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Abstract—We provide an overview of the extensive recent
results on the Shannon capacity of single-user and multiuser
multiple-input multiple-output (MIMO) channels. Although
enormous capacity gains have been predicted for such channels

Paper

. INTRODUCTION

IRELESS systems continue to strive for ever higher
data rates. This goal is particularly challenging for

these predictions are based on somewhat unrealistic assumptionssystems that are power, bandwidth, and complexity limited.

about the underlying time-varying channel model and how well
it can be tracked at the receiver, as well as at the transmitter.
More realistic assumptions can dramatically impact the potential
capacity gains of MIMO techniques. For time-varying MIMO
channels there are multiple Shannon theoretic capacity definitions
and, for each definition, different correlation models and channel
information assumptions that we consider. We first provide a
comprehensive summary of ergodic and capacity versus outage
results for single-user MIMO channels. These results indicate that
the capacity gain obtained from multiple antennas heavily depends
on the available channel information at either the receiver or
transmitter, the channel signal-to-noise ratio, and the correlation
between the channel gains on each antenna element. We then focu
attention on the capacity region of the multiple-access channels
(MACs) and the largest known achievable rate region for the
broadcast channel. In contrast to single-user MIMO channels,
capacity results for these multiuser MIMO channels are quite
difficult to obtain, even for constant channels. We summarize
results for the MIMO broadcast and MAC for channels that are
either constant or fading with perfect instantaneous knowledge
of the antenna gains at both transmitter(s) and receiver(s). We
show that the capacity region of the MIMO multiple access and
the largest known achievable rate region (called the dirty-paper
region) for the MIMO broadcast channel are intimately related
via a duality transformation. This transformation facilitates
finding the transmission strategies that achieve a point on the
boundary of the MIMO MAC capacity region in terms of the
transmission strategies of the MIMO broadcast dirty-paper region
and vice-versa Finally, we discuss capacity results for multicell
MIMO channels with base station cooperation. The base stations
then act as a spatially diverse antenna array and transmission
strategies that exploit this structure exhibit significant capacity
gains. This section also provides a brief discussion of system leve
issues associated with MIMO cellular. Open problems in this field
abound and are discussed throughout the paper.

Index Terms—Antenna correlation, beamforming, broadcast
channels (BCs), channel distribution information (CDI), channel
state information (CSI), multicell systems, multiple-access chan-
nels (MACs), multiple-input multiple-output (MIMO) channels,
multiuser systems, Shannon capacity.

However, another domain can be exploited to significantly
increase channel capacity: the use of multiple transmit and
receive antennas. Pioneering work by Winters [81], Foschini
[20], and Telatar [69] ignited much interest in this area by
predicting remarkable spectral efficiencies for wireless systems
with multiple antennas when the channel exhibits rich scat-
tering and its variations can be accurately tracked. This initial
promise of exceptional spectral efficiency almost “for free”
resulted in an explosion of research activity to characterize the
theoretical and practical issues associated with multiple-input
$nultiple-output (MIMO) wireless channels and to extend these
concepts to multiuser systems. This tutorial summarizes the
segment of this recent work focused on the capacity of MIMO
systems for both single-users and multiple users under different
assumptions about spatial correlation and channel information
available at the transmitter and receiver.

The large spectral efficiencies associated with MIMO chan-
nels are based on the premise that a rich scattering environment
provides independent transmission paths from each transmit an-
tenna to each receive antenna. Therefore, for single-user sys-
tems, a transmission and reception strategy that exploits this
structure achieves capacity on approximately (M, N) sepa-
rate channels, whe® is the number of transmit antennas and
N is the number of receive antennas. Thus, capacity scales lin-
early withmin(M, N) relative to a system with just one transmit
and one receive antenna. This capacity increase requires a scat-
tering environment such that the matrix of channel gains be-
tween transmit and receive antenna pairs has full rank and in-
dependent entries and that perfect estimates of these gains are
available at the receiver. Perfect estimates of these gains at both
the transmitter and receiver provides an increase in the constant
multiplier associated with the linear scaling. Much subsequent
work has been aimed at characterizing MIMO channel capacity
under more realistic assumptions about the underlying channel
model and the channel estimates available at the transmitter and
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MIMO channel capacity depends heavily on the statisaformation (CDI). We assume throughout the paper that CDI is
tical properties and antenna element correlations of thévays perfect, so there is no mismatch between the CDI at the
channel. Recent work has developed both analytical atrdnsmitter or receiver and the true channel distribution. When
measurement-based MIMO channel models along with the conrly the receiver has perfect CSl the transmitter must maintain
responding capacity calculations for typical indoor and outdoarfixed-rate transmission strategy optimized with respect to its
environments [26]. Antenna correlation varies drastically asGDI. In this case, ergodic capacity defines the rate that can
function of the scattering environment, the distance betweba achieved based on averaging over all channel states [69].
transmitter and receiver, the antenna configurations, and thiernatively, the transmitter can send at a rate that cannot be
Doppler spread [1], [65]. As we shall see, the effect of chann&lipported by all channel states: in these poor channel states the
correlation on capacity depends on what is known about theceiver declares an outage and the transmitted data is lost. In
channel at the transmitter and receiver: correlation sometintags scenario, each transmission rate has an outage probability
increases capacity and sometimes reduces it [16]. Moreowessociated with it and capacity is measured relative to outage
channels with very low correlation between antennas can splobabilityt (capacity CDF) [20]. An excellent tutorial on
exhibit a “keyhole” effect where the rank of the channel gaifading channel capacity for single antenna channels can be
matrix is very small, leading to limited capacity gains [12]found in [4]. For single-user MIMO channels with perfect
Fortunately, this effect is not prevalent in most environmentsansmitter and receiver CSI the ergodic and outage capacity
The impact of channel statistics in the low-power (widebandplculations are straightforward since the capacity is known for
regime has interesting properties as well: recent results in teigery channel state. Thus, for single-user MIMO systems the
area can be found in [71]. tutorial will focus on capacity results assuming perfect CDI at

We focus on MIMO channel capacity in the Shannothe transmitter and perfect CSI or CDI at the receiver. Although
theoretic sense. The Shannon capacity of a single-user timethrere has been much recent progress in this area, many open
variant channel is defined as the maximum mutual informatigmoblems remain.
between the channel input and output. This maximum mutualln multiuser channels, capacity becomds-alimensional re-
information is shown by Shannon’s capacity theorem to be theon defining the set of all rate vectorg{, ..., Rx) simulta-
maximum data rate that can be transmitted over the channebusly achievable by all’ users. The multiple capacity defini-
with arbitrarily small error probability. When the channetions for time-varying channels under different transmitter and
is time-varying channel capacity has multiple definitiongeceiver CSland CDI assumptions extend to the capacity region
depending on what is known about the channel state or @fthe multiple-access channel (MAC) and broadcast channel
distribution at the transmitter and/or receiver and wheth@C) in the obvious way [28], [48], [49], [70]. However, these
capacity is measured based on averaging the rate over MIMO multiuser capacity regions, even for time-invariant chan-
channel states/distributions or maintaining a constant fixed wels, are difficult to find. Few capacity results exist for time-
minimum rate. Specifically, when the instantaneous channelrying multiuser MIMO channels, especially under the real-
gains, called the channel state information (CSI), are knowistic assumption that the transmitter(s) and/or receiver(s) have
perfectly at both transmitter and receiver, the transmitter c&DI only. Therefore, the tutorial focus for MIMO multiuser sys-
adapt its transmission strategy relative to the instantanedems will be on ergodic capacity under perfect CSl at the trans-
channel state. In this case, the Shannon (ergodic) capacitynister and receiver, with a brief discussion of the known results
the maximum mutual information averaged over all channahd open problems for other capacity definitions and CSI/CDI
states. This ergodic capacity is typically achieved using @assumptions.
adaptive transmission policy where the power and data rateNote that the MIMO techniques described herein are appli-
vary relative to the channel state variations. Other capacitgble to any channel described by a matrix. Matrix channels
definitions for time-varying channels with perfect transmittedescribe not only multiantenna systems but also channels with
and receiver CSI include outage capacity and minimum-rateosstalk [85] and wideband channels [72]. While the focus
capacity. These capacities require a fixed or minimum data ratiethis tutorial is on memoryless channels (flat-fading), the re-
in all nonoutage channel states, which is needed for applicaits can also be extended to channels with memory (1SI) using
tions with delay-constrained data where the data rate canmall-known methods for incorporating the channel delay spread
depend on channel variations (except in outage states, whiate the channel matrix [59], as will be discussed in the next
no data is transmitted). The average rate associated with outagetion.
or minimum rate capacity is typically smaller than ergodic Many practical MIMO techniques have been developed
capacity due to the additional constraints associated with thésecapitalize on the theoretical capacity gains predicted by
definitions. This tutorial will focus on ergodic capacity in theShannon theory. A major focus of such work is space-time
case of perfect transmitter and receiver CSI. coding: recent work in this area is summarized in [21]. Other

When only the channel distribution is known at the trangechniques for MIMO systems include space—time modulation
mitter (receiver) the transmission (reception) strategy is bag@@], [33], adaptive modulation and coding [10], space—time
on the channel distribution instead of the instantaneous channel
state. The channel coefficients are typically assumed to béNote that an outage under perfect CSI at the receiver only is different than
jointly Gaussian, so the channel distribution is specified outage when both transmitter and receiver have perfect CSI. Under receiver

. . . Sl only an outage occurs when the transmitted data cannot be reliably decoded
the channel mean and covariance matrices. We will refer Bhe receiver, so that data is lost. When both the transmitter and receiver have
knowledge of the channel distribution as channel distributiqrrfect CSI the channel is not used during outage (no service), so no data is lost.
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TABLE | H,6
TABLE OF ABBREVIATIONS u Channel v
K v=Hu+w
CS1 Channel State Information Transmitter w ~ N(0,02]) Receiver
CDI Channel Distribution Information H~po()
CSIT Transmitter Channel State Information 7
CSIR Receiver Channel State Information . . o
Fig. 1. MIMO channel with perfect CSIR and distribution feedback.
CDIT Transmitter Channel Distribution Information
CDIR | Receiver Channel Distribution Information MIMO capacity results are known for many cases, where the
ZMSW | Zero Mean Spatially White correspon_dlng multiuser problem_s remain ur_lsol\_/ed. In partic-
ular, very little is known about multiuser capacity without the as-
CMI | Channel Mean Information sumption of perfect channel state information at the transmitter
cCl Channel Covariance Information (CSIT) and at the receiver (CSIR). While there remain many
open problems in obtaining the single-user capacity under gen-
DPC Dirty Paper Coding ; ; :
eral assumptions of CSI and CDI, for several interesting cases
MAC | Multiple-Access Channel the solution is known. This section will give an overview of
BC Broadeast Channel known results for single-user MIMO channels with particular

focus on special cases of CDI at the transmitter, as well as the
receiver. We begin with a description of the channel model and
equalization [2], [51], space—time signal processing [3ﬁhe different CSl and CDI models we consider, along with their

space—time CDMA [14], [34], and space—time OFDM [soJmnotivation.
[52], [82]. An overview of the recent advances in these are%s Channel Model
and other practical techniques along with their performancé
can be found in [25]. Consider a transmitter with/ transmit antennas and a re-
The remainder of this paper is organized as follows. Igeiver withN receive antennas. The channel can be represented
Section I, we discuss the capacity of single-user MIM®Y the N x M matrix H. The N x 1 received signa¥ is equal
systems under different assumptions about channel state &hd
distribution information at the transmitter and receiver. This
section also describes the optimality of beamforming and

training issues. Section Il describes the capacity region of tuﬁlereu is theM x 1 transmitted vector ang is the N x 1 addi-
MIMO MAC and thg dirty-paper achlevgble region of thetive white circularly symmetric complex Gaussian noise vector,

. Th itv of multicell ¢ der dirt fiormalized so that its covariance matrix is the identity matrix.
regions. 'Ne capacily of multicer systems under dirty pabehe normalization of any nonsingular noise covariance matrix

cod|r_lg (DPC) and opportunistic beamformmg_ IS d!scugsed K., to fit the above model is as straightforward as multiplying
Section 1V, as well as tradeoffs between capacity, diversity, a received vectar with K.~ /2 to yield the effective channel

sectorization. Secuon_\( summarizes these capacity results %g—lﬂH and a white noise vector.
describes some remaining open problems and design questions, . ~g;is the channel matrb. Thus, with perfect CSIT or

asiomat\ted W'tht I\iI.IM.OviystemE. Idf t0 denot i CSIR, the channel matriM is assumed to be known perfectly
note on notation. We use boldlace to denote matrices ahy instantaneously at the transmitter or receiver, respectively.
vectors and[] for expectation|S| denotes the determinant an hen the transmitter or receiver knows the channel state per-

—1 . .

lsi/I 1\%‘(3 dmverse cr)]f a square matr$ For any gegeral matr?x fectly, we also assume that it knows the distribution of this state
' enotes t e_conjl_Jgate trgnsposg ar(@Iy enotes_t € perfectly, since the distribution can be obtained from the state

trace.I denotes the identity matrix and digg) denotes adiag- ,p o ations

OUa' matrix Wit.h the {, z’)_entr_y equal tO\L F(_)r_symme_tric_ ma- 1) Perfect CSIR and CDITThe perfect CSIR and CDIT
trices the notatio) Z lepl|es thalQ is positive semldeﬁ_mte_. model is motivated by the scenario where the channel state can
: A table of abbreviations used throughout the paper is IV accurately tracked at the receiver and the statistical channel
in Table 1. model at the transmitter is based on CDI fed back from the re-
ceiver. This distribution model is typically based on receiver es-
Il. SINGLE-USERMIMO timates of the channel state and the uncertainty associated with
In this section, we focus on the capacity of single-user MIM¢hese estimates. Fig. 1 illustrates the underlying communication
channels. While most wireless systems today support multigigdel in this scenario, wheye denotes the complex Gaussian
users, single-user results are still of much interest for the iglistribution.
sight they provide and their application to channelized systems,The salient features of the model are as follows.
where users are allocated orthogonal resources (time, frequency Conditioned on the parametérthat defines the channel
bands, etc.). MIMO channel capacity is also much easier to de- distribution, the channel realizatiod$ at different time
rive for single users than for multiple users. Indeed, single-user instants are independent identically distributed (i.i.d.).

v=Hu+w (2)
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w — p(v, H|w) = po(H)p(v| H, ) - H Computation ofC(Q) fo_r generalpy(-) is a hard problem. _
Almost all research in this area has focused on three special
cases for this distribution: zero-mean spatially white channels,
spatially white channels with nonzero mean, and zero-mean
channels with nonwhite channel covariance. In all three

« In a wireless system the channel statistics change ow@ses, the channel coefficients are modeled as complex jointly

time due to mobility of the transmitter, receiver, and th&aussian random variables. Under the zero-mean spatially

scattering environment. Thugjs time-varying. white (ZMSW) model, the channel mean is zero and the

The statistical model depends on the time scale of intereglannel covariance is modeled as white, i.e., the channel

For example, in the short term, the channel coefficiengdements are assumed to be i.i.d. random variables. This

may have a nonzero mean and one set of correlatiomodel typically captures the long-term average distribution of

reflecting the geometry of the particular propagatiothe channel coefficients averaged over multiple propagation
environment. However, over a long term the channel coefavironments. Under the channel mean information (CMI)
ficients may be described as zero-mean and uncorrelateddel, the mean of the channel distribution is nonzero while
due to the averaging over several propagation enviroffie covariance is modeled as white with a constant scale factor.
ments. For this reason, uncorrelated, zero-mean chanhbls model is motivated by a system where the channel state
coefficients is a common assumption for the channid measured imperfectly at the transmitter, so the CMI reflects
distribution in the absence of distribution feedback dhis measurement and the constant factor reflects the estimation
when it is not possible to adapt to the short-term channefiror. Under the channel covariance information (CCI) model,
statistics. However, if the transmitter receives frequethe channel is assumed to be varying too rapidly to track its
updates off and it can adapt to these time-varyingnean, so the mean is set to zero and the information regarding

short-term channel statistics then capacity is increastiw relative geometry of the propagation paths is captured by a

relative to the transmission strategy associated with jus@nwhite covariance matrix. Based on the underlying system

the long-term channel statistics. In other words, adaptimgodel shown in Fig. 1, in the literature the CMI model is
the transmission strategy to the short-term channel s&so called mean feedback and the CCI model is also called
tistics increases capacity. In the literature adaptation tovariance feedback. Mathematically, the three distribution
the short-term channel statistics (the feedback model miodels forH can be described as follows:

Fig. 1) is referred to by many names including mean and

Fig. 2. MIMO channel with perfect CSIR and CDI¥ {ixed).

covariance feedback, imperfect feedback and partial CSI f{er_o-l\l/liign Spatially White (ZMSW): EH] = 0,

[38], 40, [42], [45], [46].’ [56], 66, [76] . Channel Mean Information (CMI): E[H] = H, H =
» The feedback channel is assumed to be free from noise. H+ JaHY;

This makes the CDIT a deterministic function of the CDIR Channel Covariance Information (CCl): E[H] = 0,

and allows optimal codes to be constructed directly over
the input alphabet [8].
* For each realization df the conditional average transmitHere, HY is anN x M matrix of i.i.d. zero mean, unit variance

H = (RT)1/2HW(Rt)1/2.

power is constrained &s]||u|*|© = 0] < P. complex circularly symmetric Gaussian random variables. The
* The ergodic capacity’ of the system in Fig. 1 is the ca-channel mea#I and« are constants that may be interpreted as
pacity C(#) averaged over the differefitrealizations the channel estimate based on the feedback and the variance of
the estimation error, respectiveRR™ andR! are called the re-
C = Eq[C(8)] ceive and transmit fade covariance matrices. Although not com-

pletely general, this simple correlation model has been validated
whereC(9) is the ergodic capacity of the channel showthrough recent field measurements as a sufficiently accurate rep-
in Fig. 2. This figure represents a MIMO channel with perresentation of the fade correlations seen in actual cellular sys-
fect CSI at the receiver and only CDI about t@nstant tems [13]. Under CMI the channel me&h and the variance
distributiond at the transmitter. Channel capacity calcuef the estimation errorx are assumed known and under CCI
lations generally implicitly assume CDI at both the tranghe transmit and receive covariance matriBésandR? are as-
mitter and receiver except for special channel classes, sstimed known.
as the compound channel or arbitrarily varying channel. 2) CDIT and CDIR: In highly mobile channels, the as-
This implicit knowledge o# is justified by the fact that the sumption of perfect CSI at the receiver can be unrealistic.
channel coefficients are typically modeled based on théihus, we now consider a model where both transmitter and
long-term average distribution. Alternativetycan be ob- receiver only have information about the channel distribution.
tained by the feedback model of Fig. 1. Thus, motivateiven for a rapidly fluctuating channel where reliable channel
by the distribution feedback model of Fig. 1, we will pro-estimation is not possible, it might be possible for the receiver
vide capacity results for the system model of Fig. 2 undéo track the short-term distribution of the channel fades, as
different distribution §) models. For clarity, we explic- the channel distribution changes much more slowly than the
itly state when CDI is available at either the transmittezhannel itself. The estimated distribution can be made available
or receiver, to contrast with the case where CSI is al$o the transmitter through a feedback channel. Fig. 3 illustrates
available. the underlying communication model.

Authorized licensed use limited to: Stanford University. Downloaded on January 13, 2010 at 14:57 from IEEE Xplore. Restrictions apply.



688 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

o Instead, due to the changing propagation environment wireless

Channel . . .
u v ], channels vary over time, assuming values over a continuum. The
. v=Hu+w . capacity of fading channels is investigated next.
Transmitter . Y 2 . Receiver
: w ~ N(0,0%]) :
H ~po() C. Fading MIMO Channel Capacity

With slow fading, the channel may remain approximately
constant long enough to allow reliable estimation of the channel
Fig. 3. MIMO channel with CDIR and distribution feedback. state at the receiver (perfect CSIR) and timely feedback of this
state information to the transmitter (perfect CSIT). However,
in systems with moderate to high user mobility, the system
designer is inevitably faced with channels that change rapidly.
Fading models where only the channel distribution is available
Fig. 4. MIMO channel with CDIT and CDIR(fixed). to the receiver (CDIR) and/or transmitter (CDIT) are more

applicable to such systems. Capacity results under various

Note that the estimation of the channel statistics at tlsumptions regarding CSI and CDI are summarized in this
receiver is captured in the model as a genie that provides #eztion.
receiver with the correct channel distribution. The feedback 1) Capacity With Perfect CSIT and Perfect CSIRerfect
channel represents the same information being made availab®IT and perfect CSIR model a fading channel that changes
to the transmitter simultaneously. This model is slightly optslow enough to be reliably measured by the receiver and fed
mistic because in practice the receiver estimaimsly from the back to the transmitter without significant delay. The ergodic
received signad and therefore will not have a perfect estimatesapacity of a flat-fading channel with perfect CSIT and CSIR is

As in the previous section, the ergodic capacity turns out #imply the average of the capacities achieved with each channel
be the expected value (expectation oggiof the ergodic ca- realization. The capacity for each channel realization is given
pacity C(0), whereC(6) is the ergodic capacity of the channeby the constant channel capacity expression in the previous sec-
in Fig. 4. In this figure,d is constant and known at both thetion. Thus, the fading MIMO channel capacity assuming perfect
transmitter and receiver (CDIT and CDIR). As in the previoushannel knowledge at both transmitter and receiver is
section, the computation ¢6f(6) is difficult for generab, so we

6

u p(v, H|u) = po(H)p(v|H, u) v

restrict ourselves to the same three channel distribution models C =Eg max log |1N + HQHT| . (5)
described in the previous subsection: the ZMSW, CMI, and CCI Q:Tr(Q)=pr
models. 2) Capacity With Perfect CSIR and CDIT: ZMSW
Next, we summarize the single-user MIMO capacity resulijodel: Seminal work by Foschini and Gans [22] and Telatar
under various assumptions on CSl and CDI. [69] addressed the case of perfect CSIR and a ZMSW channel
] distribution at the transmitter. Recall that in this case, the
B. Constant MIMO Channel Capacity channel matrixH is assumed to have i.i.d. complex Gaussian
When the channel is constant and known perfectly at tleatries (i.e. H ~ H"Y). As described in the introduction, the
transmitter and the receiver, the capacity is two relevant capacity definitions in this case are capacity versus
outage (capacity CDF) and ergodic capacity. For any given
C= max log|ly+ HQHT| @) input covariance matrix the input distribution that achieves the

Q:Tr(Q)=pP : o )
ergodic capacity is shown in [22] and [69] to be complex vector

whereQ is the input covariance matrix. Telatar [69] showed thataussian, mainly because the vector Gaussian distribution
the MIMO channel can be converted to parallel, noninterferingaximizes the entropy for a given covariance matrix. This
single-input single-output (SISO) channels through a singuliads to the transmitter optimization problem—i.e., finding the
value decomposition (SVD) of the channel matrix. The SVIgptimum input covariance matrix to maximize ergodic capacity
yields min(M, N) parallel channels with gains correspondingubject to a transmit power (trace of the input covariance ma-

to the singular values? of H. Waterfilling the transmit power trix) constraint. Mathematically, the problem is to characterize
over these parallel channels leads to the power allocation  the optimumQ to maximize

+
C= C 6
P=(n-k) sismoory) @ i SQ ©
9
) ) ) ) where
where . is the waterfill level, P; is the power in theith
eigenmode of the channel and is defined asnax(z,0). The C(Q) £ Eq [log Iy + HQH'|] (7)

channel capacity is shown to be _ ) ) ) _ _ )
is the mutual information with the input covariance matrix

g E[uu’] = Q and the expectation is with respect to the channel
C= > (log(uo})*. (4)  matrix H. The mutual informationC(Q) is achieved by
i transmitting independent complex circular Gaussian symbols
Although the constant channel model is relatively easy to aalong the eigenvectors df). The powers allocated to each
alyze, wireless channels in practice are not fixed or constaeigenvector are given by the eigenvalue€pf

min(M,N)

Authorized licensed use limited to: Stanford University. Downloaded on January 13, 2010 at 14:57 from IEEE Xplore. Restrictions apply.



GOLDSMITH et al. CAPACITY LIMITS OF MIMO CHANNELS 689

Itis shown in [22] and [69] that the optimum input covariancenatrix. Key results on the capacity of such channels have been
matrix that maximizes ergodic capacity is the scaled identitgcently obtained by several authors including Madhow and
matrix, i.e., the transmit power is divided equally among all thisotsky [76], Trott and Narula [58], [57], Jafar and Goldsmith
transmit antennas. Thus, the ergodic capacity is given by  [42], [40], [38], Jorsweick and Boche [45], [46], and Simon
and Moustakas [56], [66].

Iy + %HHTH . (8) Mathematically the problem is defined by (6) and (7), with

the distribution orH determined by the CMI or CCI. The op-
An integral form of this expectation involving Laguerre polytimum input covariance matrix in general can be a full rank ma-
nomials is derived in [69]. I/ and NV simultaneously become trix which implies either vector coding across the antenna array
large, capacity is seen to grdmearly with min(M, N). Ex- or transmission of several scalar codes in parallel with succes-
pressions for the growth rate constant can be found in [32] aside interference cancellation at the receiver. Limiting the rank
[69]. of the input covariance matrix to unity, calleéamforminges-

Telatar [69] conjectures that the optimal input covarianceentially leads to a scalar coded system which has a significantly
matrix that maximizes capacity versus outage is a diagonaler complexity for typical array sizes.
matrix with the power equally distributed amongubsebdf the The complexity versus capacity tradeoff is an interesting
transmit antennas. The principal observation is that as the eapect of capacity results under CDIT. The ability to use scalar
pacity CDF becomes steeper, capacity versus outage increasees to achieve capacity under CDIT for different channel
for low outage probabilities and decreases for high outagéstribution models, also called optimality of beamforming,
probabilities. This is reflected in the fact that the higher theaptures this tradeoff and has been the topic of much research
outage probability, the smaller the number of transmit antennasitself. Note that vector coding refers to fully unconstrained
that should be used. As the transmit power is shared equalignaling schemes for the memoryless MIMO Gaussian
between more antennas the expectationCoincreases (so channel. Every symbol period, a channel use corresponds to the
the ergodic capacity increases) but the tails of its distributidransmission of a vector symbol comprised of the inputs to each
decay faster. While this improves capacity versus outage toansmit antenna. Ideally, while decoding vector codewords the
low outage probabilities, the capacity versus outage for highceiver needs to take into account the dependencies in both
outages is decreased. Usually, we are interested in low outagace and time dimensions and therefore the complexity of
probabilitie$ and, therefore, the usual intuition for outagerector decoding grows exponentially in the number of transmit
capacity is that it increases as the diversity order of the chanaetennas. A lower complexity implementation of the vector
increases, i.e., as the capacity CDF becomes steeper. Fosatoding strategy is also possible in the form of several scalar
and Gans [22] also propose a layered architecture to achieeglewords being transmitted in parallel. It is shown in [38] that
these capacities with scalar codes. This architecture, called Behout loss of capacity, any input covariance matrix, regardless
Labs Layered Space—Time (BLAST), shows enormous capadaityits rank, can be treated as several scalar codewords encoded
gains over single antenna systems. For example, at 1% outagdependently at the transmitter and decoded successively at
12 dB signal-to-noise ratio (SNR) and with 12 antennas, tliee receiver by subtracting out the contribution from previously
spectral efficiency is shown to be 32 b/s/Hz as opposed to tthecoded codewords at each stage. However, well-known
spectral efficiencies of around 1 b/s/Hz achieved in present dapblems associated with successive decoding and interference
single antenna systems. While the channel models in [22] asubtraction, e.g., error propagation, render this approach
[69] assume uncorrelated and frequency flat fading, practiaaisuitable for use in practical systems. It is in this context that
channels exhibit both correlated fading, as well as frequenttye question of optimality of beamforming becomes important.
selectivity. The need to estimate the capacity gains of BLASSeamforming transforms the MIMO channel into a single-input
for practical systems in the presence of channel fade corredéngle-output (SISO) channel. Thus, well established scalar
tions and frequency selective fading sparked off measurementiec technology can be used to approach capacity and since
campaigns reported in [24] and [55]. The measured capacittbsre is only one beam, interference cancellation is not needed.
are found to be about 30% smaller than would be anticipatedthe summary given below, we include the results on both the
from an idealized model. However, the capacity gains oveansmitter optimization problem, as well as the optimality of
single antenna systems are still overwhelming. beamforming.

3) Capacity With Perfect CSIR and CDIT: CMI and CCI Multiple-Input Single-Output (MISO) Channel$\Ve first
Models: Recent results indicate that for MIMO channelgonsider systems that use a single receive antenna and multiple
the capacity improvement resulting from some knowledgeansmit antennas. The channel matrix is rank one. With per-
of the short-term channel statistics at the transmitter can taet CSIT and CSIR, for every channel matrix realization it is
substantial. These results have ignited much interest in thessible to identify the only nonzero eigenmode of the channel
capacity of MIMO channels with perfect CSIR and CDITaccurately and beamform along that mode. On the other hand,
under general distribution models. In this section, we focus @vith perfect CSIR and CDIT under the ZMSW model, it was
the cases of CMI and CCI channel distributions, correspondisgown by Foschini and Gans [22] and Telatar [69] that the op-
to distribution feedback of the channel mean or covariantienal input covariance matrix is a multiple of the identity ma-

) _ _ - rix. Thus, the inability of the transmitter to identify the nonzero
The capacity for high outage probabilities becomes relevant for schemes that . .
nnel eigenmode forces a strategy, where the power is equally

transmit only to the best user. For such schemes, itis shown in [6] that increasind™' ! ’ :
the number of transmit antennas reduces the average sum capacity. distributed in all directions.

C =Eg [log
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Fig. 5. Plot of necessary and sufficient conditions Author: Fig. 5 not cited in text>

For a system using a single receive antenna and multigled for the CMI model
transmit antennas, the transmitter optimization problem underl) M=) = a;
CSIR and CDIT is solved by Visotsky and Madhow in [76] for 2) w; has a noncentral chi-squared distribution. More

the distribution models of CMI and CCI. For the CMI model precisely,w; ~ e~ lull*/a=wi g (2||M||\/M) where

(H ~ N'(H, ol)) the principal eigenvector of the optimal input . o .
covariance matriX)° is found to be along the channel mean f{?ét)kﬁ](tjhe zeroth-order modified Bessel function of the

vector and the eigenvalues corresponding to the remainin .
eigenvectors are shown to be equal. When beamforming i urther, for the CC' rr_10de| the expectation can be evaluated
optimal, all power is allocated to the principal eigenvectop express (9) explicitly in closed form as
For the CCI model | ~ AN(0,Rt)) the eigenvectors of the
optimal input covariance matriQ° are shown to be along Lel/“lr(o. 1 )< L (10)
the eigenvectors of the transmit fade covariance matrix and P "PAMT T 1+ P
the eigenvalues are in the same order as the corresponding
eigenvalues of the transmit fade covariance matrix. More-The optimality conditions are plotted in Fig. 5. For the CCI
over, Visotsky and Madhow’s numerical results indicate thatodel the optimality of beamforming depends on the two largest
beamforming is close to the optimal strategy when the qualigfgenvalues\;, A, of the transmit fade covariance matrix and
of feedback improves, i.e., when the channel uncertainty the transmit power”. Beamforming is found to be optimal
decreases under CMI or when a stronger channel mode camtben the two largest eigenvalues of the transmit covariance ma-
identified under CCI. We will discuss quality of feedback inrix are sufficiently disparate or the transmit powers suffi-
more detail below. Under CMI, Narula and Trott [58] point outiently low. Since beamforming corresponds to using the prin-
that there are cases where the capacity is actually achievedaifml eigenmode alone, this is reminiscent of waterpouring so-
beamforming. While they do not obtain fully general necessalytions where only the deepest level gets all the water when it
and sufficient conditions for when beamforming is a capaciig sufficiently deeper than the next deepest level and when the
achieving strategy, they develop partial answers to the problgmantity of water is small enough. For the CMI model the opti-
for two transmit antennas. mality of beamforming is found to depend on transmit power

A general condition that is both necessary and sufficient fand thequality of feedbaclassociated with the mean informa-
optimality of beamforming is obtained by Jafar and Goldsmittion, which is defined mathematically as the rdfid||? /« of the
in [40] for both the CMI and CCI models. The result can baorm squared of the channel mean vedlioand the channel un-

stated as follows. certaintya. As the transmit poweP is decreased or the quality
The ergodic capacity can be achieved with a unit rank matf feedback improves beamforming becomes optimal. As men-
if and only if the following condition is true: tioned earlier, for perfect CSIT (uncertainty— 0 so quality
of feedback— oc) the optimal input strategy is beamforming,
1 1 while in the absence of mean feedback (quality of feedbacdk
E.., [1 TP ] < 5 P (9) so the CMI model becomes the ZMSW model), as shown by
1 2 Telatar [69], the optimal input covariance has full rank, i.e.,
beamforming is necessarily suboptimal. Note that [40], [57],
where for the CCI model [58], and [76] assume a single receive antenna. Next, we sum-
1) A1 > )\, are the two largest eigenvalues of the channelarize the analogous capacity results for MIMO channels.
fade covariance matriRt; MIMO Channels: With multiple transmit and receive an-
2) w; is exponential distributed with unit mean, i.e;; ~ tennas, capacity with CSIR and CDIT under the CCI model with
e~ spatially white fading at the receiveR{ = I) is obtained by
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Jafar and Goldsmith in [42]. Like the single receive antenna4) Capacity With CDIT and CDIR: ZMSW ModeWe saw
case the capacity achieving input covariance matrix is foumd the last section that with perfect CSIR, channel capacity
to have the eigenvectors of the transmit fade covariance mafgrows linearly with the minimum of the number of transmit and
and the eigenvalues are in the same order as the correspondingive antennas. However, reliable channel estimation may
eigenvalues of the transmit fade covariance matrix. Jafar amot be possible for a mobile receiver that experiences rapid
Goldsmith also presented in closed form a mathematical conflisctuations of the channel coefficients. Since user mobility
tion that is both necessary and sufficient for optimality of beans the principal driving force for wireless communication
forming in this case. The same necessary and sufficient conslystems, the capacity behavior with CDIT and CDIR under the
tion is also derived independently by Jorsweick and Boche #ZMSW distribution model (i.e.H is distributed adH* with
[45] and Simon and Moustakas in [66]. In [46], Jorsweick ando knowledge ofH at either the receiver or transmitter) is of
Boche extend these results to incorporate fade correlationgatticular interest. In this section, we summarize some MIMO
the receiver as well. Their results show that while the receieapacity results in this area.
fade correlation matrix does not affect the eigenvectors of theOne of the first papers to address the MIMO capacity with
optimal input covariance matrix, it does affect the eigenvalueSDIR and CDIT under the ZMSW model is [53] by Marzetta
The general condition for optimality of beamforming found byand Hochwald. They model the channel matrix components as
Jorsweick and Boche depends upon the two largest eigenvaliied. complex Gaussian random variables that remain constant
of the transmit covariance matrix and all the eigenvalues of ther a coherence interval &f symbol periods after which they
receive covariance matrix. change to another independent realization. Capacity is achieved
Capacity under the CMI model with multiple transmit anadvhen theT x M transmitted signal matrix is equal to the
receive antennas is solved by Jafar and Goldsmith in [38] whproduct of two statistically independent matricesTax T
the channel mean has rank one and is extended to gen&alropically distributed unitary matrix times a certdinx M
channel means by Moustakas and Simon in [67]. Similar tandom matrix that is diagonal, real, and nonnegative. This
the MISO case, the principal eigenvector of the optimal inpuesult enables them to determine capacity for many interesting
covariance matrix and of the channel mean are the same aades. Marzetta and Hochwald show that, for a fixed number
the eigenvalues of the remaining eigenvectors are equal. Bbantennas, as the length of the coherence interval increases,
the case where the channel mean has unit rank, a necessia@capacity approaches the capacity obtained as if the receiver
and sufficient condition for optimality of beamforming is als&knew the propagation coefficients. However, perhaps the most
determined in [38]. surprising result in [53] is the following: In contrast to the linear
These results summarize our discussion of channel capagitpwth of capacity withmin(A, N) under the perfect CSIR
with CDIT and perfect CSIR under different channel distriassumption, [53] showed that in the absence of CSIT and CSIR,
bution models. From these results we notice that the benefitpacity does not increase at all as the number of transmit an-
of adapting to distribution information regarding CMI or CCltennas is increased beyond the length of the coherence interval
fed back from the receiver to the transmitter are twofold. N@t. The MIMO capacity for this model was further explored by
only does the capacity increase with more information abodheng and Tse in [89]. They show that at high SNRs capacity
the channel distribution, but this feedback also allows the achieved using no more thaW* = min(M, N, |T/2]|)
transmitter to identify the stronger channel modes and achigvansmit antennas. In particular, having more transmit antennas
this higher capacity with simple scalar codewords. than receive antennas does not provide any capacity increase
We conclude this section with a discussion on the growth af high SNR. Zheng and Tse also find that for each 3-dB SNR
capacity with number of antennas. With perfect CSIR and CDifcrease, the capacity gainig*(1 — M*/T).
under the ZMSW channel distribution, it was shown by Foschini Notice that [53], [89] assume block fading models, i.e., the
and Gans [22] and by Telatar [69] that the channel capacithannel fade coefficients are assumed to be constant for a block
grows linearly withmin(M, N). This linear increase occursof T' symbol durations. Hochwald and Marzetta extend their
whether the transmitter knows the channel perfectly (perfaetsults to continuous fading in [54] where, within each indepen-
CSIT) or only knows its distribution (CDIT). The proportion-dent7-symbol block, the fading coefficients have an arbitrary
ality constant of this linear increase, called the rate of growttime correlation. If the correlation vanishes beyond some lag
has also been characterized in [15], [31], [68], [69]. Chetadd. 7, called thecorrelation timeof the fading, then it is shown in
[15] show that with perfect CSIR and CSIT, the rate of growth ¢64] that increasing the number of transmit antennas beyond
capacity withmin(M, N) is reduced by channel fading correlamin(7, T') antennas does not increase capacity. Lapidoth and
tions at high SNR but is increased at low SNR. They also shavioser [47] explored the channel capacity of this CDIT/CDIR
that the mutual information under CSIR increases linearly withodel for the ZMSW distribution at high SNR without the
min(M, N) even when a spatially white transmission strategylock fading assumption. In contrast to the results of Zheng and
is used on a correlated fading channel, although the slope isTee for block fading, Lapidoth and Moser show that without
duced relative to the uncorrelated fading channel. As we wiltie block fading assumption, the channel capacity grows only
see in the next section, the assumption of perfect CSIR is cdeuble logarithmically in SNR. This result is shown to hold
cial for the linear growth behavior of capacity with the numbaunder very general conditions, even allowing for memory and

of antennas. partial receiver side information.
In the next section, we explore the capacity when only CDI 5) Capacity With CDIR and CDIR: CCI ModelThe results
is available at the transmitter and the receiver. in [53] and [89] seem to leave little hope of achieving the high
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capacity gains predicted for MIMO systems when the chanrig represented by the MIMO system model (1) in this manner
cannot be accurately estimated at the receiver and the charj8]. For MIMO systems, the matrix channel model is derived
distribution follows the ZMSW model. However, before reby Bolcskei, Gesbert and Paulraj in [5] based on an analysis
signing ourselves to these less-than-optimistic results we nofethe capacity behavior of OFDM-based MIMO channels
that these results assume a somewhat pessimistic modelifobroadband fading environments. Under the assumption of
the channel distribution. That is because most channels whgifect CSIR and CDIT for the ZMSW model, their results
averaged over a relatively small area have either a nonz&how that in the MIMO case, unlike the SISO case, frequency
mean or a nonwhite covariance. Thus, if these distributiG@lective fading channels may provide advantages over flat
parameters can be tracked, the channel distribution correspof@§ng channels not only in terms of ergodic capacity but also
to either the CMI or CCI model. in terms of capacity versus outage. In other words, MIMO
Recent work by Jafar and Goldsmith [37] addresses tfi@duency selective fading channels are shown to provide both
MIMO channel capacity with CDIT and CDIR under thehigher diversity gain and higher multiplexing gain than MIMO
CClI distribution model. The channel matrix components af#@t-fading channels. The measurements in [55] show that
modeled as spatially correlated complex Gaussian randéigdquency selectivity makes the CDF of the capacity steeper
variables that remain constant for a coherence interval’ ofand, thus, increases the capacity for a given outage as compared
symbol periods after which they change to another independifith the flat-frequency case, but the influence on the ergodic
realization based on the spatial correlation model. The chanf@pacity is small.
correlations are assumed to be known at the transmitter and) Training for Multiple-Antenna System&he results
receiver. As in the case of spatially white fading (ZMSWsummarized in the previous sections indicate that CSI plays a
model), Jafar and Goldsmith show that with the CCI model tigucial role in the capacity of MIMO systems. In particular,
capacity is achieved when thex M transmitted signal matrix the capacity results in the absence of CSIR are strikingly
is equal to the product of & x T isotropically distributed different and often quite pessimistic compared with those that
unitary matrix, a statistically independefft x M random assume perfect CSIR. To recapitulate, with perfect CSIR and
matrix that is diagonal, real and nonnegative and the mat@DIT MIMO channel capacity is known to increase linearly
of the eigenvectors of the transmit fade covariance m&rix with min(M, N) when the CDIT assumes the ZMSW or CCl
It is shown in [37] that the channel capacity is independedtstribution models. However, in fast fading when the channel
of the smallest M — T)* eigenvalues of the transmit fadechanges so rapidly that it cannot be estimated reliably at the
covariance matrix, as well as the eigenvectors of the transmateiver (CDIR only) the capacity does not increase with the
and receive fade covariance matricB$ and R”. Also, in  number of transmit antennas at all fof > 7" whereT is the
contrast to the results for the spatially white fading modehannel decorrelation time. Also at high SNR under the ZMSW
where adding more transmit antennas beyond the coheretgribution model, capacity with perfect CSIR and CDIT
interval length (/ > T') does not increase capacity, [37] showghcreases logarithmically with SNR, while the capacity with
that additional transmit antennas always increase capacity@sIR and CDIT increases only double logarithmically with
long as their channel fading coefficients are spatially correlateSiNR. Thus, CSIR is critical for obtaining the high capacity
Thus, in contrast to the results in favor of independent fadggnefits of multiple-antenna wireless links. CSIR is often
with perfect CS'R, these results indicate that with CCI at thﬂ)tained by Sending known training Symbo|s to the receiver.
transmitter and the receiver, transmit fade correlations can Rgwever, with too little training the channel estimates are
beneficial, making the case for minimizing the spacing betweggor, whereas with too much training there is no time for data

transmit antennas when dealing with highly mobile, fast fadinggnsmission before the channel changes. So the key question
channels that cannot be accurately measured. Mathematicallyask is how much training is needed in multiple-antenna

[37] proves that for fast fading channel® (= 1), capacity yreless links. This question itself is the title of the paper

is a Schur-concave function of the vector of eigenvalues 9] by Hassibi and Hochwald where they compute a lower
the transmit fade correlation matrix. The maximum possiblg, 4 on the capacity of a channel that is learned by training
capacity gain due to transmitter fade correlations is shown d8d maximize the bound as a function of the receive SNR

be 10log,, M db. fadin ; :
. . . . g coherence time, and number of transmitter antennas.
6) Frequency Selective Fading Channelé/hile flat fading When the training and data powers are allowed to vary, the

IS a _reallstlc as_sumpnon for narrowband systems Wheé timal number of training symbols is shown to be equal to
the signal bandwidth is smaller than the channel cohereng@ ey of transmit antennas—which is also the smallest

bandv_wdth, broadband communlcgtlons involve channels tI??‘qﬂning interval length that guarantees meaningful estimates
experience frequency selective fading. Research on the c@Paft¥he channel matrix. When the training and data powers are

of MIMO systems with frequency selective fading typically : . . :
takes the approach of dividing the channel bandwidth in Bstead required to be equal, the optimal tralnl_ng duration may
longer than the number of antennas. Hassibi and Hochwald

parallel flat fading channels and constructing an overall blo how that trainina-based sch b timal at high
diagonal channel matrix with the diagonal blocks given by t S0 show thal training-based scheémes can be optimal at hig
MR but are suboptimal at low SNR.

channel matrices corresponding to each of these subchann
Under perfect CSIR and CSIT, the total power constraint then o

leads to the usual closed-form waterfiling solution. Not®: OPen Problems in Single-User MIMO

that the waterfill is done simultaneously over both space andThe results summarized in this section form the basis of our
frequency. Even SISO frequency selective fading channels aarderstanding of channel capacity under different CSl and CDI
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W w € CM*1 the noise vector where ~ N(0,1) is circularly
-*@-*yl uy -» symmetric complex Gaussian with identity covariance. The re-

ceived signal at the base station is then equal to

@"@"h uz*\‘i‘/ v=H;fu; +---+ H}(ulg’ +w
: : H-v

uj
1’1}( / ug
(]~ wc-{H] o _—

In the MAC, each user (i.e., mobile) is subject to an individual
Fig. 6. System models of the (left) MIMO BC and the (right) MIMO MAC POWer constraint of’,. The transmit covariance matrix of uger
channels. is defined to beQ;, £ E[uxuy]. The power constraint implies
Tr(Qi) < Pfork=1,... K.

assumptions. These results serve as useful indicators for the bed the BC, letx € C*** denote the transmitted vector signal
efits of incorporating training and feedback schemes in a MiM{rom the base station) and lgf € C" ** be the received signal
wireless link to obtain CSIR/CDIT and CSIT/CDIT, respecat receiver (i.e., mobilé). The noise at receivéris represented
tively. However, our knowledge of MIMO capacity with CDIbY mc € C** and is assumed to be circularly symmetric com-
only is still far from complete, even for single-user systems. Waeéx Gaussian noisenf ~ N(0,I)). The received signal of
conclude this section by pointing out some of the many opéfserk is equal to
problems.

1) Combined CCI and CMI: Capacity under CDIT and per- Yie = HiX + 1y,

fect CSIR is unsolved under a combined CCI and CI\/lllhe transmit covariance matrix of the input signalXs £

distribution model even with a single receive antenna. t o . )
2) CCI: With perfect CSIR and CDIT capacity is not knowrft[r):i(nt]f-rc\,iizﬁsi?n;Itiztéo?(; S)ugjelft 10 an average power con

under the CCI model for completely general correlations.
3) I(éaISR: Almost all cases with only CDIR are open probB_ MIMO Multiple-Access Channel
4) Outage capacity: Most results for CDI only at either the In this section, we summarize capacity results on the mul-

transmitter or receiver are for ergodic capacity. Capacitjple-antenna MAC. We first analyze the constant channel sce-

versus outage has proven to be less analytically tractapio and then consider the fading channel. Since the capacity

than ergodic capacity and contains an abundance of ogégion of a general MAC is known, the expressions for the ca-
problems. pacity of a constant MAC are quite straightforward. For the

fading case, one must consider different assumptions about the
CSl and CDI available at the transmitter and receiver. We con-
. M ULTIUSER MIMO sider three cases: perfect CSIR and CSIT, perfect CSIR and
CDIT, and CDIT and CDIR. As above, under CDI, we consider
In this section, we consider the two basic multiuser MIMGhree different distribution models: the ZMSW, CMI, and CClI
channel models: the MIMO MAC and the MIMO BC. Sincemodels.
the capacity region of a general MAC has been known forquitel) Constant ChannelThe capacity of any MAC can be
a while, there are many results on the MIMO MAC for botRyritten as the convex closure of the union of rate regions cor-
constant channels and fading channels with different CSI apgbponding to every product input distributipfuy ) - - - p(ug)
CDI assumptions at the transmitters and receivers. The MIM@Qtisfying the user-by-user power constraints [18]. For the
BC, however, is a relatively new problem for which capacitgsgussian MIMO MAC, however, it has been shown that it is
results have only recently been found. As a result, the field dgfficient to consider only Gaussian inputs and that the convex
much less developed, but we summarize the recent results infig@ operation is not needed [11], [86]. For any set of powers
area. Interestingly, the MIMO MAC and MIMO BC have beerp — (Pi,...,Pg), the capacity of the MIMO MAC is shown

=H"| ! | +w where H' = [H," ... H}].

11)

shown to be duals, as we will discuss in Section III-C2. in (12), at the bottom of the next page. Thie user transmits a
zero-mean Gaussian with spatial covariance ma@jx Each
A. System Model set of covariance matricedQ(, ..., Qx) corresponds to a

To describe the MAC and BC models, we consider a cel-dimensional polyhedron (i.e.)
lular-type system in which the base station Msntennas and
each of theK' mobiles hasV antennas. The downlink of this R R ST R
system is a MIMO BC and the uplink is a MIMO MAC. We (B, Ric) Z ‘

will use H; to denote thelownlinkchannel matrix from the base es
station to usei. Assuming that the same channel is used on the 1 T

, , _ , , . < Zlog I H'QH;| VvSc{l,.. . K
uplink and downlink, thauplink matrix of useri is HI A pic- =39 + lezs iQ <t }

ture of the system model is shown in Fig. 6.
In the MAC, letu,, € CV*! be the transmitted signal of userand the capacity region is equal to the union (over all
(i.e., mobile)k. Letv € CM*! denote the received signal anccovariance matrices satisfying the trace constraints) of
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Ry R2

—— Y
Slope = u;

Ry + Ry <log |1+ HI P H, + HP,H,|

/

R,

Fig. 7. Capacity region of MIMO MAC forV = 1.
. Fig. 8. Capacity region of MIMO MAC fortV > 1.
all such polyhedrons. The corner points of each polyhe—g pactly reg

dron can be achieved bguccessive decodingn which

users’ signals are successively decoded and subtrac@eyaterfill of the channeH, and the interference from user 1.
out of the received signal. For the two-user case, each &€ Sum-rate comer points B and C are the two corner points of
of covariance matrices corresponds to a pentagon, sifhe pentagon corresponding to the sum-rate optimal covariance

ilar in form to the capacity region of the scalar GaussidfatricesQi*™ and Q3. At point B user 1 is decoded last,
MAC. The corner point where?, = log|T + H{QH;| whereas at point C user 2 is decoded last. Thus, points B and

and R, = log|l + HIQ:H;, + HIQ,H,| — R, = OICaredr_:lchievded using the same covariance matrices but different
log [T + (I+ H{Q,H,)~'H}Q,H,| corresponds to decoding “€c09!Ng Orcers.

user 2 first (i.e., in the presence of interference from user 1)NEXt. we focus on characterizing the optimal covariance

and decoding user 1 last (without interference from user atrices Qu,...,Qx) that achieve different points on the

Successive decoding can reduce a complex multiuser detec 8Hnd_r:1ry of_the_MIMO MA(t: capahc:;[y reg|cf)n. Since theﬂl:/lAC
problem into a series of single-user detection steps [27]. capacity region IS convex, 1t Is well known trom convex theory

The capacity region of a MIMO MAC for the single transmiLIhat the bour?da.rY of the capapity region can be fully character-
antenna case\ = 1) is shown in Fig. 7. WheiV = 1, the co- ized by maximizing the functioms Ry + --- + ux Ry over

variance matrix of each transmitter is a scalar equal to the traﬁ‘g,-rate vectors in the capacity reg!on and for all nonnegative
mitted power. Clearly, each user should transmit at full powepr

riorities (u1, ..., px) such thatzi;1 w; = 1. For a fixed
Thus, the capacity region for &-user MAC forN = 1 is the set of priorities [i1,. .., ux), this is equivalent to finding the

point on the capacity region boundary that is tangent to a line

set of all rate vectorsHy, . . ., Ry satisfyin . . o ;
s, Br) fying whose slope is defined by the priorities. See the tangent line
1 in Fig. 8 for an example. The structure of the MAC capacity
< Zlow TPH. A . . .
Z R < 2 log |T+ ZHv PH;| VSC{l... K} (13) region implies that all boundary points of the capacity region
i€S i€S

are corner points of polyhedrons corresponding to different sets
For the two-user case, this reduces to the simple pentagon seftovariance matrices. Furthermore, the corner point should
in Fig. 7. correspond to successive decoding in orderimafreasing
WhenN > 1, however, a union must be taken over all copriority, i.e., the user with the highest priority should be
variance matrices. Intuitively, the set of covariance matrices thidcoded last and, therefore, sees no interference [70], [73].
maximize Iz, are different from the set of covariance matriceShus, the problem of finding the boundary point on the capacity
that maximize the sum rate. In Fig. 8, a MAC capacity regiofegion associated with prioritiesy, ..., ux assumed to be
for N > 1is shown. Notice that the region is equal to the unioim descending order (users can be arbitrarily re-numbered to
of pentagons (each pentagon corresponding to a different segafisfy this condition) can be written as
transmit covariance matrices), a few of which are shown with

dashed lines in the figure. The boundary of the capacity re- K t
gion is in general curved, except at the sum rate point, whege 2%, #'% log |T+ ZHI QH,
the boundary is a straight line [86]. Each point on the curved lj(l )

portion of the boundary is achieved byldferentset of covari- -
ance matrices. At point A, user 1 is decoded last and achieves + Z (1 = pi41) log
his single-user capacity by choosify as a water-fill of the =1
channeH; (independent oH, or Q-). User 2 is decoded first, subject to power constraints on the trace of each of the covari-
in the presence of interference from user 1(¥pis chosen as ance matrices. Note that the covariances that maximize the func-

I+ Z H/QH,

=1

C ( T) A {(131,13}() } (12)
MAC I ;II - l I 1 T
ol < slog|I+> . . cH QH,| VSC{l,....K
(Q: >0, Tr( <P Vi) Z?ES 2 108 Zzes —{ }
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tion above are the@ptimal covariances. The most interesting Asymptotic results on the sum capacity of MIMO MAC

and useful feature of the optimization problem above is thahannels with the number of receive antennas and the number

the objective function is concave in the covariance matrices. transmitters increasing to infinity were obtained by Telatar

Thus, efficient convex optimization tools exist that solve thigg9] and by Viswanattet al. [80]. MIMO MAC sum capacity

problem numerically [7]. A more efficient numerical techniquavith perfect CSIR and CDIT under the ZMSW distribution

to find the sum-rate maximizing (i.es; = -+ = px) covari- model (i.e., each transmitter’s channel is distribute &%)

ance matrices, called iterative waterfilling, was developed by Ysi found to growlinearly with min(M, NK) [69]. Thus, for

et al.[86]. This technique is based on the Karush Kuhn Tucksystems with large numbers of users, increasing the number

(KKT) optimality conditions for the sum-rate maximizing co-of receive antennas at the base statidfi) (vhile keeping the

variance matrices. These conditions indicate that the sum-ratember of mobile antennasV( constant can lead to linear

maximizing covariance matrix of any user in the system shoutglowth. Sum capacity with perfect CSIR and CSIT also scales

be the single-user water-filling covariance matrix of its owfinearly with min(M, N K), but perfect CSIT is of decreasing

channel with noise equal to the actual noise plus the interfealue as the number of receive antennas increases [32], [80].

ence from the otheK — 1 transmitters. Furthermore, the limiting distribution of the sum capacity with
2) Fading Channels:As in the single-user case, the capacitperfect CSIR and CSIT was found to be Gaussian by Hochwald

of the MIMO MAC where the channel is time-varying dependand Vishwanath [32].

on the definition of capacity and the availability of CSl and CDI

at the transmitters and the receiver. The capacity with perfett MIMO Broadcast Channel

CSIT and CSIR is very well studied, as is the capacity with In this section, we summarize capacity results on the

perfect CSIR and CDIT under the ZMSW distribution model, " . ' X

However, little is known about the capacity of the MIMO MACmuIane-antenna BQ' When the transm|t.ter has only one

with CDIT at either the transmitter or receiver under the CMI antenna, the Qaussmn broadcast channel is a degraded broqd-

ast channel (i.e., the users can be absolutely ranked by their

CCl distributi dels. S It the opiti distrib§: : . )
ISTIDUTION MOTE'S. SOME Fesuts on e opimum cistr annel strength), for which the capacity region is known [18].

tion for the single antenna case with CDIT and CDIR under t .
ZMSW distribution can be found in [62]. owever, when the transmitter _has more than one antenna, the
With perfect CSIR and CSIT the system can be viewed as agaequsglan brpadcast channel is generally nondegradiad. .
capacity region of general nondegraded broadcast channels is

of parallel non interfering MIMO MACs (one for each fading . ) .
state) sharing a common power constraint. Thus, the ergoH known, but the seminal work of Caire and Shamai [9] and
sequent research on this problem have shed a great deal

capacity region can be obtained as an average of these par§ lah his ch | and th v of th
MIMO MAC capacity regions [87], where the averaging is don@! 19ht on this channel and the sum capacity of the MIMO
with respect to the channel statistics. The iterative waterfillifgC 1as been found. In subsequent sections, we focus mainly
algorithm of [86] easily extends to this case, with joint spac? the constant channel, but we do briefly discuss the fading
and time waterfilling. channel as well which is still an open problem. Note that the

The capacity region of a MAC with perfect CSIR and cpIBC transmitter (i.e., the base statl_on) IMsante_nnas and each
under the ZMSW distribution model was found in [23] and [63]€C€iver hasV antennas, as described in Section I1I-A.

In this case, Gaussian inputs are optimal and the ergodic cal) Dirty Paper Coding (DPC) Achievable Rate RegioAn

pacity region is equal to the time average of the capacity ofchievable region for the MIMO BC was first obtained for the

tained at each fading instant with a constant transmit policy (i.&Y, = 1 case by Caire and Shamai [9] and later extended to the

a constant covariance matrix for each user). Thus, the ergoBlEltiple-receive antenna case by Yu and Cioffi [83] using the
capacity region is given by idea of DPC [17]. The basic premise of DPC is as follows. If the

transmitter (but not the receiver) has perfect, noncausal knowl-
{ edge of additive Gaussian interference in the channel, then the
(R17

U

{Qi>0, Tr(Q:)<P; vi}

S RE): Z R; capacity of the channel is the same as if there was no additive
i€s interference, or equivalently as if the receiver also had knowl-
edge of the interference. DPC is a technique that allows non-
< -Eg ] causally known interference to be “presubtracted” at the trans-
mitter, but in such a way that the transmit power is not increased.
A more practical (and more general) technique to perform this
presubtraction is the cancelling for known interference tech-
nique found by Ereet al. in [19].
If the channel matriceHI; have i.i.d. complex Gaussian entries Inthe MIMO BC, DPC can be applied at the transmitter when
and each user has the same power constraint, then the optiﬂh’ﬂosing codewords for different receivers. The transmitter first
covariances are scaled versions of the identity matrix [69]. picks a codeword (i.exy) for receiver 1. The transmitter then
There has also been some work on capacity with perfedtooses acodeword for receiver 2 (&) with full (noncausal)
CSIR and CDIT under the CCI distribution model [41]. Irknowledge of the codeword intended for receiver 1. Therefore,
this paper, Jafar and Goldsmith determine the optimal transmit
covariance matrices when there is transmit antenna correlatiog]rhe mult .
. . . . ple-antenna broadcast channel is nondegraded because users re-
that is known at the transmitters. This topic has yet to be fullye gifferent strength signals from different transmit antennas. See [18] for a
investigated. precise definition of degradedness.

log [T+ HIQ;H;

€S

\'/SQ{L...,K}}.

DN | =
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Fig. 9. Dirty paper rate regiodl; = [1 0.5], H, = [0.5 1], P = 10.

the codeword of user 1 can be presubtracted such that receivédne important feature to notice about the dirty paper rate
2 does not see the codeword intended for receiver 1 as interfequations in (14) is that the rate equations are neither a concave
ence. Similarly, the codeword for receiver 3 is chosen such thradr convex function of the covariance matrices. This makes nu-
receiver 3 does not see the signals intended for receivers 1 amdeé?ically finding the dirty paper region very difficult, because
(i.e x; + x3) as interference. This process continues forkall generally a brute force search over the entire space of covariance
receivers. If userr(1) is encoded first, followed by uset(2), matrices that meet the power constraint must be conducted. The
etc., the following is an achievable rate vector: dirty paper rate region for a two-user channel with= 2 and
N = 1is shown in Fig. 9.
Note that DPC and successive decoding (i.e., interference
cancellation by the receiver instead of the transmitter) are
K completely equivalent capacity-wise for scalar channels, but
this equivalence does not hold for MIMO channels. It has been
shown [36] that the achievable region with successive decoding
(14) is contained within the DPC region._ _
The dirty paper regioppc(P, H) is defined as the convex _2) MAC-BC Duality: In [74], Vishwanath, Jindal, and

hull of the union of all such rates vectors over all positivé©ldsmith showed that the dirty paper rate region of the
semi-definite covariance matrice&; X such that Multiantenna BC with power constraifitis equal to the union
e

TH(®, + - Xx) = Tr(X,) < P and over all permutations of capacity regions of the dual MAC, where the union is taken
(x(1),...,7(K)): o over all individual power constraints that sumfto

;
I+ Hx) (g Eﬂ(i)) H
j>

1 .
Rﬂ(i)zilog 1=1,...,

;
I+Hz (E Eﬂ(i)) H

Cppc(P,H) = U  Cuac(Pr,.... Px, HY). (16)
Copc(P,H) £ Co | | ] R(m, X)) (15) P> X P=p
w3
This is the multiple-antenna extension of the previously estab-
whereR (7, X;) is given by (14). The transmitted signabis= lished duality between the scalar Gaussian broadcast and mul-
x1 + --- + xk and the input covariance matrices are of theéple-access channels [44]. In addition to the relationship be-
form X; = E[x;x;']. From the dirty paper result we find thattween the two rate regions, for any set of covariance matrices in

X1,...,Xf are uncorrelated, which implies, = Xy +---+ the MAC/BC (and the corresponding rate vector), [74] provides
Y. an explicit set of transformations to find covariance matrices in
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the BC/MAC that achieve the same rates. The union of MAC Asymptotic results for the sum-rate capacity of the MIMO
capacity regions in (16) is easily seen to be the same expresd@hfor N = 1 under the ZSMW model can be obtained by com-
as in (12) but with the constrai@f{: 1 Tr(Q;) < P instead of bining the asymptotic results for the sum-rate capacity of the
Tr(Q;) < P; Vi (i.e., a sum constraint instead of individuaMIMO MAC with duality [32]. Thus, the role of transmitter side
constraints). information reduces with the growth in the number of transmit
The MAC-BC duality is very useful from a numericalantennas and, hence, the sum capacity of the MIMO BC with
standpoint because the dirty paper region leads to nonconcaveisers andV/ transmit antennas tends to the sum capacity of
rate functions of the covariances, whereas the rates in the daaingle-user system with only receiver CSI avidreceive an-
MAC are concavefunctions of the covariance matrices. Thustennas and{ transmit antennas, which is given By log |I +
the optimal MAC covariances can be found using standaf¢y K HH'|. Thus, the asymptotic growth under CSIR and CSIT
convex optimization techniques and then transformed to theCDIT under the ZMSW model is linear &snin(M, K') and
corresponding optimal BC covariances using the MAC-B@e growth rate constar@ can be found in [32]. As seen for
transformations given in [74]. A specialized algorithm tdhe MIMO MAC, for systems with large numbers of users, in-
find the optimal MAC covariances can be found in [35]. Arcreasing the number of transmit antennas at the base stafipn (
algorithm based on the iterative waterfilling algorithm [86] thawvhile keeping the number of mobile antennak) constant can
finds the sum rate optimal covariances is given in [43]. lead to linear growth.
The dirty paper rate region is shown in Fig. 9 for a channel
with two-usersM = 2 and N = 1. Notice that the dirty paper D. Open Problems in Multiuser MIMO
rate region shown in Fig. 9 is actually a union of MAC regions, Multiuser MIMO has been the primary focus of research in

V\{hgre each MAC regipn cor_responds to a different set of igg oy years, mainly due to the large number of open problems
dividual power constraints. Sind€ = 1, each of the MAC re- in this area. Some of these are as follows

E/IIOAré:SéSaS;gg[ erlegé)ighafhcgsl)(;uussggr;noifﬁél%r;l(lzl-rl?é;.iosrllr::Ié’:ll:rt\(l)etgel) BC with perfect CSIR and CDIT: The broadcast channel
: ' capacity is only known when both the transmitter and the

except at the sum-rate maximizing portion of the boundary. For .
P gp 4 receivers have perfect knowledge of the channel.

the N = 1 case, duality also indicates that rank-one covari- 2) CDIT and CDIR: Since perfect CS! is rarely possible, a

ance matrices (i.e., beamforming) are optimal for DPC. This L !
: . . : ~ study of capacity with CDI at both the transmitter(s) and
fact is not obvious from the dirty paper rate equations, but fol receiver(s) for both MAC and BC is of great practical

lows from the transformations of [74] which find BC covari-
ances that achieve the same rates as a set of MAC covariancg rl\?éiv-aDnlfce:.techn' es for BC: DPC is a verv powerful ca-
matrices (which are scalars in tihé = 1 case). ) acity-achievin Iqsléheme b It it a Iear\é y.F;ch;'.ﬁ.Cu It to
Duality also allows the MIMO MAC capacity region to be Fr)‘n :eymentl .:\" ?act'ce TF\ lSJ Inonp—FI)DPC rgwlt' s:arl truans—
expressed as an intersection of the dual dirty paper BC rate re- Imple N practice. 1 hus, . Ui .
missions schemes for the downlink (such as downlink

gions [74, Corollary 1] beamforming [60]) are also of practical relevance.

IV. MULTICELL MIMO

K
= ﬂ Cppc <Z &; [\/a_lﬂlT . @H%]T) . The MAC and the BC are information theoretic abstractions
=1 ¢ of the uplink and the downlink of a single cell in a cellular
(17) system. However, a cellular system, by definition, consists of
many cells. Due to the fundamental nature of wireless propaga-
3) Optimality of DPC: DPC was first shown to achieve thetion, transmissions in a cell are not limited to within that cell.
sum-ratecapacity of the MIMO BC for the two-useld = 2, Users and base stations in adjacent cells experience interfer-
N = 1 channel by Caire and Shamai [9]. This was shown bnce from each other. Also, since the base stations are typically
proving that the Sato upper bound [61] on the broadcast channet mobile themselves there is the possibility for the base sta-
sum-rate capacity is achievable using DPC. The sum-rate ¢ipns to communicate through a high-speed reliable connection,
timality of DPC was extended to the multiuser channel withossibly consisting of optical fiber links capable of very high
N = 1 by Viswanath and Tse [79] and to the more generdiata rates. This opens up the opportunity for base stations to co-
N > 1 case by Vishwanatht al.[74] and Yu and Cioffi [84].  operate in the way they process different users’ signals. Anal-
It has also recently been conjectured that the DPC rate regimis of the capacity of the cellular network, explicitly taking
is the actual capacity region of the multiple-antenna broadcastio account the presence of multiple cells, multiple users and
channel. Significant progress toward proving this conjecturerisultiple antennas, and the possibilities of cooperation between
made in [75] and [77]. base stations is inevitably a hard problem and runs into sev-
4) Fading Channels:Most of the capacity problems for eral long-standing unsolved problems in network information
fading MIMO BCs are still open, with the exception of sum-ratéheory. However, such an analysis is also of utmost importance
capacity with perfect CSIR and CSIT. In this case, as for thmecause it defines a common benchmark that can be used to
MIMO MAC, the MIMO BC can be split into parallel channelsgauge the efficiency of any practical scheme, in the same way
with an overall power constraint (see Li and Goldsmith [48] fathat the capacity of a single-user link serves as a measure of the
a treatment of the scalar case). performance of practical schemes. There has been some recent
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single cell, 20 users, 1 Rx ant. per user, 5db SNR
T T T T T

research in this area that extends the single-cell MAC and E -
results to multiple cells. In this section, we summarize some
these results.

The key to the extension of single-cell results to multiple-ce
systems is the assumption of perfect cooperation between b
stations. Conceptually, this allows the multiple base statiorZ
to be treated as physically distributed antennas of one col
posite base station. Specifically, consider a groupBofoor-
dinated cells, each with/ antennas an& mobiles, each with
N antennas. If we defingl; ; € V> to be thedownlink
channel of usei from base statior, then thecompositedown-
link channel of usefisF; = [H, ; - - - H; g] and the composite
uplink channel isF}. The received signal of usércan then be
written asY; = F; W + n;, whereW is the composite trans-
mitted signal defined aW7? = [WT ... WZL]. Here, we let

W represent the transmit signal from bgse 1 ‘ . i i i ! ;
5 10 15 20 25 30 35 40

0
First, let us consider the uplink. As pointed out by Jafa ro. of Tx ant at BS
et al. [36] the single-cell MIMO MAC capacity region results
apply to this system in a straightforward way. Thus, by a$ig. 10. Optimal sum rate relative to HDR.
suming perfect data cooperation between the base stations,

the muItipIe_—ceII u_plink is easily seen to be equal_to thﬁo power cooperation is required. The per-base power con-
MAC capacity region of the composite channel, defined &aints restrict consideration to covariance matrices such that
Cyac(Fy,... . Fri Py, Pre) in (12), where the power s~K ryp(x, X1 J) < P;j = 1,..., B. This is equivalent
constraints of théth mobile isP; =1 Ll e - :

i to a constraint of?; on the sum of the firsd/ diagonal entries

On the downlink, since the base stations can cooperate p§f<,, a constraint ofP, on the sum on the next/ diagonal
fectly, DPC can be used over the entire transmitted signal (i.entries of,, etc. These constraints are considerably stricter
across base stations) in a straightforward manner. The appligfn a constraint on the trace Bf as in the single-cell case.
tion of DPC to a multiple-cell environment with cooperation be- Though DPC yields an achievable region, it has not been
twgen base stations is pioneered in recent work by Shamai apdywn to achieve the capacity region or even the sum-rate
Zaidel [64]. For one antenna at each user and each base gigyacity with per-base power constraints. Additionally, the
tion, they show that.arelatlvely simple appl.|cat|on Qf DPC CaMAC-BC duality (Section 11-C2) which greatly simplified
enhance j[he capacity of the cellular downlink. While capacipy|culation of the dirty paper region does not apply under
computations are not the focus of [64], they do show that thejer_pase power constraints. Thus, even generating numerical
scheme is asymptotically optimal at high SNRs. results for the multicell downlink is quite challenging.

The MIMO downlink capacity is explored by Jafar and However, data and power cooperation does give a simple
Goldsmith in [39]. Note that the multicell downlink can beypper bound on the capacity of the network. Based on numer-
solved in a similar way as the uplink. But this requires perfegial comparisons between this upper bound and a lower bound
data andpower cooperatiorbetween the base stations. If weon capacity derived in [39], Jafar and Goldsmith find that the
let X;,; represent the transmit vector for Usefrom base simple upper bound with power and data cooperation is also a
station j, the composite transmit vector intended for User good measure of the Capacity with data Cooperation alone.

is XJ = [X],---X]p]. Thus, the composite covariance of Note that current wireless systems use the high data rate
useri is defined ass; = E[X,;X]]. The covariance matrix (HpR) protocol and transmit to only one user at a time on
of the entire transmitted signal }s, = };_, ;. Assuming the downlink, where this best user is chosen to maximize the
perfect data cooperation between the base stations, DPC cag\mage system data rate. In contrast, DPC allows the base
applied to the composite vectors intended for different useggation to transmit to many users simultaneously. This is par-
Thus, the dirty paper region described in Section I1I-C1, (15)cularly advantageous when the number of transmit antennas
can be achieved in the multicell downlink. at the base station is much larger than the number of receive

While data cooperation is a justifiable assumption for cantennas at each user—a common scenario in current cellular
pacity computations in the sense that it captures the possibilystems. To illustrate the advantages of DPC over HDR, even
of base stations cooperating among themselves as descrifoeda single cell, the relative gains of optimal DPC over a
earlier in this section, in practice each base station has stsategy that serves only the best user at any time are shown
own power constraint. The per-base power constraint can ing-ig. 10. Note that this single-cell model is equivalent to the
expressed aE[W}X]-] < P;, whereP; is the power constraint multicell system with no cooperation between base stations so
at basej. Thus power cooperation, or pooling the transmihat the interference from other cells is treated as noise. With
power for all the base stations to have one overall transroitoperation between base stations the gains are expected to be
power constraint, is not realistic. Note that on the uplinkven more significant as DPC reduces the overall interference
the base stations are only receiving signals and, therefdog,making some users invisible to others.

o
T
1

mcapa

Sumcapacity/HDRsui
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The capacity results described in this section address jud¥itMO MAC capacity region. These capacity and achievable
few out of many interesting questions in the design of a celluleggions are only known for ergodic capacity under perfect CSIT
system with multiple antennas. Multiple antennas can be usaud CSIR. Relatively little is known about the MIMO MAC
not only to enhance the capacity of the system but also to driaed BC regions under more realistic CSI assumptions. A mul-
down the probability of error through diversity combining. Reticell system with base station cooperation can be modeled as
cent work by Zheng and Tse [88] unravels a fundamental diver-MIMO BC (downlink) or MIMO MAC (uplink), where the
sity versus multiplexing tradeoff in MIMO systems. Also, in-antennas associated with each base station are pooled by the
stead of using isotropic transmit antennas on the downlink aggstem. Exploiting this antenna structure leads to significant ca-
transmitting to many users, it may be simpler to use directionadcity gains over HDR transmission strategies.
antennas to divide the cell into sectors and transmit to one usefThere are many open problems in this area. For single-user
within each sector. The relative impact of CDIT and/or CDIR oaystems the problems are mainly associated with CDI only
each of these schemes is not fully understood. Although in tlais either the transmitter or receiver. Most capacity regions
paper we focus on the physical layer, smart schemes to harasociated with multiuser MIMO channels remain unsolved,
CDIT can also be found at higher layers. An interesting exampspecially ergodic capacity and capacity versus outage for the
is the idea of opportunistic beamforming [78]. In the absen®dIMO BC under perfect receiver CSl only. There are very few
of CSIT, the transmitter randomly chooses the beamformimgisting results for CDI at either the transmitter or receiver for
weights. With enough users in the system, it becomes very likelpy multiuser MIMO channel. Finally, the capacity of cellular
that these weights will be nearly optimal for one of the users. fiystems with multiple antennas remains a relatively open area,
other words, a random beam selected by the transmitter is varyart because the single-cell problem is mostly unsolved and
likely to be pointed toward a user if there are enough usersimpart because the Shannon capacity of a cellular system is
the system. Instead of feeding back the channel coefficientsnot well-defined and depends heavily on frequency assump-
the transmitter the users simply feed back the SNRs they $imms and propagation models. Other fundamental tradeoffs
with the current choice of beamforming weights. This signifin MIMO cellular designs such as whether antennas should
cantly reduces the amount of feedback required. By randonflg used for sectorization, capacity gain, or diversity are not
changing the weights frequently, the scheme also treats all ussgdl understood. In short, we have only scratched the surface
fairly. in understanding the fundamental capacity limits of systems
with multiple transmitter and receiver antennas, as well as
the implications of these limits for practical system designs.
This area of research is likely to remain timely, important, and

We have summarized recent results on the capacity of MIMiuitful for many years to come.
channels for both single-user and multiuser systems. The great
capacity gains predicted for such systems can be realized in
some cases, but realistic assumptions about channel knowledge
and the underlying channel model can significantly mitigate [1] A. Abdi and M. Kaveh, “A space-time correlation model for multiele-
these gains_ For Sing|e_user Systems the Capacity under perfect ment antenna systems in mobile fading chann¢fsEE J. Select. Areas

. . . . . Commun,.vol. 20, pp. 550-561, Apr. 2002.
CSI at the transmitter and receiver is relatively straightforward [2] N. Al-Dhahir, “Overview and comparison of equalization schemes for

and predicts that capacity grows linearly with the number of an-  space-time-coded signals with application to EDGEEEE Trans.
tennas. Backing off from the perfect CSI assumption makes the__ Signal Processingvol. 50, pp. 2477-2488, Oct. 2002.

it lculati h difficult and th it . [3] N.Al-Dhahir, C. Fragouli, A. Stamoulis, W. Younis, and R. Calderbank,
capacity calculaton much more dimicult an € capacity gains “Space-time processing for broadband wireless accl#sSEF Commun.

are highly dependent on the nature of the CSI/CDI, the channel  Mag, vol. 40, pp. 136-142, Sept. 2002.
SNR, and the antenna element correlations. Specifically, asl4] E. Biglieri, J. Proakis, and S. S. Shitz, “Fading channels: Information

) : o : : theoretic and icati tEEE Trans. Inform. Th I
suming perfect CSIR, CSIT provides significant capacity gain at 446053."2’21”9_‘3206“;2’““0”{:‘1?1";’;3?"9"E rans. fiorm. Theotyo

low SNRs but not much at high SNRs. The insight here is that[5] H. Bolcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-
at low SNRs it is important to put power into the appropriate ~ based spatial multiplexing systemtEEE Trans. Communvol. 50, pp.

. . . 225-234, Feb. 2002.
e|genm0des of the system. Interestlngly, with perfECt CSIR and[G] S. Borst and P. Whiting, “The use of diversity antennas in high-speed

CSIT, antenna correlations are found to increase capacity at low  wireless systems: Capacity gains, fairness issues, multi-user sched-
SNRs and decrease capacity at high SNRs. Finally, under CDIT__ uling,” Bell Labs Tech. Mem2001.

. . . [71 S. Boyd and L. Vandenberghe. (2001) Introduction to Convex
and CDIR for a zero-mean spat|allywh|techannel,athlgh SNRs Optimization With Engineering Applications. [Online]. Available:

capacity grows relative to only the double log of the SNR with www.stanford.edu/~boyd/cvxbook.html

the number of antennas as a constant additive term. This rathdp! G- Caire and S. Shamai, “On the capacity of some channels with channel
state information,TEEE Trans. Inform. Theorwol. 45, pp. 2007-2019,
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