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Increasing the information capacity per unit bandwidth has been
a perennial goal of scientists and engineers1. Multiplexing of
independent degrees of freedom, such as wavelength, polariz-
ation and more recently space, has been a preferred method to
increase capacity2,3 in both radiofrequency and optical communi-
cation. Orbital angular momentum, a physical property of elec-
tromagnetic waves discovered recently4, has been proposed as
a new degree of freedom for multiplexing to achieve capacity
beyond conventional multiplexing techniques5–9, and has gener-
ated widespread and significant interest in the scientific commu-
nity10–14. However, the capacity of orbital angular momentum
multiplexing has not been established or compared to othermulti-
plexing techniques. Here, we show that orbital angular momen-
tum multiplexing is not an optimal technique for realizing the
capacity limits of a free-space communication channel15–17 and
is outperformed by both conventional line-of-sight multi-input
multi-output transmission and spatial-mode multiplexing.

An orbital angular momentum (OAM) mode carrying angular
momentum lħ in free space is a Laguerre–Gaussian (LG) beam
given by
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where p is the radial index, r is the radius, φ is the azimuth angle, L|l|p
is the Laguerre polynomial and w0 is the waist size of the OAM
mode with l = 0, p = 0, which is the fundamental Gaussian mode.
As can be seen from the last factor in equation (1), the integer
OAM number l indicates the rate of azimuthal twist of the phase
front. This is why OAM modes have been referred to as twisted
photons or twisted radio waves14,16. Because OAM is only conserved
when a beam traverses systems with central rotational symmetry,
OAMmultiplexing cannot be used reliably in off-axis wireless com-
munication, wireless communication with multiple scattering, or in
fibre-optic communication, where a fibre’s rotational symmetry
cannot be maintained reliably over long distances. Hence, OAM
multiplexing has been applied mainly to near-field line-of-sight
(LOS) free-space communication.

Within the context of LOS communication, it has been argued
that OAM multiplexing potentially provides infinite spectral effi-
ciency (SE) or information capacity, because the OAM number
can take on arbitrarily large (quantized) values5,10. As a result,
there has been a flurry of efforts towards the generation18–20,
manipulation21,22 and detection23 of OAM for communications.
However, others have argued that OAM multiplexing is only a
subset of the solutions offered by multi-input multi-output
(MIMO) transmission11,12 and cannot provide SE gain in the far
field14. The purpose of this Letter is to provide a rigorous comparison

between the capacity of OAMmultiplexing and that of systems using
conventional LOS MIMO or spatial-mode multiplexing (SMM).

To provide a framework for a fair comparison, we first define a
canonical LOS system, as shown in Fig. 1a. This comprises a transmit-
ter aperture, and a free-space transmission channel including a single
thin positive lens and a receiver aperture, all circular and aligned along
a common central axis. To simplify the analysis, we assume that the
aperture sizes and numerical apertures (or equivalently, the antenna
gains) on the transmitter and receiver sides are identical. The canoni-
cal system is low-pass in terms of transverse spatial frequencies, with
maximum input angle Θ or numerical aperture NA = sinΘ and thus
maximum transverse spatial frequency k0 × NA, where k0 = 2π/λ and
λ is the wavelength. The transmitter and receiver planes are confined
to circles of finite radius R0. We can therefore conveniently describe
the physical resources of the LOS wireless channel by a dimensionless
space–bandwidth product (SBP) 2R0 × 2NA/λ. As shown in
Supplementary Section 1, this canonical single-lens system, with
appropriate choice of focal length and aperture size, can represent
any system using either a single lens or separate lenses at the transmit-
ter and receiver, whether identical or different, provided it is properly
designed to nominally avoid beam clipping. The single-lens canonical
system can also describe a fibre with a parabolic index profile.

In OAM multiplexing, information is transmitted using beams
with a common central rotational axis but different angular
momenta, corresponding to different values of l. A fixed OAM
number l can be provided by any of the mth-order (m = 2p + |l| + 1)
LG modes, which have root-mean-squared (r.m.s.) waist sizes24 of
wm =
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m
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w0 and divergence angles of θm =
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m
√

θ0, where θ0 is the
divergence of the fundamental Gaussian mode and wmθm/λ =
mw0θ0/λ =m/π, which can be interpreted as the space–bandwidth
product of the OAM mode. The beam divergence and beam waist
(aperture size) cannot be scaled independently for a system with a
fixed SBP. Because, for a given l, the OAM mode with p = 0 has
the minimum SBP, OAM-multiplexed systems investigated to date
have used the LG0l modes5,7. At the receiver, we consider two scen-
arios. In the first, the OAMmodes are demultiplexed without loss or
crosstalk using OAM sorting elements25–27 and subsequently
detected coherently. In the second scenario, the OAM modes are
demultiplexed using the same conventional MIMO technique as
for LOS MIMO and SMM, as described in the next paragraph.

In conventional LOSMIMO, the transmitter aperture is subdivided
into smaller circular apertures packed in a honeycomb formation
(Fig. 1b), each transmitting an independent fundamental Gaussian
beam. The receiver aperture is divided into smaller hexagons in a hon-
eycomb formation to maximize the fill factor and thus minimize loss
(Fig. 1c). Signals arriving at each hexagon are detected coherently.

In SMM, the transmitter aperture is similar to that for OAMmulti-
plexing, but it transmits a complete set of spatial modes, such as all the
LG modes LGpl, including those with p ≠ 0, that are not used in OAM
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multiplexing. SMM is the free-space counterpart of the mode-division
multiplexing (MDM) currently being investigated for fibre-optic
communication28. In fact, multiplexing techniques developed for
MDM can be used for the generation and demultiplexing of SMM
signals, as shown in Supplementary Section 3. Equivalently, the
zero-OAM Hermite–Gaussian (HG) modes of the form

Enxny
(x, y) = unx (x)uny (y), unx (x)
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can be used for SMM, where nx/y are the indices for the x/y direction
and Hnx

is the Hermite polynomial. Both the LG and HG mode sets
represent complete bases for free-space electromagnetic waves, while
OAM modes are a subset of a complete basis. The LG modes and
HG modes are related by a unitary transformation. The receiver
used for SMM is the same as for conventional LOS MIMO.

Let the transmitted and received signals at time t be

s t( ) = [s1 t( )s2 t( ) · · · sM t( )]T

and

r t( ) = [r1 t( )r2 t( ) · · · rM t( )]T
(3)

As the free-space channel is linear, the input and output are related
by a transmission matrix h so that

r t( ) = h · s t( ) (4)

Because of the limited SBP of the LOS system, the transmission matrix
h will have loss and crosstalk. An information-theoretic limit to the SE
of the LOS system, measured in bit s–1 Hz–1, is given by29

SE =
∑

Q

q=1

log2 1 + λq
Pq

σ2

( )

(5)

where λq are the squares of the singular values of the transmission
matrix h, λq are the eigenvalues of h

†h, representing the gain of the
corresponding subchannel, Pq is the power transmitted in the qth
singular vector, or subchannel, of the transmission matrix, and σ2 is
the noise variance in each receiver element. As can be seen from
equation (5), given a fixed receiver noise variance σ2 and a fixed
total transmitter power P =

∑Q
q=1 Pq, the SE is determined by Q, the

number of independently addressable spatially multiplexed subchan-
nels, and by λq, the gains of these subchannels. Our goal is to
compare the SE given by equation (5) for the three multiplexing
methods: OAM multiplexing, LOS MIMO and SMM, with the
same physical resource constraints. Equation (5) assumes that the
transmitter has knowledge of theQ singular vectors and their singular
values, and allocates power to them optimally (see Methods).

To obtain an intuitive estimate of the number of independently
addressable spatial subchannels Q, we may count the number of
modes that fit into the SBP of the LOS system, 2R0 × 2NA/λ,
using equations (1) and (2) for OAM and SMM, respectively. We
define a dimensionless parameter

M = πR0 × NA/λ

which is π/4 times the SBP and is the maximum order of LG modes
supported by the SBP. The radii of the transmitter/receiver aperture
and the numerical aperture are assumed to be R0 =

���

M
√

w0 and
NA = sin(
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M
√

θ0), respectively. Such a choice optimally utilizes the
space and bandwidth resources because of the inherent relationship
between the beam waist and beam divergence.

ForOAMmultiplexing, the number of independently addressable
spatial subchannels is estimated to be

QOAM ≈ 2M + 1 (6)

corresponding to the number of LG modes with p = 0.
For SMMusing LGmodes, the number of independently addressable

spatial subchannels can be estimated as

QSMM ≥ 1

2
M(M + 1) (7a)

counting all permutations of p and l that satisfy 2p + |l| + 1 ≤M.
Equation (7a) is a lower bound, as the r.m.s. waist of an LG mode
is larger than the largest radius of its local intensity maximum24.
Alternatively, we can use the condition that the largest radius of
the local intensity minimum should be less than R0. This allows
the LG mode order to increase from M to 16M/π2 and, as a result,
upper bounds the number of independently addressable spatial sub-
channels by

QSMM ≤ 128

π4
M(M + 1) = 1.314M(M + 1) (7b)

The best estimate ofQ for SMM lies between equations (7a) and (7b).
Manual counting of the number of LG modes with the largest
radius of the local field/intensity maximum less than R0 yields an
approximation (with <1% error for M > 9),

QSMM ≈
1
��

2
√ (M + 7)(M − 1) (7c)

Because HG modes and LG modes are related by a unitary trans-
formation, the two sets ofmodes yield the same number of indepen-
dently addressable spatial subchannels, as estimated by equations
(7a) to (7c).

For conventional MIMO, analytical solutions exist only for rec-
tangular apertures using the Nyquist sampling theorem30. For circu-
lar apertures, we can obtain an approximate bound as follows. Each
Gaussian beam can have a divergence angle as large as that for the
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Figure 1 | Schematic of transmission systems. a, Schematic of a canonical

LOS system. b, Transmitter arrangement for conventional LOS MIMO,

where each small circle represents one of the parallel beams. c, Receiver

arrangement, where the receiver aperture is divided into hexagonal cells to

maximize the fill factor.
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Mth-order LG mode above. Consequently, each Gaussian beam has
a waist size of w = w0 /

���

M
√

, which isM times smaller than theMth-
order OAM mode above. The question of how many independently
addressable MIMO subchannels can be supported by the SBP is
equivalent to how many circles of radius w0 /

���

M
√

can fit into a
large circle of radius

���

M
√

w0. An analytical solution for such a
packing problem does not exist. However, it is known that in the
limit of largeM, the approximate number of independently addressable
MIMO subchannels is upper-bounded as31

QLOS ≤ 0.9M2 (8)

A comparison of equations (6), (7a) to (7c) and (8) indicates that OAM
multiplexing is expected to have the smallest number of independently
addressable subchannels among the three multiplexing methods for a
given SBP.

As shown in equation (5), the SE of a multiplexed system not only
depends on the number of independently addressable subchannels Q,
but also on the singular values of the transmissionmatrix. To compare
the SE of the three multiplexing methods rigorously, we simulate
beam propagation and coherent detection (seeMethods) to determine
the singular values, SE and effective degrees of freedom (EDOF),
which represents the number of subchannels that are actively convey-
ing information for the threemultiplexing techniques under consider-
ation. In obtaining the simulation results given below, the only
approximation we used was the paraxial approximation. System
configurations for the highest SBP considered below that satisfy the
paraxial approximation are given in Supplementary Section 1.

In OAM multiplexing, because the system has central rotational
symmetry, OAM is conserved but power is lost due to diffraction.
The transmission matrix for OAM multiplexing is therefore diag-
onal and non-unitary, assuming a perfect OAM demultiplexer26,27

that introduces no loss or crosstalk. Diffraction is the only effect
included in the simulation for OAM using a perfect demultiplexer.
So, the results for OAM with perfect demultiplexing represent an
upper bound for the SE of OAM multiplexing.

For conventional LOS MIMO and SMM, every received sub-
channel not only suffers loss due to diffraction, but is also subject
to crosstalk from other subchannels, due to diffraction and the
design of the MIMO demultiplexer (Fig. 1c). Hence, the trans-
mission matrices are non-diagonal and non-unitary. We also con-
sider OAM transmission with demultiplexing performed by the
MIMO demultiplexer, in which case the transmission matrix is
non-diagonal and non-unitary.

Figure 2 shows the singular values of the transmission matrix in
descending order for the three multiplexing methods for M = 3, 9
and 21. It is seen that OAM multiplexing has larger singular values
than the other two methods when the SBP is small (Fig. 2a), but has
much smaller singular values than the other two methods when the
SBP is large (Fig. 2b,c). Figure 3 shows the SE and the EDOF for the
three multiplexing methods for M= 3, 9 and 21 as a function of the
system signal-to-noise ratio (SNR), SNR = P/σ2 where P is the total
transmitter power and σ2 is the receiver noise power per subchannel.
Transmitter powers corresponding to the SNR values considered for
the optical and microwave/millimetre-wave regimes are given in
Supplementary Section 2. The EDOFs at high transmitted powers
are in good agreement with estimates of the number of independent
subchannelsQ, given by equations (6), (7c) and (8), for all threemulti-
plexing methods. Although the three methods offer similar SEs and
EDOFs for small SBPs (Fig. 3a,d), SMM and conventional LOS
MIMO offer much higher SEs and EDOFs than OAM multiplexing
for large SBPs (Fig. 3c,f), particularly at moderate to high SNRs.

Both conventional LOS MIMO and SMM exploit the two
degrees of freedom (x,y) or (r,θ) of the transmitter/receiver aper-
tures, while OAM multiplexing only exploits the azimuthal DOF
(θ) of the transmitter/receiver apertures. When the SBP is high,

conventional LOS MIMO and SMM achieve higher SEs and
EDOFs than OAM multiplexing.

Based on the results presented above, we can make the following
conclusions. First, SMM is the best multiplexing technique for rea-
lizing the ultimate SE or capacity that can be supported by
the physical resources of an LOS communication system. Second,
OAM multiplexing may be useful in LOS communication when
the SBP is small, but only under unlikely and idealized conditions.
This is because the first three lowest-order OAM modes and the
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Figure 2 | Comparison of singular values of the transmission matrix in

descending order for different multiplexing/demultiplexing methods.

a–c, Singular values for M= 3 (a), M= 9 (b) and M= 21 (c). SMM and

conventional LOS MIMO have much larger singular values than OAM when

the SBP is large, as in b and c.
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first three lowest-order HG modes are related by a lossless unitary
transformation. Both sets of modes can exploit the available
degrees of freedom. Because previous research on OAM has
yielded effective methods for demultiplexing without requiring
subsequent MIMO signal processing26,27, OAM multiplexing
may be the simplest method to achieve maximal SE with small
SBPs. However, we should caution that this is only true if the align-
ment of the LOS system is perfect. As shown in Supplementary
Section 4, OAM multiplexing is more sensitive to misalignment
than SMM or conventional LOS MIMO. In addition, OAM multi-
plexing using optical demultiplexing is susceptible to turbulence
because, in general, propagation through turbulence does not
preserve OAM. A previous study found a severe crosstalk penalty
(10 dB) for OAM multiplexing in weak to medium turbulence32.
Third, conventional LOS MIMO achieves nearly the same SE
as SMM, yet it requires the simplest transmitter architecture
among the three multiplexing methods. It is expected that

conventional LOSMIMO should experience the lowest multiplexing
loss, as it does not require a multiplexer. So, conventional LOS
MIMO may offer the best capacity–cost tradeoff of the three
methods considered.

The comparison made here between OAM and SMM, while per-
formed for free-space propagation, is also applicable to fibres with
idealiszd parabolic index profiles, because propagation in such
fibres can be described by the canonical LOS system described
above, as shown in Supplementary Section 1. In such fibres, the
SBP is described by a dimensionless normalized frequency V,
which is equal to twice the dimensionless parameter M defined
above, if we equate the fibre core radius to the transmitter/receiver
radius R0 defined in the canonical LOS system. Given a fibre with
a certain value of V, the number of independently addressable
spatial subchannels Q per polarization corresponds to the number
of propagating spatial modes, which can be estimated for OAM or
SMM using equations (6) and (7), replacing M by V/2. We thus
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conclude that in fibres, as in free space, OAM multiplexing achieves
smaller SE and EDOF than SMM.

Thus far, we have considered transmission in a single polariz-
ation. Transmitting independent information in two polarizations
can double the SE for all schemes considered here. SMMwith polar-
ization multiplexing is the same as the MDM currently being
studied extensively in optical fibre33. MDM in fibre or free space
can use different modal bases, such as linearly polarized (LP)
modes or vector modes. The modes considered here represent the
spatial part of LP modes. The LP modes are linear combinations
of the vector modes. At any given SBP, the number of LP modes
in two polarizations is the same as the number of vector modes,
so using vector modes does not increase capacity.

More generally, the key quantity of interest in any communi-
cation system, whether classical or quantum, whether in free
space or in fibre, is the number of DOF. OAM is not a new DOF;
OAM modes are a subset of the LG modes, which are equivalent
to linear combinations of the zero-OAMHGmodes. Any advantage
that may exist for OAM modes can also be exploited using these
other sets of modes. When choosing a basis set for communications,
one should consider first whether the set is complete, and second
how convenient the set is for implementation in the application at
hand, regardless of whether the basis set includes OAM modes.
OAM modes should be considered a preferred basis only when
angular momentum is actually useful for the application at hand,
for example, in light–matter interactions.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Transmission matrix for OAM multiplexing. OAM multiplexing uses a subset of
LG modes:

E0l(r,f) =

�����

2

π|l|!

√

1

w0

r
��

2
√

w0

[ ]|l|

exp
−r2

w2
0

( )

eilf = E0l(r)e
ilf (9)

where l is the OAM number and w0 is the waist size of the fundamental mode.
A mode’s spatial frequency spectrum is given by the Fourier transform
of equation (9):

F0l(ρ, θ) = 2π(−i)l exp(ilθ) ∫
R0
0 rE0l(r)J|l|(2πrρ)dr = F0l(ρ) exp(ilθ) (10)

where R0 is the radius of the transmitter or receiver aperture. Only spatial frequencies
less than B = NA/λ can pass through the lens shown in Fig. 1a to reach the receiver.
Therefore, under the paraxial approximation, the field distribution at the receiver
aperture is given by

G0l(r,f) = 2π(−i)l exp(ilf) ∫
B
0 ρF0l(ρ)J|l|(2πrρ)dρ = G0l(r) exp(ilf) (11)

Assuming an aligned LOS system that has central rotational symmetry, the OAM
of the field is conserved. Therefore, under the assumption of perfect OAM
demultiplexing, the transmission matrix is diagonal with matrix elements

hl,l =

��������������������
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dr
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√
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If the OAM multiplexed signals are received using the MIMO receiver, then the
transmission matrix is given by

hi,l =
∫
Σi
G0l(r,f)ds

��������������������

2π ∫
R0
0 r E0l(r)

∣
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∣

∣

2
dr

√ (13)

where the integration region Σi corresponds to the ith receiving hexagon.

Transmission matrix for conventional LOS MIMO. For every sub-aperture on the
transmitter plane, a Gaussian beam of waist size w = w0 /

���

m
√

is used to transmit
independent information. Because of diffraction, the beam arriving at the receiver
plane is broadened and is no longer confined within the corresponding receiver sub-
aperture. The field distribution at the transmitter sub-aperture along the central axis
is given by

E0(r) =

��

2

π

√

1

w
exp −

r2

w2

( )

(14)

Its spatial frequency spectrum is given by

F0(ρ) = 2π ∫
R0
0 rE0(r)J0(2πrρ)dr (15)

The field reaching the central receiver aperture is given by

G0(r) = 2π ∫
B
0 ρF0(ρ)J0(2πrρ)dρ (16)

The transmission matrix element between the central transmitter sub-aperture and
the ith receiving hexagon is therefore given by

hi,0 =
∫
Σi
G0(r)ds

�������������������

2π ∫
R0
0 r E0(r)

∣
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∣

2
dr

√ (17)

Under the paraxial approximation, the transmission channel is linear and shift-
invariant. The field at the receiver plane due to the jth transmitter sub-aperture,
Gj(r), is simply a shifted version of G0(r). Hence, all elements of the transmission
matrix can be obtained using equation (17).

Transmission matrix for HG or LG mode multiplexing. HG or LG mode
multiplexing uses two spatial degrees of freedom—(x,y) or (ρ,ϕ)—in the transmitter
and receiver planes. The field of an LG mode is given by

Epl(r,f) =
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eilf = Epl(r)e
ilf (18)

where p is the radial index and l is the OAM number. Its spatial frequency spectrum
is given by

Fpl(ρ, θ) = 2π(−i)l exp(ilθ) ∫
R0
0 rEpl(r)J|l|(2πrρ)dr (19)

and the correspond field at the receiver plane is given by

Gpl(r,f) = 2π(−i)l exp(ilf) ∫
B
0 ρFpl(ρ)J|l|(2πrρ)dρ (20)

Therefore the element of the transmission matrix between LG mode (p,l ) and
sub-aperture i are given by

hi,(p,l) =
∫
Σi
Gpl(r,f)ds

��������������������

2π ∫
R0
0 r Epl(r)

∣

∣

∣

∣
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2

dr

√ (21)

Because HGmodes are linear combinations of the LGmodes, their mode amplitudes
are related by a unitary transformationU. Therefore, the transmission matrix for HG
multiplexing is related to that of the LG mode multiplexing by

HHG = UHLGU
† (22)

and the singular values for the two multiplexing methods are the same.

Spectral efficiency and effective degrees of freedom. The maximum SE as a
function of total input power P is calculated using the standard water-filling
algorithm to allocate power to the subchannels of the transmission matrix such that
in each subchannel N0/λq + Pq is the same for all active subchannels and zero for all
idle subchannels, subject to a total input power constraint34. The EDOF represents
the number of subchannels that are actively conveying information. For a
single-channel system, the SE is given by SE = log2(1 + P/N0). When the total
system power is increased by a factor K, the system SE is increased by log2(K ).
If, on the other hand, EDOF subchannels are transmitting in parallel, the system
SE should increase by EDOF × log2(K ). Hence, the EDOF can be defined as
EDOF = (d/dδ)SE(2δP)|δ=0 (ref. 35).
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Capacity limits of spatially multiplexed free-space communication 

 

1. Canonical LOS System  

A. Single-Lens System 

First, we consider an LOS system having a single thin positive lens between the transmitter and 
the receiver. The transmitter aperture is imaged from the object plane O  to the image plane 1I , 
as shown in Fig. S1. 

 

Figure S1: Schematic of an LOS system with a single lens.  

The point spread function (PSF) of this imaging system is [1] 
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where '
1 1 1/zK z   is the magnification, 2 2

1 1( , ) circ(2 ( ) / )P x y x y D  is the aperture function, 
and 1D  is the lens diameter. If the spot sizes on the object and image planes are small, the two 
phase factors can be ignored (paraxial approximation), and the PSF becomes   

 ' ' ' '
1 1 1 1 1 1 1 12 '

1 1 1
1 1 1 1
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z z z
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Therefore, the imaging system can be regarded as a linear shift-invariant system and can be 
conveniently analyzed in the frequency domain. We focus on this regime because, again, it is the 
most favorable regime for OAM multiplexing, since non-paraxial phase distortion affects OAM 
multiplexing but not SMM or LOS MIMO. If the field amplitude in the object plane is 

0 0 0( , )E x y  with a spectrum 0( , )x yF    given by its spatial Fourier transform, the spectrum of the 
field in the image plane 1I is  
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 1 1 1 1 0 1 1( , ) ( , ) ( , )x y x y x yF P z z F K K           

 2 2
1 1 0 1 1( / ) ( , )x y x ycirc K NA F K K     , 

where 1 1 1/ 2NA D z , is the numerical aperture of the lens. The formulation here was used to 
perform the simulations detailed in the Methods section. 
 
As an example, we present the parameters of a LOS systems with the largest space-bandwidth 
product considered in the paper, corresponding to 0 20M NAR   . We assume an operating 
wavelength 1.5 μm  , 0.25NA  and 0 1.9 μmR M  . On the object plane, the paraxial 
condition is satisfied for 2

1 0 / 1 mmz R   . So we choose 1 40 cmz   and 1 20 cmD  . On the 
image plane 1I , the paraxial condition requires '2 '2 ' 2

1 1 1 0
'
11( ) ( / )x z zy R z    , i.e., 

2 2
1 0 1

'
1 0( / ) [( / 2) / / )] 166 mz R D NA Rz    . If we choose m 401 z , the focal length is 

1 39.2 cmf  . Similarly for a millimeter-wave system with  2.0 mm  , 0.25NA , and

0 3.8 mmR M  , the paraxial approximation requires 1 2.8 mz  and '
1  m35z  , and one can 

choose 1 5 mD  , 1 10 mz  , '
1 15 mz   and 1 6 mf  .  

 

B. Dual-Lens System 

Next, we consider a LOS system having thin positive lenses at both the transmitter and the 
receiver, as shown in Fig. S2. The transmitter aperture is imaged from the object plane O  to the 
image plane 1I  through the transmitter lens, then is imaged from 1I  to the receiver aperture 
plane 2I . 
 

 

Figure S2: Schematic of a LOS system with lenses at the transmitter and the receiver.  

Using the results above, the spectrum at the image plane 2I is 

 2 2
2 2 2 1 2 2( , ) ( / ) ( , )x y x y x yF circ K NA F K K       
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If 2 1 1/NA NA K , 
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2 1 2 1 0 1 2 1 2( , ) ( / ) ( , )       . 

If 2 1 1/ , 

 2 2
2 2 2 0 1 2 1 2( , ) ( / ) ( , )         

A LOS system should be designed to match the numerical apertures so that 2 1 1/  to 
avoid clipping the beam in order to maintain the orthogonality among the spatial modes used for 
multiplexing. In this case, the previous two equations are identical. Hence, an LOS system with 
lenses at the transmitter and the receiver is equivalent to a single-lens system with an effective 
numerical aperture ( 1 or 21 ) and an effective magnification 1 2 .  
 

To maintain the space-bandwidth product of the two-lens system, the distance between 
the two lenses should be short enough that '

0 1 2 1 2( ) / / 2  , as in Fig. S2, to avoid beam 
clipping at the receiver lens. In terms of the total transmission distance  21  , this condition is 

'
1 2 1 2 0 1 2 0( ) / 2 / 2   , showing that achieving long transmission distance requires 

that the diameter of the receiver lens scale linearly with transmission distance. These 
requirements for achieving long transmission distance apply to all the multiplexing methods 
discussed in this paper. 

 
C. Parabolic-Index Fiber 

 As discussed in the previous subsection, a system of two lenses is equivalent to the 
single-lens canonical system with proper choice of numerical aperture and magnification. As a 
consequence, a concatenation of any number of lenses is equivalent to the single-lens canonical 
system. The single-lens canonical system can also describe a fiber with a parabolic index profile 
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 
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,  

where  is the core radius and   2
1

2
2

2
1 2/  is a normalized refractive index difference. A 

full-pitch fiber segment of length  /2  (typically several mm) forms a unit-
magnification non-inverting imaging system, while a half-pitch segment of length /2 forms a 
unit-magnification inverting system. A fiber of length 4/  is equivalent to a thin positive 

lens of focal length        1
1 /2sin/2


  [2]. A long fiber can be viewed as a 

concatenation of many unit-magnification imaging systems, at most one positive lens with focal 
length  4/ , and at most one positive lens with focal length   , 4/ . With proper 
placement of the transmitter and receiver apertures, the parabolic-index fiber is described by the 
single-lens canonical system.  
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where 1 1 1/ 2 , is the numerical aperture of the lens. The formulation here was used to 
perform the simulations detailed in the Methods section. 
 
As an example, we present the parameters of a LOS systems with the largest space-bandwidth 
product considered in the paper, corresponding to 0 20   . We assume an operating 
wavelength 1.5 μm  , 0.25  and 0 1.9 μm  . On the object plane, the paraxial 
condition is satisfied for 2

1 0 / 1 mm  . So we choose 1 40 cm  and 1 20 cm . On the 
image plane 1 , the paraxial condition requires '2 '2 ' 2

1 1 1 0
'
11( ) ( / )    , i.e., 

2 2
1 0 1

'
1 0( / ) [( / 2) / / )] 166 m   . If we choose m 401  , the focal length is 

1 39.2 cm . Similarly for a millimeter-wave system with  2.0 mm  , 0.25 , and

0 3.8 mm  , the paraxial approximation requires 1 2.8 m and '
1  m35 , and one can 

choose 1 5 m , 1 10 m , '
1 15 m  and 1 6 m .  

 

B. Dual-Lens System 

Next, we consider a LOS system having thin positive lenses at both the transmitter and the 
receiver, as shown in Fig. S2. The transmitter aperture is imaged from the object plane  to the 
image plane 1  through the transmitter lens, then is imaged from 1  to the receiver aperture 
plane 2 . 
 

 

Figure S2: Schematic of a LOS system with lenses at the transmitter and the receiver.  

Using the results above, the spectrum at the image plane 2 is 
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A LOS system should be designed to match the numerical apertures so that 2 1 1/NA NA K  to 
avoid clipping the beam in order to maintain the orthogonality among the spatial modes used for 
multiplexing. In this case, the previous two equations are identical. Hence, an LOS system with 
lenses at the transmitter and the receiver is equivalent to a single-lens system with an effective 
numerical aperture ( 1NA or 21K NA ) and an effective magnification 1 2K K .  
 

To maintain the space-bandwidth product of the two-lens system, the distance between 
the two lenses should be short enough that '

0 1 2 1 2( ) / / 2R z z z D  , as in Fig. S2, to avoid beam 
clipping at the receiver lens. In terms of the total transmission distance  21 zz  , this condition is 

'
1 2 1 2 0 1 2 0( ) / 2 / 2z z z D R f D R   , showing that achieving long transmission distance requires 

that the diameter of the receiver lens scale linearly with transmission distance. These 
requirements for achieving long transmission distance apply to all the multiplexing methods 
discussed in this paper. 

 
C. Parabolic-Index Fiber 

 As discussed in the previous subsection, a system of two lenses is equivalent to the 
single-lens canonical system with proper choice of numerical aperture and magnification. As a 
consequence, a concatenation of any number of lenses is equivalent to the single-lens canonical 
system. The single-lens canonical system can also describe a fiber with a parabolic index profile 
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where a is the core radius and   2
1

2
2

2
1 2/ nnn   is a normalized refractive index difference. A 

full-pitch fiber segment of length  /2aL   (typically several mm) forms a unit-
magnification non-inverting imaging system, while a half-pitch segment of length L/2 forms a 
unit-magnification inverting system. A fiber of length 4/Ll   is equivalent to a thin positive 

lens of focal length        1
1 /2sin/2


 alanlf  [2]. A long fiber can be viewed as a 

concatenation of many unit-magnification imaging systems, at most one positive lens with focal 
length  4/Lf , and at most one positive lens with focal length  lf , 4/Ll  . With proper 
placement of the transmitter and receiver apertures, the parabolic-index fiber is described by the 
single-lens canonical system.  
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2. Signal-to-Noise Ratio 
 
In Fig. 3 of the paper, we plot spectral efficiency and EDOF as a function of the system signal-
to-noise ratio 2/SNR P   where P is the total transmitted power in all subchannels and 2  is 
the received noise power per subchannel. Here, we describe system designs achieving the SNR 
values considered in Fig. 3.  
 
We assume a symbol rate Rs = 10 Gbaud. We consider an optical system at wavelength  = 1.5 
m, assumed to be local oscillator shot-noise-limited, so the SNR equals the number of 
transmitted photons per symbol [3], which is equivalent to choosing dBm 59/2   shcR , 
the power corresponding to one photon per symbol. We consider a millimeter-wave system at 
= 2.0 mm, assumed to be thermal-noise-limited at temperature T = 300 K so dBm 742  [4]. 
We compute the average transmitted power per subchannel P/Q, where Q, given by (5), is the 
total number of subchannels used by a given spatial multiplexing method at a given SNR.  
 
In Fig. S3, we plot the average transmitted power per subchannel P/Q for the four spatial 
multiplexing methods as functions of the system SNR for space-bandwidth products described 
by (a) 3M , (b) 9M  and (c) 21M . In each plot, the left and right axes quantify average 
powers for the optical and millimeter-wave systems, respectively, and the black dashed 
horizontal lines denote the noise powers per subchannel, equal to 59 dBm and 74 dBm, 
respectively. At 3M , all four methods use nearly the same average power per subchannel. By 
contrast, at 21M , OAM uses more power per subchannel yet achieves lower spectral 
efficiency than SMM or LOS MIMO, a consequence of having smaller EDOF than the latter two 
methods. The vertical distances between the curves vary with SNR because we compute Q using 
(5), which varies with SNR, as opposed to values of Q estimated by (6)-(8). 
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Fig. S3: Average transmitted power per subchannel /  as a function of  = /2 for optical regime 
(left axis) and millimeter-wave regime (right axis) for space-bandwidth products described by (a) = 3, 

(b) = 9 and (c) = 21. A symbol rate of 10 Gbaud is assumed. The black dashed horizontal lines 
correspond to the equivalent noise power per subchannel 2. 

 
3. OAM and LG Mode Multiplexing and Demultiplexing using Structured Directional 
Couplers 

Modal multiplexing for OAM transmission was initially based on mode conversion and passive 
combining, for example, q-plates [5] for mode conversion and beam splitters for combining. 
Such methods are lossy, due to passive combining. Efficient methods for sorting OAM modes 
have been developed recently [6-8]. The fiber mode-division multiplexing research community 
has developed lossless mode multiplexing methods, such as photonic lanterns [9], reconfigurable 
add/drop mode multiplexers [10], and structured directional couplers [11, 12]. Here we show that 
structured directional couplers can be used for OAM and LG mode multiplexing in LOS 
transmission. 
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2. Signal-to-Noise Ratio 
 
In Fig. 3 of the paper, we plot spectral efficiency and EDOF as a function of the system signal-
to-noise ratio 2/  where  is the total transmitted power in all subchannels and 2  is 
the received noise power per subchannel. Here, we describe system designs achieving the SNR 
values considered in Fig. 3.  
 
We assume a symbol rate  = 10 Gbaud. We consider an optical system at wavelength  = 1.5 
m, assumed to be local oscillator shot-noise-limited, so the SNR equals the number of 
transmitted photons per symbol [3], which is equivalent to choosing dBm 59/2   , 
the power corresponding to one photon per symbol. We consider a millimeter-wave system at 
= 2.0 mm, assumed to be thermal-noise-limited at temperature  = 300 K so dBm 742  [4]. 
We compute the average transmitted power per subchannel / , where , given by (5), is the 
total number of subchannels used by a given spatial multiplexing method at a given SNR.  
 
In Fig. S3, we plot the average transmitted power per subchannel /  for the four spatial 
multiplexing methods as functions of the system SNR for space-bandwidth products described 
by (a) 3 , (b) 9  and (c) 21M . In each plot, the left and right axes quantify average 
powers for the optical and millimeter-wave systems, respectively, and the black dashed 
horizontal lines denote the noise powers per subchannel, equal to 59 dBm and 74 dBm, 
respectively. At 3 , all four methods use nearly the same average power per subchannel. By 
contrast, at 21M , OAM uses more power per subchannel yet achieves lower spectral 
efficiency than SMM or LOS MIMO, a consequence of having smaller EDOF than the latter two 
methods. The vertical distances between the curves vary with SNR because we compute  using 
(5), which varies with SNR, as opposed to values of  estimated by (6)-(8). 
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Fig. S3: Average transmitted power per subchannel P/Q as a function of SNR = P/2 for optical regime 
(left axis) and millimeter-wave regime (right axis) for space-bandwidth products described by (a) M = 3, 

(b) M = 9 and (c) M = 21. A symbol rate of 10 Gbaud is assumed. The black dashed horizontal lines 
correspond to the equivalent noise power per subchannel 2. 

 
3. OAM and LG Mode Multiplexing and Demultiplexing using Structured Directional 
Couplers 

Modal multiplexing for OAM transmission was initially based on mode conversion and passive 
combining, for example, q-plates [5] for mode conversion and beam splitters for combining. 
Such methods are lossy, due to passive combining. Efficient methods for sorting OAM modes 
have been developed recently [6-8]. The fiber mode-division multiplexing research community 
has developed lossless mode multiplexing methods, such as photonic lanterns [9], reconfigurable 
add/drop mode multiplexers [10], and structured directional couplers [11, 12]. Here we show that 
structured directional couplers can be used for OAM and LG mode multiplexing in LOS 
transmission. 
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In a structured directional coupler, the input single-mode fiber (SMF) can be selectively coupled 
to one of the two degenerate zero-OAM LP modes depending on the relative orientation of the 
input SMF and the output multimode fiber (MMF). Two input SMFs can be positioned 
appropriately to excite the two degenerate zero-OAM LP modes with a one-to-one 
correspondence, as illustrated in Fig. S4 for excitation of the 11aLP  and 11bLP mode. If the input 

SMFs contain signals A  and  jA  (where multiplication by j  represents a 90 o  phase shift), 
the resulting field in the output MMF is the OAM mode 11 11a bLP jLP with OAM number 1 l . 

 
Figure S4: Structured directional coupler. The propagation constant of the two single-mode input fibers match that 

of the 11LP  mode the output multimode fiber. The horizontal (vertical) single-mode fiber excites the 11aLP ( 11bLP ) 
mode respectively.  

In conjunction with a 2 2  directional coupler, as shown in Fig. S5, a structured directional 
coupler can couple two input signals into the two degenerate OAM modes of the MMF. A series 
of such elements can be cascaded to multiplex input signals into all the OAM modes of the MMF. 
Furthermore, the MMFs can be adiabatically tapered to transform the OAM fiber modes to the 
corresponding LG modes in free space.  Such an OAM multiplexer avoids the combining losses 
that are present in conversion-plus-combing multiplexers. This lossless OAM multiplexer can be 
operated in reverse as an ideal OAM demultiplexer.  

 
Figure S5: A structured directional coupler and a directional coupler are combined to form a lossless OAM 

multiplexer or demultiplexer. 

 

4. Effect of Receiver Misalignment on LOS Communication Systems 

Since OAM multiplexing can be lossless only if the entire LOS possesses central rotational 
symmetry, we expect that OAM-multiplexed LOS systems will be sensitive to receiver 
misalignment. Figure S6 plots the reduction of the EDOF of the different multiplexing-
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demultiplexing methods as the receiver lateral misalignment, , is increased. As expected, the 
OAM-multiplexed LOS system performs the worst. SMM and conventional LOS MIMO are less 
sensitive to lateral misalignment because the singular values of the transmission matrix for these 
two methods are less sensitive to the phase of the received signals than those for OAM 
multiplexing. Furthermore, using conventional LOS MIMO as an example, when the receiver is 
misaligned laterally, even though the received power is reduced at one edge, the received power 
is increased at the opposite edge, reducing sensitivity to receiver lateral misalignment.  

 
Figure S6: Comparison of the effective degrees of freedom for different multiplexing/demultplexing methods as a 
function of receiver misalignment for 02 2 / 12 /   ( 3 ) and total normalized power = 30 

dB . OAM multiplexing is the most sensitive to receiver misalignment. 

References 

1. J. W. Goodman, "Introduction to Fourier Optics," (McGraw Hill, 1996). 
2. W. J. Smith, (MaGraw Hill, 2000). 
3. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, "Coherent detection in optical fiber 

systems," Opt. Express 16, 753-791 (2008). 
4. S. Haykin, "Communication Systems. 1994," (Wiley, New York). 
5. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, "Efficient generation and 

sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates," 
Applied Physics Letters 94, 231124 (2009). 

6. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, "Efficient separation of the orbital 
angular momentum eigenstates of light," Nat Commun 4 (2013). 

7. M. N. O?Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, "Near-perfect sorting of 
orbital angular momentum and angular position states of light," Opt. Express 20, 24444-
24449 (2012). 

8. M. P. J. Lavery, D. Roberston, M. Malik, B. Robenburg, J. Courtial, R. W. Boyd, and M. J. 
Padgett, "The efficient sorting of light's orbital angular momentum for optical 
communications," (2012), pp. 85421R-85421R-85427. 

Normalized Receiver Aperture Misalignment (d/w0)

ED
O

F

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

SMM
OAM-MIMO
OAM-perfect
MIMO

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nphoton.2015.214


NATURE PHOTONICS | www.nature.com/naturephotonics 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2015.214

 6 / 8 
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sensitive to lateral misalignment because the singular values of the transmission matrix for these 
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