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Abstract

This paper studies an irreversible capacity expansion problem where the industry demand is

described by a double exponential jump diffusion process. Formally, we consider the following

optimization problem

sup
X
E

∞

0

e−rt (DtH(Xt) dt− k dXt)

over all adapted, non-decreasing process X = (Xt). Here we understand Xt as the cumulative

capital investment up to time t (it is non-decreasing since the investment is assumed to be

irreversible). D = (Dt) is the exogenous industry demand process, which is modeled by a

double exponential jump diffusion. The profit flow is assumed to have rate D ·H(X) for some
concave function H , while k denotes the cost of unit capital. The goal is choosing an capital

investment strategy X so as to maximize the discounted overall profit, net the cost of investing.

We explicitly solve the problem when H is assumed to be the Cobb-Douglas production

function, that is, H(x) = xα for some α ∈ (0, 1). Throughout the paper, a slightly different (but
essentially the same) optimization criterion is adopted, for the sake of technical convenience.

Key words: Double exponential jump diffusion, variational inequality, singular control, capacity

expansion.
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1 Introduction

Capacity expansion, or incremental investment problems, have been studied by many authors; a

very partial list include [3, 4, 11, 12, 13]. Some discussions on the assumption of irreversibility

in capital choice can be found in an early publication [2], while a comprehensive treatment of

irreversible investment can be found in [5]. Reversible investment problems under similar setup

have also received a fair amount of attention; see [1, 16].

∗Research supported in part by the National Science Foundation (NSF-DMS-0103669).

1



The model of a firm’s irreversible incremental investment choice (capacity expansion) can be

informally described as follows: the firm has the right to invest in the industry by purchasing

capitals. The investment is irreversible in the sense that the existing capitals cannot be sold. The

rate of the profit flow from the investment depends on two factors: (1) the current size of the

existing capital — the more the capital, the bigger the output rate, whence more profit; (2) the

price of the unit output, which is closely related to the industry demand and the size of the output

itself — the bigger the demand, or the smaller the output size, the higher the price. By judiciously

choosing a capacity expansion strategy, the firm wants to maximize the discounted profit of the

investment over a long time horizon, net the cost for purchasing the capitals.

Mathematically, denote by X the size of the capitals in place, which will give a flow of output

with rate Q = G(X), the unit price of the output is P = D ·F (Q) where D is the industry demand.

Hence capital of size X will generate a profit flow with rate

PQ = D · F (Q) ·G(X) = D · F (G(X)) ·G(X) := D ·H(X).
The function H is usually assumed to be concave, representing the diminishing return to capital.

If we assume that unit price of the capital is constant k, then the optimization problem is

sup
X

∞

0
e−rt (DtH(Xt) dt− k dXt) ;

here the positive constant r is the discount factor. Explicit solutions are available for very general

concave function H, under the classical assumption that the demand D = (Dt) is a geometric

Brownian motion; see [5] for more details.

The geometric Brownian motion can be understood as the net effect of many small noises, thanks

to the central limit theorem. However, it is not hard to conceive that jump diffusion process might

serve as a better model for the industry demand, since some events, e.g. technology breakthrough,

or change of government policy, might change the industry demand drastically. But of course, the

introduction of the jumps will increase the difficulty of analysis.

In this paper we assume the demand D = (Dt) to be a double exponential jump diffusion

process. The double exponential distribution of the jump sizes allow us to find explicit solutions

for one of the most important classes of concave functions H; that is, the Cobb-Douglas function

H(x) = x1−α for some α ∈ (0, 1). It is very difficult, if not impossible, to obtain explicit solutions
beyond this generality. As a side-note, this type of jump diffusions have recently been used to model

the stock prices, and the double exponential jump sizes also make possible for explicit option prices

(or rather, their Laplace transforms); see e.g. [6, 8, 9].

REMARK 1. In general, the term Cobb-Douglas function refers to a function H(d, x) of both the

demand level d and the capital x taking form:

H(d, x) = dβ x1−α, α,β ∈ (0, 1).
Observing that if (Dt) is a double exponential jump diffusion process then so is (Dt)

β, our analysis

can be easily extended to cover this general case.

The paper is organized as follows. Section 2 gives the set up of the problem, and a slightly

different optimization criterion is brought up to circumvent technical inconveniences. Section 3

solves the associated variational inequality and provide a verification theorem. The optimal policy
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turns out to be singular: there are an “investment” region and an “inactive” region, and the

optimal policy is to purchase as much capital as needed to prevent the state processes from exiting

the “inactive” region. Some of the more technical proofs are collected in the appendix.

2 The capacity expansion problem

Consider a complete probability space (Ω,F , IF;P) where the filtration IF = (Ft) satisfies the usual
conditions. We assume that the probability space is rich enough to carry a non-negative demand

process D = (Dt) such that Yt
·
= log(Dt) is a jump diffusion process. More precisely,

log(Dt) := Yt = µt+ σWt +

Nt

i=1

Zi; Y0 ≡ y ∈ IR.(2.1)

Here µ and σ > 0 are both constants; W = (Wt,Ft) is a standard Brownian motion; N = (Nt,Ft)
is a right-continuous Poisson process with intensity λ; the jump sizes Z = (Z1, Z2, · · · ) are indepent
and identically distributed; all the randomness W , N and Z are assumed to be independent. The

set of admissible control process is defined as

A(x) ·
= {X = (Xt,Ft); X is adapted, right-continuous, non-decreasing, with X0− ≡ x} ;(2.2)

here X0− = x is the initial capital in place. The optimization problem is then introduced as

V (x, y)
·
= sup
X∈A(x)

lim sup
T→∞

E
T

0
e−rt eYtH(Xt) dt− kdXt := sup

X∈A(x)
J(X ; y);(2.3)

here r (discount factor), k (cost per unit of capital) are positive constants, and H is a nonegative,

strictly concave function (production function). A commonly adopted product function is the so-

called Cobb-Douglas production function as in (2.5) below. Also see Remark 3 for the discussion

on the optimization criterion (2.3).

Throughout this paper, we should assume that the jump sizes (Zi) are iid double exponential

random variables with density

fZ(z) = p · η1e−η1z1{z≥0} + q · η2eη2z1{z<0}; p > 0, q > 0, p+ q = 1; η1 > 1, η2 > 0.(2.4)

Here the assumption η1 > 1 is to gurantee that E(Dt) = E[eYt ] is finite for all t. The concave
function H is taken to be the Cobb-Douglas production function of form

H(x)
·
= x1−α; α ∈ (0, 1).(2.5)

We also define the following function

f(β)
·
= −(r + λ) +

1

2
σ2β2 + µβ + λ

pη1

η1 − β +
qη2

η2 + β
, β ∈ IR.(2.6)

It is easy to show that the equation f(β) = 0 admits exactly two positive solutions (β1, β2) with

β1 < η1 < β2. We should adopt the following assumption throughout the paper.

Assumption:
1

α
< β1.(2.7)
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Without this assumption, V could be infinity; see Remark 6 for more details. We arrive at the

following inequalities immediately

1 <
1

α
< β1 < η1 < β2.(2.8)

It is also easy to check that under this assumption

f(1) < 0, f
1

α
< 0.(2.9)

REMARK 2. One can, of course, assume that Z’s have some general distribution or H is some

general concave function. The corrsponding variational inequality and verification theorem can still

be established. However, it is not clear how to obtain explicit solutions with such generality.

REMARK 3. Unlike the optimization criterion

V (x, y)
·
= sup
X∈A(x)

E
∞

0
e−rt eYtH(Xt) dt− kdXt(2.10)

often appearing in the economics literature, the version (2.3) adopted here is well defined for

every admissible control X ∈ A(x) (see the proof of the verification theorem) and is the one
commonly used in the control theoy literature. The well-definedness of the expectation in (2.10)

for an arbitrary X ∈ A(x), however, is questionable. Furthermore, even though (2.10) can still be
adopted as the optimization criterion if we are willing to restrict the admissible control processes

to those that make (2.10) meaningful, the analysis will be more technical inconvenient, because of

the improper integral and the integrand of mixed signs. Finally, (2.3) and (2.10) would formally

yield the same variational inequality, and for the optimal capacity choice X∗ we obtain, the lim sup
in (2.3) is indeed a true limit, and

J(X∗; y) = lim
T→∞

E
T

0
e−rt eYtH(X∗t ) dt− kdX∗t = E

∞

0
e−rt eYtH(X∗t ) dt− kdX∗t .

See Remark 5 for more details on these equalities.

REMARK 4. The dynamics of process Y is unaffected by the control process X. The infinitisimal

generator is given as

Lu(x, y) = 1

2
σ2
∂2u

∂y2
+ µ

∂u

∂y
+ λ

IR
u(x, y + z)− u(x, y) fZ(z) dz(2.11)

for all twice continuously differentiable functions u. An intuitive explaination for the last term is

that the Poisson process has probability λdt to have a jump in a small time interval of length dt,

and when a jump occurs, the jump size will have density fZ(z).

3 Variational inequality and its solution

For every admissible control process X , we associate with the expected discounted profit

J(X; y)
·
= lim sup

T→∞
E

T

0
e−rt eYtH(Xt) dt− kdXt
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The objective is to maximize J(X; y) over all X ∈ A(x) where X0− ≡ x.
We will proceed heuristically, in order to obtain the variational inequality associated with the

value function V . It follows from Dynamic Programming Principle that the process

Ut
·
=

t

0
e−rs eYsH(Xs) ds− k dXs + e−rtV (Xt, Yt)

is indeed a supermartingale. Assuming the value function V is twice continuously differentiable,

the generalized Itô formula (see [7, 14, 15] for more details) yields

dUt = dMt+e
−rt (−rV + LV )(Xt, Yt) + eYtH(Xt) dt+e−rt V (Xt+ Xt, Yt)−V (Xt, Yt)−k Xt ,

where M = {Mt; t ≥ 0} is some local martingale. Since U is a supermartingale, we expect that

−rV + LV + eyH(x) ≤ 0, Vx(x, y) ≤ k; ∀ x ≥ 0, y ∈ IR.

However, at any time the decision maker can either buy more capital or not, the value function V

should satisfy the dynamic programming equation

max {−rV + LV + eyH(x), Vx − k} = 0, ∀ x ≥ 0, y ∈ IR.

Furthermore, it is reasonable to expect the optimal policy to be such that the bigger the demand

Y , the more the capital X should be put in place.

-

6

X =capital size

Y = log(Demand)

“inactive region”

“investment region”

-q
-q

-q

6

?

6

?

Figure 1.

We obtain the following variational inequality from these heuristic arguments.
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Variational Inequality: Find a non-negative, twice continuously differentiable function v : IR+ ×
IR→ IR+, and an increasing function y = g(x) such that

vx(x, y) = k; in region {(x, y); y ≥ g(x)}(3.1)

−rv + Lv + eyH(x) = 0; in region {(x, y); y < g(x)}(3.2)

vx(x, y) < k; in region {(x, y); y < g(x)}(3.3)

−rv + Lv + eyH(x) < 0; in region {(x, y); y ≥ g(x)}(3.4)

This variational inequality can be solved explicitly. It turns out that the solution we obtained is

indeed the value function, and the optimal capital policy can be described as follows.

Optimal Capital Policy: Do not increase the capital as long as (X, Y ) is in the “inactive” region

{(x, y); y < g(x)}. However, when (X, Y ) is in the “investment” region {(x, y); y ≥ g(x)},
immediately buy as much capital as necessary in order not to exit the region {(x, y); y ≤ g(x)}.

The optimal control process is a singular one, with possible discontinuities at t = 0 or at times

when the Poisson process gives a jump; see Figure 1.

The rest of the section is devoted to solving the variational inequality and proving the verification

theorem.

3.1 Solution to the variational inequality

In this section, we solve the variational inequality (3.1)-(3.4). We start with the following guess of

the value function and the free boundary, which is motivated by the results in [5] and [10].

Suppose that in the “inactive” region

v(x, y) = c1x
p1eβ1y + c2x

p2eβ2y + c3x
1−αey; ∀ x ≥ 0, y ≤ g(x).

Here β1,2 are the two positive solutions to equation f(β) = 0, and (c1, c2, c3; p1, p2) are constants

yet to be determined. Equation (3.1) immediately yields the value of v in the “investment” region

v(x, y) = −k g−1(y)− x + V g−1(y); y ; ∀ x ≥ 0, y > g(x).
We also guess that the free boundary takes form

y = g(x) = log cxγ ; ∀ x ≥ 0,
where c and γ are undetermined constants.

It follows from equation (3.1) again and the smooth-fit-principle that, for y = g(x), we have

k ≡ vx(x, y) = c1p1x
p1−1eβ1y + c2p2xp2−1eβ2y + c3(1− α)x−αey

= c1p1c
β1xp1−1+γβ1 + c2p2cβ2xp2−1+γβ2 + c3(1− α)cx−α+γ; ∀ x ≥ 0.

Therefore, we must have γ = α and pi = 1 − γβi = 1 − αβi, i = 1, 2. We arrive at the following

form of solution.

v(x, y) =
c1x

1−αβ1eβ1y + c2x1−αβ2eβ2y + c3x1−αey ; ∀ x ≥ 0, y ≤ g(x) = log (cxα)
−k c−1ey

1
α − x + V c−1ey

1
α ; y ; ∀ x ≥ 0, y > g(x) = log (cxα) ;(3.5)
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Four constants (c1, c2, c3; c) remain unknown.

For all {(x, y); y ≤ g(x)}, straightforward calculation shows that

−rv + Lv = −rv + 1
2
σ2
∂2v

∂y2
+ µ

∂v

∂y
+ λ

IR
v(x, y + z)− v(x, y) f(z) dz

= −(r + λ)v +
1

2
σ2
∂2v

∂y2
+ µ

∂v

∂y
+ λ

0

−∞
v(x, y + z) · qη2eη2z dz

+ λ
log(cxα)−y

0
v(x, y + z) · pη1e−η1z dz + λ

∞

log(cxα)−y
v(x, y + z) · pη1e−η1z dz

= c1x
1−αβ1eβ1y · f(β1) + c2x1−αβ2eβ2y · f(β2) + c3x1−αey · f(1)
+ c−η1

λpη1

αη1 − 1x
1−αη1eη1y cβ1c1 · 1− αβ1

η1 − β1 + c
β2c2 · 1− αβ2

η1 − β2 + cc3 ·
1− α
η1 − 1 −

k

η1
.

It follows from equation (3.2) and f(β1) = f(β2) = 0 that

c3f(1) + 1 = 0(3.6)

cβ1c1 · 1− αβ1
η1 − β1 + c

β2c2 · 1− αβ2
η1 − β2 + cc3 ·

1− α
η1 − 1 −

k

η1
= 0.(3.7)

The other two equations required to solve for (c1, c2, c3; c) come from the smooth fit conditions

across the free boundary , that is,

vx(x, y) ≡ k; vxx(x, y) ≡ 0; ∀ x ≥ 0, y = g(x) = log (cxα) .

It is easy to check that they are equivalent to

cβ1c1 · (1− αβ1) + cβ2c2 · (1− αβ2) + cc3 · (1− α) = k(3.8)

cβ1c1 · β1(1− αβ1) + cβ2c2 · β2(1− αβ2) + cc3 · (1− α) = 0.(3.9)

Solve equations (3.6)-(3.9) to obtain that

c =
−f(1)
1− α

β1

β1 − 1
β2

β2 − 1
η1 − 1
η1

· k(3.10)

c1 = c−β1
1

η1(αβ1 − 1)
β2(η1 − β1)

(β2 − β1)(β1 − 1) · k(3.11)

c2 = c−β2
1

η1(αβ2 − 1)
β1(β2 − η1)

(β2 − β1)(β2 − 1) · k(3.12)

c3 = − 1

f(1)
.(3.13)

We have the following result, whose proof is given in the Appendix.

PROPOSITION 1. The function v defined by (3.5) and (3.10)-(3.13) is a solution to the variational

inequality (3.1)-(3.4), with free boundary y = g(x) = log (cxα).
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3.2 The verification theorem

In this section, we prove the following verification theorem.

THEOREM 1. The function v, defined by (3.5) and (3.10)-(3.13), is the value function of the

optimization problem. That is,

v(x, y) = V (x, y) = sup
X∈A(x)

lim sup
T→∞

E
T

0
e−rt eYtH(Xt) dt− kdXt .

Furthermore, the optimal capital policy is determined by

X∗t
·
= x+ max

0≤s≤t
g−1(Ys)− x

+

, or, X∗t = max x, max
0≤s≤t

g−1(Ys) ;(3.14)

here g−1 is the inverse of g; that is,

g−1(y) = c−
1
α · e yα , ∀ y ∈ IR.(3.15)

The following lemma is useful to the proof of the theorem.

LEMMA 1. Suppose ξ, η are non-negative random variables and β ∈ (0, 1) is a constant. If Eξ =
+∞ but Eη < +∞, then

E ηβ · ξ1−β − ξ = −∞.
Proof of Lemma 1. We can write

ηβ · ξ1−β − ξ = ηβ · ξ1−β − ξ · 1{ξ≥2η} + ηβ · ξ1−β − ξ · 1{ξ<2η} = (I) + (II).

On set {ξ ≤ 2η}, we have
ηβ · ξ1−β − ξ ≤ 21−βη.

It follows that E(II) < +∞, and we only need to show E(I) = −∞. However, on set {ξ ≥ 2η}, we
have

ηβ · ξ1−β − ξ ≤ (2−β − 1)ξ.
Therefore, it is sufficient to show that

E ξ · 1{ξ≥2η} = +∞.
But this is trivial from the assumptions. 2.

Proof of Theorem 1. We first show that v is an upper-bound. Fix an arbitrary capital policy

X ∈ A(x). We want to show that

v(x, y) ≥ lim sup
T→∞

E
T

0
e−rt eYtH(Xt) dt− kdXt .(3.16)

We consider two separate cases. In the first case, we assume that there is an T0 ≥ 0 such that
EXT0 = +∞. It is then easy to see that

E
T

0
e−rt eYtH(Xt) dt− kdXt ≤ X1−α

T ·
T

0
eYt dt− ke−rTXT ; ∀ T ≥ T0.
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However, Hölder inequality yields that

E
T

0
eYt dt

1
α

≤ T 1−α
α E

T

0
e
Yt
α dt < +∞;

here the last inequality follows since η1 >
1
α
, thanks to (2.8). We obtain that

E
T

0
e−rt eYtH(Xt) dt− kdXt = −∞; ∀ T ≥ T0

from Lemma 1, which yields the desired inequality (3.16). As for the second case, we assume that

EXT < +∞ for all T . Applying the Itô formula to the process e−rtv(Xt, Yt); t ≥ 0 , we obtain
that

e−rT v(XT , YT )− v(x, y) =
T

0
e−rt −rv + µvy + 1

2
σ2vyy (Xt−, Yt−) dt

+
T

0
e−rtvx(Xt−, Yt−) dXc

t +
T

0
e−rt · σvy(Xt−, Yt−) dWt

+

0≤t≤T
e−rt [v(Xt, Yt)− v(Xt−, Yt−)] ;

here Xc is the continuous part of the increasing process X. However,

0≤t≤T
e−rt [v(Xt, Yt)− v(Xt−, Yt−)] =

0≤t≤T
e−rt [v(Xt, Yt)− v(Xt−, Yt) + v(Xt−, Yt)− v(Xt−, Yt−)]

=

0≤t≤T
e−rt [v(Xt, Yt)− v(Xt−, Yt)] +

T

0 IR
e−rt [v(Xt−, Yt− + z)− v(Xt−, Yt−)] ν(dz, dt)

+
T

0 IR
e−rt [v(Xt−, Yt− + z)− v(Xt−, Yt−)] · (µ− ν)(dz, dt),

where µ is the jump measure corresponding to the process t ≥ 0; Nt
i=1 Zi , and the measure ν

is defined as

ν(dz, dt) = λfZ(z) dzdt.

Therefore, we have

e−rT v(XT , YT )− v(x, y) =
T

0
e−rt(−rv + Lv)(Xt−, Yt−) dt+

T

0
e−rtvx(Xt−, Yt−) dXc

t +MT

+

0≤t≤T
e−rt [v(Xt, Yt)− v(Xt−, Yt)]

≤ −
T

0
e−rteYt−H(Xt−) dt+

T

0
e−rtk dXt +MT ;

here M = (Mt,Ft) is a local martingale where

MT
·
=

T

0
e−rt · σvy(Xt−, Yt−) dWt +

T

0 IR
e−rt [v(Xt−, Yt− + z)− v(Xt−, Yt−)] · (µ− ν)(dz, dt).
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Since X,Y both make at most countably jumps in time interval [0, T ], we have

T

0
e−rteYt−H(Xt−) dt =

T

0
e−rteYtH(Xt) dt,

which gives
T

0
e−rt eYtH(Xt) dt− k dXt ≤ v(x, y) +MT ; ∀ T ≥ 0.

It suffices to show EMT ≤ 0. To this end, we show that sup0≤t≤T M−t is integrable for every T ≥ 0
(hence M is a supermartingale). Indeed, it follows from the preceding inequality that

sup
0≤t≤T

M−t ≤ v(x, y) +
T

0
e−rtk dXt ≤ v(x, y) + kXT ,

which is integrable by assumption. Inequality (3.16) holds again in this case.

It remains to show that v is also a lower-bound; indeed, we will show that

v(x, y) ≤ lim inf
T→∞

E
T

0
e−rt eYtH(X∗t ) dt− kdX∗t .(3.17)

Applying Itô rule to the process e−rtv(X∗t , Yt); t ≥ 0 , it is not difficulty to verify that
T

0
e−rt eYtH(X∗t ) dt− k dX∗t + e−rT v(X∗T , YT ) = v(x, y) +M

∗
T ; ∀ T ≥ 0,(3.18)

for some local martingale M∗. Thus we only need to show that M∗ is a submartingale and

lim
T→∞

Ee−rT v(X∗T , YT ) = 0.(3.19)

Indeed, if this is the case, then

v(x, y) ≤ E
T

0
e−rt eYtH(X∗t ) dt− k dX∗t + Ee−rT v(X∗T , YT )

for all T . In particular,

v(x, y) ≤ lim inf
T→∞

E
T

0
e−rt eYtH(X∗t ) dt− k dX∗t + lim

T→∞
Ee−rT v(X∗T , YT )

= lim inf
T→∞

E
T

0
e−rt eYtH(X∗t ) dt− k dX∗t ,

which completes the proof.

To this end, we first show that

lim
t→∞E e−rtX∗t = 0(3.20)

Thanks to (3.14)-(3.15), it suffices to establish

lim
t→∞E e−rtemax0≤s≤t

Ys
α = 0;
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However, observe that for any constant 0 ≤ θ < η1, the process U = (Ut,Ft) is a martingale; here

Ut
·
= eθYt−[f(θ)+r]t; t ≥ 0,

and EUt ≡ eθy for all t. We choose and fix an arbitrary θ ∈ (1/α, η1) such that f(θ) < 0. The

existence of such θ is guaranteed by the assumption (2.8)-(2.9) and the continuity of f . It follows

from Doob’s inequality that

P max
0≤s≤t

Ys

α
≥ u ≤ P max

0≤s≤t
Us ≥ eαθu−[f(θ)+r]

+t ≤ eθy · e−αθu+[f(θ)+r]+t;

here x+
·
= max{x, 0}. Therefore, we have

E e−rtemax0≤s≤t
Ys
α = e−rt

∞

−∞
P max

0≤s≤t
Ys

α
≥ u eu du

≤ e−rt 1 + eθy
∞

0
e−αθu+[f(θ)+r]

+teu du

≤ e−rt +
eθy

αθ − 1e
max{f(θ),−r}·t,

and (3.20) follows. Furthermore, (3.14)-(3.15) imply that

emax0≤t≤T
Yt
α ≤ C1X∗T , ∀ T ≥ 0

for some positive constant C1. But inequality vx ≤ k and (A.1) imply that, for every t ≥ 0

v(X∗t , Yt) ≤ kX∗t + v(0, Yt) = kX∗t + cβ1c1 + c
β2c2 + cc3 − k · c− 1

α e
Yt
α ≤ C2X∗t ,

for some positive constant C2. (3.19) now follows readily from (3.20) and that v ≥ 0. We proceed
to show that M∗ is indeed a submartingale. Note that, since X∗ is non-decreasing, we have

sup
0≤t≤T

(M∗t )
+ ≤

T

0
e−rteYtH(X∗t ) dt+ sup

0≤t≤T
e−rtv(X∗t , Yt) ≤

T

0
e−rt(C1X∗t )

αH(X∗t ) dt+ C2X
∗
T

= Cα
1

T

0
e−rtX∗t dt+ C2X

∗
T ≤ r−1Cα

1 + C2 X
∗
T ; ∀ T ≥ 0.

But the proof of (3.20) clearly implies that X∗T is integrable, whence sup0≤t≤T (M
∗
t )
+ is integrable

for every T ≥ 0, which in turn implies that M∗ is a submartingle. We complete the proof. 2

REMARK 5. It follows from the proof that, when X ≡ X∗, the lim sup can be replaced by a true
lim; that is

V (x, y) = lim
T→∞

E
T

0
e−rt eYtH(X∗t ) dt− kdX∗t

Moreover, we have

V (x, y) = E
∞

0
e−rt eYtH(X∗t ) dt− kdX∗t .

11



Indeed, it is not difficult to see that this is a direct consequence of the following two inequalities:

E
∞

0
e−rteYtH(X∗t ) dt <∞, E

∞

0
e−rtdX∗t <∞.

But the proof of (3.20) implies that
∞
0 e−rtX∗t dt is integrable. The first inequality follows readily

since eYt ≤ (C1X∗t )α, while as for the second inequality, observe that

E
∞

0
e−rtdX∗t = lim

T→∞
E

[0,T ]
e−rtdX∗t = lim

T→∞
Ee−rTX∗T − x+ E

T

0
re−rtX∗t dt

= E
∞

0
re−rtX∗t dt− x <∞.

REMARK 6. The assumption (2.7) assures V (x, y) to be finite for all (x, y). It is not difficult

to see that the value function V is infinity if this assumption is violated. Indeed, write the value

function as Vα(x, y) = vα(x, y) to distinguish parameter α. For x ≥ 1, the value function Vα(x, y)
is clearly non-increasing with respect to α. However, as α ↓ β−11 , it is not hard to verify from

(3.10)-(3.13) that c1 → ∞ while c → c∗ for some constant c∗. Hence Vα(x, y) → ∞ at least on

the region {(x, y); x ≥ 1}, this in turns implies that Vα → ∞ is always true for all (x, y) since

(Vα)x ≤ k always holds.

Summary

This paper studies an irreversible capacity expansion (incremental investment) problem where the

state process is modeled by a double exponential jump diffusion process. Explicit solution is found

for the case of Cobb-Douglas production function. For general jump sizes and general production

function, one could write out a verification theorem, but it seems very difficult, if not impossible,

to explicitly solve the associated variational inequality. Further extension of this work can be made

for the case with reversible capacity choices or depreciating capitals.

Appendix. Proof of Proposition 1

Since the constants (c1, c2, c3; c) are all non-negative, thanks to inequalities (2.8) and (2.9), function

v is clearly non-negative. Now that we have explicit formula (3.5), its C2-smoothness can be verified
by straightforward computation. Here we only show that vyy is continuous as an example. One

can rewrite (3.5) in the following form.

v(x, y) =
c1x

1−αβ1eβ1y + c2x1−αβ2eβ2y + c3x1−αey ; ∀ x ≥ 0, y ≤ log (cxα)
kx+ cβ1c1 + c

β2c2 + cc3 − k · c− 1
α e

y
α ; ∀ x ≥ 0, y > log (cxα) .(A.1)

It follows that

vyy(x, y) =
c1β

2
1x
1−αβ1eβ1y + c2β22x1−αβ2eβ2y + c3x1−αey ; ∀ x ≥ 0, y ≤ log (cxα)
1
α2

cβ1c1 + c
β2c2 + cc3 − k · c− 1

α e
y
α ; ∀ x ≥ 0, y > log (cxα) .

12



In order to show vyy is continuous across the free boundary y = log (cx
α), it suffices to show that

cβ1c1 · β21 + cβ2c2 · β22 + cc3 =
1

α2
cβ1c1 + c

β2c2 + cc3 − k .

However, multiplying (3.9) by α and adding to (3.8), this equality follows readily.

Now we show the inequality (3.3). However, in region {(x, y); y < log (cxα)} we have

vx(x, y) = c1(1− αβ1)x−αβ1eβ1y + c2(1− αβ2)x−αβ2eβ2y + c3(1− α)x−αey := F ey

cxα
,

where

F (z)
·
= cβ1c1(1− αβ1)zβ1 + cβ2c2(1− αβ2)zβ2 + cc3(1− α)z.

Therefore it is sufficient to show that F (z) < k for all 0 ≤ z < 1. Indeed, F is a strictly concave

function, thanks to inequality (2.8) again, with F (1) = k, F (0) = 0 and

F (1) = cβ1c1 · β1(1− αβ1) + cβ2c2 · β2(1− αβ2)zβ2 + cc3(1− α) = 0
from (3.9). Hence 0 ≤ F (z) < k for all 0 ≤ z < 1.

It remains to show (3.4). To ease exposition, define G(x, y)
·
= −rv + Lv + eyH(x). In region

{(x, y); y ≥ log (cxα)}, straightforward computation yields

G(x, y) = eyx1−α − (r + λ)v +
1

2
σ2
∂2v

∂y2
+ µ

∂v

∂y
+ λ

∞

0
v(x, y + z) · pη1e−η1z dz

+ λ
0

log(cxα)−y
v(x, y + z) · qη2eη2z dz + λ

log(cxα)−y

−∞
v(x, y + z) · qη2eη2z dz

= eyx1−α − rkx+ cβ1c1 + c
β2c2 + cc3 − k · c− 1

α e
y
α f

1

α
+
cη2x1+αη2e−η2y

1 + αη2
·A,

where constant A is defined as

A
·
= λqη2 cβ1c1 · 1− αβ1

η2 + β1
+ cβ2c2 · 1− αβ2

η2 + β2
+ cc3 · 1− α

η2 + 1
− λkq.

We first show that A < 0. To this end, observe that equalities (3.8) and (3.11), (3.12) imply

A = λqη2 cβ1c1 · 1− αβ1
η2 + β1

− 1− αβ1
η2 + 1

+ cβ2c2 · 1− αβ2
η2 + β2

− 1− αβ2
η2 + 1

+
λqη2

η2 + 1
k − λkq

=
λqη2

η2 + 1
cβ1c1 · (1− αβ1)(1− β1)

η2 + β1
+ cβ2c2 · (1− αβ2)(1− β2)

η2 + β2
− λkq

η2 + 1

=
λkqη2

η2 + 1

β2(η1 − β1)
η1(β2 − β1)(η2 + β1)

+
β1(β2 − η1)

η1(β2 − β1)(η2 + β2)
− 1

η2

= − λkq

η2 + 1
· β1β2(η1 + η2)

η1(η2 + β1)(η2 + β2)
.

Secondly we show that

A = rk − c(1− α) + σ2 · β1β2
2η1

k.(A.2)
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Using the identity
λqη2

η2 + β
= f(β) + (r + λ)− 1

2
σ2β2 − µβ − λpη1

η1 − β
and f(β1) = f(β2) = 0, we have

A = f(1)cc3(1− α) + (r + λ) · cβ1c1 · (1− αβ1) + cβ2c2 · (1− αβ2) + cc3 · (1− α)

− 1
2
σ2 · cβ1c1 · β21(1− αβ1) + cβ2c2 · β22(1− αβ2) + cc3 · (1− α)

− µ · cβ1c1 · β1(1− αβ1) + cβ2c2 · β2(1− αβ2) + cc3 · (1− α)

− λpη1 · cβ1c1 · 1− αβ1
η1 − β1 + c

β2c2 · 1− αβ2
η1 − β2 + cc3 ·

1− α
η1 − 1 − λkp

= −c(1− α) + rk − 1
2
σ2 · cβ1c1 · β21(1− αβ1) + cβ2c2 · β22(1− αβ2) + cc3 · (1− α) ,

thanks to (3.6)-(3.9) and p+ q = 1. It remains to show that

cβ1c1 · β21(1− αβ1) + cβ2c2 · β22(1− αβ2) + cc3 · (1− α) = −
β1β2

η1
k.

But this equality can be verified using (3.10)-(3.12) and direct calculation. We omit the details.

Finally we show that G(x, y) < 0 in the region {(x, y); y > log (cxα)}. Fix y, and we consider
G as a function of x on interval 0, g−1(y) . Since A < 0, it is easy to see that G is indeed strictly
concave. However, note that G(x, y) = 0 at x = g−1(y) by the construction of function v, as well as
its C2-smoothness. It is sufficient to show that Gx(x, y)|x=g−1(y) > 0. But by direct computation
we have

Gx(x, y)|x=g−1(y) = c(1− α)− rk +A = σ2
β1β2

2η1
k,

thanks to equality (A.2). This completes the proof. 2
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