
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2006

Capacity Enhancement using Throwboxes in
DTNs
Wenrui Zhao
Georgia Institute of Technology

Yang Chen
Georgia Institute of Technology

Mostafa Ammar
Georgia Institute of Technology

Mark Corner
University of Massachusetts - Amherst

Brain Levine
University of Massachusetts - Amherst

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Zhao, Wenrui; Chen, Yang; Ammar, Mostafa; Corner, Mark; Levine, Brain; and Zegura, Ellen, "Capacity Enhancement using
Throwboxes in DTNs" (2006). Computer Science Department Faculty Publication Series. 163.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/163

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/163?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Authors
Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark Corner, Brain Levine, and Ellen Zegura

This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/cs_faculty_pubs/163

https://scholarworks.umass.edu/cs_faculty_pubs/163?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages

Capacity Enhancement using Throwboxes in DTNs
Wenrui Zhao

�
Yang Chen

�
Mostafa Ammar

�
Mark Corner � Brian Levine � Ellen Zegura

��
College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332,� Department of Computer Science, University of Massachusetts, Amherst, MA 01003�

wrzhao, yangchen, ammar, ewz � @cc.gatech.edu
�
mcorner,brian � @cs.umass.edu

Abstract— Disruption Tolerant Networks (DTNs) are
designed to overcome limitations in connectivity due to
conditions such as mobility, poor infrastructure, and
short range radios. DTNs rely on the inherent mobil-
ity in the network to deliver packets around frequent
and extended network partitions using a store-carry-and-
forward paradigm. However, missed contact opportunities
decrease throughput and increase delay in the network. We
propose the use of throwboxes in mobile DTNs to create
a greater number of contact opportunities, consequently
improving the performance of the network. Throwboxes
are wireless nodes that act as relays, creating additional
contact opportunities in the DTN. We propose algorithms
to deploy stationary throwboxes in the network that
simultaneously consider routing as well as placement. We
also present placement algorithms that use more limited
knowledge about the network structure. We perform an
extensive evaluation of our algorithms by varying both
the underlying routing and mobility models. Our results
suggest several findings to guide the design and operation
of throwbox-augmented DTNs.

I. INTRODUCTION

Emergency workers, scientists, and developing nations
continually push networks beyond the edges of reliable
communication infrastructure and into highly challenged
environments. Often it is the case that workers respond-
ing to a disaster lack the stability of the electrical
power grid, scientists monitor wildlife and phenomena in
remote areas with a low density of nodes, and developing
nations deploy networks in regions that lack infras-
tructure. Due to the limitations of power, connectivity,
density of nodes, cost, and maintenance, devices may
not be able to form a fully connected network for routing
data, such as a MANET or a mesh network [2].

An emerging class of networks, commonly referred to
as Disruption Tolerant Networks (DTNs) [10], [11], are
explicitly designed to overcome such limitations. DTNs
rely on the inherent mobility in the network to deliver
packets around frequent and extended network partitions
using a store-carry-and-forward paradigm [6], [7], [13],

This work was supported in part by the NSF Grant CNS-
0519784/CNS-0519881 and DARPA Grant W15P7T-05-C-P213.

R

S

R

S

throwbox

mobile node

node movement

data transmission

(b)(a)

Fig. 1. An example of DTNs using throwboxes.

[22], [26]. While such networks can only support delay-
insensitive applications, such as messaging, file trans-
fer, and data dissemination, they enable communication
where otherwise there may be none.

Even though DTNs are highly robust to poor connec-
tivity, their performance is highly dependent on chance
encounters between nodes. For the network to route a
packet between two nodes that never meet, a transitive
series of meetings, each of sufficient duration, must
occur. When opportunities are missed, there is a decrease
in throughput and an increase in delay in the network.

Consequently, if a network designer can engineer a
greater number of contact opportunities then the perfor-
mance of the network can be greatly enhanced. In this
paper we propose the use of throwboxes to accomplish
this goal. Throwboxes are small and inexpensive devices
equipped with wireless interfaces and storage. Throw-
boxes are stationary, thus when two nodes pass by the
same location at different times, the throwbox acts as a
relay, creating a contact opportunity where none existed
before. Fig. 1 shows an example of using throwboxes
in a mobile DTN. In Fig. 1(a), node S sends data to a
throwbox. At a later time when node R moves close to
the throwbox, it receives S’s data from the throwbox,
shown in Fig. 1(b).

To demonstrate how throwboxes improve data delivery
in DTNs, we perform a simple simulation based on traces
from our vehicular DTN testbed named DieselNet [6].
In Table I we show that the number of communication
opportunities and the average capacity, i.e., the maximum
data rate that can be sent in the long term, between
two buses before and after the deployment of a single
throwbox. The results show a dramatic improvement:
the average capacity between the vehicles increases by a

2

Number of throwboxes None One
Total Contact Duration (sec) 631 11,927
Average Capacity (Kbps) 3.5 66.3
Delay (sec) 63,012 3,120

TABLE I
PERFORMANCE BETWEEN TWO BUSES WITH AND WITHOUT ONE

THROWBOX. THE RADIO BANDWIDTH IS 2 MBPS.

factor of 19 and the delivery delay decreases by a factor
of 20.

In this simulation, we place the throwbox by using
our intuition about mobility in the network. While these
results are encouraging, a larger network with more
nodes and a larger number of throwboxes necessitates
the use of algorithms to automatically place the throw-
boxes. This paper investigates such algorithms for adding
throwboxes to a running DTN. Placing throwboxes into
an operational network also creates an opportunity to
modify the routing to utilize the throwboxes effectively.
However, the addition of the throwboxes affects the flow
of data through the network, which consequently affects
the placement of throwboxes. While placement can be
considered in isolation, we show that it is most effective
to consider the routing algorithm simultaneously with the
placement of throwboxes, thus maximizing the overall
effectiveness of the throwboxes after they are deployed.

We perform an extensive evaluation of our placement
algorithms by varying both the underlying routing and
mobility models. Our results suggest several findings to
guide the design and operation of throwbox-augmented
DTNs:�

Throwboxes are very effective in improving
throughput and can also reduce data delivery delay.
The improvement in throughput is generally more
significant than improvement in delay.�
Throwboxes are most useful for routing algorithms
that use multi-path routing and when nodes follow
structured mobility patterns.�
Throwbox deployment that incorporates knowledge
about contact opportunities performs better than
deployment that ignores this knowledge. Addition-
ally, if deployment is customized to existing traffic
patterns, the algorithms are more effective than
assuming that traffic is equally distributed.

The rest of this paper is structured as follows. In
Section II, we describe throwbox characteristics and our
network model. In Section II-D, we present a framework
to systematically study the issues of throwbox deploy-
ment and routing. We study various routing approaches
in Section III and IV, and we present the simulation
results in Section V. We review related work in Section
VI and conclude the paper in Section VII.

�
The set of nodes� The number of nodes� The number of throwboxes�
The set of potential throwbox locations	
The set of nodes and potential throwbox locations

The total data rate����
The relative traffic demand from � to � , where ������� �� ��� The average capacity between � and � , where ������� 	� � The number of throwboxes deployed at location � , ��� ��������� The traffic load from S-D pair "!#�%$'& that is forwarded
from � to � , where !#�%$(� � and ������� 	

TABLE II
TABLE OF NOTATIONS.

II. NETWORK MODEL USING THROWBOXES

In this section, we detail our assumptions about throw-
box characteristics, present our network model, define
our performance objectives, and define our evaluation
methodology.

A. Throwboxes

Throwboxes must be designed to have high availabil-
ity, be able to transmit data at high data rates, have
sufficient processing power to handle such data rates,
and be energy efficient.

Several platforms exist that meet some or all of these
requirements. Commercially, the Intel Stargate [23] is a
reasonably efficient and powerful device. However, in
our prior work, Banerjee et al. [4] created a prototype
device that is closer to our assumptions. The Triage
platform and software consist of a coupled Stargate
board and MicaZ mote. The Triage software reduces the
amount of time that the device must spend operating
the high-power Stargate board, running tasks on the
MicaZ whenever possible. Using a hailing radio, passing
nodes can trigger the always-on MicaZ to power on
the Stargate board and 802.11 CF network interface.
In this way, Triage never misses a passing node but
remains energy efficient. Solar panels recharge batteries
to ensure long-term use. An energy efficient architecture
for throwboxes is detailed in recent work [3]. Given the
current technological advances in processor and storage,
we expect the cost and size of such devices to continually
decrease, and energy efficiency to improve.

B. Network Model

We assume a network composed of) throwboxes
and * network nodes. (Table II lists all notations used
in this paper.) All devices–nodes and throwboxes—
communicate with each other through wireless interfaces
(e.g., 802.11) and are equipped with storage that carries
network data. Devices use periodic beacon messages to

3

discover one another and to exchange buffered data. In
DTNs, nodes transfer application data in units called
messages (i.e., bundles [11]), which can be of varied
sizes. Each message carries a timeout value that specifies
when the message should be dropped if not delivered.

We assume that throwboxes are neither sources nor
destinations and that throwboxes never interact with
each other. In addition, we assume that throwboxes have
sufficient energy to carry out all tasks. Details on a
specific energy management algorithm can be found in
our related work [4].

We assume that all other nodes are both sources and
destinations of data communication. We represent the
traffic demand by a matrix +-,/.0, where 132�4 specifies the
relative long term traffic demand from node 5 to node 6
such that 7 2�8 4 132�4�9;: , where :=<>5@?A6B<C* . This model
is general in that it can capture different traffic patterns,
e.g., uniform traffic among nodes that is typical in ad hoc
networks or concentrated traffic to a single destination
that is typical in sensor networks.

Transfer opportunities in a DTN occur as a time-
varying process. We characterize transmission opportu-
nities using average capacity, which is the maximum
data rate that can be sent between two nodes in the long
term. Let DE2�4 be the average contact duration and FG2�4
be the average inter-contact time between nodes 5 and6 . We compute the average capacity as H 2�4 9 IKJ�LAMIKJ�L%NPO�JQLwhere R is the transmission data rate when node 5 and6 are in contact. This is because nodes 5 and 6 are
only able to communicate with each other for a fractionI J�LI J�L NPO JQL of time. The average capacity between a node
and a throwbox is defined using the same notation. We
denote S as the set of all HT2U4 values. Note that the
average capacity is shared by traffic in both directions.
In addition, wireless interference is ignored in this paper
because of the sparse distribution of nodes.

C. Performance Objective

Throwboxes have the potential to improve both
throughput and delay. In this paper, we focus on improv-
ing throughput using throwboxes. For a given number of
throwboxes, we would like to maximize the total traffic
demand that can be supported. Recall that 1T2�4 specifies
the relative traffic demand from node 5 to node 6 , and7 2�8 4 132U4V9W: . The objective of throwbox usage is to
maximize X such that node 5 is able to send data to
node 6 at rate XE1 2�4 , :�<Y5@?A6Z<Y* . In other words, we try
to maximize the total data rate, X .

We choose to focus our efforts on optimizing through-
put for several reasons. Given frequent partitions in
DTNs, it is more important to deliver messages success-
fully than to minimize the delay. In addition, applications

Multi−path
routing

Single path
routing

[[[
[[[
[[[
[

\\\
\\\
\\\
\

Case 3

Case 2

Case 1 Case 4

Case 5

Case 6 Case 9

Case 8

Case 7Contact and
traffic based

based
Contact

Oblivious

routing
Epidemic Approach

Routing

Approach
Deployment

Fig. 2. Throwbox deployment and routing framework.

in DTNs are expected to already tolerate relatively large
delays. Furthermore, improving throughput is often in
accordance with reducing delay, as shown in Section I
and our simulation results.

D. Throwbox Deployment and Routing Framework

A defining characteristic of DTNs is that it is difficult
to gather data about the performance of the network
itself. Information about contact opportunities and traf-
fic load may not be available as input to deployment
algorithms. Similarly, algorithms for routing can vary in
sophistication from simple epidemic replication to more
efficient strategies that do not replicate messages and
balance load across multiple paths.

Specifically, we consider three different deployment
scenarios that differ by what information is available,
and for each we evaluate three different routing scenarios
that differ in their sophistication. Fig. 2 illustrates these
nine cases. For deployment, the three cases are:�

Contact and traffic-based (CTB): both contact op-
portunity S and traffic demand +],/.0, information
are input to the deployment algorithm;�
Contact-based: information about contact opportu-
nities S is input to the deployment algorithm;�
Oblivious: no information about the contact op-
portunities or traffic matrix is available for the
deployment algorithm.

In the simplest case, routing in DTNs is based on
epidemic style replication of data that is oblivious to
information about traffic load and contact opportunities.
With more sophistication, an algorithm can take these
data as input and compute the optimal single path from
source to destination without using replication. Improved
performance is possible when different messages are
routed each along different single paths (without repli-
cation) to make use of more resources in the network,
which we call multi-path routing. These routing algo-
rithms are optimal as they have complete knowledge
of the contact opportunities and traffic demand. We

4

prefer these solutions because they show the upper bound
on throwbox performance. This is independent of any
particular routing algorithm and only dependent on the
single versus multi path assumption. The remainder of
this paper is organized along the routing scenarios.

We present algorithms for throwbox deployment for
multi-path routing (Cases 1, 2, and 3) in Section III. We
present algorithms for throwbox deployment for single
path routing (Cases 4, 5, and 6) in Section IV. Section V
shows the performance results for these algorithms.

Because deployment for epidemic routing (Cases 7,
8, 9) is simple to describe and is a subset of the other
cases, we do not detail this scenario until Section V.
We evaluate FIFO-style epidemic routing as an example
of an oblivious routing algorithm. In this case a node
will forward messages to all other nodes it meets,
flooding messages throughout the network. The schedule
of packets transmitted during a contact opportunity is in
a first-in-first-out order.

III. CAPACITY ENHANCEMENT WITH MULTI-PATH
ROUTING

In this section, we study the use of throwboxes in
the context of multi-path routing (Cases 1, 2, and 3
in Fig. 2). In CTB (Case 1), both contact and traffic
information are used as input for deployment. Since
full information is available, we can jointly optimize
deployment and routing simultaneously. Unfortunately,
this joint problem is NP-hard to solve optimally, so we
describe a greedy approximation. For case of contact-
based deployment (Case 2), where deployment is de-
termined without knowledge of traffic demand, we are
able to tractably compute the optimal solution. For
oblivious deployment (Case 3) we use a simple random
deployment strategy. In all three cases, recall that the
routing algorithm has knowledge of demand as well as
deployment locations.

Ideally, a throwbox can be placed at any location in
an area. However, it would be difficult to solve any de-
ployment problem in a continuous domain because there
are an infinite number of potential locations. Instead, we
must approximate the problem by dividing the area into
a grid of cells and placing throwboxes at the centers of
these cells. By using small cells, we can approximate an
arbitrary deployment.

A. CTB Deployment (Case 1)
In this case, both contact and traffic information are

available for deployment and routing, so we jointly
evaluate the issues of deployment and routing for optimal
performance. In the following, we formulate this joint
problem as a mixed integer programming problem. We
then develop a greedy algorithm to solve it.

Maximize

subject to^�`_Ka � �A��U�cb ^�d_Ka � ����e� �;!#�e$�� � ���(� 	gfih !#�e$kj (1)^�d_Ka � ���� � bml � ^�d_Ka � ���� � b
n� ��� � !#�%$(� � (2)^�d_Ka � ���� � b
o� ��� � ^�d_Ka � ���� � bml � !#�%$(� � (3)^�%p � _Kq � �A��U�sr � ����e� &ut � ��� � �����(� � (4)^�%p � _Kq � ������ r � ����e� &vt � �U� � � � �w� � ����� � (5)^�%p � _Kq � ������sr � ����e� & bml � ������� � (6)^ �`_Kx � � t � (7)� � � h l �3yzj#� �{� � (8)� ����U�}| l � �%�~��� 	 �%!#�e$�� � (9)

Fig. 3. Joint deployment and routing problem formulation.

1) Problem Formulation: Let � be the set of * nodes
and � be the set of potential throwbox locations. We
denote � as the union of � and � . Let �P2 be the number
of throwboxes that are deployed at location 5���� . � 2 can
be zero or one, indicating whether a throwbox is placed
at location 5 .

Since X is the total data rate, then XE1 2�4 is the data
rate from node 5 to node 6 . For data sent between a
source-destination pair ���k?��n� , we denote the traffic load
forwarded from node 5 to 6 as ���e�2�4 . We denote ��9��z�P2A�
and �s9��#���e�2�4 � as the deployment and routing vectors,
respectively. Given) throwboxes, the joint problem is
to determine a deployment vector � and a routing vector� that maximize the total data rate X . This problem is
formulated in Fig. 3. The notation is summarized in
Table II.

Constraint (1) represents the flow conservation con-
dition for traffic between a source-destination pair. That
is, at every node or throwbox that is not the source or
destination, the amount of incoming traffic is equal to
the amount of outgoing traffic. Constraint (2) states that
source � has no incoming traffic and XE1 �A� outgoing traf-
fic. Similarly, constraint (3) restricts the amount of traffic
to and from destinations. Constraint (4) requires that the
total amount of traffic between node 5 and node 6 is no
greater than the average capacity Hz2U4 as determined by
transfer opportunities. Similarly, constraint (5) enforces
the average capacity between nodes and throwboxes. We
use �n4 to account for whether a throwbox is deployed
at location 6 . Constraint (6) specifies that throwboxes
never communicate with each other. Constraint (7) states
that the total number of throwboxes is) . Constraint (8)

5

Algorithm 1 Greedy algorithm for multi-path routing
1: � � bml �e��� � ;
2: for � b y to � do
3: for all �{� � and � � b}l do
4: Compute

when a throwbox is deployed at � ;

5: end for
6: Let � be the location that achieves the maximum

;

7: �0� b y ;
8: end for
9: Compute

based on throwbox deployment;

specifies that the number of throwboxes deployed at each
location is 0 or 1. The last constraint restricts the amount
of traffic load between nodes and throwboxes to be non-
negative.

Note that the number of throwboxes deployed at
each location (i.e., � 2 in Fig. 3) must be 1 or 0. This
formulation is a mixed integer programming problem,
which is generally NP-hard to solve optimally.

2) Greedy Deployment Algorithm: As solving the
joint deployment and routing problem optimally is com-
putationally expensive, we develop a greedy heuristic.
In this algorithm, throwboxes are deployed iteratively.
At each stage, a throwbox is deployed to a location that
maximizes X , the total achieved data rate. Algorithm 1
shows a sketch of the greedy algorithm. Initially, no
throwbox has been deployed. That is, ��2s9�� for all5���� . Then the algorithm tries to deploy the first
throwbox. For each potential location 5 satisfying � 2 9V� ,
i.e., no throwbox is deployed at 5 , the algorithm will
compute the achieved data rate X when the throwbox is
placed at location 5 . Let � be the location that achieves
the maximum X . A throwbox will be deployed at location� . The algorithm repeats this process until all throwboxes
are deployed. Finally, with all throwboxes deployed, the
algorithm will compute the total data rate X and the
routing vector.

In step (4) and (9) of the greedy algorithm, we need to
compute X when a throwbox is placed at a potential loca-
tion or when all throwboxes are deployed. In both cases,
the number of throwboxes at each potential location is
known. So the formulation in Fig. 3 becomes a linear
programming (LP) problem. In fact, the computation ofX in these cases is a concurrent flow problem, which is
a classic problem and can be solved using network flow
techniques [1].

B. Contact-Based Deployment (Case 2)

We next study multi-path routing with contact-based
deployment where throwbox deployment is conducted
with only information about the transfer opportunities.
In this case, the deployment is designed to maximize

contact opportunities between nodes. After throwbox
locations are determined, we can compute the routing
vector to maximize throughput by solving a linear pro-
gramming problem, as described in the previous section.

Consider two nodes 5 and 6 . If a throwbox is deployed
at location � , data can be relayed between 5 and 6 via
the throwbox with data rate �¡ `¢E�KH 2¤£ ?�H 43£ � . So the contact
enhancement is �¡ `¢P�KH 2¥£ ?�H 4@£ � . By considering all pairs
of nodes and all locations, we define the absolute contact
enhancement as ¦¨§©9 7 2�8 4zª¬« 7 £¬ª' �¡ `¢E�KH 2¤£ ?�H 43£ �z� £
where � £ accounts for whether a throwbox is placed at
location � .

Now the deployment problem is to find a deployment
vector � such that ¦¨§ is maximized. We solve this
problem using a greedy algorithm that is similar to
Algorithm 1. The only differences are in steps (4) and
(6): we compute ¦¨§ for each potential location (in
step (4)) and denote � as the location that achieves the
maximum ¦®§ (in step (6)).

It is important to note that for Case 2 this greedy
algorithm solves the deployment problem optimally. This
is because ¦ § 9 7 £¬ª' 7 2�8 4Tª¯« �¡ `¢P�KH 2¥£ ?�H 4@£ �z� £ . By
maximizing ¦ § at each stage, the algorithm computes
the optimal deployment vector.

C. Oblivious Deployment (Case 3)

In the case of oblivious deployment, without any
knowledge of transfer opportunities or traffic demand,
we are forced to deploy the throwboxes randomly. Given
the grid approximation, we choose a random grid loca-
tion and place the throwbox at that location.

D. Computing Routing (Case 1,2,3)

Once the throwboxes are deployed, the network must
determine a routing vector for traffic to follow. For CTB
(Case 1), the routing vector is automatically optimized
in the joint calculation of deployment and routing. For
contact-based and oblivious deployment, the routing
vector must be determined by measuring traffic demand
between nodes during the operation of the network
and solving a linear programming problem to utilize
throwboxes for maximum throughput, as described in
Section III-A.2.

IV. CAPACITY ENHANCEMENT WITH SINGLE-PATH
ROUTING (CASES 4,5,6)

In the previous section, we discussed throwbox de-
ployment in the context of multi-path routing. Now we
restrict the routing algorithm to use only a single path
for all messages between a source-destination pair —
MANET routing protocols often follow this paradigm.

6

Fig. 4. An example of selecting forwarding paths in single path
routing.

We observe that by enforcing this single path constraint,
we can solve the deployment and routing problems using
the same method. In the following, we focus solely
on Case 4 in Fig. 2 where both contact and traffic
information are used in deployment and routing. The
results can be easily extended to Cases 5 and 6.

Recall that we formulated the joint deployment and
routing problem in Case 1, which can be shown to be a
NP-hard problem. We now extend the greedy algorithm
we developed for multi-path routing to the case of single
path routing. Specifically, we modify the computation of
the total data rate X in steps (4) and (9) of Algorithm
1. Recall that we can compute X by solving a linear
programming problem. The resulting routing vector � ,
however, is for multi-path routing. That is, messages may
be forwarded along multiple paths between a source-
destination pair. To enforce the single path constraint,
we select a single forwarding path for each source-
destination pair based on � , as described below. With
these routing paths, we compute X .

We now describe how to select a single path for
messages between a source-destination pair. Suppose that� is the routing vector computed for multi-path routing.
We will choose the path that carries the highest traffic
load according to � . Fig. 4 shows a simple example
where data are forwarded from node ° to node ± .
The number along each edge represents the traffic load
in � . The path that achieves the highest traffic load is°³²´:µ²m¶�²m± and the traffic load is 0.3.

To find the path with the highest traffic load, we
use a binary search algorithm, which is illustrated in
Algorithm 2. Consider a source-destination pair ���G?��0�
and a routing vector � . A path is referred to as a · -
path if the traffic load on all edges of this path is at
least · according to � . To determine whether a · -path
exists for a specific · , the algorithm generates a graph¸ ��¹-?�¦º� , where ¹ consists all nodes and throwboxes,
and ¦ consists of edges with traffic load at least ·
in � . The algorithm determines whether � and � is
connected in

¸ ��¹-?�¦º� . If so, there must exist a path
from � to � such that the traffic load on each edge is at
least · . That is, a · -path exists. Using a binary search,
Algorithm 2 finds the maximum · such that a · -path

Algorithm 2 Compute single path with highest traffic
load between a source-destination pair (s,d)

1: »P¼@½ b³¾(¿zÀ h ������ � � ������ �]Á ��� 	 j ;
2: »EÂÄÃeÅ b}¾¨ÆÈÇ h ������U� Á ��������}É l �e������� 	 j ;
3: while (» ¼@½ f » ÂÈÃAÅ É »EÊ �) do
4: »EË � � b d»P¼@½ r »ÌÂÄÃeÅ�&eÍKÎ ;
5: Generate Ï(�Ð��%ÑÒ& where Ñ b h `�����¬& Á �/������ | » Ë � � j#Ó
6: if ! and $ is connected in Ï(�Ð��%ÑÒ& then
7: Find a path Ô between ! and $ in Ï("Ð{�eÑ®& ;
8: »EÂÄÃeÅ b »EË � � ;
9: else

10: »P¼@½ b »EË � � ;
11: end if
12: end while
13: Return path Ô ;

exists. The initial upper bound for · is the maximum
load between source/destination and other nodes, and the
lower bound is the minimum positive traffic load among
all edges in

¸ ��¹-?�¦º� . Algorithm 2 terminates when the
gap between the upper and lower bounds is no greater
than a predefined parameter ·uÕ £ .

V. PERFORMANCE EVALUATION

In evaluating our algorithms, we wish to verify several
hypotheses: (i) throwboxes enhance throughput in a
DTN, (ii) deployments that utilize information about load
and jointly optimize for routing see greater gains than
those that ignore that information, and (iii) throwboxes
enhance connectivity in multiple mobility scenarios. To
demonstrate this, we evaluate our deployment and rout-
ing algorithms using ns simulations. A more detailed
description of our simulations can be found in a technical
report [27].

A. Methodology and Metrics

In this paper, we simulate mobile DTNs with various
node mobility patterns. Our simulations include two
components: computation of deployment and routing
vectors, and packet-level simulation using ns2 simula-
tor [17]. In the computation component, we first calculate
the statistics for contacts between nodes by generating
node movement for the entire simulation duration. Nodes
are considered in contact when the distance between
them is less than the radio range. We then determine
the set of potential locations for throwbox deployment
using the cell based approach described in Section III. In
our simulations, the area is 25Km Ö 25Km and the cell
width is 500m. To reduce the computation time of CTB
deployment, we use contact based deployment to select
the 50 best locations as the set of potential locations.
We compute the deployment and routing vectors using

7

the algorithms proposed in Section III and IV. Based on
the computed deployment and routing vectors, we run ns
simulations according to the forwarding paths and traffic
load computed by the computation component.

We consider different node mobility models1. The first
model is the UMass model based on the UMass bus
network of 9 buses repeatedly following fixed, distinct
routes [6]. With the traces of real bus movement obtained
using GPS devices, we generate synthetic traces by
adding variation into the bus movement. Specifically,
the traces record the bus locations every minute. In our
simulations, we compute the bus speed for every minute
based on the traces and vary it by a random factor
within [0.95, 1.05]. Each simulation runs for 40,000 sec-
onds in simulation time and message timeout is 20,000
seconds. The second model is the random-waypoint
(RWP) model [15]. Under this model, we simulate 40
nodes moving in a 25Km Ö 25Km area. Each node
repeatedly moves to random locations in the area with
random speeds between 7.5m/s and 22.5m/s. We run the
simulations for 80,000 simulated seconds and messages
timeout is 40,000 seconds. The UMass and RWP models
represent different environments, e.g., semi-predictable
and constrained movement in the UMass model while
unconstrained and random movement in the RWP model.

In our simulations, we use the following default
settings unless specified otherwise. We use the IEEE
802.11 MAC layer, and the radio range and data rate are
250m and 1Mbps respectively. We consider a uniform
traffic model where 20 nodes are chosen as sources with
random destinations. Each source generates messages
at the same data rate according to a Poisson process.
Messages are 1,500 bytes. The buffer size of both nodes
and throwboxes is 50,000 messages.

For node discovery, each node broadcasts a beacon
message every 5 seconds. To avoid duplicate message
transmissions, nodes first exchange meta data to de-
termine which messages should be sent. Messages are
transmitted from the buffer in a FIFO order. When the
buffer overflows, a node will drop the first message in
the buffer. Each result is averaged over five runs with
different random seeds.

We consider two performance metrics, namely mes-
sage delivery ratio and delay. The message delivery
ratio is defined as the ratio between the number of
unique messages being delivered and the number of
generated messages. Messages might be dropped because
of buffer overflows or message timeout. The delivery
ratio is computed over the simulation duration, which
measures how successful each scheme is in delivering

1Due to space limitation, we omit the results for the Manhattan
model, which can be found in [27].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(a) UMass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(b) RWP

Fig. 5. Message delivery ratio under multi-path routing.

messages. The message delay is the average time from
the generation of a message to the earliest reception
of the message at the destination. The message delay
considers delivered messages only.

B. Multi-Path Routing (Case 1,2,3)
We first consider the case of multi-path routing. Fig. 5

shows the delivery ratio for the UMass and RWP models.
The total traffic load is relatively high, i.e., 334Kbps
for the UMass model and 125Kbps for the RWP model.
We make the following observations. First, the delivery
ratios improve significantly as the number of throwboxes
increases under CTB deployment. For example, for CTB
deployment under the UMass model, the delivery ratio
increases by a factor of three using four throwboxes.
Throwboxes are able to improve delivery ratios under
both regular mobility (i.e., UMass) and random mobility
(e.g., RWP). Second, contact based deployment generally
performs worse than CTB deployment, especially in the
UMass model. This is because CTB deployment is able
to utilize traffic information to optimize performance.
Third, for oblivious deployment, the delivery ratio in-
creases under the RWP mobility model but is not affected
in the UMass model. This is because under UMass
model, due to the constrained node movement and the
relatively large span of the area, random deployment
tends to place throwboxes to locations where nodes do
not visit. In contrast, due to random movement, nodes in
the RWP models would meet with throwboxes eventually
even though throwboxes are placed randomly in the area.

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8

M
es

sa
ge

 d
el

ay
 (s

ec
on

d)

Number of throwboxes

CTB
ContactBased

Random

(a) UMass

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 d
el

ay
 (s

ec
on

d)

Number of throwboxes

CTB
ContactBased

Random

(b) RWP

Fig. 6. Message delay under multi-path routing.

Fig. 6(a) shows the message delay when nodes follow
the UMass model and the traffic load is high at 334Kbps.
We can see that the use of throwboxes can significantly
reduce the message delay. For example, the message
delay is reduced from 12,000s to 6,000s using four
throwboxes. This is because nodes are able to commu-
nicate with each other more frequently via throwboxes.
The contact based deployment achieves less reduction in
message delay. As expected, random deployment does
not affect the message delay. We have obtained similar
results for message delay when the traffic load is low.
Fig. 6(b) depicts the message delay for the RWP model
when the traffic load is 125Kbps. It can be seen that the
use of throwboxes reduces the message delay. However,
the improvement is less evident than in the UMass
model.

C. Single Path Routing (Case 4,5,6)

In this section, we consider the case of single path
routing. Fig. 7(a) depicts the delivery ratio for the UMass
model when the traffic load is at 125Kbps. We can see
that as the number of throwboxes increases, the delivery
ratio improves with CTB deployment. Contact based de-
ployment, on the other hand, improves the delivery ratio
only when the number of throwboxes is relatively large.
This confirms that using traffic information improves
the effectiveness of throwbox deployment. Oblivious
deployment, as expected, does not affect the delivery
ratio.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(a) UMass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(b) RWP

Fig. 7. Message delivery ratio under single path routing.

Fig. 7(b) shows the delivery ratio for the RWP model
when the traffic load is 42Kbps. Due to the random
movement of nodes and the relatively large span of the
area, the delivery ratio is generally low. We observe that
throwboxes do improve the delivery ratio. In addition,
CTB performs better than contact based deployment.

As compared to multi-path routing, we observe that
single path routing achieves lower delivery ratios and
is more sensitive to the deployment scheme used. This
is because in single path routing, the utility of throw-
boxes for data delivery between a source/destination pair
depends on those throwboxes that are able to support
the highest data rate. Multi-path routing, on the other
hand, is able to utilize all throwboxes available for data
forwarding, leading to better delivery ratios. In addi-
tion, our results, which are elided here, show that with
throwboxes, message delay is reduced under the UMass
model but not affected under the RWP model. Generally,
throwboxes are less effective in reducing message delay
under single path routing than under multi-path routing.

D. Epidemic Routing (Case 7,8,9)

We now consider the case of epidemic routing. Epi-
demic routing does not utilize any information about the
network. Since message forwarding is fixed based on
actual contact between nodes, we focus on the deploy-
ment issue. Specifically, we compute throwbox locations
as in multi-path routing. The intuition is that epidemic
routing is able to exploit all paths available to propagate

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(a) UMass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 d
el

iv
er

y
ra

tio

Number of throwboxes

CTB
ContactBased

Random

(b) RWP

Fig. 8. Message delivery ratio under epidemic routing.

messages. So epidemic routing would benefit from the
use of throwboxes even if the deployment is intended for
multi-path routing.

Fig. 8 shows the delivery ratio of epidemic routing.
Fig. 8(a) depicts the case of the UMass mobility model
when the traffic load is 334Kbps. We can see that all
deployment schemes achieve similar delivery ratios. As
compared to the cases of multi-path and single path
routing, throwboxes have limited improvement on the
delivery ratio because of the poor utilization of resources
caused by message flooding in epidemic routing.

Fig. 8(b) depicts the delivery ratio under the RWP
mobility model when the traffic load is 42Kbps. We
observe that contact-based and CTB deployment achieve
significant improvement in the delivery ratio, while ran-
dom deployment has modest improvement. Epidemic
routing benefits from the use of throwboxes for all
deployment schemes because of the random movement
of nodes.

VI. RELATED WORK

DTNs are a general class of networks that exhibit
non-Internet-like characteristics, e.g., intermittent con-
nectivity, large delay, and high link loss. DTNs can
be applied to military networks [9], deep space com-
munication [21], and everyday vehicular scenarios [25],
[6]. To achieve interoperability between various types of
DTNs, Fall [11] proposes an architecture that is based
on an asynchronous message forwarding paradigm. Jain

et al. [14] study unicast routing in DTNs and develop
several routing algorithms based on different levels of
knowledge about the network.

Most related work focuses on algorithms that exploit
node mobility to deliver data. Reactive approaches rely
on the inherent movement of devices or users to help
deliver data. Davis et al. [10] evaluate several algorithms
for managing DTN routing when buffers are the limited
resource in the network. Shah et al. [22] propose to
exploit mobile entities to transport data to conserve
energy in resource-limited sensors. Proactive approaches
dictate or restrict the movement of devices for routing. Li
and Rus [16] consider proactive movement of nodes to
deliver messages in a disconnected environment. Zhao et
al. [26] propose the use of special nodes called message
ferries to provide communication services and exploit
controlled mobility to improve performance. Burns et
al. [7] present a multi-objective control approach to
determine movement of mobile robotic agents to enhance
performance. Other works include [13], [18], [24].

The node placement problem has been studied in
wireless [20] and sensor networks [8], [19]. In [20], the
authors study the placement of access points to form a
mesh network for Internet traffic and proposes greedy
algorithms. The work in [8] studies the placement of
relaying nodes in a sensor network to maintain global
connectivity. The work in [19] studies node placement in
sensor networks to prolong network lifetime. In contrast,
our paper considers mobile DTNs where no end-to-end
path exists between nodes. In addition, our paper studies
various routing and deployment approaches, including
epidemic and single path routing.

Our work is also related to the study on Infos-
tation [12] and facility location [5]. Facility location
has been studied extensively in the operation research
community and generally considers selecting facility
locations to minimize cost for specified demand.

VII. CONCLUSION

We proposed the use of throwboxes to enhance
network capacity in mobile DTNs. By relaying data,
throwboxes increase the transmission opportunities and
throughput between nodes. We presented a framework to
systematically study the issues of deployment and rout-
ing, and we developed algorithms for various deployment
and routing approaches.

We evaluated different routing and deployment ap-
proaches using ns simulations. Fig. 9(a) summarizes
our results on the utility of throwboxes in performance
enhancement. First, throwboxes are very effective in
improving throughput and delay, especially when node
movement is regular or multi-path routing is used. As

10

×Ò××Ò×ØÒØØÒØÙÒÙÙÒÙÙÒÙÚÒÚÚÒÚÚÒÚ
ÛÒÛÛÒÛÜÒÜÜÒÜ
ÝÒÝÝÒÝÞÒÞÞÒÞ

ßÒßßÒßàÒààÒà
áÒááÒááÒáâÒââÒââÒâ ãÒã
ãÒã
äÒääÒä åæ

Throughput

Delay improvement
(high traffic load)

Delay improvement
(low traffic load)

improvement

ççç
ççç
ççç
ççç

èèè
èèè
èèè
èèè

éÒéê
ëÒëì

íî
ïð

EpidemicMulti−pathSingle path

RWP
mobility

mobility
Manhattan

mobility
UMass

routing routing routing ñòñòñòñòñòñòñòñòñòñòñòñòñòñòñòñòñòñòñòñ
óóó
óóó
óóó
óóó
ó

ôôô
ôôô
ôôô
ôôô
ô

õõõ
õõõ
õõõ
õõõ
õöòöòöòöòöòöòöòöòöòöòöòöòöòöòöòöòöòöòöòö

EpidemicMulti−pathSingle path
routing routingrouting

Low

High

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t Contact based

Contact based

Contact based

CTB/

CTB/

CTB

Oblivious ObliviousOblivious

(a) Performance improvement using throwboxes under CTB deployment (b) Conceptual performance of various deployment schemes

Fig. 9. Summary of simulation results.

compared to multi-path routing, single path routing is
less effective in using throwboxes because data forward-
ing is limited along a single path. Due to the poor utiliza-
tion of network resources, epidemic routing achieves the
least improvement when using throwboxes. Second, the
improvement in throughput is generally more significant
than delay. Third, single path routing is most sensitive to
deployment locations because single path routing limits
data forwarding to a single path. On the other hand,
epidemic routing is the least sensitive due to the poor
utilization of resources. Fig. 9(b) shows the conceptual
performance of different deployment schemes. We found
that both CTB and contact based deployment perform
well. CTB deployment, which utilizes both traffic and
contact information, achieves better performance when
single path routing is used. As expected, random de-
ployment performs poorly.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] I. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks:
A survey. Computer Networks Journal (Elsevier), March 2005.

[3] N. Banerjee, M. Corner, and B. Levine. An energy-efficient
architecture for DTN throwboxes. Technical Report 06-39,
University of Massachusetts-Amherst, 2006.

[4] N. Banerjee, J. Sorber, M. Corner, S. Rollins, and D. Gane-
san. Triage: A power-aware software architecture for
tiered microservers. Technical Report 05-22, University of
Massachusetts-Amherst, April, 2005.

[5] M. L. Brandeau and S. S. Chiu. An overview of representative
problems in location research. Management Science, 35(6):645–
674, 1989.

[6] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. MaxProp:
Routing for vehicle-based delay-tolerant networks. In IEEE
INFOCOM, April 2006.

[7] B. Burns, O. Brock, and B. N. Levine. MV routing and capacity
building in disruption tolerant networks. In IEEE INFOCOM,
March 2005.

[8] X. Cheng, D. Du, L. Wang, and B. Xu. Relay sensor placement
in wireless sensor networks. IEEE Transactions on Computers,
2001.

[9] DARPA Disruption Tolerant Networking Program,
http://www.darpa.mil/ato/solicit/DTN, July 2006.

[10] J. Davis, A. Fagg, and B. Levine. Wearable computers as packet
transport mechanisms in highly-partitioned ad-hoc networks.
In International Symposium on Wearable Computing, October
2001.

[11] K. Fall. A delay-tolerant network architecture for challenged
internets. In ACM SIGCOMM, 2003.

[12] D. Goodman, J. Borras, N. Mandayam, and R. Yates. IN-
FOSTATIONS: A new system model for data and messaging
services. In IEEE VTC’97, pages 969–973, May 1997.

[13] A. A. Hasson, R. Fletcher, and A. Pentland. DakNet: A road
to universal broadband connectivity. Wireless Internet UN ICT
Conference Case Study, 2003.

[14] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant
network. In ACM SIGCOMM, Portland, OR, 2004.

[15] D. Johnson and D. Maltz. Dynamic source routing in ad-hoc
wireless networks. In ACM SIGCOMM, August 1996.

[16] Q. Li and D. Rus. Sending messages to mobile users in
disconnected ad-hoc wireless networks. In ACM MOBICOM,
August 2000.

[17] Network simulator. http://www.isi.edu/nsnam/ns, July 2006.
[18] P. Juang et al. Energy-efficient computing for wildlife tracking:

design tradeoffs and early experiences with ZebraNet. In
ASPLOS, October 2002.

[19] J. Pan, Y. Hou, L. Cai, Y. Shi, and S. Shen. Topology control
for wireless sensor networks. In ACM MOBICOM, San Diego,
CA, 2003.

[20] L. Qiu, R. Chandra, K. Jain, and M. Mahdian. Optimizing the
placement of integration points in multi-hop wireless networks.
In IEEE ICNP, 2004.

[21] S. Burleigh et al. Delay-tolerant networking – an approach to
interplanetary internet. IEEE Communications Magazine, June
2003.

[22] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a three-tier architecture for sparse sensor networks.
In IEEE SNPA Workshop, 2003.

[23] StarGate, http://www.xbow.com/Products/XScale.htm, 2006.
[24] Tara Small and Zygmunt Haas. The Shared Wireless Infostation

Model - A New Ad Hoc Networking Paradigm (or Where there
is a Whale, there is a Way). In ACM MobiHoc, June 2003.

[25] H. Wu, R. Fujimoto, and G. Riley. Analytical models for data
dissemination in vehicle-to-vehicle networks. In IEEE VTC
2004/Fall, 2004.

[26] W. Zhao, M. Ammar, and E. Zegura. A message ferrying
approach for data delivery in sparse mobile ad hoc networks.
In ACM MobiHoc, Tokyo Japan, May 2004.

[27] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Ze-
gura. Capacity enhancement using throwboxes in mobile delay
tolerant networks. Technical report, College of Computing,
Georgia Institute of Technology, 2006.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2006

	Capacity Enhancement using Throwboxes in DTNs
	Wenrui Zhao
	Yang Chen
	Mostafa Ammar
	Mark Corner
	Brain Levine
	See next page for additional authors
	Recommended Citation
	Authors

	paper.dvi

