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Abstract—In this paper, we investigate the problem of
maximizing the throughput, i.e., achieving capacity, of Byzan-
tine consensus in point-to-point networks, in which each link
has a capacity constraint. We derive an upper bound of the
capacity of consensus in general point-to-point networks, and
prove its tightness in 4-node complete networks by construc-
tion. We also provide a probabilistically correct algorithm
that achieves the upper bound in general networks.

I. Introduction

In the last decade, we observe a tremendous growth
in the popularity of data oriented online services, such
as cloud computing, data centers and online storage.
More and more enterprises run their critical business
applications on data centers. Individual users also have
become increasingly dependent on the Internet to store
their personal data such as photos, musics, videos, etc.
As the reliance of industry, government, and individuals
on data centers and other similar online information ser-
vices increases, the threat posed by malicious attacks and
software errors has also become increasingly prominent.
For example, software errors have brought down the
Amazon S3 storage system for several hours (2008), and
have caused well-known email services such as Gmail
(2006) to wipe out customer’s emails. Consequently,
being able to provide reliable and consistent access to
the data and services that they host has become the most
basic and most important Quality-of-Service requirement
that these online services must fulfill.

Byzantine Fault-Tolerant, i.e., BFT, provides a pow-
erful state machine replication approach for providing
highly reliable and consistent services in spite of the
presence of failures. In BFT state machine replication,
n ≥ 3 f + 1 replicas collectively behave as one fault-free
server, even if up to f replicas are faulty and deviate
from the protocol, i.e., misbehave, in arbitrary (Byzantine)
fashions.

Despite the huge effort that has been devoted to
the design of efficient BFT algorithms, one key point
has long been overlooked: every algorithm must be
implemented on top of a underlying communication
network, and its performance is strongly coupled with

the available resources, in other words, constraints of
the underlying network. Very little is known about the
relationship between the performance/efficiency of BFT
algorithms and the constraints of the underlying net-
work, as well as the design of optimal BFT algorithms
under network constraints. It turns out that, when the
available resource of the network are considered, classic
solutions may perform quite poorly, especially when the
resources are distributed unevenly.

In this paper, we study the design of optimal BFT
algorithms taking the network constraints into account.
In particular, we study the capacity of the Byzantine
Consensus problem in point-to-point network.

A. Byzantine Consensus

The Byzantine consensus problem was first introduced
by Pease, Shostak and Lamport [18]. This problem con-
siders n nodes, namely P1, ...,Pn, of which at most f <
n/3 nodes may be faulty and deviate from the algorithm
in arbitrary fashion. Each node Pi is given an input value
vi, and they want to agree on a value v such that the
following properties are satisfied:
• Termination: every fault-free Pi eventually decides on

an output value v′i ,
• Consistency: the output values of all fault-free nodes

are equal, i.e., for every fault-free node Pi, v′i = v′
for some v′,

• Validity: if every fault-free Pi holds the same input
vi = v for some v, then v′ = v.

The faulty nodes can engage in any kind of deviations
from the algorithm, including sending false messages,
collusion, and crash failures.

B. Point-to-Point Networks

We assume a synchronous network modeled as a
directed graph G(V,E), where V is the set of n nodes
and E is the set of directed links. Each directed link
e(i, j) = (Pi,Pj) ∈ E is associated with a capacity c(i, j),
which specifies the maximum amount of information
that can be transmitted on that link per unit time. That is,
for any period of duration t and a link e(i, j), up to tc(i, j)
bits of information can be sent from node Pi to Pj. If the978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



link e(i, j) does not exist, then communication from node
Pi to Pj is impossible. We assume that all link capacities
are integers. Rational link capacities can be turned into
integers by choosing a suitable time unit. For irrational
link capacities, it can be approximated by integers with
arbitrary accuracy by choosing a suitable time unit.

C. Capacity of Consensus
Our goal in this work is to characterize the opti-

mal achievable throughput of consensus. When defining
throughput, the input value vi at each node Pi referred in
the above definition of consensus is viewed as an infinite
sequence of information bits.

At each node Pi, we view the output value v′i as
an array of infinite length. Initially, none of the bits in
this array at a peer have been agreed upon. As time
progresses, the array is filled in with agreed bits. In prin-
ciple, the array may not necessarily be filled sequentially.
For instance, a peer may agree on bit number 3 before
it is able to agree on bit number 2. Once a peer agrees
on any bit, that agreed bit cannot be changed.

We assume that a consensus algorithm begins exe-
cution at time 0. In a given execution of a consensus
algorithm, suppose that by time t all the fault-free nodes
have agreed upon bits 0 through b(t)−1, and at least one
fault-free node has not yet agreed on bit number b(t).
Then, the consensus throughput is defined as limt→∞ b(t)

t .
The capacity of consensus is defined as follows:

Capacity of consensus in a given network G(V,E),
denoted as C(G), is defined as the supremum of all
achievable consensus throughputs.

The main contribution of this paper are threefold: (1)
We introduce the problem of characterizing the capacity
of consensus under network constraints; (2) We establish
an upper bound of the consensus capacity of general
networks; and (3) We show the upper bound is tight for
complete 4-node networks.

II. RelatedWork

There has been significant research on agreement in
presence of Byzantine or crash failures, theory (e.g., [11],
[16], [1]) and practice (e.g., [6], [4]) both. Except for our
previous work on the throughput of Byzantine broadcast
in point-to-point networks [13], perhaps closest to our
context is the work on continuous consensus [17], multi-
Paxos [10], and multi-valued Byzantine agreement [8] that
considers agreement on a long sequence of values. For
our analysis of throughput as well, we will consider
such a long sequence of values. However, to the best
of our knowledge, the past work on multi-Paxos and
continuous consensus has not addressed the problem of
optimizing throughput of agreement while considering
the capacities of the network links. The past work on multi-
valued Byzantine agreement [8], [14], [15] has analyzed
number of bits needed to achieve agreement. While this

is related to the notion of capacity or throughput, such
prior work disregards the capacity of the links over
which the data is being carried. Link capacity constraints
intimately affect capacity of agreement.

III. Main Results

A. Upper Bound of Consensus Capacity

We prove an upper bound for the consensus capacity
of any network G(V,E), as a function of the link capac-
ities of G. For any subset of nodes S ⊂ V such that
|S| ≤ f , denote ΓS = {γ : γ ⊂ V\S and |γ| = n − |S| − f },
i.e., ΓS is the set of the

( n−|S|
n−|S|− f

)
subsets of n − |S| − f

nodes that do not include nodes in S. For every γ ∈ ΓS,
denote IS(γ) =

∑
Pi∈γ,Pj∈S c(i, j) as the incoming capacity

to the set of nodes in S from nodes in γ, and let
I∗S = minγ∈ΓS IS(γ) be the minimum over all γ ∈ ΓS. Then
we prove (in Appendix A) the following upper bound
of the consensus capacity for general networks:

Theorem 1: For any network G(V,E), the capacity of
consensus satisfies

C(G) ≤ I∗ = min
S⊂V,|S|≤ f

I∗S. (1)

For a 4-node network with at most one faulty node,
Theorem 1 implies that C(G) is upper bounded by the
minimum of the sum capacity of any two incoming links
to a node, i.e.,

C(G) ≤ I∗ = min
i, j,k
{c( j, i) + c(k, i)}. (2)

B. Tight Bound for Complete 4-Node Networks

We show that the upper bound from Theorem 1 is
tight for complete 4-node networks (4-node networks in
which all directed links have capacity > 0) with at most
one failure, by constructing an algorithm that achieves
throughputs arbitrarily close to I∗ specified in Eq. 2.

Although the proposed algorithm only solves the
problem for a special case of small networks, we consider
it a good start for a solution to the more general cases.
The proposed algorithm is non-trivial and interesting by
itself. There are many problems in distributed computing
in which optimal solutions are only known for small
cases. For example, there are well known optimal solu-
tions for the 2-party set disjointness problem [20], but not
for the problem with more than 2 parties [5]. Similarly,
the multi-party equality problem has a known optimal
solution for 2 nodes, but not for 3 nodes in general [12].

IV. Structure of the Algorithm

The basic idea of our 4-node algorithm is to perform
consensus “in parts”. In particular, the sequence of input
bits are divided into segments of equal size, and a sub-
algorithm is used to achieve consensus for each segment
sequentially, whereby limiting the total number of times
the faulty nodes can cause a segment to fail. We will



refer to each execution of the sub-algorithm as a “gen-
eration”. Each generation proceeds in three phases: (1)
Input matching, (2) Consistency checking, and (3) Fault
diagnosis. The algorithm has the following structure:
Divide the inputs into generations, and do the following
for each generation in sequence:

0) Each node encodes its input of the current gener-
ation, which is represented by a certain number
of data packets. These packets from the current
generation are coded using a Reed-Solomon code
to obtain coded packets.

1) Input matching: The nodes exchange a certain
number of coded packets with each other to check
whether there exist 2 nodes that have matching (or
identical) inputs. If enough pairs of nodes appear
to have different inputs, it can be guaranteed that
the fault-free nodes do not have identical inputs,
and then they can decide on a default output and
terminate. When a set of at least 2 nodes appear to
have identical inputs, the nodes in this set serve as
one virtual source node and multicast their input
to the other nodes.

2) Consistency checking: After the multicast of the
input matching phase, the nodes check for the con-
sistency of the received coded packets according to
the Reed-Solomon code being used (as elaborated
in the next section). If some node finds its received
packets inconsistent, failure (i.e., misbehavior by a
faulty node) during the previous phase is detected.

a) If no one detects a failure, then all fault-free
nodes will decide on an identical output and
consensus of the current generation is success-
ful. Repeat the process for the next generation.

b) If some node detects a failure, then the con-
sensus of the current generation fails and the
fault diagnosis phase is invoked.

3) Fault diagnosis: After failure is detected, every
node broadcasts to all other nodes everything it
has sent and received so far in the current gen-
eration. This broadcast is made reliable using an
error-free 1-bit Byzantine broadcast algorithm that
tolerates f < n/3 Byzantine failures [7], [3]. This
1-bit broadcast algorithm is referred as BC Bit in
our following discussion. From the broadcast con-
tent, the fault-free nodes learn some information
about the potential identity of the faulty node. In
particular, the location of the faulty node will be
narrowed down to a set of at most 2 nodes. Then
the current generation is repeated with modified
input matching and consistency checking phases
to incorporate this information.

Similar structure called “dispute control” has been
used in the context of secure multiparty computation
[9], [2]. We have also used this structure for Byzantine
broadcast in point-to-point networks [13], as well as to

reduce the communication complexity of unconstrained
Byzantine consensus [14]. It turns out that broadcast
differs from consensus substantially and their capacity
is different too.

The main challenge here lies in designing the coding
and multicasting strategies so that the throughput of
consensus is maximized while the total usage of ev-
ery link is kept within its capacity limit. For 4-node
networks, we are able to do so by exploiting some
specific structure of the problem. However, for larger
network, even though the general algorithm structure
can be potentially extended, designing optimal coding
and multicasting strategies remains an open problem.

V. Capacity of Complete 4-NodeNetworks
In this section, we prove that the upper bound from

Theorem 1 is tight for complete 4-node networks (4-node
networks in which all directed links have capacity > 0)
with at most 1 faulty node, by constructing an algorithm
that achieves throughputs arbitrarily close to I∗.

Here we use notations slightly different from the pre-
vious sections. We rename the four nodes as A, B, C and
D, instead of P1, · · · ,P4. We denote by XY the directed
link from node X to node Y.

When it is clear from context, we use XY to represent
the capacity of the directed link XY. We use the notation
X̂Y to represent the pair of directed links XY and YX, as
well as the sum capacity of this pair of links: XY + YX.
With this notation, Eq. 2 can be rewritten as

C(G) ≤ I∗ = min { BA + CA,BA +DA,CA +DA,
AB + CB,AB +DB,CB +DB,
AC + BC,AC +DC,BC +DC,
AD + BD,AD + CD,BD + CD }.(3)

A. Coding structure and properties for input matching and
consistency checking

As discussed in Section IV, the algorithm proceeds in
generations. In particular, for any integer R ≤ I∗, the
input values are divided into generations of Rα bits for
some positive integer α (the choice of α will be discussed
later). Denote by X(g) the input value at node X in the
g-th generation. We use Reed-Solomon codes for input
matching and consistency checking (potentially other
codes may be used instead in general). In particular, the
Rα-bit input value X(g) is represented by R data packets,
each being a symbol from Galois Field GF(2α). The coded
packets are computed as linear combinations of the R
data packets, such that every subset of R coded packets
represent a set of linearly independent combinations of
the R data packets. As known from the design of Reed-
Solomon codes, if α is chosen large enough, this linear
independence requirement can be satisfied. The weights
or coefficients used to compute the linear combinations
are a part of the algorithm specification, and are assumed
to be correctly known to all nodes a priori.



List 1 Basic operations of the proposed algorithm
a) The pair of nodes (X,Y) compares x and y directly: We
will use this operation only when X̂Y ≥ R. Nodes X and
Y each generates XY and YX independent coded packets
from x and y, respectively, and exchange these packets
over links XY and YX. Then node X checks if the packets
received on link YX are consistent with its own input
value x. Node X uses BC Bit to reliably broadcasts a 1-
bit notification “=” or “�” indicating whether the packets
received from Y are consistent with x or not. Node Y
performs similar checks. If both notifications from X and
Y are “=”, then we say x ≡ y; otherwise we say x � y.

b) The pair of nodes (X,Y) compare x and y through node Z:
Node X generates XY and XZ independent coded pack-
ets from x, and sends them to nodes Y and Z through
links XY and XZ, respectively. Similarly, node Y sends
YX and YZ coded packets generated from y to nodes
X and Z, respectively. Node Z forwards min{XZ,ZY}
coded packets received from node X to node Y, and
forwards min{YZ,ZX} packets received from node Y to
node X. Node X checks then if all the received packets
are consistent with x. It then uses BC Bit to broadcast
a 1-bit notification “=” or “�” indicating whether the
packets received from Y and Z are consistent with x or
not. Similar for node Y. If both notifications from nodes
X and Y are “=”, we say x

Z≡ y; otherwise we say x
Z
� y.

c) Diagnose the system: If failure is detected in the g-
th generation , every node broadcasts all the packets
it has sent or received in the current generation, with
BC Bit. By comparing the broadcast information from
different nodes, the fault-free nodes are able to either
narrow down identity of the faulty node within a set of
two nodes, or correctly identify the faulty node.

We say that a coded packet is consistent with X(g) if it
is a valid linear combination of the R data packets of X(g)
with the given coefficients. Then the linear independent
property implies that any subset of R coded packets that
are consistent with X(g) can be used to reconstruct X(g).
This further means that, if two input values X(g) = Y(g),
then any coded packet generated from X(g) must be
consistent with Y(g). The converse of this means that,
if there is a coded packet which is consistent with X(g)
but inconsistent with Y(g), then X(g) � Y(g).

List 1 summarizes a number of operations that we will
be using repeatedly in our upcoming discussion. Readers
are advised to get familiar with them before going to the
discussion of the algorithm.

B. The Proposed Algorithm for 4 Nodes

In designing our algorithm for 4-node networks, we
will exploit of the property stated by the following
theorem (Please see Appendix B for the proof).

Theorem 2: In the 4-node networks, for all R ≤ I∗, there
must be a subset {X,Y,Z}, such that X̂Y ≥ R and X̂Z ≥ R.

Without loss of generality, we assume that ÂB ≥ R
and B̂C ≥ R. Then the proposed consensus algorithm
has six modes of operation, which are listed below. At
time 0 (the first generation), the network starts in mode
Undetected A ≡ B ≡ C.
• Undetected A ≡ B ≡ C: No failure has been detected

yet, and it appears that A(h) ≡ B(h) ≡ C(h) for all
h < g.

• Undetected A ≡ B � C: No failure has been detected
yet, and it appears that A(h) ≡ B(h) for all h ≤ g and
B(h) � C(h) for some h ≤ g.

• Undetected A � B ≡ C: No failure has been detected
yet, and it appears that A(h) � B(h) for some h ≤ g
and B(h) ≡ C(h) for all h ≤ g.

• Undetected A � B � C: No failure has been detected
yet, and it appears that A(h) � B(h) for some h ≤ g
and B(h) � C(h) for some h ≤ g.

• Detected: Failure has been detected, and the location
of the faulty node has been narrowed down to a set
of 2 nodes.

• Identified: The faulty node has been identified.
For the rest of this section, we focus our discussion on

mode Undetected A ≡ B ≡ C.
1) Mode Undetected A ≡ B ≡ C: For the g-th generation,

the algorithm operates in this mode if no failure has
been detected so far, and A(h) ≡ B(h) ≡ C(h) for all
h < g. The first generation operates in this mode too.
A generation in mode Undetected A ≡ B ≡ C proceeds
as described in Algorithm 2. The line numbers referred
below correspond to the line numbers for the pseudo-
code in Algorithm 2. Recall that we assume ÂB ≥ R and
B̂C ≥ R.
Line 1: In generation g, nodes A, B and C first encode
A(g), B(g) and C(g) represented by R data packets, into
coded packets, respectively. Then they send AB, BA, BC
and CB coded packets on links AB, BA, BC and CB,
respectively. These AB + BA + BC + CB coded packets
are generated such that every subset of R such coded
packets are linear independent combinations of the R
data packets. Each of nodes A, B and C then checks if the
received coded packets are consistent with its own input
of the current generation. The results of these checking
is then broadcast to all nodes reliably by using BC Bit.
Due to the use of BC Bit, all fault-free nodes receive
identical 1-bit notifications from nodes A, B and C.
Using these notification, each node determines whether
A(g) ≡ B(g) or not, as well as whether B(g) ≡ C(g) or not.
Line 2: It appears that A(g) � B(g) � C(g). Since
A(g) � B(g), then if nodes A and B are both fault-free,
there must be a coded packet generated from A(g) that
is inconsistent with B(g), or the other way around. As
we have discussed at the beginning of this section, this
means that A(g) � B(g). So either (1) both nodes A and



Algorithm 2 Mode Undetected A ≡ B ≡ C (generation g)
1) Nodes (A,B) compare A(g) and B(g) directly. Nodes

(B,C) compare B(g) and C(g) directly. (Please see List
1 for definition of compare directly.)

There can be 4 outcomes:
2) If A(g) � B(g) and B(g) � C(g): Switch to mode

Undetected A � B � C, and restart the current
generation with the new mode.

3) If A(g) ≡ B(g) and B(g) � C(g): Switch to mode
Undetected A ≡ B � C, and restart the current
generation with the new mode.

4) If A(g) � B(g) and B(g) ≡ C(g): Switch to mode
Undetected A � B ≡ C, and restart the current
generation with the new mode.

5) If A(g) ≡ B(g) and B(g) ≡ C(g): The pair of nodes
(A,C) compare A(g) and C(g) through node D.
(Please see List 1 for definition of compare through
another node.)

a) If A(g)
D
� C(g): A failure is detected. Then

we diagnose the system. The location of the
faulty node will be either narrowed down to a
subset of 2 nodes, or correctly identified by the
fault-free nodes. Then the algorithm switches
to mode Detected or Identified as defined
previously for the following generations.

b) If A(g)
D≡ C(g): Node B sends BD coded

packets generated from B(g) to node D on link
BD. Node D checks if all subsets of R coded
packets received from nodes A, B and C have
identical unique solution, and broadcasts the
outcome with BC Bit.
i) If all subsets of R coded packets have

identical unique solution: Nodes A, B and
C decide on the output of the current gen-
eration as A(g), B(g) and C(g), respectively.
Node D decides on the unique solution of
the received packets.

ii) Otherwise, failure is detected. Then we
diagnose the system, and switch to mode
Detected or Identified accordingly.

B are fault-free and have different inputs, or (2) one of
these two nodes is faulty and pretends to have input
different from the other’s. Similar for the pair of nodes
B and C. In this case, we switch to mode Undetected
A � B � C, and repeat generation g in the new mode.
Lines 3-4: It appears that A(g) ≡ B(g) � C(g) or A(g) �
B(g) ≡ C(g). We switch to modes Undetected A ≡ B � C
or Undetected A � B ≡ C, and repeat generation g in the
new modes, respectively.
Line 5: It appears that A(g) ≡ B(g) ≡ C(g). Nodes A
and B have exchanged AB+BA = ÂB ≥ R coded packets
and found them all consistent with A(g) and B(g). So if

both nodes A and B are fault-free, by the property of
the coding strategy, it follows that A(g) = B(g). Likewise
for B(g) and C(g). However, node B can be faulty and
pretend to have the same input as the other two fault-
free nodes. Thus, even though A(g) ≡ B(g) and B(g) ≡
C(g), if B is faulty, A and C may have different inputs.
We need to perform some extra steps.

We require node A to generate AD coded packets
from A(g) and send them to node D on link AD. Then
node D relays min{AD,DC} coded packets received from
node A to node C on link DC. Similarly, node D relays
min{CD,DA} coded packets from node C to node A.
Also, nodes A and C exchange AC + CA coded packets
on links AC and CA directly. Note that the links to/from
node D, and the pair of links connecting nodes A and
C were not used in Line 1. In Line 5, nodes A and C
have exchanged directly or through node D:

AC + CA +min{AD,DC}+min{CD,DA}
= min{AC + CA + (AD + CD),AC + AD + (CA +DA),

(AC +DC) + CA + CD,AC +DC + (CA +DA)}
≥ R coded packets. (4)

The last inequality is due to Eq.3 that I∗ is no more than
(AD + CD), (CA +DA) and (AC +DC).

Line 5(a): A(g)
D
� C(g) means that at least one of

the coded packets that node C received in Line 5 is
inconsistent with C(g), or at least one of the packets
that node A received in Line 5 is inconsistent with
A(g). This implies that, if nodes A, C and D did not
misbehave, then A(g) � C(g). However, the condition
that A(g) ≡ B(g) ≡ C(g) means that if nodes A, B and C
did not misbehave, then A(g) = B(g) = C(g). So we have
a contradiction, which implies that the faulty node has
misbehaved in the current generation.

Then we enter the fault diagnosis phase, and require
every node to broadcast its input of the current genera-
tion and all coded packets it has received or sent so far
in the current generation, using BC Bit. By comparing
the broadcast information, the fault-free nodes will be
able to narrow down the potential identity of the faulty
node to a set of at most 2 nodes. Then the system will
switch to modes Detected or Identified accordingly. The
diagnosis process has a similar structure as the “dispute
control” from [9], [2]. We include a detailed discussion
in Appendix C.
Line 5(b): As we can see from the above discussion
of Line 5, nodes A and C have exchanged directly or
through node D in total at least R coded packets. So,

if nodes A, C and D are all fault-free, A(g)
D≡ C(g)

implies that A(g) = C(g). Together with the condition that
A(g) ≡ B(g) ≡ C(g), it is not hard to see that no matter
which node is faulty, it can be guaranteed that all the
fault-free nodes in the set {A,B,C} (at least 2 such nodes)
have identical inputs in the current generation. Nodes A



and C each has already sent AD and CD coded packets
generated from A(g) and C(g) to node D in Line 5,
respectively. Node B sends BD coded packets generated
from B(g) to node D in this step.

Then node D checks if all size-R subsets of coded
packets received from nodes A, B and C have identical
unique solution, and announces the outcome to the
other nodes using BC Bit. If yes (Line 5(b)i), node D
sets the output to the unique solution of the received
coded packets, and fault-free nodes in {A,B,C} set the
output of the current generation equal to their inputs.
Otherwise (Line 5(b)ii), the faulty node must have
misbehaved. Then we diagnose the system and switch to
modes Detected or Identified according to the outcome
of diagnosis.

C. Correctness
The termination property is satisfied trivially. The fol-

lowing theorem shows that the consistency and validity
properties of Algorithm 2 in mode Undetected A ≡ B ≡ C
are also satisfied:

Theorem 3: If the nodes decide on an output for the g-
th generation in mode Undetected A ≡ B ≡ C, then
the outputs are identical and equal to the input of this
generation at the fault-free nodes in set {A,B,C}.

Proof: Observe that in mode Undetected A ≡ B ≡
C, the fault-free nodes can decide on an output only if

A(g) ≡ B(g), B(g) ≡ C(g) and A(g)
D≡ B(g). As we can

see from the previous discussion, the fault-free nodes (at
least 2 such nodes) in the set {A,B,C}must have identical
input values for the g-th generation. So in Step 5(b)i,
the fault-free nodes in set {A,B,C} decide on identical
outputs.

In addition, due to Eq. 3 node D receives ≥ R coded
packets from each pair of nodes in the set {A,B,C}. Since
at least two nodes in {A,B,C} are fault-free and have
the same input for generation g, of which the unique
solution is the input of the fault-free nodes in {A,B,C},
when node D does not detect a failure, its output value
of the g-th generation equals to the input of the other
fault-free nodes.

The operations in the other modes are similar, with
the difference being in the manner in which the coding
strategy is used. So the details of operations and proofs
of other modes are omitted in the main text and are
included in Appendix D.

D. Throughput Analysis
It is not hard to see that, in every generation, every

link XY carries out transmissions of at most XY coded
packets, and consensus is achieved for R data packets.
Since the size of each coded packets is α bits, it follows
that every link is used for at most α time units for
transmissions of coded packets. So if we ignore the
communication cost of other operations, the proposed

algorithm achieves consensus on Rα bits by using each
link at most α time units, which follows that the through-
put of consensus is R bits per time unit.

The throughput is reduced (slightly) by the overheads
cost by the following operations: using BC Bit for
broadcasting 1-bit notifications, dropping existing gen-
erations when the algorithm switches between modes,
and the fault diagnosis phases after failure is detected.
Each execution of BC Bit uses a constant number of bits
on each link, independent of Rα (Rα is the number of bits
agreed on in each generation). Since there are a constant
number of executions of BC Bit per generation, the
reduction in throughput from performing BC Bit can
be made arbitrarily close to 0 by increasing α.

Additionally, in the worst case, the system will switch
modes from Undetected A ≡ B ≡ C to Undetected
A ≡ B � C (or A � B ≡ C), to Undetected A � B � C, to
Detected and then to Identified. So there will be at most 4
mode transitions. Moreover, after the first fault diagnosis
phase, the system will switch to either mode Detected or
Identified. If it enters mode Detected, then after a second
fault diagnosis phase, it enters mode Identified. So there
are at most 2 fault diagnosis phases before the faulty
node is identified. Hence, when we compute the con-
sensus throughput over a large number of generations,
according to the definition in Section I (limt→∞ b(t)/t),
the reduction in throughput from mode transitions and
performing fault diagnosis phases diminishes to 0 as t
goes to ∞.

Now we can conclude that the proposed consensus
algorithm can achieve any throughput R < I∗ in complete
4-node networks. Together with Theorem 1, this implies
that C(G) = I∗ when G is a complete 4-node network.

E. Comparison with Existing Algorithms

In many consensus algorithms, such as [7], [3], every
link must carry transmission of the whole input. As a
result, the throughput of such algorithms is bounded
from above by the minimum of link capacities. Consider
a 4-node network in which all links have capacity K � 0
bits per unit time, except for link AB whose capacity is
ε ≈ 0. In this example, traditional consensus algorithms
can achieve throughput at most ε bits per unit time.
On the other hand, as we have seen in the previous
discussion, our consensus algorithm is able to achieve
throughput arbitrarily close to K + ε, which can be
arbitrarily better than ε.

VI. Probabilistic Algorithm for LargerNetworks

Although the algorithm presented in the previous sec-
tion achieves the consensus capacity of 4-node networks,
it is a difficult task to extend it to larger networks. The
main obstacle lies in the design of a coding strategy
for larger networks in presence of node failures that
achieves the goals of input matching and consistency
checking, while using each link within its capacity.



However, if we relax the requirement for consensus,
by allowing a small probability of error, we are able
to achieve throughput of consensus arbitrarily close to
the upper bound specified by Theorem 1 for networks
with arbitrary n and at most f < n/3 failures. In this
section, we briefly discuss one of such probabilistically
correct algorithms.

The probabilistic algorithm has a similar structure as
we discussed in Section IV. The main difference is that it
relies on a collision-resistant hash functions (for example
[19]) for input matching and consistency checking. For
any R ≤ I∗, the probabilistic algorithm operates as
follows (in the g-th generation):

1) Every node Pi picks a random key Ki, and compute
a hash value hi = (Ki,H(vi(g),Ki)), where vi(g) is
node Pi’s input of the current generation, and H() is
a collision-resistant hash function. Then every node
Pi broadcasts hi reliably using BC Bit.

2) Every node Pj checks the received hash values
against its own input vj(g) (for each i � j, node Pj
compares hi with (Ki,H(vj(g),Ki).), and broadcasts a
notifications with BC Bit, each of which indicating
whether or not hi is consistent with vj(g).

3) Using the broadcast notifications, all nodes find an
identical set of nodes, denoted as Pmatch, of maxi-
mum size such that for every pair of Pi,Pj ∈ Pmatch,
Pi claims that vi(g) is consistent with hj, and vice
versa.

4) If |Pmatch| < n − f , it can be guaranteed that the
fault-free nodes do not have identical inputs. Then
all fault-free nodes decide on a default output and
terminate.

5) If |Pmatch| ≥ n − f , then with high probability, the
fault-free nodes in Pmatch have identical inputs for
the current generation. So we require all nodes in
Pmatch to act as one single virtual node and multicast
their input value (Rα bits) to the other nodes. Since
R ≤ I∗, according to the definition of I∗, it can be
shown that this can be done by using each link for
α time units by using linear network coding.

6) Every node Pi ∈ Pmatch sets v′i (g) = vi(g), and each
node Pi � Pmatch sets v′i (g) as the outcome of the
multicast from the previous step. Pi picks a random
key K′i and compute h′i = (K′i ,H(v′i(g),K′i ). Then it
broadcasts h′i using BC Bit.

7) Every node Pj in or out of Pmatch checks the received
hash values against its own outcome v′j(g) in a sim-
ilar way as in step 2, and broadcasts a notification
with BC Bit, indicating whether or not all hash
values and keys are consistent with v′j(g).

8) If all nodes claim that their outputs consistent
with all received hash values, then every node
Pj decides on v′j(g). Otherwise failure is detected
and we diagnose the system. After the diagnosis,
a set of pairs of nodes will be identified, such

that in every pair, at least one node is faulty. For
the future generations, no communication will be
performed between the two nodes of every such
pair. Moreover, if a node appears in more than f
such pairs, it must be faulty. Thus, it can be shown
that after at most f ( f+1) diagnosis phases, all faulty
nodes will be identified exactly [9], [14].

By choosing the length of the hash value sub-linear
in Rα, and making α large enough, the reduction in
throughput cost by the overhead of broadcasting the
hash values can be made arbitrarily close to 0, and
the probability of collision of the hash function H() can
be made arbitrarily small. So this approach achieves
consensus with throughput arbitrarily close to I∗, with
high probability.

VII. Conclusion

In this paper, we studied the capacity of Byzantine
consensus under the constraints of a finite capacity of
point-to-point links in the network. We identified upper
bound on the achievable throughputs in general net-
works. Then we introduced a structure for the capacity
achieving agreement algorithm in general networks. In
addition, we presented capacity achieving algorithms for
complete 4-node networks with arbitrary link capacity
with at most 1 faulty node. Then we present a proba-
bilistic correct algorithm that achieves the upper bound
with high probability in general (larger) networks.
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Appendix A
Proof of Theorem 1

Theorem 1: For any network G(V,E), the capacity of
consensus satisfies

Ccon(G) ≤ I∗ = min
S⊂V,|S|≤ f

I∗S. (5)

Proof: Suppose on contrary that Ccon(G) > I∗. Then
there must exist a consensus algorithm, say ALG, that
achieves consensus on b(t) > tI∗ bits during some period
[0, t], with no more than tc(i, j) bits transmitted over
every link e(i, j) ∈ E.

Without loss of generality, assume that I∗ = IS(γ)
for S = {P1, · · · ,P|S|}, and γ = {P|S|+1, · · · ,Pn− f }. Now
consider the state machine G′(V,E′) illustrated in Figure
1. G′(V,E′) is a subgraph of G(V,E) with links between
nodes in S and nodes in set F = {Pn− f+1, · · · ,Pn} removed.
The remaining links have the same capacity as in G(V,E).
So nodes in S receive nothing from nodes in F, and vice
versa nodes in F receive nothing from nodes in S. In
this state machine, every node Pi runs the correct code
that node it should run in G(V,E) according to algorithm
ALG. Nodes in S are all given an identical input value
y of b(t) bits, and all the other nodes are given the same
input value x of b(t) bits, as illustrated in Fig.1.

Now consider the following two scenarios in the orig-
inal network G(V,E):

1) All nodes in S are fault-free and given input value
y, P|S|+1, · · · ,Pn− f are fault-free and given input
value x. Only nodes in F are faulty. The f faulty
nodes behave as in the state machine G′(V,E′) by
not sending anything to nodes in S and ignoring
any incoming information received from S.

2) P|S|+1, · · · ,Pn are fault-free and given input value x.
Only the |S| ≤ f nodes in S are faulty and behave
as in the state machine G′(V,E′) by not sending
anything to nodes in F and ignoring any incoming

Fig. 1. State machine for the proof of Theorem 1.

information received from nodes in F. Accord-
ing to the validity property, the output value of
P|S|+1, · · · ,Pn is x.

Given that algorithm ALG solves consensus of b(t) bits
by time t, the nodes will reach consensus correct by
time t in both scenarios. It is not hard to see that, in
G(V,E), the information observed by P|S|+1, · · · ,Pn− f in
both scenarios is the same as the information observed
in the state machine G′(V,E′). As a result, they cannot
distinguish between the two scenarios and must decide
on the same value. So in scenario 1, P|S|+1, · · · ,Pn decide
on the output value x. Then according to the consistency
property, nodes in S will also decide on the same output
value x – the input value of P|S|+1, · · · ,Pn− f .

Now let us fix y in scenario 1 and vary x. Notice that in
scenario 1 nodes in S receive no more than tI∗ bits from
nodes in γ. Since we assume that b(t) > tI∗, according
to the pigeonhole principle, there must be two values
x1 � x2 such that the resulting tI∗ bits received by nodes
in S from nodes in γ are identical. As a result, nodes
in S must decide on an identical output value, namely
x∗, when P|S|+1, · · · ,Pn− f are given the input value x1 and
x2. However, as we discussed above, output value of
nodes in S equals to the input value of γ. So nodes
in S must decide on two different output values when
P|S|+1, · · · ,Pn− f are given two different input values x1 and
x2, which leads to a contradiction.

Appendix B
Proof of Theorem 2

Proof: To prove this theorem, we first show that for
any positive value R ≤ I∗, at least three of the six pair of
links, i.e., ÂB, ÂC, ÂD, B̂C, B̂D, ĈD are ≥ R. Consider any
subset of three nodes, say {A,B,C}. We have

ÂB + ÂC + B̂C = (BA + CA) + (AB + CB) + (AC + BC)
≥ 3R. (6)

The inequality follows from Eq.3. It then follows that at
least one of ÂB, ÂC, B̂C is ≥ R.

Without loss of generality, assume that ÂB ≥ R. For
the two subsets {A,C,D} and {B,C,D}, according to the



same argument, at least one of {ÂC, ÂD, ĈD} and one of
{B̂C, B̂D, ĈD} are ≥ R. There are two cases:
• ĈD < R: It follows that one of {ÂC, ÂD} and one of
{B̂C, B̂D} are ≥ R. So at least three pairs of links that
are ≥ R.

• ĈD ≥ R: In this case, we have

ÂC + ÂD + B̂C + B̂D = (CA +DA) + (CB +DB)
+(AC + BC) + (AD + BD) ≥ 4R. (7)

So at least one of ÂC, ÂD, B̂C, B̂D is ≥ R. Again, we
have three pairs of links that are ≥ R.

Now we have shown that at least 3 pairs of links are
≥ R. Then it is easy to see that at least two pairs of them
are adjacent. Then the theorem follows.

Appendix C
Fault Diagnosis

In this section, we describe how fault diagnosis is done
when failure is detected in Line 5(a) of Algorithm 2. In

Line 5(a), we have A(g) ≡ B(g), B(g) ≡ C(g) and A(g)
D
�

C(g). To diagnose the system, we execute the following
operations:

1) Every node broadcasts its input of the current
generation and the coded packets it has sent or
received so far in generation g, using BC Bit. Due
to the use of BC Bit, all fault-free nodes obtain
identical information of what every node claims to
have sent and received.

2) For each packet transmitted in Lines 1 and 5
Algorithm 2, each fault-free node will compare the
claims by nodes X and Y about packets sent and
received on links XY and YX. If the two claims
mismatch, then the faulty node must be one of
{X,Y}.

3) If more than one pairs is identified in step 2, since
the claims from two fault-free nodes should never
mismatch, all the identified pairs must contain one
common node, which must be the faulty node. In
this case, the faulty node is correctly identified.

4) If no pair of nodes are identified in step 2, which
means that all claims from different nodes about
the transmitted coded packets match, we investi-
gate each node individually:

a) Node A: If the broadcast A(g) differs from the
unique solution of the packets exchanged on
links AB and BA, then node A must be faulty.
Or if node A has broadcast “�” in Line 5
but A(g) equals to the unique solution of the
packets exchanged on links AC, CA, AD and
DA, then node A must be faulty.

b) Node B: If the broadcast B(g) differs from the
unique solution of the packets exchanged on
links AB and BA, then node B must be faulty.
Similarly, if the broadcast B(g) differs from the

unique solution of the packets exchanged on
links BC and CB, then node B must be faulty.

c) Node C: Similar to node A.
d) Node D: If the packets node D received on link

AD mismatch with the ones node D sent on
link DC, then node D must be faulty. Similarly,
if the packets node D received on link CD
mismatch with the ones node D sent on link
DA, then node D must be faulty.

It can be verified that under the condition of A(g) ≡
B(g), B(g) ≡ C(g) and A(g)

D
� C(g), one of the cases

listed in Steps 2-4(d) above must occur. So we can either
narrow down the potential identity of the faulty node to
a set of two nodes, or identify the faulty node exactly.

The fault diagnosis procedure when failure is detected
in other places is similar.

Appendix D
Operations of OtherModes

A. Mode Undetected A ≡ B � C

For the g-th generation, the algorithm operates in this
mode if no failure has been detected, A(h) ≡ B(h) for
all h ≤ g, and B(h) � C(h) for some h ≤ g This mode
proceeds as follows:

1) The pair of nodes (A,B) compare A(g) and B(g)
directly.

2) If A(g) � B(g): The algorithm aborts the current
generation, switches to mode Undetected A � B �
C, and restarts the current generation with the new
mode. Following generations will also operate in
the new mode.

3) If A(g) ≡ B(g): The pair of nodes (A,B) compare
A(g) and B(g) through node C. Notice that no more
communication over links ÂB is needed.

a) If A(g)
C
� B(g): It contradicts with the condi-

tion A(g) ≡ B(g). So failure is detected. Then
we diagnose the system, and switch to mode
Detected or Identified accordingly.

b) If A(g)
C≡ B(g): Node C checks if the packets

received from nodes A and B has an unique
solution, and broadcasts a notification of the
outcome with BC Bit. If there is no unique
solution, the failure is detected and diagnosis
is performed. Otherwise, denote C′(g) as the
unique solution. Then the pair of nodes (A,C)
compare A(g) and C′(g) through node D. Sim-
ilar as step 3 above, no more communication
over links ÂC is needed. The rest is the same
as steps 5(a) to 5(b)ii in mode Undetected
A ≡ B ≡ C, by substituting C(g) with C′(g).

Theorem 4 states the correctness of the above steps.
Theorem 4: If the nodes decide on an output for the

g-th generation in mode Undetected A ≡ B � C, then the



decided outputs are identical and equal to the input of
this generation at the fault-free node(s) in set {A,B} .

Proof: In mode Undetected A ≡ B � C, the nodes can

decide on an output only if A(g) ≡ B(g), A(g)
C≡ B(g) and

A(g)
D≡ C′(g). Notice that the number of coded packets

exchanged between nodes B and C is

BC +min{AC,CB} = min{BC + AC,BC + CB} ≥ R. (8)

The inequality is due to BC+AC ≥ R and BC+CB ≥ R. So
B(g) = C′(g) if both nodes B and C are fault-free. Similar
to the proof of Theorem 3, after nodes (A,C) compare
A(g) and C′(g) through node D, it can be guaranteed
that the values A(g),B(g),C′(g) are identical at the fault-
free nodes in set {A,B,C}. Then the rest follows the proof
of Theorem 3.

B. Mode Undetected A � B ≡ C
Similar to mode Undetected A ≡ B � C but with roles

of nodes A and C being swapped.

C. Mode Undetected A � B � C
For the g-th generation, the algorithm operates in this

mode if no failure has been detected, A(h) � B(h) for
some h ≤ g, and B(h) � C(h) for some h ≤ g. Mode
Undetected A � B � C proceeds as follows:

1) The pair of nodes (A,C) compare A(g) and C(g)
through node B and also through node D.

2) If A(g)
B
� C(g) and A(g)

D
� C(g): In this case, it can

be guaranteed that the fault-free nodes must have
different input values. So the algorithm can decide
on a default value and terminate.

3) If A(g)
B≡ C(g) and A(g)

D
� C(g); or A(g)

B
� C(g)

and A(g)
D≡ C(g): Failure is detected. Then we

diagnose the system, and switch to mode Detected
or Identified accordingly.

4) If A(g)
B≡ C(g) and A(g)

D≡ C(g): Node D forwards as
many packets received from nodes A and C to node
B on link DB. Then nodes B and D check whether
all size-R subsets of the received coded packets
have an identical unique solution, and broadcast
the outcomes with BC Bit.

a) If both nodes B and D find an identical unique
solution of the received coded packets: Nodes
A and C decide on A(g) and C(g) respectively.
Nodes B and D decide on the unique solution
of the received packets.

b) Otherwise, failure is detected. Then we diag-
nose the system, and switch to mode Detected
or Identified accordingly.

Theorem 5 states the correctness of the above steps.
Theorem 5: If the nodes decide on an output for the

g-th generation in mode Undetected A � B � C, then the
decided outputs are identical and equal to the input of
this generation at the fault-free node(s) in set {A,C} .

Proof: In mode Undetected A � B � C, the nodes

can decide on an output only if A(g)
B≡ C(g) and

A(g)
D≡ C(g). Similar to the proof of Theorem 4, when

nodes (A,C) compare A(g) and C(g) through node B,
node B exchanges ≥ R packets with each one of nodes
A and C. If we denote B′(g) as the unique solution of
the packets node B has received, it follows A(g) ≡ B′(g)
and B′(g) ≡ C(g). Then the rest follows the same proof
of Theorem 3.

D. Mode Detected
The algorithm operates in this mode if failure has been

detected and the location of the faulty node is narrowed
down to a subset of two nodes. For mode Detected,
assumptions of ÂB ≥ R and B̂C ≥ R are not used. So
without loss of generality, we can assume that the faulty
node has been narrowed down to the set {B,D}. It is
worth noting that in this case, all fault-free nodes know
that nodes A and C must be fault-free.

1) The pair of nodes (A,C) compare A(g) and C(g)
through node B and also through node D.

2) If A(g)
B
� C(g) and A(g)

D
� C(g): fault-free nodes A

and C must have different input values, since one
of nodes B and C must be fault-free. So the algo-
rithm can decide on a default value and terminate.

3) If A(g)
B≡ C(g) and A(g)

D
� C(g); or A(g)

B
� C(g)

and A(g)
D≡ C(g): Failure is detected. Then the full-

broadcast is performed to identify the faulty node.
The system then switches to mode Identified.

4) If A(g)
B≡ C(g) and A(g)

D≡ C(g): Nodes A and C
decide on A(g) and C(g) respectively. Nodes B and
D decide on the unique solution of the packets
received from nodes A and C.

The proof of correctness of this mode is trivial. So we
do not include it in this paper.

E. Mode Identified
The algorithm operates in this mode if the identify

of the faulty node has been established. Without loss
of generality, assume that the faulty node has been
identified as node B. Fault-free nodes A, C, and D know
that node B is faulty and the other nodes are fault-free.

1) The pair of nodes (A,C) compare A(g) and C(g)
through node D.

2) If A(g)
D
� C(g): In this case, fault-free nodes A and C

must have different input values. So the algorithm
can decide on a default value and terminate.

3) If A(g)
D≡ C(g): Nodes A and C decide on A(g) and

C(g) respectively. Node D decides on the unique
solution of the packets received from nodes A and
C.

The proof of correctness of this mode is trivial. So we
do not include it in this paper.


