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Abstract 
The main goals of this article are the analysis of the use of simplified deterministic nonlinear 
static procedures to assess the seismic response of buildings, and to evaluate the influence that 
the uncertainties regarding the mechanical properties of the materials and of the features of 
the seismic actions have in the uncertainties of the structural response. A current reinforced 
concrete building is used as a guiding case study. In the calculation of the expected spectral 
displacement, deterministic static methods are simple and straightforward. In the case of non 
severe earthquakes, these approaches lead to somewhat conservative but adequate results 
when compared to more sophisticated procedures involving non-linear dynamic analyses. 
Concerning the probabilistic assessment, the strength properties of the materials, concrete and 
steel, and the seismic action are considered as random variables. The Monte Carlo method is 
then used to analyze the structural response of the building. The obtained results show that 
significant uncertainties are expected, as uncertainties in the structural response increase with 
the severity of the seismic actions. The major influence in the randomness of the structural 
response comes from the randomness of the seismic action. A useful example for selected 
earthquake scenarios is used to show the applicability of the probabilistic approach to assess 
the expected damage and risk analysis. An important conclusion of this work is the need to 
address the fragility of the buildings and expected damage assessment problem from a proba-
bilistic perspective. 
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1 Introduction 

More than two thousand years ago, Vitruvius (1 BC) already stated that architecture is the 
merging of functionality, strength and beauty. Since the last decade of the twentieth century, 
the performance based design has been an important engineering outcome, becoming a sign of 
the advances in building construction that mainly concerns functionality and strength. There-
fore, strength and functional requirements are integrated into building design, being the per-
formance of the building the result of the interaction among different subsystems, including 
the structural system (SEAOC Vision 2000 Committee, 1995). Modern building regulations 
and design codes are based on performance principles and they incorporate, among many oth-
ers, requirements for structural safety, including earthquake resistance. In the case of earth-
quakes, the capacity spectrum method (Freeman et al. 1975, Freeman 1978, 1998) allows 
characterizing the interaction between the seismic demand, and the building. Simplified pro-
cedures allow determining the displacement demand imposed on a building expected to de-
form inelastically (ATC, 1996, FEMA, 1997). Additionally, in order to analyze the seismic 
risk of existing buildings, several simplified methods were developed. ATC-13 (ATC, 1985) 
and ATC-25 (ATC, 1996) define the earthquake by means of macroseismic MM intensities 
and develop damage probability matrices for 75 facility classes. ATC-13 and ATC-25 meth-
ods are based on expert opinion. Moreover, vulnerability index-based methods define the 
seismic action also by means of macroseismic intensities (EMS-98, Grünthal 1998), but the 
structure is defined through a vulnerability index (Barbat et al. 1996; Barbat et al. 1998).  
More recently, capacity spectrum-based methods were also adopted to assess the seismic risk 
of existing buildings (FEMA, 1999, McGuire, 2004). Capacity Spectrum-Based Methods 
(CSBM) define the building by means of a Pushover Analysis (PA) curve, called capacity 
curve, which represents base shear forces as a function of roof displacements while the earth-
quake is defined by the corresponding 5% damped elastic response spectrum. In those cases in 
which the response of the structure is dominated by the fundamental mode of vibration, base 
shear forces and roof displacements are converted into the spectral accelerations and spectral 
displacements of an equivalent Single Degree of Freedom (SDOF) system respectively. These 
spectral values define the so-called capacity spectra (Fajfar, 1999) also called capacity dia-
grams (Chopra and Goel 1999). The earthquake ground motions requirements are then de-
fined by highly damped elastic response spectra. In the Acceleration Displacement Response 
Spectrum (ADRS) format, spectral accelerations are plotted as a function of the spectral dis-
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placement with the periods represented by radial lines. The intersection of the capacity spec-
trum and the demand spectrum provides an estimate of the inelastic acceleration and dis-
placement requirement (Fajfar 1999). In CSBM vulnerability is defined by fragility curves 
that define the probability that a determined damage state be equaled or exceeded as a func-
tion of a parameter related to the intensity of the seismic demand. Generally the Spectral dis-
placement (Sd) is used to define the size of the seismic demand. Four non-null damage grades 
or Damage states (dsi) are usually considered (FEMA 1999): ds1) Slight, ds2) Moderate, ds3) 
Extensive and ds4) Complete. Each Fragility Curve (FCi) is defined by means of a cumulative 
lognormal distribution function, which is fully defined by two parameters, namely the median 

value, , and the standard deviation, . For large-scale assessments of seismic damage and 

risk, simplified procedures were proposed to define these two parameters. Median values are 
derived from the capacity spectrum in its bilinear simplified form, while standard deviations 
are obtained assuming that the damage in earthquakes is distributed according to a binomial 
probability distribution (Lagomarsino & Giovinazzi, 2006). These simplified procedures were 
applied to different building types and cities. See for instance Barbat et al. (2008); Lantada et 

al. (2009) and Pujades et al. (2011). However, all these risk studies are deterministic, in the 
sense that they do not take into account the uncertainties, neither epistemic nor random, of the 
parameters involved. Non-Linear Dynamic Analysis (NLDA) consists in submitting the struc-
ture to acceleration time-histories, which can be defined by synthetic or recorded accelero-
grams. This more sophisticated and costly structural analysis allows observing the time-
histories of the structural response, being frequently used for comparison between the maxi-
mum values obtained and the ones coming from more straightforward static methods (see 
Mwafy & Elnashai 2000; Poursha et al. 2007 and Kim & Kuruma 2008). It is worth noting 
that in these works the problem is not either faced from a probabilistic viewpoint. Among 
many others authors, McGuire (2004) emphasizes the importance of dealing with seismic risk 
assessment from a probabilistic point of view. Actually there are many sources of randomness 
due to random and epistemic uncertainties. A number of issues concerning the impact of epis-
temic uncertainties on earthquake loss models is described and discussed in some detail in 
Crowley et al. (2005). Most of the parameters involved in the assessment of seismic vulnera-
bility and risk of structures are random variables. Concerning the structure itself, a few exam-
ples are the parameters related to the characteristics of the materials, geometry and size of the 
structure and of the sections of its structural elements, cracking and crushing of concrete, 
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strain hardening and ultimate strength of steel, as well as many other effects such as slab par-
ticipation and axial force variations on column strength. Moreover, an additional significant 
source of randomness is the expected seismic action. Therefore, effective peak acceleration, 
peak ground acceleration (PGA), frequency content and duration are random variables that 
introduce significant uncertainties in the structural response. To overcome this high variability 
in a deterministic simplified way, seismic design standards suggest using decreased material 
strengths and increased seismic actions. Convenient safety factors are recommended. Howev-
er, it is well known that in a non-linear system it is not guaranteed that a variation in the input 
parameters would produce a similar variation in the output parameters response. Consequent-
ly the probability distribution of the response might be different from that corresponding to 
the input variables. Therefore, increasing the severity of the expected seismic actions and de-
creasing strength parameters do not ensure the reliability of the response. Moreover, these 
conservative assumptions may lead to excessively conservative responses. Accordingly, it 
could be concluded that it is correct to face structural analysis and seismic risk analysis by 
using probabilistic approaches. Borzi et al. (2007) treat the strength parameters and dimen-
sions of structural capacity as being random. Fragiadakis & Vamvatsikos (2010) evaluate the 
nonlinear behavior of structures by means of nonlinear static analysis. They took into account 
the uncertainties of the properties of the materials, by using a Monte Carlo procedure. Dolsek 
(2010) considered the randomness of the seismic action using real earthquake accelerograms 
compatible with target design spectra, but did not take into account the uncertainties of the 
mechanical properties of the structure. The main goals of this article are the following: (1) the 
analysis of the use of simplified nonlinear static procedures to assess the seismic response of 
buildings when compared to more sophisticated and costly NLDA methods; (2) to analyze the 
influence of the uncertainties in the structural response produced by the uncertainties in the 
structural properties and in the seismic actions. Concerning structural properties, for the sake 
of simplicity, only the randomness of steel yield strength and the concrete compressive 
strength are considered by means of adequate probability distributions. The uncertainties in 
the seismic actions are considered by means of sets of accelerograms corresponding to real 
earthquakes whose response spectra fit well the design spectra chosen for the analysis. A rein-
forced concrete building with waffle slabs is used as a guiding case study. This type of build-
ing is frequently used in Spain as multifamily housing, being well known its limited ductility 
(Vielma et al. 2009; Vielma et al. 2010). A simplified capacity spectrum-based method is 
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then used to assess the fragility and expected damage of this building. The seismic response 
of this building is also investigated by means of NLDA. Both analyses, static and dynamic, 
are carried out by means of deterministic and probabilistic approaches. The Ruaumoko soft-
ware (Carr 2000) is used for the computations involved in the structural analyses. The results 
are then used for comparison and discussion. 

2 Building and building model 

The building used as a guiding case-study is a reinforced concrete building with waffle slabs. 
As stated above, these buildings have limited ductility and are very frequent in Spain and 
other Mediterranean countries. The building has 8 stories and 6 spans (see Figure 1), and it is 
composed of pillars and waffle slabs. Additionally, some details of the construction of waffle 
slabs can be seen in Figure 1. However, in the numerical model of the building, waffle slabs 
are approximated by beams with equivalent inertia. Moreover, it is assumed that structural 
elements, beams and pillars, follow the Takeda (Otani 1974) hysteretic rule. Yield surfaces 
are defined by the interaction diagram of the bending moment and the axial load of the pil-
lars, and the bending moment curvature in beams. Loads are applied following the recom-
mendations of Eurocode 8 (EC08 2004) for reinforced concrete structures. The Rayleigh or 
proportional damping model is used. 
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Figure 1. Examples of waffle slab construction details (up left, source: the authors), waffle slab 
sketch (down left; source: Villalba, 2006) and building model. The main dimensions of the 
building are: H = 25.65 m, B = 24 m and the fundamental period is T = 1.44 s. 

Strength properties of construction materials are usually obtained in the quality control dur-
ing their manufacture and/or during the construction works. In the case of steel yield strength 
and concrete compressive strength these values are obtained from tension and compression 
tests in samples of steel and concrete, respectively. By means of these tests, the strength of 
materials can be described as a random variable. On this basis, the concrete compressive 
strength (fc) and the steel yield strength (fy) are modeled as normal random variables. Table 1 

shows the corresponding mean, , standard deviation, , and coefficient of variation (c.o.v.). 

The coefficient of variation (c.o.v.) of a random variable is the ratio between its standard de-
viation and its mean value. For deterministic approaches, design standards suggest using 
characteristic values for the strength of the materials. The characteristic value is defined as 
the one having an exceedance probability equal to 0.95. For normal probability distributions, 

the following equations define the characteristic values, 'f c  and 'f y , of fc  and fy  respec-

tively. 
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Table 1. Mean values ( ), standard deviations ( ) and coefficients of variation of the concrete 
compressive strength (fc) and the steel yield strength (fy) considered as normal random 
variables. 

   (MPa)   (MPa) Coefficient  
of variation (c.o.v.)

fc  30 1.5 0.05 
fy  420 21 0.05 

Thus, values in Table 1 and Equations (1) allow obtaining characteristic strength values of 

materials for concrete ( 'f c =27525 kPa) and steel ( 'f y =385350 kPa). These characteristic 

values were used in the deterministic approach, while the normal probability distributions 
defined by the parameters in Table 1 were used in the probabilistic approach by using Monte 
Carlo simulations. 

3 Seismic action 

It is worth noting that for application to specific urban areas, the earthquake scenarios and the 
corresponding seismic actions should be defined according to the seismic hazard of the zone. 
This means that, according to the regional and local seismic hazard available studies, ade-
quate response spectra and likely expected PGA values must be used. Anyhow, this is not the 
purpose of this study, in which the 5% damped elastic response spectra provided in Eurocode 
EC08 are tested and a wide range of PGA are used in such a way that the structural response 
can be analyzed for spectral displacements in the range between the elastic behavior and the 
collapse. Nonlinear static procedures require defining the seismic actions by means of 5% 
damped elastic response spectra. NLDA require acceleration time histories, namely accelero-
grams. The comparison of the results obtained requires for the acceleration time histories 
used in dynamic analyses to be compatible with the response spectra used in static proce-
dures. There are several ways to tackle this issue. One solution is to use synthetic accelero-
grams compatible with the response spectrum. In fact, Ruaumoko software incorporates tools 
(Gasparini and Vanmarcke 1976) to produce synthetic accelerograms compatible with a giv-
en response spectrum. Another option is to use real accelerograms. Hancock et al. (2008) 
provide an overview of the different approaches to use real accelerograms. The choice is not 
straightforward as there are many legitimate options between these two alternatives, includ-
ing scaling real accelerograms to adequate periods or range of periods, or using spectral 
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matching techniques. Anyhow, for seismic damage and risk assessment, Faccioli (2006) and 
Faccioli and Pessina (2003) recommend the use of accelerograms of actual earthquakes and 
this choice was preferred in this work. A specific method for the selection of a number of 
accelerograms, from accelerogram databases compatible with a given response spectrum, is 
proposed in this paper and will be described below. But before that, the response spectra used 
in this paper are described. 

3.1 Response spectra 

Eurocode EC08 provides two kinds of elastic response spectra, type 1 and type 2, respective-

ly for great ( sM >5.5) and small earthquakes, and five soil classes: A, B, C, D, and E. Class A 

corresponds to the hardest soils and class D to the softest ones. Class E corresponds to special 
soils with stratified heterogeneous sediments. These spectra will be referred as 1A, 1B, 1C, 
1D and 1E, and 2A, 2B, 2C, 2D and 2E. The normalized spectral shapes of these spectra are 
shown in Figure 1. Extreme spectra 1A, 1D, 2A and 2D have been highlighted and the values 
corresponding to the fundamental period of the building (T = 1.44 s) were also plotted in this 
figure. These four extreme spectra will be used in non linear static analyses. It can be seen 
how, at this period, the 1D spectrum has the highest response, so in NLDA it is expected that 
the accelerograms most damaging the structure will be those matching this spectrum. Fur-
thermore, the spectral ordinate of the 2D spectrum is a little bit higher than that correspond-
ing to the 1A spectrum. Note how the static and dynamic structural analyses will confirm that 
the spectral displacements and expected damage are greater for the seismic actions defined by 
1D and 2D spectra than for the ones defined by 1A and 2A spectra respectively.  
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Figure 2. Normalized spectral shapes of the 5% damped elastic response spectra provided in Euro-
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code EC08. Circle markers indicate the spectral responses for 1A, 1D, 2A and 2D spectra 
corresponding to the fundamental period (T = 1.44 s) of the building. 

Moreover, as we will see later on, supplementary work has shown that for low PGA values, 
the seismic inputs that produce the greatest spectral displacements are those matching the 1D 
spectrum. The spectral displacement of the ultimate point of the capacity spectrum of the 
building considered is 21.2 cm. To get this spectral displacement, using seismic actions de-
fined by the rest of spectra, it would be necessary to scale acceleration records to large PGA 
values, greater than 0.6 g, which are highly unlikely in Spain, where the PGA for a return 
period of 500 years is less than 0.25 g (NCSE-02, 2002). Therefore, in this paper the Incre-
mental Dynamic Analysis (IDA), both probabilistic and deterministic, will be performed only 
using records whose response spectra are compatible with the 1D spectrum. This analysis 
was considered sufficient for the purpose of this work. In the following section a specific 
procedure is proposed to select accelerograms. That is, given a target spectrum and an accel-
erograms database, the purpose is to extract the optimum number of accelerograms of the 
database better fitting the target spectrum. 

3.2 Accelerograms 

As stated before, NLDA requires accelerograms. Stochastic analyses require a significant 
number of accelerograms, all of them well-matched with a target spectrum. So, given a target 
response spectrum and a specific database of acceleration records, the procedure used to se-
lect accelerograms observes the following steps. Step 1: normalize the target spectrum at pe-
riod zero. Step 2: compute the corresponding normalized spectrum for each accelerogram. 
Step 3: compute a measure of the misfit between the computed and target spectra; in this 
case, this measure is the error computed according to the following equation: 

 2

1

1 1 , 1
1

jn

j ji i

i

y Y j N i n
n




   
     (2) 

where 
j  is a least square measure of the misfit between the spectrum of accelerogram j and 

the target spectrum, ,i jy  is spectral ordinate i of the spectrum of accelerogram j, and 
iY  is the 

corresponding i ordinate of the target spectrum; n is the number of spectral ordinates of the 

accelerogram, which are assumed to be the same for each accelerogram j, and N is the num-
ber of accelerograms. Step 4: organize spectra according to increasing errors. Step 5: let 
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1 , 1ikSa i n k N   , be the i spectral ordinates corresponding to the spectrum of accelero-

gram k, once the accelerogram series have been arranged in such a way that 

( 1) 1 1k k k N     . Step 5: compute the following new spectra: 

1

1 1 , 1 ;
m

im ik

k

b Sa i n m N
m 

      (3) 

imb  is now the spectral ordinate of the mean of the first m spectra, once they have been ar-

ranged. Step 6: compute the following new error function (
mEr ) which is similar to that given 

in Equation (2). 

 2

1

1 1 , 1
1
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m im i
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     (4) 

The value of m that minimizes the value of 
mEr  is taken as the optimum number of accelero-

grams that are compatible with the given target spectrum and that can be used from the given 
database. Of course the value of 1Er  is also crucial to know the adequacy of the fit. For data-

bases with a large number of accelerograms, 1Er  is really low, while there are m values of the 

order of several tens. Some additional basic assumptions can be made in order to reduce the 
size of the database. Information about the magnitude and focal mechanism of earthquakes 
and about distance and soil type of accelerometric stations can be used to significantly reduce 
the number of acceleration records to be tested. This procedure was applied to the European 
(Ambraseys et al. 2002, Ambraseys et al. 2004) and Spanish strong motion databases. As the 
European database is larger, most of the selected accelerograms are taken from this database. 
Nevertheless, for spectra type 2, some additional accelerograms were selected from the Span-
ish database. For each spectrum, 1A, 1D, 2A and 2D, more than 1000 acceleration records 
were tested. Figure 3 shows the error function, 

mEr  in Equation (4), for EC08 1D spectrum. 

The value of m minimizing this function was found to be 20. Table 2 shows the main parame-
ters of these accelerograms. The mean values of magnitude, distance and depth are respec-
tively 6.5, 67 km and 16.7 km, and the corresponding standard deviations are 0.7, 53.6 km 
and 17.6 km. Figure 4 a) shows the target EC08 1D spectrum, the mean spectrum and the 
spectrum defined by the median values plus one standard deviation. The fundamental period 
of the building is also plotted in this figure. Figure 4 b) shows an example of compatible ac-
celerogram. Table 3 shows the statistics of the distributions of the magnitudes of the events 
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corresponding to the accelerograms that were selected for their compatibility with 1A, 1D, 
2A and 2D spectra. 

 
Figure 3.  Function mEr  used to optimize the number of compatible accelerograms. This example 

corresponds to EC08, 1D spectrum and m = 20. The main parameters of the selected rec-
ords are shown in Table 2. 

4 Deterministic approach 

The capacity, fragility and expected damage of the building whose structural model has been 
described in the previous section are first estimated by means of a deterministic approach.  

4.1 Nonlinear static analysis 

In this case the characteristic values given above are used; see Equation (1) and Table 1. 
Nonlinear static analysis or Pushover Analysis (PA) consists in simulating the horizontal 
loads according to a specific pattern and then increasing their values until the structure col-
lapses. The result of PA is the capacity curve shown in Figure 5 a), which represents the 
shear force at the base as a function of the displacement at the roof of the building (see also 
Mata et al. 2007; Faleiro et al. 2008). The loading pattern (triangular, rectangular, and so on) 
has a major influence on the results (Mwafy & Elnashai 2000). 

Table 2. Main parameters of the 1D spectrum compatible accelerograms. 
Event 

n. 
Date 

Epicenter (deg) Depth 
(km) 

Mag. 
M. 

type 
Station name 

Distance 
(km) Lat N Lon E 
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1 06.05.1976 46.32 13.32 6 6.3 Mw Castelfranco-Veneto 132
2 06.05.1976 46.32 13.32 6 6.3 Mw Codroipo 48
3 15.09.1976 43.32 13.16 12 5.9 Mw Cortina d´Ampezzo 83
4 16.09.1978 33.36 57.42 5 7.3 Ms Boshroyeh 55
5 15.04.1979 41.98 18.98 12 7.0 Ms Ulcinj-Hotel Olimpic 24
6 23.11.1980 47.78 15.33 16 6.5 Mw Bagnoli-Irpino 23
7 23.11.1980 47.78 15.33 16 6.5 Mw Rionero in Vulture 33
8 23.11.1980 47.78 15.33 16 6.5 Mw San Giorgio la Molara 64
9 17.01.1983 38.07 20.25 14 7.0 Ms Agrinio-Town Hall 118

10 06.06.1986 38.01 37.91 11 5.7 Ms Galbasi-Devlet Hastanesi 34
11 13.09.1986 37.10 22.18 8 5.7 Ms Kalamalata-Prefecture 9
12 30.05.1990 45.85 26.66 89 6.8 Ms Istrita 80
13 20.06.1990 39.96 49.41 19 7.3 Ms Tehran-Sarif University 223
14 20.06.1990 39.96 49.41 19 7.3 Ms Tonekabun 131
15 06.11.1992 38.16 27.00 17 6.0 Ms Izmir-Bayindirlik 30
16 26.09.1997 43.02 12.89 7 5.7 Mw Bevagna 25
17 09.11.1997 42.90 12.95 10 4.8 Mb Castelmuovo-Assisi 31
18 23.11.1980 40.78 15.33 16 6.5 Mw Gioia-Sannitica 94
19 17.08.1999 40.70 29.99 17 7.4 Mw Bursa-Sivil Savunma 93

20 17.08.1999 40.70 29.99 17 7.4 Mw Izmit-Metereoloji-
Istasyonu 10 
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 a) b) 
Figure 4.  a) Normalized EC08 1D spectrum. The mean and the mean plus one standard deviation 

spectra are also shown. The fundamental period of the structure is also plotted. b) Exam-
ple of one accelerogram matching this spectrum. 

The Adaptive Pushover Analysis (APA) technique proposed by Satyarno (1999) has been 
used in this work. A detailed description of this procedure can be found in the Ruaumoko 
software manuals (Carr 2000). Figure 5 a) shows the capacity curve and Figure 5 b) shows 
the capacity spectrum and its bilinear simplified form (ATC-40 1996), which is defined by 
the yielding point (Dy, Ay) and the ultimate capacity point (Du, Au). In this case, Dy = 0.13 
m, Ay = 0.23 g, Du = 0.21 m and Au = 0.24 g. Dy and Du, are used to elaborate fragility 
curves by means of a simplified procedure. 
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Table 3. Statistics: mean values, standard deviations and coefficients of variation of the magni-
tudes of the earthquakes corresponding to the selected accelerograms and spectra. 

EC08  
spectrum type 

Mean value
(

M ) 

Standard deviation
(

M ) 
Coef. of var. 

c.o.v. 
1A 5.5 1.22 0.20
1D 6.5 0.72 0.11
2A 5.3 0.82 0.16
2D 5.2 0.99 0.19

 
4.2 Fragility curves 

As stated above, for a building or a structure and for a given damage state dSi, the corre-
sponding fragility curve defines the probability that this damage state be equaled or exceed-
ed. This function is defined by a cumulative lognormal distribution, as a function of a param-
eter defining the intensity of the seismic action (FEMA 1999), which in our case is the spec-
tral displacement (Sd). 
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Figure 5.  Capacity curve (a) and capacity spectrum (b) obtained from the deterministic APA. 

The normal and lognormal distributions are closely related. If X is distributed lognormal-
ly with parameters µ and σ, then log(X) is distributed normally with mean µ and standard 
deviation σ. In our case, the following equation defines the fragility curve (FEMA 1999): 

1

i i

i

ds ds

Sd
P d ds Sd Ln

Sd




  
           

 (5) 

where  stands for the cumulative lognormal distribution, d is the expected damage, Sd is the 

spectral displacement, and 
idsSd  and 

ids  are the median values and standard deviations of 

the corresponding normal distributions. For simplicity 
idsSd  will be called as 

ids . 
ids  is also 

known as the damage state threshold, and the probability of exceedance of the damage state 
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dsi for Sd = 
ids is equal to 0.5. The following simplified assumptions allow obtaining fragility 

curves from the bilinear form of the capacity spectrum: 1) 
ids  is related to the yielding point 

and ultimate capacity point as follows: 

1 2 3 4
0.7 , , 0.25 ( ), andds ds ds dsDy Dy Dy Du Dy Du          (6) 

and 2) the expected seismic damage in buildings follows a binomial probability distribution. 
These assumptions were proposed by Lagomarsino and Giovinazzi in the framework of the 
Risk-UE project (Milutinovic & Trendafiloski, 2003), were published by Lagomarsino and 
Givinazzi (2006) and have been used in many seismic risk assessment studies for European 
earthquake prone cities (see for instance Barbat et al. 2008 and Pujades et al. 2012). The first 
assumption is based on expert opinion and relates the expected damage to the stiffness degra-
dation of the structure; the second one is based on the damage observed in past earthquakes. 
In fact, the European Macroseismic Scale, EMS’98 (Grünthal 1998), establishes that the ob-
served damage follows a binomial distribution. Given that for the damage states thresholds, 
the probability of exceedance of the corresponding damage state is 50%, assuming the bino-
mial distribution allows calculating the probabilities of exceedance of the other damage 

states. Therefore 
ids  can be obtained from a least squares fit of the fragility curves to the 

computed exceedance probabilities, thus defining the fragility curves completely. A more 

detailed description on how the values of 
ids  are obtained can be found in Lantada et al. 

(2009). Figure 6 shows the deterministic fragility curves. Markers indicate the points ob-
tained applying the two simplifying assumptions described above. Table 4 shows the parame-
ters obtained for the deterministic fragility curves. 

4.3 Performance point, damage probability matrices and damage index 

For a given seismic action defined by the 5% damped elastic response spectrum, there are 
several methods to obtain the spectral displacement that this seismic action will produce in 
the building defined by its capacity spectrum. Once this spectral displacement is found, fra-
gility curves allow assessing the probabilities of exceedance of each damage state and, there-
fore, the probabilities of occurrence of each damage state can be easily known. In this section 
two well-known procedures to obtain the expected spectral displacement are applied to the 
selected building when submitted to the seismic actions considered. The corresponding fra-
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gility curves are then used to obtain the damage probability matrices, that is, the probabilities 
of occurrence of each damage state. Furthermore a damage index is defined and used to rep-
resent the expected damage by means of only one parameter. The representation of this dam-
age index as a function of the severity of the seismic action, defined in this case by the PGA, 
is called damage function. 
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Figure 6. Deterministic fragility curves. 
 

Table 4. Parameters, 
ids and 

ids  for the deterministic fragility curves. 

 Non-null damage states
 1) Slight 2) Moderate 3) Severe 4) Collapse 

ids (cm) 8.9 12.3 15.3 21.2 

ids  0.27 0.21 0.22 0.27 

4.3.1 Performance point 

The performance point defines the expected spectral displacement of the building defined by 
its capacity spectrum when submitted to an earthquake defined by its 5% damped elastic re-
sponse spectrum. There are several methods to obtain the performance point. These methods 
use Capacity-Demand-Diagrams that are based on inelastic response spectra in ADRS format 
(Mahaney et al. 1993, ATC 1996). Although several method improvements were proposed, 
see for instance Chopra and Goel (1999), for the purposes of this work two simplified meth-
ods were used. The first method is the well-known equivalent linear displacement or Equal 
Displacement Approximation, which assumes that the inelastic spectral displacement would 
be the same as if the structure would have a linear behavior. The second one, known as Pro-



Bulletin of Earthquake Engineering, 11(6), 2013, 2007-2032 

 

 16

cedure A in Chapter 8 of ATC-40 (ATC 1996), involves an iterative process to reduce the 
elastic response spectrum according to the ductility of the structure, which is calculated from 
the bilinear capacity spectrum. This method was rigorously tested by Fajfar (1999), who con-
cluded that it provides a good approximation for the spectral displacement of a structure, tak-
ing into account its nonlinear behavior. In this article, these methods will be called respec-
tively EDA and PA-8. Figure 7 a) and Figure 7 b) show an example of the application of the 
EDA and PA-8 methods respectively. 
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Figure 7. Example of the computation of the performance point by using the EDA (a) and the 
PA-8 (b) methods. 

The capacity spectrum corresponds to the reinforced concrete building (Figure 5 a), while the 
scaled response spectrum corresponds to the EC08 2D spectrum (Figure 2). Both procedures 
were applied to the EC08 1A, 1D, 2A and 2D spectra and PGA values were increased be-
tween 0.01 and 1.6 g. Figure 8 shows the spectral displacements as functions of PGA for the 
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EDA case. Sdp in this Figure is the spectral displacement of the performance point. Note how 
seismic actions compatible with 1D response spectra are the most demanding of spectral dis-
placement, while those compatible with 2A spectra are the less demanding ones. 

4.3.2 Damage probability matrices 

For a given spectral displacement, Sd, fragility curves provide the probabilities of exceedance 
of the damage states. Damage Probability Matrices (DPM) are defined as the probability of 
occurrence of each damage state. DPM can be calculated straightforwardly from fragility 
curves. Should dsi ( 1 4i   ) be the four non-null damage states as defined above, Pi be the 

probability of occurrence of the damage state dsi, and 0i   correspond to the no-damage or 

null damage state, then Pi(Sd) values can be computed in the following way: 

0 1

1

4 4

( ) 1

( ) 1 3

( )
i i i

P Sd P d ds Sd

P Sd P d ds Sd P d ds Sd i

P Sd P d ds Sd



     
           
    

  (7) 

where
iP d ds Sd     values at the right side of these equations can be obtained by using Equa-

tion (5). 
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Figure 8. Spectral displacements, Sdp, as functions of PGA for seismic actions defined by 1A, 1D, 

2A and 2D EC08 response spectra. The performance points were obtained by using the 
EDA method. The seismic actions defined by 1D response spectrum are the most de-
manding of spectral displacement. 
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4.3.3 Damage index 

It is useful to define the following damage index that can be understood as the mean damage 
grade. 





4

0
)()(

i

i SdiPSddi  (8) 

di(Sd) takes values between 0 and 4.  di(Sd) = 0 means that the probability of the no-damage 
is equal to 1 and  di(Sd) = 4 means that the probability of the Complete damage state or Col-

lapse equals 1. Moreover, taking into account that the probabilities of occurrence of the dam-
age states follow a binomial distribution, it is well known that the binomial distribution is 
controlled by only one parameter, taking values between 0 and 1. In our case this parameter 

is 
4

)()( Sddi
SdDI  , being 4 the number of non-null damage states. DI is also known as the 

normalized damage index. DI = 0 means no-damage and DI = 1 means collapse. Thus 
( )DI Sd completely defines the iP  values, and, using Equations (7), these values completely 

define the fragility curves. Therefore, for a given spectral displacement, these are different 
but equivalent ways of defining the expected damage. Furthermore, taking into account that 
for a given seismic action there is a relationship between Sdp and PGA (see Figure 8), then 
different fragility curves and damage functions can be also represented as functions of PGA 
for each seismic action. That is, for each PGA, Figure 8 allows obtaining the corresponding 
spectral displacement Sdp, and fragility curves (Figure 6) allow obtaining the probabilities of 
exceedance of each damage state. Finally the mean damage grade DI(Sdp) is obtained by us-
ing Equations (7) and (8). Figure 9 shows the damage functions for seismic actions defined 
by EC08 1A, 1D, 2A and 2D 5% damped response spectra. In this Figure 9 a PGA value of 
0.4 g was chosen to illustrate the computation of DPM, damage indices, di, and the corre-
sponding normalized damage indices, DI. Table 5 shows the results obtained for this case. 
Figure 10 displays the DPM corresponding to the values in Table 5. 
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Figure 9. Damage index, di, as a function of PGA for seismic actions defined by 1A, 1D, 2A and 
2D spectra. The fragility curves of Figure 6 and the spectral displacements of Figure 8 
were used. 

4.4 Nonlinear dynamic analysis 

NLDA allows evaluating the response of a structure subjected to a time history of accelera-
tion. The IDA, as proposed by Vamvatsikos & Cornell (2001) has been used in this article. 
The purpose here is to monitor a structural damage measure by increasing the intensity of the 
seismic action defined by the PGA level. Vamvatsikos & Cornell (2001) performed an inter-
esting analogy between PA and IDA, showing how both procedures increase the loads ap-
plied to the structure and measure the response of the system in terms of a control variable, 
which can be the displacement at the roof or the maximum inter-storey drift, among others. 
Thus, IDA analysis allows also obtaining a relationship between the control variable, Sd, and 
PGA. This section describes the application of IDA as used in this work. For non-linear static 
analysis, Figure 8 shows that for low PGA values, the seismic inputs that produce the greatest 
spectral displacements are those matching the EC08 1D spectrum. For the rest of spectra, it 
would be necessary to scale acceleration records to large PGA values that are unlikely in 
Spain, where the PGA for a return period of 500 years is less than 0.25 g (NCSE-02, 2002). 
Therefore, in this paper, IDA is performed using only records whose response spectra are 
compatible with the EC08 1D spectrum. 

Table 5. Damage Probability Matrices for PGA = 0.4 g. The damage index, di, and the normalized 
damage index, DI, are also shown.  

Type of  
EC08  spectrum 

Probabilities of the damage states

di DI 
0) No-damage 1) Slight 2) Moderate 3) Severe 4) Collapse 

P0 P1 P2 P3 P4 

1A 0.03 0.15 0.36 0.36 0.10 2.36 0.59
1D    0.01 0.99 3.99 1.00
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2A 0.74 0.25 0.01   0.26 0.07
2D 0.01 0.09 0.31 0.44 0.15 2.63 0.66

() means very low probability 
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Figure 10. DPM for earthquake scenarios defined b y a PGA of 0.4 g and EC08 1A, 1D, 2A and 
2D spectra. The DPM values are those in Table 5. 

This limited analysis was considered sufficient for the purpose of this work. Moreover, in the 
nonlinear static analysis using EDA and PA-8 approaches for the EC08 1D spectrum, the 
PGA needed to reach the extreme case of collapse is about 0.3 g (see Figure 9). Thus, the 
acceleration time histories compatible with the EC08 1D spectrum were scaled from 0.06 to 
0.36 g, by increments of 0.06 g. This would allow analyzing all the damage states from null 
or no-damage to collapse. In order to estimate the relationship between PGA and Sdp, when 
using deterministic IDA, only one seismic record is needed. This accelerogram was obtained 
according to the following procedure. From the mean spectrum and its standard deviation, 
calculated over the 20 actual  spectra that will be used in the probabilistic IDA, a characteris-
tic spectrum is defined as that having a 5% likelihood of being exceeded. This spectrum is 
shown in Figure 11 a). Then, a compatible artificial accelerogram is generated after this char-
acteristic spectrum. For the deterministic IDA, the choice of a compatible artificial accelero-
gram was preferred because it optimizes the matching to the target spectrum. Actual acceler-
ograms may lead to greater misfits. The algorithm by Gasparini & Vanmarcke (1976) is used 
for this purpose, with the trapezoidal envelope proposed by Hou (1968). There are different 
ways to consider the duration of earthquakes (Hancock & Bommer 2006). In this work a 
simplified procedure was used. The duration of the simulated earthquake was defined as the 
average duration of the 20 accelerograms used in the probabilistic IDA. Figure 11 b), shows 
the results obtained by applying deterministic EDA, PA-8 and IDA approaches. Yielding, Dy, 
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and ultimate, Du, capacity spectral displacements are also plotted in this Figure. In our case, 
for PGA values higher than the corresponding to Du, the results have little or no sense. For 
lower PGA values simplified procedures are conservative, but there is a better agreement 
between spectral displacements obtained using PA-8 and IDA approaches. 
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Figure 11. a) Characteristic spectrum obtained from real accelerograms. b) Results of the determin-
istic approach. 

5 Probabilistic approach 

In the previous section, the deterministic approach was used to overview several methods to 
assess the capacity, fragility, and expected physical damage to structures due to seismic ac-
tions. In this section this assessment is done under the assumption that the mechanical proper-
ties of materials and the seismic actions are random. Monte Carlo simulations are used to 
obtain probabilistic capacity and fragility curves and to assess the expected spectral dis-
placement, by using nonlinear static and dynamic structural analyses. This way, the determin-
istic and probabilistic results obtained by means of simplified nonlinear static analysis can be 
compared to the ones obtained with more sophisticated nonlinear dynamic analysis. Further-
more, the probabilistic approach allows analyzing the influence of the variability of the input 
parameters into the structural response and performance of the building. 

5.1 Nonlinear static analysis  

PA was carried out 10 000 times, considering the random variables of the concrete compres-
sive strength, fc, and the tensile strength of steel, fy. The values that define these random var-
iables are shown in Table 1. The probability distributions of these random variables are as-
sumed to be Gaussian. As described above (Figure 1), the building is composed of 56 pillars, 
which are divided into eight groups, each one corresponding to a storey. The correlation ma-
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trix is used to take into account the correlation among the samples. Thus, high correlation is 
considered among the samples generated for the pillars belonging to a same group. But, the 
correlation among the samples generated for pillars of different groups is considered to be 
null. Therefore, a kind of spatial variability of the randomness is also taken into account. The 
same approach is used with the beams of equivalent inertia, which model the waffle slabs. 
The pillars are attached to waffle slabs that are modeled by beams having an equivalent iner-
tia. Since the floors are alike at all levels, there is only one type of cross section for these 
beams. In each iteration of the Monte Carlo technique, for each element, pillar or beam, of 
one group, a random sample of concrete strength and steel is generated, according to the pro-
cedure described in Kalos & Whitlock (1986). Thus, in every implementation of PA, the re-
sistance of structural elements varies in a stochastic way. Figure 12 shows the 10 000 capaci-
ty curves, the mean capacity curve and the deterministic capacity curve, which were obtained 
using the characteristic strength values. It is worth noting that the maximum displacement 
value of the curve obtained using characteristic strength values is exceeded by 82.5% of all 
the capacity curves. Therefore, the probability of the structure reaching collapse before this 
value is 17.5%. Furthermore, key parameters of the capacity curves coming from the Monte 
Carlo simulations are also random. Figure 13 shows the correlation plots between the initial 

stiffness, Ko, and fc, and between the ultimate capacity displacement, u, and fy. It can be 

seen how u slightly increases with fy (Figure 13 a). Figure 13 b shows the strong dependence 

between Ko and the compressive strength of concrete, fc. In order to have a more accurate 
measure of the degree of dependence between input and output variables, the correlation ma-
trix was calculated. The input random variables are fy and fc. 
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Figure 12. Capacity curves obtained from the probabilistic approach, mean capacity curve and 
capacity curve obtained with the deterministic approach by using characteristic values. 

The output random variables considered herein are the stiffness of the elastic section of the 
capacity curve, known as Ko, the yielding and ultimate spectral displacements of the bilinear 
form of the capacity spectrum, namely Dy and Du, and the ductility capacity factor, q, which 
can be estimated by using the following equation: 

Du
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Figure 13. Correlation between the ultimate displacement, u,of the capacity curve and fy (a) and 

between Ko and fc (b). 
 

Once the input and output random variables are defined, the correlation matrix ij can be cal-

culated using the following equation: 
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( , )

i j

i j

ij

x x

Cov x x


 
  (10) 

where ix and jx  are variables, Cov is their covariance, and 
ix and

jx are the standard devia-

tions of the variables ix  and
jx . The correlation matrix among the random variables consid-

ered is shown in Table 6. 

Table 6. Correlation matrix between the random variables 
 

  Input variables Output variables
  fy fc q Ko Dy Du 

Input 
variables 

fy  1.00 0.00 0.13 -0.01 0.34 0.21 
fc  0.00 1.00 -0.14 0.55 0.18 -0.10 

    

Output 
variables 

q  0.13 -0.14 1.00 -0.48 -0.20 0.97 
Ko -0.01 0.55 -0.48 1.00 0.71 -0.33 
Dy  0.34 0.18 -0.20 0.71 1.00 0.03 
Du  0.21 -0.10 0.97 -0.32 0.03 1.00 

 

As expected, a strong correlation value of 0.71 exists between stiffness and yielding spectral 
displacement, and a value of 0.97, between ductility and ultimate spectral displacement. Ad-
ditionally a significant correlation value of 0.55, between Ko and fc, and of 0.34, between fy 
and Dy, can be observed. The correlation matrix shows the wealth of information that can be 
obtained from probabilistic approaches. 

5.2 Fragility curves 

As seen above, simplified procedures may be used to obtain fragility curves from bilinear 
capacity spectra, which can be easily derived from capacity spectra. So, Equations (6) allow 
computing the damage states thresholds for each one of the capacity curves of Figure 12. 

Figure 14 shows these damage states thresholds (
ids ), together with those corresponding to 

the deterministic capacity curve. Table 7 shows the mean values, 
ids , standard deviations, 

ids , and coefficients of variation, c.o.v. The deterministic damage state thresholds, ,detids , are 

also shown in Table 7 and in Figure 14. It can be observed in this figure that 1ds  and 2ds  

thresholds are strongly correlated with spectral acceleration because the corresponding spec-
tral displacements are near the zone where the behavior of the building is linear. However, 

3ds  and especially 4ds , thresholds exhibit much more dispersion. Note that the dispersion, 
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and thus the probability of occurrence of 
ids  inferior to ,detids , increases as spectral displace-

ments augment. Table 8 shows the probability of ids  being inferior to ,detids . Each fragility 

curve is completely defined should 
ids  and 

ids  be known. As explained above these parame-

ters can easily be estimated from capacity spectra and simplifying assumptions. 

 
Figure 14. Damage states thresholds obtained with the probabilistic and deterministic approaches. 

 
Table 7. Mean values, standard deviations and coefficients of variation c.o.v. of the 

damage state thresholds. Deterministic values are also included. 
 Damage states 
 1) Slight 2) Moderate 3) Extensive 4) Collapse 

Mean values 
ids   (cm) 9.2 13.2 15.6 22.7 

Standard deviations
ids   (cm) 0.16 0.22 0.51 1.60 

Coefficients of variation c.o.v 0.02 0.02 0.03 0.07 

Deterministic values 
,i Detds (cm) 8.8 12.7 14.8 21.2 

 
Table 8. Probability that the thresholds of the damage states, obtained with the proba-

bilistic method, be less than the ones estimated by the deterministic proce-
dure. 

P[ 1ds < det,1ds ] P[ 2ds < det,2ds ] P[ 3ds < det,3ds ] P[ 4ds < det,4ds ] 

0.004 0.004 0.029 0.175 

Figure 15 a) shows the fragility curves. Again, the variability increases with increasing dam-
age states. Note that this increment is due to the increasing nonlinearity of the structural re-
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sponse. Figure 15 b) plots the mean ids values of the lognormal function against the corres-

ponding
ids , thus illustrating the correlation between ids and

ids . Table 9 shows the correla-

tion coefficients, which also augment as ids  increases. In order to represent the probabilistic 

fragility curves in a parametric form, a Gaussian model for the parameters describing the fra-
gility curves was tested. Figure 16 a) and b) compare the empirical and parametric models, 
respectively for ids  and 

ids , showing a good fit. 

a) b) 
Figure 15 Fragility curves obtained with the probabilistic approach (a), and correlation among 

parameters ids and 
ids , which define the lognormal functions of the fragility curves (b). 

 

Table 9. Correlation coefficients between ids  and 
ids  

 1ds -
1ds 2ds -

2ds 3ds -
3ds 4ds -

4ds

ij
  -0.20 -0.20 0.82 0.97 

Table 10 presents the mean values and standard deviations of the Gaussian models. The coef-
ficients of variation are also shown in this table. 

Table 10. Mean values,  , standard deviations,  , and coefficients of variation, c.o.v., of the ran-
dom variables that define the fragility curves for the four non-null damage states. 

 Damage states
 1) Slight 2) Moderate 3) Extensive 4) Complete 
 1ds (cm) 

1ds  2ds (cm)
2ds  3ds (cm)

3ds  4ds (cm) 
4ds  

  9.2 0.27 12.8 0.218 16.1 0.231 22.7 0.28 
  0.2 0.004 0.2 0.015 0.5 0.03 1.6 0.035 

c.o.v. 0.022 0.015 0.016 0.069 0.031 0.130 0.070 0.125 

Thus, it is possible to estimate these parameters, and consequently the fragility curves, for 
any confidence level. Another equivalent way of analyzing the results of the Monte Carlo 
simulation is the following: for each spectral displacement and for each set of fragility curves 
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in Figure 15 a), the mean value, 95% confidence level and standard deviation is obtained. 
Figure 17 a) shows the mean and the 95% confidence level fragility curves, together with the 
deterministic fragility curves. Figure 17 b) shows the standard deviation of each fragility 
curve as a function of the spectral displacement. It is worth noting that the 95% confidence 
level fragility curves are greater than the deterministic ones. The difference between these 
curves augments with increasing damage states and at intermediate spectral displacements 
close to the damage states thresholds. Note also in Figure 17 b) that, for each damage state, 
the greatest standard deviations of the fragility curves, and thus the greatest uncertainties, 
occur around damage states thresholds, namely around the mean values of the lognormal dis-
tributions. Again these uncertainties augment with increasing spectral displacements. As it 
has been pointed out above, this fact is due to the increase of the nonlinear response of the 
building at increasing seismic actions. 

5.3 Performance point and damage index 

In order to compare the nonlinear static and dynamic results, as the IDA scheme has been 
adopted, it is necessary to obtain the relationship between PGA and spectral displacement, 
Sdp, for increasing seismic actions. So, in this section the static probabilistic approach is ap-
plied to obtain the performance spectral displacements expected as a function of PGA. Thus, 
for each of the four spectra considered and for each of the 10 000 capacity curves, the meth-
ods to obtain the performance point described above were applied. Therefore, in order to 
compare the static and dynamic results, the spectra of actual accelerograms, compatible with 
the selected EC08 spectra, were used for the static-based-methods. As for the case of EDA 
procedure, it is worth noting that, since the result is linear, it is sufficient to scale the response 
spectra for a single PGA. Therefore, it suffices to extend a line from the origin passing 
through this point. Figure 18 shows an example of the 5% damped elastic response spectrum 
compatible with EC08 1D spectrum. As it can be seen in Figure 18, these response spectra in 
ADRS format are not one-to-one functions, as they show an irregular shape. This fact com-
plicates the automation of the iterative process, which is easier to apply in case of smoothed 
spectra, usually defined by simple piecewise analytical functions. 
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5.3.1 Performance point 

The main results obtained with the probabilistic EDA and PA-8 methods are summarized 
in Figure 19.Figure 19 a) shows the mean spectral displacements for the four EC08 spectra 
considered, and the corresponding standard deviations. EDA results are conservative; close to 
safety, since the assumptions, underlying EDA technique, never underestimate the expected 
spectral displacement. Again, dispersion augments with increasing PGA and, consequently, 
with increasing spectral displacements. This means that, in probabilistic approaches, it is nec-
essary to assess the uncertainty of this relationship as a function of PGA, as the Sdp(PGA) 
functions of Figure 19 a) are crucial for damage assessment. A nice measure of this uncer-
tainty can be, for instance, the standard deviation (see Figure 19 b). 

 

 

 
a) 
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b) 

Figure 16. Histograms and comparison with Gaussian random distributions for dsi (a), and
ids (b). 
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Figure 17. Fragility curves obtained with the probabilistic and deterministic approaches. The 95% 

confidence level fragility curves are also shown (a). Standard deviation of the probabil-
istic fragility curves (b). 
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Figure 18. Example of a 5% damped elastic response spectrum in ADRS format for an acce-
lerogram matching the EC08 1D response spectrum. 

This effect, due to increasing uncertainties, is more important for severe earthquakes and 
when high confidence levels are needed. On the other hand, the standard deviations of the 
EC08 2A spectrum are higher than the ones of the EC08 1D spectrum. 
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Figure 19. a) Comparison of spectral displacements, Sdp obtained with probabilistic EDA and PA-8 

techniques. b) Comparison of the corresponding standard deviations. 

For the EC08 1D spectrum and PA-8 method a significant increase of the uncertainties can be 
observed for high spectral displacements. 

5.3.2 Damage index 

Concerning the expected damage, only the case of the EC08 1D spectrum is analyzed here, as 
this is the most demanding case and will be used for comparison with the IDA probabilistic 
results. Thus, only the corresponding mean spectral displacements for the EDA and PA-8 
techniques are used (see Figure 19 a). Figure 20 a) compares the DI obtained by means of the 
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EDA approach and using mean fragility curves, 95% confidence level fragility curves and the 
deterministic approach using characteristic values. Figure 20 b) corresponds to the PA-8 ap-
proach. Observe how, for the building here analyzed, the deterministic approach, by using 
characteristic values, is a fairly good approach. However, especially for high PGA values, the 
expected deterministic damage indexes can be slightly lower than the ones corresponding to 
the 95% confidence level obtained with the probabilistic approach. Therefore, the use of 
characteristic values does not guarantee that the output variables will have the same confi-
dence level than the input ones. Furthermore, as shown in Figure 19 b), significant dispersion 
is expected. 
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Figure 20. Damage index functions by using EC08 1D spectrum: EDA procedure a), and PA-8 

procedure b). In both cases Mean, deterministic and 95% confidence level fragility 
curves (FC) were used to assess the damage index. 

5.4 Nonlinear dynamic analysis 

As in the deterministic NLDA, the IDA procedure was used, but the probabilistic approach 
was performed considering the mechanical properties of materials and seismic action as ran-
dom variables. The twenty accelerograms compatible with the EC08 1D spectrum were 
scaled, by increments of 0.06 g, until reaching the value of 0.36 g, thus allowing the analysis 
of a wide range of spectral displacements covering all the damage states from null or no-

damage to complete or collapse damage states. However, for each of the 20 records, only 100 
samples of the mechanical properties were generated. This number of samples was consid-
ered sufficient for the probabilistic analysis as this implies 2 000 NLDA for each of the 6 
PGA considered in the IDA, which would render a total of 12 000 NLDA. Figure 21 a) shows 
the results obtained. Each color in Figure 21 corresponds to a PGA value. For each color, 
namely for each PGA value, 20 clouds, having 100 points each cloud, can be observed. So, 
each cloud corresponds to a real accelerogram and each one of the 100 points of each cloud 
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corresponds to a random value of the mechanical properties of the materials. This figure illus-
trates one of the most important results of this work, clearly showing the influence of the ran-
domness of real seismic actions on the uncertainties of the response of the building. Note 
how the maximum displacement at the roof and the shear at the base augments as PGA’s in-
crease, as well as how the dispersions, and indeed the uncertainties, increase too. Should the 
results corresponding to a PGA equal to 0.06 g be closely observed (Figure 21 b), the 20 
clouds associated to the 20 accelerograms can be clearly distinguished. For each cloud, the 
differences are due to the variability of the strength properties of the materials. Nevertheless, 
the differences among different clouds are due to the variability of the 20 accelerograms used 
for the same PGA and EC08 1D spectrum, thus indicating that an important source of ran-
domness is the seismic action. Similar comments can be said for all 6 PGA values. However, 
it can be also seen in Figure 21 a) that as PGA increases, the overall dispersion augments, 
being more and more difficult to distinguish the different clouds corresponding to the differ-
ent accelerograms. However, the influence of the variability of the seismic action is also pre-
dominant. Figure 21 c) shows the detail for the extreme case of PGA = 0.36 g. This fact is 
attributed to the growth of the influence of the variability of the mechanical properties of the 
materials on intense seismic actions as the behavior of the building is governed by the non-
linear response. Consequently, the quantitative observation of the great influence of the vari-
ability of the seismic actions, and that of the variability of the properties of the materials with 
increasing PGA’s, are important outcomes of this work. The influence of ground-motion var-
iability in damage and risk calculations has also been described and discussed in Bommer & 
Crowley (2006). In order to estimate the expected damage, the spectral displacements were 
computed as a function of PGA. Figure 22 a) shows this function. In this Figure the yielding, 
Dy, and ultimate, Du, displacements, together with their 95% confidence intervals, were also 
depicted. Figure 22 b) shows the standard deviations of the spectral displacements. Again the 
standard deviations augment with increasing spectral displacements. Figure 23 shows the 
expected damage index as a function of PGA. Mean and 95% confidence curves are plotted 
together with the deterministic case. 
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Figure 21. Overall results of probabilistic NLDA, a), and details of the cases of PGA = 0.06 g, b), 
and PGA = 0.36 g c). 

For intermediate PGA values the expected damage index with a 95% confidence level is 
greater than the corresponding to the deterministic case, in which characteristic values are 
used. Figure 23 is similar to Figure 20, where the probabilistic results of applying EDA and 
PA-8 procedures are illustrated. These three cases, EDA, PA-8 and IDA, will be shown to-
gether, compared and discussed in the following section. 
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Figure 22.  a) Relationship between the PGA and the mean spectral displacement obtained with 
IDA. The 95% confidence intervals for the spectral displacements of the yielding and 
ultimate capacity points are also shown. b) Corresponding standard deviations. 
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6 Discussion and conclusions 

In this section the most relevant results of the probabilistic approach are compared and dis-
cussed and the main conclusions of this work are outlined. Moreover, an example of the prac-
tical use of probabilistic techniques to assess the expected seismic damage and risk of actual 
buildings is presented and discussed. 
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Figure 23. Damage index function by using EC08 1D spectrum and NLDA procedure, Mean, de-
terministic and 95% confidence level fragility curves (FC) were used to assess the dam-
age indices. 

6.1 Comparison of the static and dynamic probabilistic approaches  

Figure 24 summarizes the PGA(Sdp) functions obtained by means of the EDA, PA-8 and IDA 
probabilistic procedures. Figure 24 a) shows the mean values obtained and Figure 24 b) 
shows the corresponding standard deviations. For comparison purposes, Figure 24 a) also 
shows the yielding, Dy, and the ultimate, Du, spectral displacements together with their 95% 
confidence intervals. In both Figures, but particularly in Figure 24 b), significant changes in 
the slopes of the PA-8 and IDA curves can be observed. These changes begin just close to the 
yielding displacement, Dy, and they are attributed to changes in the behavior of the structure 
when entering the nonlinear part of the capacity spectrum, which also corresponds to the non-
linear dynamic response (Vargas et al. 2010). It can be seen that EDA and PA-8 simplified 
approaches do not underestimate the spectral displacement, when these simplified approaches 
are compared to the more realistic IDA procedure. Nevertheless PA-8 technique gives a more 
accurate estimation of the spectral displacement than EDA. Moreover, the greatest standard 
deviations correspond to the highest spectral displacements, around and over the ultimate 
capacity displacement, Du. Concerning expected damage, Figure 25 summarizes the results 
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of the damage index, DI, as a function of the PGA. In this Figure, the median spectral dis-
placements, Sdp, of the ordinates of the graph of Figure 24 a) are used together with the cor-
responding fragility curves at the 95% confidence level. PA-8 and NLDA provide similar 
results, but, although somewhat conservative in the range between PGA values of 0.12 and 
0.28 g, EDA never underestimates the expected damage. 
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Figure 24.  Relationship between the PGA and the median spectral displacement, Sdp, obtained with 
EDA, PA-8 and NLDA. The 95% confidence intervals for the yielding, Dy, and ulti-
mate, Du, spectral displacements are also plotted a). Corresponding standard devia-
tions b). 
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Figure 25. Damage index as a function of the PGA obtained for the EDA, PA-8 and IDA probabil-
istic methods. Median spectral displacements, Sdp, and 95% confidence fragility curves 
were used. 

The corresponding spectral displacements 0.12 and 0.23 m are close to the thresholds of 
Moderate and Complete damage states (see Figure 14 and Table 7). The main cause of this 
effect is attributed to the fact that EDA procedure does not capture the nonlinear behavior of 
the building. 
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6.2 Applicability of the probabilistic approach 

As stated above, most of the seismic risk assessments carried out up to now in urban areas 
were performed using deterministic approaches. The results of these works are usually under-
stood as mean or median expected values. In this section we discuss about the influence that 
the randomness of the strength properties of the materials, steel and concrete, and the ran-
domness of the seismic action have in the randomness of the expected damage. Moreover, 
two specific scenarios are analyzed in order to illustrate how the probabilistic results should 
be understood and how they can be used in practical applications. To do that, Monte Carlo 
simulations were performed first, separating the randomness of the mechanical properties of 
the materials from that of the seismic actions. Figure 26 shows the standard deviation of the 
expected spectral displacement as a function of PGA in the following three cases: 1) only the 
mechanical properties of the materials are assumed to be random, while the seismic action is 
assumed to be deterministic, 2) only the seismic action is assumed to be random, while the 
mechanical properties of the materials are assumed to be deterministic and 3) both, the prop-
erties of the materials and the seismic action are assumed to be random. These three cases are 
analyzed using NLDA. Note how the influence of the uncertainties of the mechanical proper-
ties of the materials is very low compared to the influence of the uncertainties of the seismic 
actions. Uncertainties of the seismic action may have been overestimated due to the insuffi-
ciency of the accelerogram databases used in this study. Probably these uncertainties can be 
decreased by using larger and more specific databases. So, in risk assessment studies the un-
certainties of the involved parameters should be carefully addressed. One possibility is, for 
instance, to use logical trees with different reasonable assumptions and weightings in a simi-
lar way to that used in probabilistic seismic hazard analyses (PSHA). 
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Figure 26. Standard deviation, , of the spectral displacement, Sdp, as a function of PGA, consider-
ing the randomness of the mechanical properties of the materials (concrete and steel), 
the randomness of the seismic actions and both uncertainties. 

It is worth noting that the standard deviations corresponding to the case in which both uncer-
tainties are taken into account can be easily obtained from the quadratic composition of 
standard deviations, that is: 

2 2
T Q M A       (11) 

where T  is the standard deviation taking into account both uncertainties, M corresponds to 

the mechanical properties, A corresponds to the seismic action, and 
Q is the quadratic com-

position of M and A  Table 11 shows selected values of PGA and the corresponding standard 

deviations taken from Figure 26. In this table the standard deviations are compared to the 
quadratic composition according to Equation (11). This result confirms that the seismic ac-
tions and the mechanical properties of the materials are independent random variables. 

Table 11. Standard deviations in Figure 26 for PGA values of 0.18, 0.24 and 0.36 g. M , A and 
T  are respectively standard deviations corresponding to mechanical properties, seismic 

actions and both types of uncertainties. 
Q is the quadratic composition of 

M and
A , 

according to Equation (11). 

PGA (g) M  (cm)
A (cm)

T (cm) Q (cm)
0.18 0.32 1.74 1.77 1.77
0.24 0.45 2.58 2.62 2.62
0.36 0.76 5.13 5.19 5.19
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In order to illustrate the usefulness of the probabilistic approach, two hypothetical earthquake 
scenarios are then considered. Figure 27 shows the spectral displacement of the performance 
points, Sdp, as a function of PGA. The median values and the 95% confidence levels are illus-
trated in this figure.  
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Figure 27. Sdp(PGA) function defining the expected spectral displacement as a function 

of PGA. Median and 95% confidence level curves are shown. Two earthquake 
scenarios defined by PGA values of 0.11 and 0.24 g are also depicted. 

The first scenario corresponds to a relatively low demand earthquake defined by a PGA value 
of 0.11g; the second one corresponds to a relatively highly demanding earthquake, defined by 
a PGA value of 0.24 g. Both scenarios are also depicted in Figure 27. To avoid considering 
the uncertainties twice, in practical applications, special care must be taken. So, to estimate 
the expected damage one of the procedures described below can be followed. Procedure A: 
the function defining the expected performance spectral displacement as a function of PGA, 
Sdp(PGA), is assumed to be probabilistic and the fragility curves are assumed to be determin-
istic; so, for a given PGA the spectral displacement of the performance point is obtained var-
ying randomly the seismic actions and the mechanical properties together. Procedure B: fra-
gility curves are assumed to be probabilistic as well as the function Sdp(PGA) In Procedure 
A the uncertainties of the seismic actions and of the mechanical properties of the materials, 
are included in the Sdp(PGA) function (see Figure 27). In Procedure B the uncertainties in 
the mechanical properties of the materials are considered in the construction of the fragility 
curves, while the uncertainties in the seismic actions are considered in the construction of the 
Sdp(PGA) function. Therefore the DI(PGA) function relating the expected damage and PGA 
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takes into account both sources of uncertainty; in this case the standard errors of the DI(PGA) 
can be obtained from the quadratic composition of the standard errors   coming from the fra-
gility curves and from the Sdp(PGA)  function. Procedure A is used in the following as an 
application example. For each of the two earthquake scenarios, the expected spectral dis-
placements are taken from the curves Sdp(PGA) in Figure 27 considering median and upper 
95% confidence values. The corresponding numerical values are shown in Table 12. Figure 
28 shows the DI(Sdp) curve. This DI(Sdp) function was obtained using median fragility 
curves and median seismic actions, and it is assumed to be deterministic. The median and 
95% upper confidence level spectral displacements of the performance point, Sdp. obtained in 
Figure 27, are then used to get the corresponding expected damage indices. Finally, the as-
sumption of the binomial distribution of the probabilities of damage states allows computing 
these important probabilities. Table 12 summarizes the obtained results and Figure 29 shows 
the corresponding expected damage probability matrices. Thus the probabilistic approach 
allows obtaining results for all confidence levels and it produces information that is richer 
and more useful for civil protection stakeholders and decision makers, who may establish and 
choose the preferred levels of security. 

As a special case, please note in Table 12 and in Figure 29 how for the 0.24 g earthquake 
scenario the median and the 95% confidence level probabilities of the Complete damage state 
(ds4) are respectively of 28% and 56%. 
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Figure 28. DI(Sdp) function defining damage index, DI, as a function of the spectral displacement 

of the performance point, Sdp. Median and 95% confidence level limit curves are 
shown. The spectral displacements obtained in Figure 27 are also depicted here. 

 

Table 12. Median and 95% upper confidence level values of the expected spectral displacements, 
Sdp, damage indices, DI and d, and damage probability matrices for two selected earth-
quake scenarios 

 EARTHQUAKE SCENARIO FOR PGA = 0.11 g 

 Sdp

(cm) DI di P(ds0) P(ds1) P(ds2) P(ds3) P(ds4) PTOT. 

Median val.  10.6 0.21 0.84 0.39 0.42 0.16 0.03 *** 1.00
95% conf. 13.4 0.42 1.68 0.11 0.32 0.36 0.18 0.03 1.00
 EARTHQUAKE SCENARIO FOR PGA = 0.24 g

 Sdp

(cm) DI di P(ds0) P(ds1) P(ds2) P(ds3) P(ds4) PTOT. 

Median val. 18.7 0.73 2.92 0.01 0.06 0.23 0.42 0.28 1.00
95% conf. 23.2 0.86 3.44 *** 0.01 0.08 0.35 0.56 1.00
(***) means very low probability. 

This indicates a great uncertainty of this critical value, which is fundamental to estimate other 
sensitive and critical quantities, as for instance the numbers of expected casualties and home-
less people. There is not a standard procedure to realize seismic risk assessment in a probabil-
istic way. The best procedure depends on the quantity and quality of the information availa-
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ble. Uncertainties must be carefully analyzed and should be taken into account in an adequate 
way. 
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Figure 29. Damage probability matrices for PGA = 0.11 and 0.24 g. Median and 95% upper con-

fidence levels are shown. 

Low demanding scenarios may not be critical, as the influence of the uncertainties is lower, 
but for the analysis of intermediate and high demanding scenarios this influence may be cru-
cial. When the quantity and quality of the data is adequate, for a given PGA, a suitable 
straightforward way to conduct such studies can follow these steps: Step 1: to use a probabil-
istic approach to obtain the performance spectral displacement, Sdp,; to do that probabilistic 
capacity curves and probabilistic seismic actions can be used together; NLDA may be used 
but PA-8 procedure can be sufficient; as a result of this step the spectral displacement of the 
performance point, Sdp, for the selected PGA scenario is obtained as a random variable that 
includes the uncertainties of the seismic action and of the mechanical properties of the mate-
rials. Step 2: to take the spectral displacements of the performance point for the required con-
fidence limits.  Step 3: to use deterministic values, of the parameters of the building to get 
deterministic fragility curves; in this step different assumptions can be taken depending on 
the features of the actual buildings. For instance, mean, increased and decreased values of the 
mechanical properties of the materials or of other variables involved in the design and con-
struction of the buildings can be used respectively for low-code, high-code and no-code 
buildings. Step 4: to use the median response spectrum of the seismic action to get the de-
terministic DI(Sdp) damage index function. Step 5: to determine the damage indices and the 
DPM for the required performance spectral displacements, Sdp. Obviously other methods 



Bulletin of Earthquake Engineering, 11(6), 2013, 2007-2032 

 

 42

based on Procedure B, as described above, can be used. In any case it is important to take 
special care in order not to take into account the uncertainties more than once and to make the 
adequate choice so as not to overestimate or underestimate the uncertainties involved in the 
seismic actions and in the mechanical and geometrical properties of the structure. 

6.3 Conclusions 

The main conclusions of this work are: 1) For low-to-moderate earthquakes, simplified de-
terministic static analysis methods can lead to quite good results when compared to more 
sophisticated NLDA, and 2) uncertainties in the input variables lead to significant uncertain-
ties into the structural response and expected damage. These two main conclusions are de-
scribed in more detail below. Concerning the comparison of nonlinear structural static and 
dynamic analyses, by using a deterministic model and characteristic values of the involved 
parameters, it can be concluded that, for the building analyzed herein, and for small-to-
intermediate earthquakes, with a magnitude lower than 5.5, simplified static procedures lead 
to fairly good results, although they are somewhat conservative. The method, here known as 
PA-8, leads to more realistic results when compared to fully dynamic analysis. The equiva-
lent linear displacement technique is very straightforward but may lead to quite conservative 
results, and therefore, in our view, the PA-8 technique is preferable. Furthermore, for intense 
seismic actions the use of fully dynamic analyses is justified. However, note that the two 
simplified methods are on the safety side. The probabilistic analyses confirm these conclu-
sions. Concerning the influence that the uncertainties of the properties of the materials and 
those of the features of the seismic actions have on the uncertainties in the structural re-
sponse, the main conclusions are outlined as follows. 1) All the results obtained with simpli-
fied and sophisticated structural analysis procedures show significant uncertainties in the 
computed output variables. It is important to observe that the coefficients of variation of the 
input variables used in this work are relatively small. 2) The correlation matrix between input 
and output variables provides valuable insights that can be useful not only in the design of 
new structures but also in the seismic risk assessment of existing ones. 3) The uncertainties in 
the response increase with the augment of the seismic actions due to the nonlinear behavior 
of the structural response; so, uncertainties in the capacity spectra increase with the spectral 
displacement, while uncertainties in the fragility curves increase with the damage state. 4) 
The major influence in the randomness of the structural response of the buildings comes from 
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the randomness of the seismic action; however the influence of the uncertainties on the me-
chanical properties of the materials is also significant. 5) The use of characteristic values in 
deterministic simplified approaches does not guarantee that the confidence level of the re-
sponse be similar to that of the input variables. This fact is attributed to the nonlinear behav-
ior of the structural system and it is evidenced by the significant differences between ex-
pected damage obtained from the spectral displacement calculated by means of nonlinear 
dynamic analysis. Specifically, the expected damage index obtained with the deterministic 
approach may become 20% lower than the expected damage index obtained with the proba-
bilistic approach. Finally, it is important to remark that, regardless of the methodology, when 
assessing seismic vulnerability and expected damage, it is crucial to follow an approach that 
takes into account the nonlinear behavior of the structure, the randomness of the mechanical 
properties of materials and the uncertainties associated with seismic inputs. 
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