
to each sender [4]. However a major drawback of this
scheme is that the number of relay nodes required is huge.
For example, in a network with 100 senders, at least 4476
relay nodes are needed to increase the capacity five-fold
[4].

2) Add mobility: In a network where nodes move randomly
in a circular disk such that their steady state distribution
is uniform, Grossglauser and Tse [2] showed that it is
possible for each sender-receiver pair to obtain a constant
fraction of the total available bandwidth. This constant
remains independent of the number of sender-receiver
pairs.
However, as noted in [2] their scheme does not provide
any guarantee on the time that it takes for the packet to
reach its destination, or on the size of the buffers needed
at the intermediate relay nodes. In general, the delay to
deliver the packet could be arbitrarily large.1

In this paper, we address the issue of whether mobility can
be used in a way that not only can we obtain a close-to-optimal
throughput as in [2] but also have low delay guarantees simul-
taneously. We consider a network with both static and mobile
nodes. The mobile nodes follow a particular model of move-
ment, referred to as the mobility model (see Section II). Our
mobility model is similar to the random way-point model which
is widely used in simulations of ad-hoc networks. We give a
routing algorithm and prove that it provides high throughput
and low delay.

We stress however that our work and similarly the results
in [4], [2] are theoretical in nature. The various simplifying
assumptions used about the network conditions and scenarios
need not always hold in real world settings. For example,
one assumption often made in obtaining lower bounds on the
throughput is that all the nodes are distributed uniformly at ran-
dom in the network. Similarly, the sender receiver pairs are also

1Later we will look at these schemes in more detail.
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chosen randomly. Indeed, if all nodes wish to send packets to
one receiver, no node can receive more than 1/nth of the band-
width, where n is the number of the nodes. Similarly, if most
nodes are concentrated in a small region, only one of them can
communicate at once due to excessive interference. All our as-
sumptions are explicitly stated in section II-F.

The paper is organized as follows. In Section II-A through
II-F, we define our model and state the modeling assumptions.
Section II-E contains a discussion of the previous algorithms
and gives intuition for the problem. Section II-G states our main
result. Section III describes the routing algorithm and its anal-
ysis. In Section IV we consider some extensions of the model.
Finally we end with discussions and conclusions in Sections V
and VI.

II. MODEL AND MAIN RESULTS

A. Network Model

The ad-hoc network consists of n static nodes and m mo-
bile nodes all lying in a disk of unit area (of radius 1/

√
π).

The location of the static nodes are fixed. The static nodes are
distributed uniformly at random over the unit circular disk. The
mobile nodes are randomly distributed in the disk at time t = 0.
At later times their position and velocities are given by the mo-
bility model described below.

B. Mobility models

Various mobility models have been considered in the litera-
ture to evaluate the effect of the node mobility on the perfor-
mance of algorithms and protocols. The most widely used of
these is probably the “random waypoint model” [7] (described
below).

Random waypoint Model: In this model, a node chooses a
destination distributed uniformly at random in the unit disk and
moves in that direction with a speed v. The speed is chosen uni-
formly in some interval (0, vmax]. On reaching the destination
the node pauses for some time distributed according to some
random variable and the process repeats itself.

Other models include Random Gauss-Markov [9] and Fluid
flow models [22]. A nice survey of these can be found in [6],
[9].

In this paper, we define the Uniform Mobility Model. This
model has the advantage of being analytically tractable and is
similar to the “random waypoint model”.

Uniform Mobility Model: In this model, each of the m mo-
bile nodes move at speed v inside the unit circular disk. At time
t = 0, the position of these nodes are distributed uniformly at
random inside the disk. Moreover, the directions of motion of
the m nodes at time t = 0 are i.i.d. and uniformly distributed
in [0, 2π).

At subsequent times a node behaves as follows: It picks a
direction uniformly at random from (0, 2π] and moves in that
direction for a distance d, at speed v, where d is an exponen-
tially distributed random variable with mean µ. The process
repeats when the node reaches the distance d. If the node hits
the boundary of the disk, it is reflected at the boundary.

The uniform mobility model satisfies the following proper-
ties given by Theorem 1 below, the proof of which is forwarded
to Appendix VII-B.

Theorem 1 The Uniform mobility model described above has
the following properties:

1) Given a time t, the position of the mobile nodes at time t
are independent of each other.

2) The steady state distribution of the mobile nodes over the
disk is uniform.

3) Conditional on the position of a mobile node in the
disk, the direction of the node is uniformly distributed in
(0, 2π].

C. Transmission Model

At time t, let S1, S2, . . . , Sm be the senders with positions
X1, . . . , Xm and let R be the receiver with position X0. If Si

uses power Pi(t) for transmission, the strength of the signal
received at R is Pi(t)

||Xi−X0||α , where α > 2. The transmission
from Si to R is successful if

Pi(t)||Xi −X0||−α

N +
∑

k �=i Pk(t)||Xk − x0||−α
≥ β (1)

The constant β is the Signal-to-Noise Ratio (SNR) for the trans-
mission channel.

The maximum available bandwidth to any node in the net-
work will be denoted by W .

D. The Performance Metric

We will use the framework of [4] and [2]. There will be n
sender-destination pairs. In particular, each static node i will
act as a source (aka sender) transmitting to some other static
destination (aka receiver) node d(i). Each source chooses its
destination uniformly at random (as in [2], [4]).

A scheduling policy γ chooses which sender sends data at
time t, and the power levels Pi(t) for node i. Given a schedul-
ing and relay policy γ, we will say that γ achieves a throughput
of λ(n) if it is possible for each source to send data at the rate
λ(n).

E. Preliminaries

Before giving our results, we first give an intuitive explana-
tion of results known previously in the literature. We will also
make some observations which will motivate our problem fur-
ther and illustrate the main ideas.

Intuitively, if a node S transmits a message to some node at
a distance, d, then due to the nature of wireless transmission,
this causes an interference to all the nodes within a distance
of approximately d from S. Hence, if the average distance of
transmission is about d, then at most n/d2 users can transmit
simultaneously.

This forms the basis of the result of Gupta et al [4]. If a node
transmits a packet to another node d steps away, then in a disk
topology, the number of hops between source to destination will
be

√
n/d on the average. This implies that the total throughput

can be at most (n/d2)/(
√
n/d) =

√
n/d. Thus, it helps to

have short range transmissions (i.e. d = 1) and hence the total
capacity can increase at most as

√
n.

Obtaining an Ω(1) average throughput per node is a very
stringent requirement and it implies several things. First, this
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means that each node must be sending packets to its destination
for a constant fraction of the time. Second, each packet travel-
ing from source to destination must involve at most a constant
number of relays. The idea of Grossglauser et al [2] is that each
node hands over a packet to its nearby mobile node at all times.
When the mobile node is close to the destination node, it hands
over the packet to the destination. Note that this does not pro-
vide any guarantees on how long the packet will take to reach
the destination [2].

In our scenario we need to ensure a bounded delay and a
good throughput simultaneously. To do this we need to ensure
several things.

1) To provide good delay guarantees we need to assume that
the position of the destination is fixed. Indeed, if the des-
tination is a mobile node, it will be impossible to provide
any guarantees on the delay, unless some assumptions are
made (See Section IV-A). Hence we will assume that the
sources and destinations are static nodes, which use the
mobile nodes as relays in order to achieve a throughput
greater than

√
n.

2) Second, to obtain a constant throughput per sender,
senders need to be able to transmit most of the time. This
requires that number of mobile nodes must be at least
Ω(n), since otherwise the throughput is bounded by the
number of static nodes (n).
Similarly, if the number of mobile nodes is o(

√
n), then

at any time at most o(
√
n) static nodes could be commu-

nicating with mobile nodes and thus the throughout will
only be o(

√
n). Hence, it suffices to use the algorithm

of Gupta et al in this case. Infact, throughout this paper
we will assume that the number of mobile nodes, m, is a
number between

√
n and n.

3) The number of relays per packet should not be too large.
To do this we will need to exploit the patterns in the mo-
bility of nodes.

4) Finally, to ensure a small delay, we must ensure that a
packet does not get strayed along the path. This requires
new ideas and we do not know of any previous work
which considers these issues. Note that, at any time, a
relay node will have several packets corresponding to var-
ious destinations. However, when it meets another relay
node along its way, it can hand over very few of these
packets, since the duration during which they are nearest
neighbors (hence are in communicating range) is quite
small. Hence we need a scheme to decide which packets
need to be handed off. Observe that this is not a issue if
delays are not taken into consideration. Handling and an-
alyzing delays is perhaps one of the most important con-
tributions of this paper.

Lastly, we note that another possible model could be where
the mobile nodes are dedicated as relays and their paths and mo-
tion are dictated by the requirements of the static nodes. How-
ever, this gives a different feel to the problem, in this case it can
be modeled as a network flow problem. In our model, the mo-
bile nodes correspond to users traveling in cars, airplanes etc.,
which have their own pattern of movement. These users have a
wireless device, which potentially other static devices can use.
But clearly, we cannot expect the wireless device to dictate the

movement of the user.

F. Modeling Assumptions

We will assume that the following hold:
1) The locations of the static nodes are known to other

nodes. This is a reasonable assumption since this infor-
mation can be obtained through some location services or
protocols (see e.g. [8]) and then stored in the nodes.

2) The mobile nodes know the direction in which they are
moving up to some degree of accuracy. This is easy to
do if the network has Global positioning system (GPS)
support. Even if GPS support is unavailable, the mobile
nodes can detect its direction by observing the sequence
of static nodes which are closest to it which it encounters.
Detecting close-by static nodes is commonly done using
signal strengths.

3) A mobile node knows how far it will move in a line be-
fore changing direction. This for example is true in the
random way point model, and also in real life situations
where nodes know their destination.

4) We assume for ease of exposition that µ (the parameter in
the mobility model) is of the order of the diameter of the
network. In Section IV we remove this assumption.

G. Main Results

Our main result is the following.

Theorem 2 Consider a mobile ad hoc network satisfying the
following conditions:

1) There are n static nodes uniformly distributed in a disk,
and m mobile nodes which move according to the uni-
form mobility model in the unit disk.

2) The n sender-receiver pairs are chosen randomly accord-
ing to a uniform distribution, among the static nodes.

Then, there exists a constant c > 0, such that each sender can
achieve an average throughput of cW min(m,n)

n log3 n
, where W is the

maximum available bandwidth. Moreover, the maximum delay
incurred by the packet is at most 2d

v , where d is the diameter of
the network and v is the velocity of the mobile nodes.

Note that the best achievable throughput by any algorithm with
m mobile nodes is O(Wm/n), where Theorem 2 provides a
guarantee of Ω(Wm/(n log3 n)).

III. ROUTING ALGORITHM

We begin with a high level description of the routing algo-
rithm. We then describe the details and the analysis. More
general models will be analyzed in the next section.

A. Algorithm

Figure 1 shows the routing of a packet from the source S
to the destination R. The packet moves approximately in the
direction of the destination at each step.

At a high level, the algorithm consists of the following
steps:
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Source

S

Receiver

R

M1

M2
M3 

Small region around receiver

Fig. 1. An example illustrating the routing scheme

1) Within each region of size 1/
√
m × 1/

√
m, the static

nodes choose a local leader. This leader will be respon-
sible for communicating all the messages of the static
nodes in its region with the mobile nodes. Note that there
will be m local leaders.

2) A static node S1 wanting to send a message to destination
R first transfers its message to its leader node (S). S
stores the message and waits for a mobile node (M1) such
that M1 is close enough to S and moving approximately
along the direction of R. When such a node is available,
S hands over the data to be transmitted to it. We will call
this the Static-to-Mobile phase.

3) The mobile nodes relay the packets intended for R
amongst themselves such that the packet moves closer
and closer to the destination. We will call this the Mobile-
to-Mobile phase.

4) When the mobile relay carrying the packet is close
enough to the destination, it hands off the packet to some
leader node. This packet is then routed among the leader
nodes towards the correct leader node, which then trans-
mits the packet to the destination node. This is the Static-
to-Static phase.

Observe that in the algorithm, the various phases are execut-
ing simultaneously. The signals used in these different phases
will cause interference to each other. In our analysis, we will
assume that each of these phases use different frequency chan-
nels, and hence they do not interfere with each other. In par-
ticular, we will assume that each of the phases has a maximum
allocated bandwidth of W/4. In the entire algorithm, we will
assume that all nodes transmit at unit power. The proof idea
will be to show that each leader node can obtain a throughput
of Ω(W/ log3 n). Since within each region of a leader, there are
O(n/m) static nodes. This implies that leader static node can
get a throughput of Ω(Wm/n log3 n). Next we consider each
of these steps in detail. The most involved part of the proof will
be the Mobile-to-Mobile phase (in Section III-D). We will need
to argue several things: Most importantly, a scheme for decid-
ing which of the several data packets to handoff when two mo-
bile nodes meet. Showing the feasibility of relaying the pack-
ets from the source to a node close enough to the destination.
Making high probability arguments about packet loss, achiev-
able throughput etc.

B. Choosing a local leader

We first describe how to choose a local leader. If m >
n/(16 log n), let m = n/(16 log n). Consider a virtual grid
consisting of m nodes with the distance between the neighbors
being m− 1

2 . It follows from a standard Chernoff bound argu-
ment (Appendix VII-A) that each of the grid nodes has a static
node within a distance of

√
log n/n, with probability at least

1 − n−2. We choose one of these static nodes as the leader
node corresponding to the square region of side m− 1

2 around
each grid node. Since the grid nodes are separated by a distance
of m− 1

2 , the distance between any two leader nodes will be at
least m− 1

2 − 2
√

log n/n. Finally, applying Chernoff bounds
again, we observe that each region consists of O(n/m) static
nodes. Intuitively, if we ignore the static nodes that are not
leaders, then the network has m mobile nodes and m leaders
where the leaders are arranged in a grid like structure (i.e. no
two are very close to each other).

The communication will take place as follows: In each re-
gion (cluster) only the leader node will be responsible for com-
municating with the mobile node. A static node that wants to
transmit a packet will first send the packet to the leader of the
cluster to which the static node belongs. The packet will then
be routed among the leader and the mobile nodes. Finally, the
leader sends the packet to the destination by local routing within
a cluster. Note that if the throughput available to the leader is
λ, then each static node gets throughput of Ω(mλ/n). For ex-
ample, the static nodes corresponding to a particular leader can
take turns transmitting packets to the leader.

C. Static-to-Mobile Phase

ReceiverSource

Direction 
of mobile

S R

A

A’

B

B’

 C

Handoff
region

X   −> X’  :  Handoff Region  
X’’−> X’  :  Deadline Zone

X’
X’’X D

R’

Fig. 2. Handing off the packet to the mobile node

In this mode, a static node first hands off the data to be de-
livered to a mobile node. Consider Figure 2, given the source
node S (which wants to handoff data to another mobile node)
and the destination node R. Consider the line joining S and R,
let θ be the slope of SR (θ = 0 in Fig. 2). Let G(S,R) denote
the region between the directions [θ− π

6 , θ+ π
6 ] originating at S

and containing R (The choice of the angle π/6 is arbitrary, any
angle from 0 to π/3 would suffice, see Remark 2 at the end of
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Section III-D.1) . In Figure 2 the region G(S,R) corresponds
to the region between the rays SA′ and SB′.

In the first step, the node at S hands over the packet to be
transmitted to some mobile node M1 moving in the direction
φ such that φ ∈ [θ − π

6 , θ + π
6 ], also M1 satisfies the property

that it moves in that direction for a distance of at least 2|SR|
(i.e. twice the length of segment SR). Since µ is about the di-
ameter of the network, by our assumption, a constant fraction
of the mobile nodes satisfy this property. We will assume that
this is always the case in all transmissions. We make this as-
sumption to simply the exposition, so that the main ideas are
not obscured. In Section IV we get rid of this assumption.

There are two issues that arise in this phase:
1) Whether a static node transmitting at a rate λ(n) can find

mobile nodes moving in the right direction sufficiently
often to handoff data at that rate.

2) How long does a node have to wait until it can find the
right mobile node.

The next two results consider these issues.

Theorem 3 If the communication takes place only between
leader nodes as senders and mobile nodes as receivers. Then, if
α > 2, there is a square region of side cm− 1

2 centered at each
leader, such that if the leader communicates with a mobile node
in this region, then the communication is always a success.

Proof: Consider the static node (S) at (0, 0). Let c be
a sufficiently small constant such thatc < 1. If a mobile node
(M) is present inside the square of size d = cm− 1

2 , then the
distance of M from S is at most d√

2
. Now, since nodes transmit

at unit power, the signal received by M due to S will be at least
2

α
2 m

α
2 c−α.

To bound the interference by other nodes, note that there are
8l nodes at positions (i, j) such that max(i, j) = l. Each of
these 8l nodes have distance at least lm

1
2 − d

2 from M which is

≥ (l − 1
2 )m− 1

2 , as c < 1.
Thus the total signal at S due to the other nodes is

≤
∞∑

l=1

8l
(l − 1

2 )αm− α
2

(2)

≤ 8m
α
2

( 1
2 )α

+ 8m
α
2

∫ ∞

1

x

(x− 1
2 )

α
2
dx (3)

= 8m
α
2 2

α
2 + 8m

α
2

[
2α−2

α− 2
+

2α−1

α− 1

]

= c1m
α
2

Equation (3) follows from Equation (2) since x

(x− 1
2 )

α
2

is a de-

creasing function of x for x > 1/2 and α > 2.
Thus the signal to noise ratio at M due to S will be greater

than or equal to
2

α
2 m

α
2 c−α/N

1 + c1m
α
2 /N

(4)

Thus given the Signal to Noise Ratio β, c can be chosen ap-
propriately small such that the signal to ratio given by Equation
(4) is greater than β. Hence the transmission from S to M is
always successful.

For a static node S, let N(s) denote the square neighborhood
of side cm− 1

2 centered at S. We will now show that the duration
for which a static node S has to wait to find a mobile node in
N(s) is not very high.

Lemma 4 Consider a static node S. Let T denote the time
until which a mobile node first enters N(s). Then

Pr

[
T >

4f logm
cv

√
1
m

]
≤ m−f

Proof: Let M be some mobile node at a distance r from
S. Now the direction of motion of M is uniformly distributed
and independent of its position. Conditioned on the fact that
M does not change direction, the probability that M enters the
neighborhood N(s) of the static is equal to the angle subtended
by the region N(s) at M . This subtended angle is at least c√

mr
.

Consider concentric rings D1, . . . , Di, . . . of width 1√
m

de-
fined as follows. Each Di is centered at S and Di consists of
points which are at a distance between i−1√

m
and i√

m
from S.

Let Xi,j be a random variable such that Xi,j = 1 if the ith

mobile node is in Dj and its direction is such that it will en-
ter N(s). Xi,j is 0 otherwise. Since the mobile nodes are uni-
formly distributed in the unit disk, the probability thatMi ∈ Dj

is (j2−(j− 1√
m

)2) which is approximately 2jm− 1
2 . Since each

mobile inDj has a probability of at least c
j
√

m
of enteringN(s).

The event Xi,j has an expected value of 2jm− 1
2 c

j
√

m
= 2c

m .
Thus Xi,j are independent Bernoulli random variables. Define
X(d) =

∑d
j=1

∑m
i=1Xi,j . Observe that E[X(d)] ≥ 2cd.

We are interested in obtaining a bound on d such thatX(d) ≥
1. If d > 1/c, Pr[X(d) < 1] ≤ Pr[X(d) < cd].

Using the second Chernoff bound Equation (10) with δ = 1
2 ,

we get Pr[X(d) < cd] < e− 2cd
8 .

Thus probability that X(d) < 1 for d = 4f logm/c is less
than m−f . Now, observing that the time taken for a mobile to
reach S from a distance x is at most x/v the result follows.

D. Mobile-to-Mobile Phase

We now describe and analyze in detail how handoffs from
one mobile node to another take place. The main ideas are
the following: First, for every data packet carried by a mobile
node there is a point beyond which the packet is not handed
to another mobile node, it starts moving away from the desti-
nation. This leads to the notion of a handoff region. We have
to make sure that every packet is handed off to another mobile
node within its handoff region. Second, for every mobile node,
at any moment in time there will be several packets in their
handoff region. We thus need a scheme to decide which packet
should be handed off first and so on. The second scheme also
requires the use of randomization so that delay guarantees can
be proven. These two ideas are described immediately below
and Section III-D.2 contains the analysis of these.

1) Handoff algorithm: Geometry: Consider Figure 2, the
mobile node M1 was handed a packet from the static node S.
Now, M1 carries the packet until it reaches a region between
the rays R′A and RA′. In this region, M1 tries to hand off the
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packet to another mobile nodeM2, which is moving towardsR.
This region will be denoted as the handoff region. The handoff
region is defined as follows. Line RA’ is perpendicular to line
SR. Line R′A is parallel to line A′R and passes through A.
The handoff region is shown by the segment XX ′ in Figure 2.

Scheduling: In order to handle packets that could not be
transmitted in their handoff regions we will define a deadline.
Let X ′′ denote the midpoint of the segment XX ′. The mo-
bile node chooses a point uniformly at random in the segment
X ′′X ′. This point is called the deadline for the node 2. The
deadline is shown by D in Figure 2. If the mobile node M1 is
unable to handoff the packet to another mobile until it reaches
the deadline D (i.e. during the interval X to D), the packet is
discarded.

Finally, note that at any given time several packets will be
in their handoff regions, and hence compete for being handed
off to another mobile node. The conflict resolution among the
various packets is done in the Earliest Deadline First (EDF)
order. For example if either of the packets P1 with deadline D1
and packet P2 with deadline D2 can be delivered to a mobile
node M2, then the packet with the earlier deadline is delivered
first.

The whole process repeats itself, until the mobile reaches a
distance of less than c log m√

m
from the destination. The appropri-

ate constant c will be determined later.
Remarks:
1) Observe that the algorithm is fully distributed, in the

sense that the communication between two mobile nodes
does not impose any restriction on the transmissions from
other mobile nodes.

2) Note that the choice of the angle π/6 is arbitrary. In
fact, a handoff to any mobile moving within an angle
of (0, π/3] suffices, since at each step the distance to
the destination decreases. The tradeoff is that a smaller
choice of the angle implies a longer wait, whereas a big-
ger angle implies a lesser wait but a possibly longer path
to reach the destination.

2) Analysis of the mobile-to-mobile phase: Call a handoff
successful if the packet is delivered from a mobile Mi to a mo-
bile Mj such that the packet was in the handoff mode at the
time of delivery and it was delivered before the deadline. We
first determine the conditions for a successful handoff.

Let R be a receiving mobile node and let M1, . . . ,Mm be
mobile nodes distributed uniformly and independently in the
disk. Suppose that M1 attempts to communicate with R. Then
the signals due to M2, . . . ,Mm received at R will cause in-
terference to the communication between M1 and R. Let Ij
denote the signal received at R due to Mj . To determine the
probability of successful transmission between M1 and R, we
will bound the total interference I2 + . . .+ Im. This is done in
the following lemma and its proof is similar to that in [5], [2].
However, we include it for completeness.

Lemma 5 Suppose that m − 1 mobile nodes uniformly dis-
tributed in a disk are transmitting at unit power. Let R be a

2Randomization is required to avoid many deadlines from being clustered
together, its use will be apparent in the proofs below

point in the interior of the disk. Then, if M is at a distance
x < β− 1

α

√
ε

πm to point R, the transmission from M to R is
successful with probability greater than 1 − ε. In particular, if
x < β− 1

α (8πm logm)− 1
2 , then the transmission is a success

with probability at least 1
8 log m .

Proof: Let X(R) be the position of R. Consider a disk D
of radius r = π

1
2 −|X(R)| centered at X(R). Then the disk D

lies entirely inside the unit disk. Then for all z > r−α and for
all j

Pr[Ij ≥ z] = πz− 2
α (5)

Observe that each of the I ′
js are distributed i.i.d. with the tail

distribution given by Equation 5. Since α > 2, note that the I ′
js

have a Pareto tail distribution with exponent less than 1.
To estimate I2 + . . .+ Im, we use the limit theorem for sums

of Pareto distribution with exponent less than 1 [1]. Let γ = 2
α .

Observe that [πΓ(1 − γ)]−
1
γ Ij has the same tail distribution as

Gγ , where Gγ is the stable distribution with exponent γ, i.e.

1 −Gγ(x) =
x−γ

Γ(1 − γ)

Let I(m − 1) = I2 + I3 + . . . + Im and S(m − 1) =
[πΓ(1 − γ)]−

1
γ I(m− 1) . Then by [1], as m → ∞

lim
m→∞

S(m− 1)

(m− 1)
1
γ

→ Gγ

Thus we get

lim
m→∞

Pr[S(m− 1) > xm
α
2 ] =

x−γ

Γ(1 − γ)

Setting x = (εΓ(1 − γ))
−1
γ , we get

lim
m→∞

Pr[I(m− 1) >
(π
ε

)α
2
m

α
2 ] ≤ ε (6)

Setting ε = 1
8 log m in Equation 6 gives

lim
m→∞

Pr[I(m− 1) > (8πm logm)
α
2 ] ≤ 1

8 logm
(7)

Now observe that I(m−1) → ∞ asm → ∞. Thus while com-
paring the signal to noise ratio we can ignore the contribution
of the thermal noise (as denoted by N in Equation 1). Thus if
the signal from M1 is greater than βI(m− 1) the transmission
is a success. Hence by Equation 7, the transmission is a success
with probability at least 1

8 log m if the distance of M1 from R is

less than or equal to β− 1
α 8πm logm− 1

2

Let r0 denote the distance β− 1
α (8πm logm)− 1

2 . Suppose
two mobile nodes M1 and M2 communicate only when they
are at a distance of r0 or less. We will say that M1 and M2
encounter each other within time t, if the distance between them
is less than r0

2 during some time instant in [t0, t0 + t], where t0
denotes the current time. We will be interested in the amount
of data M1 can handoff to another mobile during an encounter.
This amount will depend on the number of mobile nodes that
M1 encounters and the amount of data that can be transmitted
per encounter.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Lemma 6 Let λmm denote the bandwidth allocated for
mobile-to-mobile data transmission. Then,

1) The expected data transmitted successfully during an en-
counter is at least λmmr0

2||v|| (1 − 1/8 logm).
2) Let E denote the event that at least λmmr0

4||v|| data is
successfully transmitted during an encounter. Then,
Pr[E] ≥ (1 − 1/4 logm). Similarly, the probability that
at least kλmmr0

4||v|| data is successfully transmitted during k
encounters, is at least (1 − 1/4 logm).

Proof: Consider the motion of M2 relative to M1. Then
M2 moves at speed at most 2||v||. Moreover, during an en-
counter M2 covers a distance of at least r0 during which it is
at a distance of r0 or less from M1. Thus during an encounter,
M1 and M2 are within a distance of r0 for a duration of at least

r0
2||v|| . Hence, by Lemma 5 the expected amount of data com-

municated during an encounter is at least λmmr0
2||v|| (1 − 1

8 log m ).
Now, it follows from Markov’s Inequality that the amount of
data transmitted successfully is at least λmmr0

4||v|| with probabil-

ity 1
4 log m . Similarly, using Markov, the result follows for k

encounters.
We now consider the number of encounters which M1 has in

time t. Suppose the mobile node M1 is wants to transmit data
to a destination in the direction η. Thus M1 will handoff the
packet to some other mobile node Mi moving in the direction
φ, such that φ ∈ [η − π/6, η + π/6].

Given M1, call a mobile node Mi useful if:
1) Mi moves in the direction φ such that φ ∈ [η− π

6 , η+ π
6 ]

2) Mi encounters M1 at sometime during the time [t0, t0 +
t].

Let X(η, t) = |{i|i > 0 and Mi is useful }|
That is, X(η, t) is the random variable, which denotes the num-
ber of useful mobile nodes.

We now compute the expectation of X(η, t) and bound it as
in Lemma 4 to obtain the desired result.

Lemma 7 Let M0 be a mobile node and let X(η, t) be as de-
fined above. Then for any η ∈ [0, 2π),

E[X(η, t)] >
1
24
mr0t||v||

Moreover, for any constant k > 0, if t > log m√
m||v|| , then

Pr

[
X(η, t) <

1
2

· 1
24
mr0t||v||

]
= o(

1
logm

)

Proof: Clearly, X(η, t) is a sum of m− 1 i.i.d. Bernoulli
random variables Yi, where Yi = 1 if Mi is a useful mobile
node. Let Y denote the common distribution of the Y ′

i s. Then
E[X(η, t) = (m − 1)E[Y ]. To calculate E[Y], we first condi-
tion on the direction of Mi. Observe that

E[Yi] =
∫ η+ π

6

φ=η− π
6

E[Yi|di = φ]Pr[di = φ]

where di is the direction of the node Mi.

To calculate E[Yi|di = φ], consider the mobile node Mi

moving in direction φ. Relative to M0, Mi moves at angle of
π
2 + φ

2 at speed
∣∣∣2||v|| sin φ

2

∣∣∣.
Thus given that di = φ, Yi = 1 iff Mi lies in a region of area

r0 · t ·
∣∣∣∣2||v|| sin φ

2

∣∣∣∣

at time t = 0. Thus,

E[Yi] =
1
2π

∫ η+ π
6

φ=η− π
6

r0 · t ·
∣∣∣∣2||v|| sin φ

2

∣∣∣∣ dφ

Now E[Yi] is minimized when η = 0 (i.e. when M0 wishes to
transmit the packet to another mobile moving in the direction
of M0). In this case,

E[Yi] =
1
2π

· r0 · t · 2||v|| · 2
∫ π

6

0
sin

φ

2
dφ

=
4t||v||r0

π
(1 − cos

π

12
)

>
4t||v||r0

π
(0.034)

Thus E[X(η, t)] > 1
24r0t||v||m.

Using the second Chernoff bound (Equation 10) with δ = 1
2 ,

we get that if t > log m
||v||

√
m

Pr

[
X(η, t) <

1
2

· 1
24
r0t||v||m

]
≤ e−c

√
log m = o(

1
logm

)

where c = 1
24 · 1

8 · β− 1
α

√
1
8π .

In particular if a mobile node moves a distance of log m√
m

, it

encounters at least Θ(
√

logm) other mobile nodes, with prob-
ability at least 1

12 log m (assuming m is large enough).
It follows from Lemma 6 and Lemma 7 that

Theorem 8 Let X(t) denote the amount of data a mobile node
M transmits in time t, then if t > log m√

m||v|| and n is sufficiently
large, then

Pr

[
X(t) >

1
48

· β− 2
α

8π logm
λmmt

]
> 1 − 1

3 logm

This holds irrespective of the direction in which M attempts to
transmit.

Proof: For X(t) to be greater than 1
48 · β− 2

α

8π log mλmmt, it is

sufficient that the number of encounters is at least 1
48mr0t||v||

and at least half of the data transmissions are successful during
these encounters. By Lemma 6 and 7, the probability of either
event not holding is less than 1/12 logm and 1/4 logm. Thus
the result follows.

Having shown bounds on the amount of data that a mobile
node can handoff to other nodes, in this section we show bounds
on the data received by a mobile node from other mobile nodes.
This will allow us to bound the probability that a packet is dis-
carded since it could not be handoff before its deadline.
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Let D denote the maximum distance between the source and
the destination. Thus D = 2/

√
π. Call a packet to be in stage

k, if the distance of the packet from the destination is between
D3− k

2 and D3− k−1
2 . Since the distance decreases by at least a

factor of
√

3 after every handoff and the distance can vary from
at most 2/

√
π to at the least 1/

√
m. It follows easily that

Property 9 The number of different phases will be at most
log√

3
√
m which is less than logm.

Since each static node produces data at rate at most λ(n), the
total rate at which data is produced is nλ(n). We say that there
is an arrival into stage k if a packet becomes a stage k packet,
and similarly there is a departure from stage k if a packet be-
comes stage leaves stage k to enter stage k + 1 or higher. By
Property 9 each packet goes through each stage at most once,
thus it follows that

Property 10 The average arrival rate into each stage k is at
most nλ(n).

Recall that our goal is to bound the data received by a mo-
bile node. Since there are n mobile nodes we expect that each
node will receive stage k packets at a rate of about nλ(n)/m.
However, this is not exactly true. The fact that a mobile is mov-
ing in a particular direction and is at a particular position will
affect the rate at which the mobile receives packets of stage k.
However, we can easily bound the rate by 6nλ(n)/m. The idea
is that, by the nature of our algorithm, even if all the packets
at a position 2r need to send in a particular direction θ, by the
nature of the algorithm they will be spread out to mobile nodes
moving in a direction between θ − π/6 and θ + π/6.

We now come to the final step of the proof. Consider a packet
which is in its handoff region deadline at a distance d. We want
to bound the probability that this packet meets its deadline.

Lemma 11 Given a packet P in its handoff region with a dead-
line at a distance d. Let H(d) denote the amount of data
that has a deadline sooner than that of P . Then, E[H(d)] <
78λ(n) log n nd

m||v|| .

Proof: Let us consider a packet P , and let M denote the
mobile node which is carrying P . For notational convenience,
suppose that P enters its handoff region at time t = 0. Let
d denote the distance to the deadline of P . Figure 3 explains
the notation used in this proof. Here A is the point where the
handoff region begins, and B is the deadline of P .

A        BX

x > 8d d

Packet P’ arrives at X
Handoff region of P begins 

|A’A|=8dA’

Packet P has deadline at B

Fig. 3. Figure explaining the notation in the proof of Lemma 11

Since the handoff of packets takes place in the Earliest Dead-
line First (EDF) manner, the handoff of packet P will be de-
layed by other packets carried by M , which have a deadline

earlier than that of P . These packets (which have a deadline
earlier than that of P ) can be classified into:

1) Packets which arrive after time 0.
2) Packets which arrived before time 0.

We will bound the delay due to each of these. It is easy to
bound the delay due to packets of the first type. For the first
type, the expected number of packets which arrive during the
time M covers a distance d is bounded by 6λ(n) logm dn

m||v|| .
In the worst case assume that all these packets have a deadline
before the deadline of P , and hence the expected number of
such packets which need to be handed off before P will be at
most 6λ(n) logm dn

m||v|| .
For the second type, we need a more detailed analysis. Con-

sider a packet P ′ which arrives at a distance x before A. This
point is denoted by X in Figure 3.

We again classify these packets (P ′) into two types. First
we consider packets which arrive at a distance x before A such
that x ∈ [0, 8d]. The expected number of such packets will be
8d logm ·6λ(n)n/m||v||. Assuming that all these packets have
a deadline in the interval AB in the worst case, the expected
number of packets of this type that need to handed off before P
will be 48d logmλ(n)n/m||v||.

If x > 8d, we need a different argument. Observe the fol-
lowing:

1) If the distance of the destination of P ′ from X is greater
than 4

3 (x + d), then the deadline interval of P ′ begins at
a distance greater (x+ d).

2) If the distance of the destination of P ′ is less than
√

3
2 x

then the deadline interval of P ′ ends at most distance x
from the point X (hence before A).

Thus the deadline interval of P ′ does not intersect the segment
AB in either case. Thus, if the deadline interval of P ′ intersects
AB, then its destination must lie between the distances dmin =√

3
2 x and dmax = 4

3 (x+ d) from X .
Now the ratio of the distances dmax to dmin is 8(x +

d)/(3
√

3x) which is smaller than
√

3 if x > 8d. This implies
that such a packet can lie in at most 2 phases. Thus, the ex-
pected arrival rate of such packets is at most 12nλ(n)/m. Now
for any packet P ′, we know that it deadline is uniformly dis-
tributed in an interval of size at least x

4 . Thus, the probability
that P ′ has a deadline in the segment AB is at most 4d

x . Thus
the number of packets that arrive in an interval of length dx will
be 12nλ(n) dx

m||v|| · 4d
x .

Thus, the expected number of conflicting packets which will
have deadline in the interval AB will be bounded by

48
nλ(n)
m||v||

∫ 2√
π

x=8d

d

x
dx

= 48
nλ(n)d
m||v||

log
2√
π8d

< 24nλ(n) log n
d

m||v||
( Since d ≥ 1√

n
) (8)

Thus the expected amount of data that needs to be delivered
before a packet with deadline at a distance d is delivered is at
most 78nλ(n) log n d

m||v|| .
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Lemma 12 There exists a constant c > 0 such that, if λ(n) ≤
cWm

n log3 n
, then the probability that a handoff is not successful is

at most 1
2 log m .

Proof: Consider a packet P in its handoff region which
has a deadline at a distance d, hence (deadline approaches after
time d

||v|| . Then, this packet is discarded if and only if the data
which has a deadline sooner than d is more than what can be
transmitted in time t.

From Theorem 8, it follows that there exists a constant c1
such that the data transmitted in time t is at least c1Wt

log m with

probability at least 1 − 1
3 log m .

Similarly by lemma 11 and the Markov Inequality, the proba-
bility that more than (78nλ(n)t logm)/m·6 logm has deadline
before P is at most 1

6 log m .

Choosing c = c1
6·78 , it follows that if λ(n) ≤ cWm

n log3 m
the probability that the handoff is unsuccessful is less than
1/3 logm+ 1/6 logm = 1/2 logm.

E. Static-to-Static Phase

Finally we note that after the mobile-to-mobile phase, the
distance of a packet from the destination leader node is at most
log m√

m
. In this stage the intermediate static leader node directly

transmits the packet to the destination leader node. The coordi-
nation among the leader nodes is done as follows.

In each time slot, choose a fraction of c2

log2 m
of the static

nodes such that each of them are at distance of at least log m
c
√

m

from each other. Observe that if c is sufficiently small, then
mimicking the proof of Theorem 3, it follows that this fraction
of nodes can simultaneously transmit the packets directly to its
intended destination.

Since W/4 is the bandwidth available to each leader node
for communication in the static-to-static phase, this constrains
λ(n) to Θ(m W

n log2 m
).3 Thus, the achievable throughput per

leader node in this phase is Ω( W
log2 m

). Since there are O(n/m)
static nodes per leader node, this constrains the available λ(n)
to Ω(mW/n log2 m).

F. Proof of Theorem 2

We can now prove the main result, Theorem 2.
By property 9 we know that each packet is handed off at

most logm times. Also, by Lemma 12, if λ(n) ≤ c mW
n log3 m

,
the probability of a successful handoff at each stage is at least
1− 1

2 log m . Thus, it follows from the union bound that the prob-
ability of a packet reaching successfully from the source to the
destination is at least 0.5. Hence the achievable throughput is
at least c/2 ·mW/n log3 m = Ω(mW/n log3 n).

Similarly, by Theorem 3, Lemma 12 and the results in Sec-
tion III-E, we observe that the transmissions during the mobile-
to-mobile phase put the maximum restriction of O(m W

n log3 n
)

on the value of the achievable λ(n).
Finally, from the description of the handoff algorithm in Sec-

tion III-D, it follows that the distance covered by a packet dur-
ing its transmission from the source to the destination is never

3A function f(n) is Θ(g(n)), if ∃ constants c1, c2 and N such that
c1g(n) ≤ f(n) ≤ c2g(n), ∀n > N .

more than 2d
v , where d is the diameter of the network and v

is the velocity of the mobile nodes. Moreover, by Lemma
4 and Lemma 7, the expected duration for which a packet
waits at a node trying to find another suitable mobile mov-
ing in the required direction is O(d

v
log m√

m
). Thus, as there are

at most O(logm) handoffs, the total delay due to waiting is

O(d
v

log2 m√
m

), which is negligible compared to the delay d
v . Thus

the proof of Theorem 2 follows.

IV. MORE GENERAL MODELS

A. Mobile nodes as senders and receivers

The proof can clearly incorporate mobile nodes as senders.
However, if the mobile nodes are also receivers, then since its
location will not be known in general, it is impossible to do
anything better than the result of [2]. However, if we make
some assumptions about the model, like a mobile node has a
designated static node from where it periodically collects its
packets etc., then we can adapt the proof to obtain guarantees
on the delay.

B. Handling More General Mobility Models

If the value of µ (the mean distance that a mobile node moves
before changing its direction) is much smaller than the diameter
of the network (d), we can do the following two things:

1) Either modify the algorithm such that instead of sending
the packet from the static source node S to the static re-
ceiver node R using mobile nodes, we choose intermedi-
ate nodes S1, ..., Sd/µ, such that we first route from S to
S1, then from S1 to S2 and so on. This technique is also
used in [4]. Note that capacity of the network becomes
directly proportional to µ. Hence, smaller the µ, smaller
the capacity.

2) Alternatively we can do the following: We handover a
packet to a mobile node, either if it moves in that direc-
tion for a distance more than µ or if it moves in that di-
rection for a distance larger than twice the distance from
the destination (as in the algorithm in Section III). In
the first case, we set the deadline randomly between µ/2
and 3µ/4. It can be seen that the analysis for Lemma
11 can be directly modified to handle this case. Note
that the node moves distance of at least µ/2 in this way,
and we can also find a constant fraction (> 1/e) of mo-
bile nodes which satisfy this property. Thus there are at
most 1/µ such steps. In the second case, the analysis re-
mains the same as that in Section III and there are log n
such steps. Thus we obtain a throughput of the order of
Wm/(n log2 n(log n+ 1

µ )).
Finally, we note that our results are easily extended to the fol-
lowing:

1) The results still hold (up to a multiplicative constant) for
models where the steady state distribution of the static
nodes is some homogeneous distribution rather than the
special case of the uniform distribution. Here, a homo-
geneous distribution refers to a distribution in which the
probability distribution function lies between constants
cmin and cmax.
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2) Similarly, the speeds of mobile nodes need not be iden-
tical. If they are upper and lower bounded by vmax and
vmin, respectively, the analyses go through except for dif-
ferent constants.

3) The results can also be rederived for a three dimensional
setting. Recently, results for 3-d settings in other models
have been obtained [3], [21].

V. DISCUSSIONS

In this section we discuss the implications of the results ob-
tained in the previous sections. We observe the following:

1) The delay experienced by a packet is inversely propor-
tional to the speed of the mobile nodes.

2) The throughput λ(n) obtained is independent of the ve-
locity of the mobile nodes.

3) In this paper, we only derive bounds on λ(n) which en-
sure a packet loss probability of at most 0.5. This hap-
pens since we bound the loss probability at each handoff
by 1/2 logm. Note that the loss takes place due to two
things: First, loss due to the wireless communication. To
handle this we can reduce the value of x in Lemma 5 (i.e.
two nodes communicate only when they are extremely
close). Second, the loss also occurs when a mobile node
cannot hand off all its packets by their deadlines to ap-
propriate mobile nodes and hence has to discard them.
We can handle this by choosing a larger constant in the
application of Markov’s Inequality in Lemma 12. This
reduces the value of λ(n) by the same constant (i.e. if p
is the loss probability, then λ(n) ∝ p).

4) We can obtain bounds on the expected buffer occupancy
at the mobile nodes. In particular, applying Little’s Law
[10] to Theorem 2 we get the expected amount of data in
the buffers is bounded by 2d

v
W

log3 n
.

VI. CONCLUSIONS

In this paper we have proposed a routing algorithm for ad-
hoc networks with the goal of achieving close-to optimal ca-
pacity while keeping the delay small. Our algorithm exploits
the patterns in the mobility of nodes to provide guarantees on
the delay. Moreover, the throughput achieved by the algorithm
is only a poly-logarithmic factor off from the optimal.

It is a challenging problem to define a model which is general
enough to capture a wide range of mobility patterns of users and
at the same time is also analytically tractable. In this paper we
have taken a modest step towards incorporating and considering
the effects of mobility patterns of nodes in the analysis of ad hoc
routing protocols. We developed algorithmic ideas to bound
and analyze the delay, these could be of independent interest.

While there are many directions in which the model can be
extended and many other issues that need to be considered in
analyzing the performance of ad hoc networks, we believe that
our work could provide intuition for future protocol designs and
for rigorous analysis in ad hoc networks. While we focus only
on the network capacity and the delay, it would be interesting to
consider other metrics like power consumption, the number of
hops to route the packet, fault tolerance, minimizing the number
of control packets etc. or a combination thereof.
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VII. APPENDIX

A. Chernoff Bounds

Chernoff Bounds[11]: Let X1, . . . , Xn be independent 0-1
random variables such that Pr[Xi = 1] = pi. Let X = X1 +
. . .+Xn and µ = E[X]. Then,

∀δ > 0, P [X > (1 + δ)µ] <
[

eδ

(1 + δ)1+δ

]µ

(9)

∀δ ∈ [0, 1], P r[X < (1 − δ)µ] < e− µδ2

2 (10)
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B. Proof of Theorem 1

Proof: Let us first consider a discrete version of the pro-
cess. Assume that the time is slotted and events occur at time
t0, 2t0, 3t0, . . .. At any time step, the node might change its
direction with probability p = vt0

µ , or else it continues in the
current direction with probability 1 − p. Observe the distance
covered by the walk before switching directions is a geometri-
cally distributed random variable with mean µ. As t0 → 0, this
discrete model approaches the continuous model.

Part 1 of the theorem follows from the fact that the motion of
the n nodes is uncorrelated to each other. To show the second
and third parts, we will use the balance equations and show that
the uniform distribution satisfies them.

Let π(2r, θ) denote the steady state probability of being in an
infinitesimal disk of area dA around position 2r and the direction
of motion being between angles θ and θ + dθ.

Let 2r be a point sufficiently in the interior of the disk. Then,
since the walk leaves the point 2r and moves to 2r + |v|t0û(θ),
where û(θ) is a unit vector in the direction θ. The rate of leaving
the disk will be π(2r, θ).

To calculate the rate of entering the disk, observe that the
probability of entering the disk will be made up of two compo-
nents. The first component is the probability that the node was
at position 2r − |v|t0û(θ) at the previous time step and that it
did not change direction. And the second component is that the
node changed direction on reaching 2r.

This gives us that the rate of entering the disk will be:

(1−p)π(2r−|v|t0û(θ), θ)+p
1
2π

∫ 2π

θ′=0
π(2r−|v|t0û(θ′), θ′)dθ′

Thus the rate balance equation gives

π(2r, θ) = (1 − p)π(2r − |v|t0û(θ), θ)

+ p
1
2π

∫ 2π

θ′=0
π(2r − |v|t0û(θ′), θ′)dθ′ (11)

Observe that setting all π(2r, θ) to be the same in the interior
of the disk satisfies the balance equation. It can be shown that
all solutions to the above balance equation are uniform distri-
butions. Indeed, if π(2r, θ) is not a constant, then when π(2r, θ)
is a local maximum, the equality in (11) no longer holds.

Now, consider the behavior on the disk edge. Let the state of
the walk be (2r, θ), and 2r be on the edge of the disk, such that 2r+
|v|t0û(θ) lies outside the disk. The behavior of the walk is the
following: The walk does not change direction with probability
1 − p, in this case it is reflected at the boundary at reaches a
position (2r′, θ̄) where 2r′ and θ̄ are the location and the direction
obtained by reflecting the walk. Or, with probability p the walk
chooses a direction θ′ uniformly at random from [0, 2π), if the
direction θ′ points outside the disk, then the walk remains in
state (2r, θ), else it moves to the state (2r+ |v|t0û(θ′), θ′). Again,
it is seen that setting all (π(2r, θ)i) to be the same satisfies the
balance equations. Finally, as t0, hence p, gets arbitrarily small
this corresponds to the description of the walk in the uniform
mobility model. Thus the result follows.
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