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Abstract—We study the throughput capacity of wireless net-
works which employ (asynchronous) random-access scheduod
as opposed to deterministic scheduling. The central questh we
answer is: how should we set the channel-access probabilifgr
each link in the network so that the network operates close tdts
optimal throughput capacity? We design simple and distribued
channel-access strategies for random-access networks whiare
provably competitive with respect to the optimal schedulirg
strategy, which is deterministic, centralized, and compudtionally
infeasible. We show that the competitiveness of our stratégs are
nearly the best achievable via random-access schedulingius
establishing fundamental limits on the performance of ran®m-
access. A notable outcome of our work is that random accessre
pares well with deterministic scheduling when link transmision
durations differ by small factors, and much worse otherwise The
distinguishing aspects of our work include modeling and rigrous
analysis of asynchronous communication, asymmetry in link
transmission durations, and hidden terminals under arbitrary
link-conflict based wireless interference models.

I. INTRODUCTION

and throughput maximization under various models of inter-
ference; they have presented joint routing and link schiegul
strategies which are guaranteed to utilize the netvetoketo

its optimal capacity.

Unfortunately, the scheduling disciplines developed ia th
above approaches adeterministic and share some common
disadvantages. For instance, these scheduling algorigsns
sume that the network is perfectly time-synchronized;iakd
agree on the index of the current slot and when the next
slot begins. Further, nodes in deterministic protocol$iaxge
(possibly large) lists of time slots during which they tranits
so that other interfering nodes may choose their transmégi
carefully and avoid conflicts. As a consequence, even when th
throughput demand changes fosiaglelink, the network may
need to recompute the schedule éwerylink and disseminate
the new schedule. In contrast, imandom-access netwarive
need to specify only a single parameter for each node (o):link
its channel access probability. Once we instantiate tharala

Two fundamental problems in communication networks agecess probabilities at each node,dmtributed stochastic
as follows: (i) What is the capacity of the network under Brocess which is local to each node governs the use of the

given throughput objective? Specifically, given a colleati
of communicating source-destination pairs (or connegjiam
the network, what is the maximum throughpwthich the

common wireless medium, and automatically determines the
per-node throughputs.
Motivated by the pervasiveness of random-access schedul-

network can deliver to the connections? (i) How can wig protocols such as 802.11, we consider in this work the

allocate individual connection throughputs, route thedaim

problems of capacity estimation and throughput maximirati

the source of each connection to its corresponding delstinat in the context ofasynchronous random-access wireless net-
and schedule the transmissions at each link in order to tperorks Specifically, consider a link-throughput vector, whose
the network close to its capacity? These problems are parg@mponents specify the throughput achieved by each link in
ularly complicated in wireless networks due to interfendhe network.The central contribution of this work is the
constraints, which prevent proximate links in the networfolution to the following problem: given a link-throughput
from being active simultaneously. These constraints makeVvector which can be achieved by an optimal scheduling

computationally infeasible to determine the optimal rogti
and scheduling strategies in a wireless network.

strategy, what should be the channel access probability

for each link so that the resultant random-access through-

Many recent results in the literature, such as by Kuetar Put vector is (component-wise) close to the optimal link-
al. [13], Jainet al. [8], Alicherry et al. [1], Kodialam and throughput vector? It is well known that by solving this

Nandagopal [11], Sharmat al. [17] and Wanget al. [18]

fundamental link-scheduling problem and combining it with

have addressed the problems of wireless capacity estimatigandard network-flow linear programming formulations, we

lor more generally, throughput based utility

can solve the more general end-to-end routing, scheduling,
and utility maximization problem (see for example [13],,[8]



[1], [11], [17], [18]). Our focus is therefore on link-schdihg we are in the choice of per-link channel access probalsilitie
strategies for asynchronous random-access networks ¢nat gve cannot improve upon the (essentiallga-competitive
form provably closeto optimal scheduling. factor of asynchronous random-access scheduling. Thisrfac
A salient aspect of our work is that the access strategies therefore representsfandamental performance limit on the
develop are oblivious to the throughput vector. Not onlysloeompetitiveness of random-access (and is not an artifemtiof
each link achieve its desired throughput via an appropriatrategies or analysis).
choice of channel access probability, but it does so without(d) Capacity of random-accessWe develop novel neces-
any knowledge of the throughput demands of its interferirgary and sufficient conditions that are linear, and whichatya
links. terize the achievable rate-region of an asynchronous rando
We now introduce several definitions to describe our techecess network with a given topology and link transmission
nical contributions in greater detail. hnk-rate vectorf is a durations. The gap between our necessary and sufficient-cond
vector whose components specify the steady-state thratghpions iseA. In the context of end-to-end utility maximization,
we need to support on each link of the network. Thte- plugging the sufficient conditions into the network-flow for
region of a scheduling algorithrdenotes the set of all link- mulation (as in [13], [8], [1], [11], [17], [18]) immediatgl
rate vectors which can be supported by the algorithm. Wields the end-to-end throughputs, the routing, as well as a
scheduling protocaM is a-competitivé w.r.t. a protocolB if, random-access link scheduling strategy which approxisate
whenever3 can achieve a link-rate vectgf, A can achieve the optimal random-access capacity to within a factoeAf
at least am-fraction of £.2 The network interference degree  We observe that for manyeometricmodels of interference
denoted byA, is defined as the maximum number of linkstudied in recent literature, it is known that the parameéter
which interfere with some specific link, but are mutually is upper-bounded by a fixed constant in any network; our
interference-free amongst themselves; this is a key paeameechniques allow us to obtainonstant factor performance
which will frequently appear in our performance guaranteeguaranteesinder these models. For instance, for the uniform
Further, a key contribution of a majority of the determiigist Tx-model [13], the Tx-Rx model of interference with param-
protocols mentioned above [13], [1], [11], [17] is the desigeters 1, 2, and 2.5 [1], th&-hop interference model on geo-
of deterministicscheduling strategies whose competitivenessetric graphs [17], and the node-exclusive interferencdeho
is & w.r.t. optimal scheduling; their differences lie mainly i17], [9], [14], our synchronousandom-access strategy has a
the interference models they consider. competitive ratio ofse, 4e, 8e, 12¢, 49¢, and2e respectively,
and ourasynchronousandom-access scheduling strategy has

A. Our contributions 2 X i '
] a competitive ratio ofD(~y) w.r.t. optimal scheduling.
(a) Strategies for synchronous random-acces$o demon- A notable consequence of our resufty and (c) is that

strate the key elements of our approach, we begin our asalygjndom-access is generally more competitive when packet
in Section IV with asynchronousmodel of random-access.gjzes for each link are chosen in proportion to the capadity o
A simple non-linear programming (NLP) formulation exist§ne |ink (so that link transmission durations become umifpr
in this scenario, which precisely characterizes the aallev  \ve validate our theoretical insights using the CPLEX
rate-region of synchronous random-access. However,al8s r goyer and NS-2 simulations of the 802.11 random-access
region isnon-convexwhich introduces significant obstacles i'brotocol. Our main observations are: (i) the feasible rate
using existing convex-programming techniques for thrqudh yegion of random access is indeed non-convex even in simple
optimization in random-access networks. We design a Syfstings, and hence unlikely to be computationally feasibl
chronous random access strategy, and prove that #5¥S  This necessitates the use of approximate but provably-good
competitive w.r.t. optimal schedulirfy. scheduling strategies and capacity estimation techniguels

(b) A first strategy for asynchronous random-access. g the ones developed in this work; (i) the stability coiodis
We study the asynchronous model of random-access in Sggs jevelop accurately model the dynamics of asynchronous
tion V .by incorporating the effe_ct of hidden tgrmlnals andsndom-access in multi-hop topologies; (iii) random-asce
non-uniform transmission durations. We design an asyj- generally more competitive as packet sizes are chosen in
chronous random-access strategy and show thatiti—-  proportion to link capacities; this is especially evident |
competitive w.r.t. optimal scheduling; hereis the maximum, igh traffic regimes where the network experiences sigaitic
taken over all linkg in the network and over all hidden links interference; lastly (iv) our new capacity estimation teigaes

that interfere with?, of the ratio of the transmission duration%,iem much tighter bounds on the capacity of an asynchronous

of £ and(". o random-access network than existing formulations.
(c) Fundamental limits of random-accessWe show that

the competitiveness @y random-access strategy is bounded 1. RELATED WORK

above by (essentially)s;. That is, no matter how clever capacity of wireless networks:Estimating the capacity of
21 el - - 6.4 3 a wireless network and developing communication strasegie
3A ernatively, competitiveness (or) competitive-ratio d wrt. B. — \piop operate the network close to its capacity is a complex
As per conventiong-fraction of a vectorf implies that we are multiplying . . .

each component of with the scalar. task due to wireless interference. Recent works which addre
“4e denotes the base of natural logarithms throughout thisrpape this problem include those of Jamt al. [8], Kodialam and



Nandagopal [10], [11], Kumaet al. [13], Alicherry, Bhatia, I1l. BACKGROUND
and Li [1], Balakrishnaret al. [2], Sharma, Mazumdar, and o Network Model

Shroff [17] and Wanget al. [18]. With one exception [8], _ .
these results are constructive; not only do they estimage th We model the random-access wireless network as a directed

: ; : hG = (V,E). Each link¢ € E has a fixed capacity
network capacity, but they also present routing and sclirglul graph & ’ . . .
algorithms (and in the multi-channel cases [11], [1], chainnc(é) which denotes the maximum bit-rate at which data can

assignment algorithms as well) which can jointly achieve tipe transr_mtted acr(_)s&_ Link £ employs a f|xe(_j packet siz€
capacity. However, the scheduling disciplines underlyétig M(£) for its ”""”39255'0’7' and gsmgle transm@sprﬂb@sts
of these results areleterministic and their results are notf_Or Tmi?(g) = T units of time. A transmission across
applicable to random-access networks link ¢ will be successful if and only if it is not lost due
Network capacity with random-access schedulingThe to channel errors, and if no other interfering link transmit
recent results of Lin and Rasool [14], and Joo and Shroffmultaneously. We model channel errors by a parameter

[9] are most similar in spirit to our work, and deal with théVhich denotes the probability that a transmission on link

performance ofsynchronougandom-access for the specialWill not encounter any channel errors (i.¢.— p(() is the

cases of node-exclusive and two-hop interference models Pfobability that_ a chan_nel error occurs during a transrq'rssi
the node-exclusive model, links interfere with each othdy o on é),' We define an |ntgrferenc§ SG}W) for I|n!< Z this

if they share a common end-point; Lin and Rasool [14] desidi?"SiSts of the set of all links which interfere with lirfk A

a random-access scheduling strategy based on the notior’@@Smission by is interference-free only if it does not overlap
periodic contention-frames, which is guaranteed to ahielfl ime with another transmission by a link in its interfecen

a (nearly) %-factor of the optimal capacity region of theset{(lé). In our general (non-geome_tnc) mterferencg model,
network. Joo and Shroff [9] propose an improved strateépe |nterfer.ence sef(() can be spepnﬂed to be "ﬂ*b'”aFY

for the node-exclusive interference model which achievessl';{bset of linksE'\ {£}. To model hidden !lnks, we partition
(nearly) L-factor of the optimal capacity region. Both of thesdN® interference sef(f) into two subsetshidden(() C I((),
works also study the two-hop interference model and propd@®d czposed(l) = I1(¢) \ hidden((). If link £'is currently
synchronous random-access schemes which are guarante&ﬂdnvm\’ed in a transmission, then it can sense any ongoing

achieve a (nearly)Alﬁ-factor of the optimal capacity, wheretransmission by the links in the setpqseq(é) and vice-versa.
A is the network interference degree. However,/ cannotsense any transmission by the links in the

Our work departs from the results of [14], [9] in the follow-S€thidden(¢) and vice-versa. Thus, we could have scenarios

N . . RS
ing significant ways. Foremost, our analysis of synchronotid1€re @ link¢" € hidden(f) starts its transmission in the
random-access is only a building block for our analysis JSpiddle of an ongoing transmission Bythis will result in the

asynchronougsandom-access. Synchronization is hard if ndfilure of the transmission by.

impossible to achieve in practice (without special hardwag Asynchronous random-access model of scheduling

such as GPS); often, a central purpose of randomness irb L
. . ur asynchronous random-access model of scheduling is
scheduling is to overcome a lack of network synchroniza-

. inspired by the basic access mechanism (or the ad-hoc mode
tion. Our work handles two complex challenges that not : \ . .
L : . eration) of the 802.11 protocol. Each link perceives time
arise in the analysis of synchronous wireless networks—t S . :
) : C .. 10 be slotted and divided into contiguous chunks of length
effect of hidden terminals and asymmetric link transmissi

durations—and initiates the capacity analysis of asyrubue qTid. Link ¢ attempts to access the channel during time chunk

¢ _as follows. Let time chunkj be such thatj > i. If
random-access. Further, we study the performance of rando . . - .

: . : .~ chunkj is not part of an ongoing transmission by any link
access undearbitrary link-conflict-based models of wire- in the set{/}|J d(¢), then independentlynitiates a
less interference. For synchronized networks, we show ti%at ELPOSEar”), - P ¥

random-access isi--competitive w.r.t. optimal scheduling ransmi-ssion of thg _packet d“fi.”g Chuﬁk\’vith probability
under any Iink—corffﬁct based interference model; for asynf(g)'wIth the remaining probability —7((), ¢ skips the chunk

1 . .27 4. Once/ initiates a transmission, it occupies the channel

chronous networks, we show——-competitive strategies. . . . . )

X CA(y+1) for T,.mit(¢) duration of time. This process is repeated until
Single-hop random access networksRandom-access pro-

tocols in general and 802.11 in particular have received et>r<1—e packet is successfully transmitted. In general, theoéia

. . . access probability (¢) is a function of the rate demanded by
tensive treatment for the special case of a single-hop mktw he capacitye(¢), and other parametePs
(i.e., every node can communicate with every other node, an rom the persp,ective of ik the chann.el consists of two
every link interferes with every other link) [3], [4], [5]7] types of periods: (1) an idle p'eriod consisting oseguence
[12], [15], [16]. The crucial distinction between thesedias 3; idle chunks (O'r idle slots) each of lengihy, followed b
and our work is that we need to address the asymmetry tfe 4 y

is inherent in multi-hop networks. In a single-hop netwollk a a busy period ora smglnusyslot_of Iengtthusy_, durlng
g\\{gl:ch the channel is either occupied By some link(s) in

nodes perceive the wireless channel to be in the same st L .
P : , exposed(£), or a combination thereof. Note that a liffleezes
occupied or idle. Such symmetry does not hold in a multi

hOp network which introduces S'gmf'cantly more difficult 50ur results can be stated in terms of node-based randorssapcecess
challenges. as well; we use a link-based process for ease of exposition.



fact to establish the competitiveness of our random-access
Link I, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ scheduling strategies w.r.t. optimal scheduling.

T ) — Unlike optimal scheduling, which is allowed to choose

‘ . the transmit slots for each link carefully in a determirsti
Link 1 ‘ ‘ ‘ ‘ % ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ conflict-free manner, the only parameter which can be tuned

Tanil12) for each link in random-access scheduling is its channetss:
Link I, ‘ ‘ ‘ ‘ ‘ %‘ ‘ ‘ ‘ ‘ probability. We are interested in analyzing the set of alkdi
Tl =] - = rate vectors achievable through all possible settings ef th
' T

channel-access probabilities of the network links.
For ease of presentation, we make the following simplifying

Figure 1. Timing diagram illustrating asynchronous random-accesis ; ; il inle i
£2 and ¢3 both interfere withéy; 2 is exposed while/s is hidden. Small assumptions regardlng network Stablllty' If a link is sohled

white rectangles represent idle slots, shaded rectangiesnission slots, and fOr transmission at a slot when its packet-queue is empgy th
striped rectangles times at which the access process isnfrdhe interfering the link will transmit a dummy packet of suitable size. A link

transmission on hidden links starts in the middle of an ongoing transmissionrate vector is said to bstable(or feasible) if a strategy exists
on /¢1; in contrast, if the exposed linky detects any transmission dh, it !

freezes its attempt process and vice-versa. A transmissidn can interfere 107 Scheduling the |i!‘lkS _SUCh that, at each Iink,_ the exgecte
with a transmission oty only if they start during the same chunk. volume of data which is successfully transmitted per slot

equals or exceeds the expected volume of data which arrives
exogenously at this link. Under certain mild conditions ba t

its attempt process when it is not transmitting but the cle&nRyraffic arrival process, the stability proofs in this papende

is busy due to some link irzposed(£). Also, while each extended for multi-hop routing and can be stated rigorously

duration that depends upon which link(s) are transmitting aframework as in the work of Georgiadés al. [6].
how their transmissions overlap. For ease of analysis, vle wi

assume that th@&,,,,;; values are integral multiples at,. We IV. SYNCHRONOUS RANDOM-ACCESS

present in Figure 1 a sample illustration of the random-ssce We now demonstrate the key elements of our approach with
process, with a special emphasis on the role of exposed aytichronous random-access, in which time is divided into
hidden links. equally sized slots of unit length, a transmission on ank lin

. . spans one slot, and slots across links are synchronized.
C. Optimal vs. random-access scheduling

We now present a simple necessary condition which must fe Synchronous random-access rate-region
satisfied by any throughput vector that is achievable thnoug We start by characterizing the exact conditions under which
optimal scheduling. This will be useful in the competitivea given link rate vectok can be achieved through synchronous
analysis of our random-access strategies. Suppose we rarelom-access. Recall that/) is the probability of link ¢
given a link-throughput vector (or link-rate vectof) = being free from channel errors during a transmission.7i(é}
(f(6h),..., f(Lm)) where f(¢;) specifies the steady state ratelenote the probability that no collision occurs at lifkdue to
we need to support on link;. Recall thatp(¢) denotes the interference) during a transmission, anff) the probability
probability of a transmissionot failing due to channel errors, with which link ¢ attempts transmission during a slot. We
and ¢(¢) denotes the capacity of link Let z(¢) = %—% now present the NLP which precisely characterizes thelftsasi
denote link¢'s utilization. A link’s utilization is the fraction link-rate region of synchronous random-access.
of the time it needs to bactive without interferencéen any
schedule which achieves the link-rate vecﬁJr Ve e E: h(l) = 1()p(O)n(0)c(t) @)
Clearly, not every link-rate vector can be feasibly schedul Vee E: i) =Tlpere(t—7()) 3)
and additional constraints are necessary to ensure t_hm_h)e Eqgn. (2) is the stability condition which states that thesrat
scheduled. Recall thd(() denotes the set of links which inter- hicy 4ata arrives at link is equal to the rate at which data
fere with link £; further, recall thath is the maximum number ig q,ccessfully transmitted out of link The L.h.s. of Eqn. (2)
of links in any set/(¢) that are mutually interference-free. ltyoqtes the expected volume of data (in bits) that enteks lin
is well-known (and can _be easily verlfled_) that every I_mteraé during each (unit length) time slot. The r.h.s. of Eqn. (2)
vector f that can be achieved through optimal scheduling Mygtstes the expected volume of data transmitted daring
satisfy the followingnecessarycondition: each (unit length) time slot. This incorporated): the prob-
f(0) £ ability of a transmission being attempted érduring a slot,
+ Z W <A @) p(£)n(£): the probability of the transmission succeeding, and
¢(¢): the number of bits transmitted during the (unit length)
Egn. (1) states that for any link, the total utilization of slot if the transmission succeeds. Since transmissiontgven
¢ and its interfering links can never exceéd Specifically, across links are independent, we can expréésas a function
if a rate vector violates this constraint, then no schedulirof the interfering links’7's. Each link ¢’ in the interfering
algorithm can achieve this rate vector. We will exploit thiset7(¢) chooses to transmit during a time slot, independently

el



at random, with probability-(¢'). The transmission at link  (1—p(¢)) is the probability of a channel error occurring during

is interference-free if and only if none of the links if{¢) a transmission across link and(1 — 7(¢)) is the probability

transmit in the same slot & Eqn. (3) captures this. A link- of interference occurring at link during a transmission. The

rate vectors can be achieved through synchronous randoraxpected number of bits successfully transmitted over link

access if and only if it is a feasible solution to (2) and (3). per time slot isc(¢)T....+(¢) times the probability of a

In general, the set of feasible rate-vectors charactetigg@) successful transmission ahduring that transmit time slot;

and (3) is non-convex. This is a significant obstacle to diyeci.e., 7(¢) - p(£)n(£) - ¢(€)Tymi(£). This product differs from

plugging-in known convex-programming-based optimizatio(2) in that it incorporates:(¢)T,.,.;:(¢): the number of bits

techniques for network optimization, and necessitatesuiee transmitted over this link-dependent period of time.

of approximate techniques developed in this work. We are now ready to state our partial stability constraint,

B. Competitive Scheduling which states that the expected number of bits generated at
link ¢ is equal to the expected number of bits which are

Here, we develop our synchronous random-access SChe@chessfully transmitted ofiduring each slot:

ing strategy and prove that it ré— -competitive w.r.t. optlmal

scheduling. Suppose we are given a link-rate vegtavhich Ve e E: h(OT () = 7()p(O)n(€)c(O) Temi (€)  (6)

is guaranteed to be achievable through optimal scheduli

(hence, it satisfies Eqn. (1)). In our random-access siate

we assign access probabilities to each links follows:

Ean (6) is a partial stability condition since we are not sava
8 a closed form expression fo(¢) in terms of ther values.
However, this partial specification suffices for our anaysi

_ £(&)
VEeE: 7(f) =1~ e Fotrem 4 B. competitive scheduling

Theorem 1:Let f be a link-rate vector which satisfies Eqn We now pro\/e our main result that asynchronous random-
(1). If we assign the channel access probabilities for emth | access is2—+-competitive w.r.t. optimal scheduling. Recall
using Eqn. (4), then synchronous random-access achieveg4 7, ,mt(S denotes the length of a transmit slot for lifik
link-rate vectorh such that each component bfis at least and T}, denotes the length of an idle slot. Recall also that

1 times the corresponding componentﬁn denotes the maximum ratio between fhg,;; values of a link

_I_Droof Let us first computen(£)m the probability of y and a hidden link? in its interference neighborhood: i.e.,
collision-free transmission for linkm as follows: Y = MAax, MaXpepidden (o) T;;:L:t (5 (note thaty > 1). Sup-

n(0) = Tlperel—7()) = ezmm ~ ST pose we are given a link-rate vectﬁrvvhich is guaranteed to
1o . be achievable through optimal scheduling (it satisfies EL)).
> eRp@e@ (5) Lete= % In our asynchronous random-access strategy, we

The last inequality follows since’ satisfies (1). Leth be 25S!9N access probabilities to each lins follows:

the link-rate vector achieved by random-access. We have:

V¢ € E : h(£) = p(0)c)r(l)n) {from (2)} >

p(O)c(l) - (1 — e*A-c{e(f-)pm) ¢TI {from (5)} = The following theorem shows that this choice of access
[4

p(0)e(l) - (6%—1 e > p(f)c(t) - Pprobabilities achieves the rate- vectgrm
Wt , O T Theorem 2:Let f be a link-rate vector which satisfies Eqn.
—Lpteld 2 sincevVz : e* > 1+a} = <. This : .
e )4 - } eA (2). If we assign the channel access probabilities for eah |
completes the proof of the theorem. ®  using Eqn. (7), then asynchronous random-access achieves a
V. ASYNCHRONOUS RANDOMACCESS link- rate vectorh such that each component bf|s at least

times the corresponding componentfin
We begin our study of the asynchronous random- acce(gsL1 ) el P g P ﬁ

Proof: Consider a fixed link. We will now obtain a lower
model by extending the stability condition (2) to asynchmssr bound on the rate achieved by lirfkthrough the strategy in

networks in Section V-A. In general, it seems impossible
completely specify the stability condition for asynchraso tgqn (7). Leta(() € [0, 1] be defined through Eqn. (8).

e O] . Tiaq
WeE: 7() =1—¢ “B50c®rD Tomic® 7)

networks, since it is not easy to obtain a closed form expres- ORI D ey a(f) 8)
R 3 ipe A-c(l)p(l) U’ cexposed(L) A-c(€)p(L")

sion for the success probability¢). However, our specifica- )

tion will play a crucial role in the analysis of our schedglin >t enidden(t) Aeaomy < 1 — a(f) 9)

strategies in Section V-B. Consider a transmission by likwhich starts at time chunk

A. Stability condition This transmission spans the chutk&+1, ..., k+ W”(e)

Let the expected length of a time slot for a lifkn steady- 1, and will be successful if the following condrtrons dhold) (i
state beT'(¢). Recall thatT},,.;;(¢) is the length of a transmit No link ¢’ € hidden(¢) starts a transmission during the chunks

szlt xmit
slot for link £. If the link-flow vector supported by the networkk — % + 1,k — # +2,..kk+ 1.k +

T;

is £, it follows that the expected number of bits generateﬂ”’”—'“ — 1, and (ii) No I|nk NS e:vposed(ﬂ) starts a

per time slotfor link ¢ is equal toh(¢)T'(¢). Recall that transmission during chunk.



The probability of a link¢’ starting a transmission at any {sinceVz: e* > 1+ z}
specific chunk is at most(¢’), even when conditioned on any

other transmission eventet ¢ = max, %.We have, ‘e are now ready to bound the rateh(()

o o achieved (b ( )Ii(n;< 14 ( )irz : steady-state. We have,

B —1) he) = TOOpOTemeb)elt from Eqn. (6 >
n(€) = Tyeniadenie)(1 — T(w)( B x £<e)>+sw<e> i oy : - ©) -
My ceaposeay (1 = 7(£)) = Wyreniddencey € © W(. W P(O) Tomit(£)c()

, Tymit O+ Tumis (¢) _1) T
(e‘T;;f:ﬁ%m'A-cféiﬁw E . {From Egn. (13} > LBea0-1-va()
y s e—c(®) {from Eqn. (12} — (vﬁ?eA

Wy ecaposed(e) 6Tm;td(’f’)'A-c<’f’>P<”J>. This along with e®(9)—ca(@)=cvalt) {sincee = 17} >
Eqgns. (8) and (9) implies: (%{g?eA {asy~ 0, ande <1 }. Here the assumption

, o) 1 ~ 0 simply reflects the fact that, in practice, the length
n(l) > e« a4, =< (- =i (10) of the idle slot is negligible in comparison with the length

Link ¢ perceives any time chunk as being in one of th%f transmission durations. This assumption is by no means

following two states: (i) the chunk is idle, or else (ii) thetecessary for our _analysis: relaxing it aff(_ects our contgeti
chunk is occupied by eithéror some link?’ € exposed(¥). In ratlofo?l¥h b){ha minor factor ofl + ¢. This completes the
general, the channel alternates betweenarupied periodr proot ot the theorem. u
an occupied slot(consisting of contiguous occupied chunks)  V|. FUNDAMENTAL LIMITS OF RANDOM -ACCESS

_and anidle period (consisting of contiguous idle chunks or Theorem 2 states our choice of channel-access probabilitie
idle slots). Letr;ai(¢) denote the expected number of chunkg e that the competitive ratio of asynchronous random-
in an idle period of link¢; let k...(¢) denote the expectedaccess w.r.t. optimal scheduling i (1 —. We now claim

DA €I§S ’Y+ .

number of chunks in an occupied period of iK€t piaic(£)  hat this ratio is essentially the best achievable and dab@o

‘?'e”Ote the steady state probability of "’}{_Cht’gk being idle fgfgnificantly improved in general, even by a more clever choi
link ¢. Therefore, we have,q.(¢) = tdle - Recall

Kidle (0)Froce( of channel access probabilities. Given a netwarkwith a

that 7'(¢) denotes the expected length of a time slot for linknk set £, define~ (N) = maxe £ maxy cpidden(o) TTmit&@)

¢. Hence, further, letA(N) denote the interference degree of the specific
A < Tiq - (Kidie(€) + Koce(£)) T, 1 network /. We show:
(€) < Kidle(£) + 1 = pidie(l) (11) Theorem 3:Consider the family of networks containing all

networksA\ such thaty(N) > +* and A(N) > A*, where

link ¢ perceivesk;q.(¢) slots of lengthT;, which are idle, .7* = 11s any f|xeq. constant and* > 1 is any fixed

followed by a single occupied slot of length,..(¢)Tq (in integer. The competitiveness of asynchronous randomsacce
w.r.t. optimal scheduling is upper bounded fWA*, +*) =

expectation). : , - 204 (A"7) for this family of networks

Observe that link/ perceives any fixed chunk to be idle Axyr y A .
if and only if ¢ does not start a transmission during the slots Proof: Let A be a network withA® + 1 links (o,
ke — Tm%i;(é) +1,...,k and no link?’ € exposed(f) starts a l1,0a, ..., 0a~; we will name/, as thelong link and the rest

i , Tomie (¢) of the links as theshort links. The short links are mutually
transmission during the slots— ==, +1,..., k. Hence, interference-free; but each of them is a hidden link for the
we haveipige(f) > (1 — 7(£))” Tia - Mpeerposeary(l — 10ng link and vice-versa. Let all the short links have a traits

The intuition behind the first inequality is that, in steadyts,

k2
Trmit(£)

Lamit(C) —ea P . . durationszit; let Tomit(bo) = W*Tmmzt Let Tpmit = <Tida
T.(ﬁl))_ T 2 7. Combining this with Eqn. (11) where¢ > 1 is a fixed (int)eger. Let all the links have unit
yields: — calt) capacities, and let the channel be error-free (hence l@sses

T(£) < Tiae (12) entirely due to interference). It is easy to see that the-link
From Eqns. (7) and (10), we have: rate vectorf = (f (), f(£1),.... f(las)) = (3,5,..., %) is
e f®) Ty achievable in this network through optimal scheduling.
T(On(l) = (1—e "5O/0 Temi®@ ) X Assume that there exist channel access probabilities which
e—e(1—a(0)-(14+7) | e—ew(a(é)—%) can support the rate vect®(A*, 'y*)f. The expected fraction
_ —e(—a(0)-(+y)—epalt) o of the time Imk@n};; short link?; is transmitting on the
o) e S® Ty channel |sT(zi)Tmi;ﬂfT;'@i))Tm. The link capacity is one
B0 x (1 —e " H@ oD Tamie® ) unit, and /; achieves a rate of at least®2): hence,
> eal)-1-cpalt) (ef%ﬁ - 1) T(@i)Tm;(iij-?TT;t s 2 2(2-37) . Combining this with the
fact thatT;; < T....; and by rearranging the terms, we have,
{sincee = ﬁ andv/: ¢ > ngj“)} for all short links¢;:
> ea(l)flfﬂpa(l) e f(g) . Tia /13) T(Zl) > CI)(A*,’}/*) (14)

A-c(O)p(l) Temit (é) 2¢



As in the proof of Theorem 2, consider time being divided. Validating the stability condition

into chunks of lengthli. A transmission by the long link e pegin our experimental evaluation by validating the
{o occupiesy”¢ contiguous chunks; this transmission will be&tapility condition (6) in a large multi-hop wireless netko
successful only if no earlier transmission by any short knk \we created a random 200 node network spread over a 1500
pverlaps with these chunlend ¢; does not start a transmi_s_sion>< 1500 square grid. We fixed the capacity of each link in the
in any of these chunks. It follows thaf((,), the probability network to either 24Mbps or 6Mbps with equal probability in

of a successful transmission By is: order to provide rate diversity. We pickdd links at random
. and created a random link-demand vecﬁ)rat time t, we
Mie12,...a-(1 = 7(6:))7¢ < Thie1a,...a- injected data into an active link at the rateg(t) f(¢). Here,

e CTl) < o= (AT < A (15) ¢(t) is a network-wide parameter that increases monotonically

with time, while f(¢) is one of thel6 components in the
It is easy to verify that when the link capacity &f is one unit, demand vectoy. We fixed packet sizes &2 Bytes and ran
the rate achievable b4 is upper bounded by(¢y); this value the simulation forl20 secs. During each second, we measured

is at most_xi— by Eqn. (15). Further, it is easy to check tha’(¢): the average length of a time slot for link 7(¢): the
for all v* > 1, eAiv* < ‘I’(A;W*), Hence, if the rate achievedchgnnel access probability _for. lidkk and7)(¢): the_prol_)ablhty
by ¢, is at Ieastap(A*ﬁ*)' then the rate achieved b is of mterference—free transmission, on all tt@actlve links2.
. (A% 4%) . . . Figure 2(a) shows the observed and predicted channel access
striclly less than==;"". This contradicts our assumpt'onprobability for a representative link as a function of tinide
and completes the proof of the theorem. " predictions make use of the observgd) andT'(¢) values and
plug them into Eqn. (6) to estimat€/). The predicted channel
VIl. CAPACITY OF RANDOM ACCESS access probability closely mirrors the observed channekas
o probability until ~ 92 secs. This is the point at which this
We now address the central cross-layer optimization proghk saturates, and hence the stability Eqn. (6) is no longer
lem of maximizing end-to-end connection throughput. Thgypjicable.Figure 2(b) plots the CDF of the relative-error of
crux of the end-to-end optimization problem lies in chagact oy prediction compared to our observations & active
izing the achievable link-rate region of a network efficlent |inks in the network. The three curves correspond to three
here, we present our novishear characterization of the link snapshots in time when the load on the networki%, 50%
rate-region that is achievable in a given network throughhq75% respectively of the saturation loa@ver 90% of our
asynchronous random-access. Due to lack of space, we presggdictions have significantly less thafi relative error and
these characterizations in Theorems 4 and 5, without prootnys confirms that Eqn. (6) indeed captures the dynamics of a
Theorem 4:Every link-rate vectorf which can be stably stable (yet-to-be saturated) random-access network.
scheduled through asynchronous random-access satiséies th )
following linear condition: B. Non-convexity
Figure 2(c) illustrates the non-convexity of the random-
VieE : % + Zl’eezposed(l) % + (16) access rate-region. In thi_s simulation, we gsed a four node
linear network with two active link flows. The links were nede
disjoint; the two senders interfered with each other’s inege
. but were hidden from each other. We set the channel to be
Theorem 5:Every link-rate vectorf which satisfies the error-free, with packet losses due solely to interfereive.
following linear condition can be stably scheduled througtixed the bit-rates of both the links to 6 Mbps and varied the
asynchronous random-access: packet sizes from 500 Bytes to 2000 Bytes (each plot is for a
) fixed packet size). We fixed the data arrival rate for the first
VieE: % + 2t ceaposed(?) % + (17) flow (= coordinate) and observed the maximum throughput
5 F) | Tamie @) 4 Tomis (D-Tia o 1 achievable by the second flow ¢oordinate)withoutaffecting
¢ €hidden(€) p(€)c(€) Tomit (€7) — e the throughput of the first flowror any fixed packet size, the
) . ) ) achievable random-access rate-region is the area below its
We can now combine our linear constraints in Eqn. (1¢hrresponding curve. This is distinctly non-convex, anel th

with the standard network flow formulations (as in [13], [8]eytent of non-convexity increases as we increase the packet
[1], [11], [17], [18]) to compute the end-to-end capacityadf  gj,0 and hence, the effect of interference.
asynchronous random-access wireless network efficiently.

f é/ T:L‘rnit é/ +T:L'Tnit 4 —Ti
Zf/Ghidden(g) p(l’()c()f’) . (szmit(f’)( ) d S A

C. Competitive Analysis

VIIl. SIMULATION RESULTS We now study how the relative value of link transmission
durations affects the competitiveness of random-access. W
We present our experimental results from NS-2 simulatiossart with a simple setting in Figure 3(a). Here, we created
of 802.11 as well as capacity computations using the CPLEXnetwork with two hidden interfering linké, and /-, with
linear programming solver. 6Mbps and 24Mbps capacities respectively. We fixed the
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Figure 2. Validating the stability condition and the non-convexafyrandom-access rate-region: (a) The predicted chanoebagrobability for a representative
link closely matches its observed access probability () TIDF of the relative error between predicted and observadred access probability for all the
links: more tham90% of predictions have a relative error of less tHzfi§ (c) The random-access rate-region is distinctly non-conve
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Figure 3. Competitive analysis of uniform and proportional packiee golicies: (a) Proportional packet size policy has aificantly larger rate-region
than uniform packet size policy (b) Proportional packeegiolicy generally delivers greater throughput fractiamasnt uniform packet size policglespiteits
increased per-packet overhead (c) The competitivenessifufron packet size size rapidly drops compared to propoaiigpacket size policy as the number
of flows, and hence the extent of interference increaseseimétwork.

packet size on link; to 500 Bytes and varieds’s packet size for the proportional policy. The vaIu% is the competitiveness
from 500 to 2000 Bytes. The two extremes correspond to thef uniform policy compared to proportional policy for thisrr
uniform packet size policy500B), and the proportional policy of the experiment.
(2000B), where the packet sizes are chosen in proportion toFigure 3(b) presents the CDFs of the throughput fractions
the link capacities. We fix the data arrival rate for the firglelivered by the uniform packet size policy0(00B, 2000B),
flow (z coordinate) and observe the maximum throughpand the proportional packet size policy0(B, 2000B).
achievable by the second flow ¢oordinatewithoutaffecting Clearly, the proportional packet size policy delivers signif-
the throughput of the first flowlhe proportional packet size icantly larger throughput fractions than the uniform pglic
policy leads to a significantly larger achievable rate-egi We show the average competitiveness of the uniform policy
than the uniform packet size policy. w.r.t. the proportional policy in Figure 3(cRandom-access
. _ _ . with proportional packet sizes is generally more compsiti

V_Ve_ extend competitive analysis of_umform_ and proportlonﬁllan random-access with uniform packet sizes; this is espe-

policies for the large200-node multi-hop wireless network qiayy trye when the number of flows in the network increases

con5|dered In Section V”!'A' In the _umform packet S'Z&nd the network experiences substantial interference.
policy, we set the packet sizes for all links 4100 Bytes; in

the proportional policy, we set the packet sizes for the stowD- Capacity Estimation

links at 500 Bytes, whichincreasesper-packet transmission As above, we partitioned the network links into fast links
overheads. In each run of the simulation, we picke@ndom and slow links. We assigned the fast link$é)M bps capacity,
links and a random link-demand vectgﬁ', we varied the and the slow links a capacity o?“fﬂ, where~y > 1
number of linksk between2 and20. At time ¢, we injected is a variable simulation parameter. We selected two end-to-
data at an active link¢ at the rateg(t)f(¢), g(¢) is a end connections with arbitrarily chosen source and destina
monotonically increasing parameter, similar to the vdl@a tion nodes, and computed the total throughput that could be
experiments. We computed the throughput fracterfor the delivered by the network using the CPLEX solver. We used
uniform policy, which is the value ofi(¢t) when the network two distinct linear programs (LPs): LP1 uses the mathemat-
became saturated; we also computed the throughput fragtiorical programming formulation of [13], [1], [11], [17] as;is
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Figure 4. Existing capacity formulations (LP1) do not account foatige
values of link transmission durations and could signifisaoverestimate the
achievable throughput. Our new capacity formulation (LB&ounts for the
disparity in link transmission durations.

(6]

. . . . 7
without incorporating the capacity loss due to random-ssce[ ]

scheduling. LP2 uses the constraints developed in Sectibn V
Figure 4 presents the computed capacity as a function of (8]
Since the LP formulation with existing capacity constraint
(LP1) do not take the relative link transmission durations
into account, it severely overestimates the network caypaci 9]
Our new formulation (LP2) takes this factor into accoung
and captures the fact that the capacity of the random-access

network decreases agincreases [11]

IX. CONCLUSIONS

We initiate the capacity analysis of asynchronous random-
access wireless networks. Through the rigorous notion [%]
competitive analysis, we precisely quantify the gap in roekw
capacity due to the use of random-access scheduling as op-
posed to optimal scheduling, and design novel random-accBs]
strategies which achieve this limit. A key intuition whics i
an outcome of our work is that random-access scheduling[ig]
generally more competitive when packet sizes for each link
is chosen in proportion to the link-capacity. Motivated hist (15
intuition, we conjecture that random-access with propoai
packet-sizes isy-competitive w.r.t.any other random-access
strategy, for some constant> 0. Settling this conjecture is
an interesting open problem. Another significant avenue for
future research is the capacity analysis of 802.11 andectlat!®!
protocols which employ exponential back-off, RTS-CTS lolase
collision avoidance schemes, and other sophisticatedrieat [17]
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