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Capacity of Cellular Networks with Femtocache

Mohsen Karimzadeh Kiskani†, and Hamid R. Sadjadpour†,

Abstract—The capacity of next generation of cellular networks
using femtocaches is studied when multihop communications and
decentralized cache placement are considered. We show that the
storage capability of future network User Terminals (UT) can be
effectively used to increase the capacity in random decentralized
uncoded caching. We further propose a random decentralized
coded caching scheme which achieves higher capacity results than
the random decentralized uncoded caching. The result shows that
coded caching which is suitable for systems with limited storage
capabilities can improve the capacity of cellular networks by a
factor of log(n) where n is the number of nodes served by the
femtocache.

Index Terms—Cellular Networks, Caching, 5G Networks

I. INTRODUCTION

Future cellular networks require the support for high data

rate video and content delivery. Many researchers have re-

cently focused on proposing robust solutions to efficiently

address the bandwidth utilization problem. For example, the

authors in [5] proposed to create home sized femtocells to

overcome this issue.

Golrezaei et. al [8] proposed an alternate solution by intro-

ducing the concept of femtocaching. In their solution, several

helper nodes with high storage capabilites are deployed in

each cell to create a distributed wireless caching infrastructure.

These nodes will reduce the communication burden on the

base station by satisfying many of the User Terminal (UT)

requests using the stored contents in their caches. Therefore,

the storage capability of helper nodes is used to increase the

overall network capacity.

Currently, many researchers recommend to utilize high

bandwidth Device-to-Device (D2D) and Machine-to-Machine

(M2M) communication capabilities for UTs. Current IEEE

802.11ad standard [1] and the millimeter-wave proposal for

future 5G networks [2], [22] are examples of such high

bandwidth D2D communications which can enable up to

hundreds of GHz of bandwidth. Authors in [15] suggest to

use this abundant bandwidth to deliver the contents from the

helper nodes to the UTs through multihop communications.

Therefore, they extend the solution in [8] to allow multihop

communication between the helper and the UTs. This approach

can significantly reduce network deployment and maintenance

costs without imposing restrictions on content delivery.

On the other hand, multihop communication between the

helper node and the UTs together with the use of UTs’ storage

capabilities can improve the overall network capacity. Current

improvements on the storage capacity of mobile devices show

that future UTs will have considerable under-utilized storage

M. K. Kiskani† and H. R. Sadjadpour† are with the Department of
Electrical Engineering, University of California, Santa Cruz. Email: {mohsen,
hamid}@soe.ucsc.edu

capabilities which can be effectively used to improve the net-

work content delivery. Utilizing the storage capability of UTs

allows future cellular networks to move toward a distributed

D2D wireless caching network without imposing significant

communication burden on the base station.

In this paper, we consider a wireless cellular network

in which several helper nodes are deployed throughout the

network to create a wireless distributed caching infrastructure.

Each helper is serving a wireless ad hoc network of UTs

through multihop communications as proposed in [15]. We

assume that helpers are connected to the base station through

a high bandwidth backhaul infrastructure and have access to

all contents. They will use multihop communications to deliver

the contents to the UTs. We assume that the UTs also use their

under-utilized storage capacity to improve network content

delivery. We will compute the capacity of such networks under

decentralized random coded and uncoded cache placement

algorithms.

In decentralized cache placement algorithms, each UT’s

cache is populated independently of other UTs. In a random

decentralized uncoded cache placement algorithms, contents

are chosen randomly and stored in UTs cache locations.

However, in a random decentralized coded cache placement

algorithm, each UT stores a combination of multiple contents

in its cache. The UTs will follow this process until their caches

are fully populated. Coded cache placement is of interest in

systems when the storage capacity of each node is limited

compared to the total number of contents in the network.

This paper computes the capacity of cellular networks with

multihop communications using helper and relay nodes for

both uncoded and coded random decentralized cache place-

ment algorithm. Our prior work [15] focused on multihop

communications with helper nodes but without using the

contents stored by the relay nodes. In this paper, the requests

can be satisfied either by the helper node or a relay on the path

between requesting node and the helper. As far as we know,

this is the first paper to prove that coded caching which is

originally motivated by the lack of sufficient storage capacity

in UTs [17] can also increase the network capacity.

The rest of the paper is organized as follows. In section

II, the related work is discussed and section III describes the

network model considered in this paper. Section IV focuses

on the capacity computation of wireless cellular networks

operating under a decentralized random uncoded cache place-

ment algorithm and section V reports the capacity for a

random coded cache placement algorithm. Simulation results

are reported in section VI and the paper is concluded in section

VII.
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II. RELATED WORK

The femtocaching network model is proposed in [8], [23]

and the capacity improvement for single-hop communication is

computed. In [15], the authors considered a femtocaching D2D

network with multihop relaying of information from the helper

to the UTs. They proposed a solution based on index coding in

which the helper is utilizing the side information in the UTs to

create index codes which are to be multicasted to the UTs. This

way, they reduce bandwidth utilization by grouping multiple

unicast transmissions into multicast transmission. However,

that paper does not consider the case of coded side information

and also it assumes that the relayed message from the helper

cannot be changed based on the information in the relaying

UTs.

Caching has been a subject of recent interest to many

researchers. The fundamental limits of caching is studied

in [19]. The results in [19] has been extended to include

decentralized coded caching strategies in [9], [13], [18], [20].

Other researchers studied the problem of caching in wireless

and D2D networks. Among them are the works of authors

in [10]–[12]. The authors in [10] have studied the capacity

of wireless D2D networks with caching in certain regimes.

Our work is essentially different from all of these works in

the sense that the UT always request the content from helper

(femtocache) while in these papers, a wireless ad hoc network

is considered where UTs’ requests can be satisfied by any

of the nodes in the network. Clearly, such network model

requires significant overhead to locate the nearest UT with the

requested content while in our approach, the request always

is sent toward the helper.

Coded caching has been previously suggested [6], [17] as

an efficient caching technique for devices with small storage

capacity. Our results demonstrate that apart from the practical

importance of coded caching in small storage systems, it can

be useful in increasing the capacity of cached networks.

III. NETWORK MODEL

In this paper we will study the capacity of cellular networks

utilizing a distributed femtocaching infrastructure as proposed

in [8]. In these networks, it is assumed that several helpers with

high storage capacity are deployed throughout the network

to assist the base station in delivering the contents to the

UTs. The UTs can receive contents from helpers using D2D

communications through either single hop [7] or multiple hops

[15].

Assume that a helper is serving a D2D network of n nodes.

To analyze the capacity of this network, we will use the

deterministic routing approach proposed in [16]. Without loss

of generality, it is assumed that the UTs are distributed on a

square of area one and the helper is located at the center of

the square as shown in Figure 1.

When a UT requests a content from the helper, the content

is routed from the helper to the UT in a sequence of horizontal

and vertical square-lets that are crossing the straight line which

connects the helper to the UT. It is proved in [16] that if the

UTs are uniformly distributed over the unit square area and

the area is divided into Θ( n
logn

) square-lets each with area

Fig. 1. The helper node which is located at the center of the unit square is
serving n UTs which are randomly distributed on a unit square. The square

is divided into Θ( n

logn
) square-lets of area Θ( logn

n
). Gray square-lets can

transmit simultaneously. Around each grey square-lets there is a “silence”
region of square-lets that are not allowed to transmit in the given time slot.

Θ( logn
n

), then with a probability close to one, each square-

let contains Θ(log n) UTs. A minimum transmission range

of s(n) = Θ(
√

logn
n

) ensures network connectivity [21] in

such a dense network. Therefore, assuming a transmission

range of s(n) = Θ(
√

logn
n

), the proposed routing algorithm

is proved to converge and all the UTs will be able to receive

their requested contents with probability one.

To avoid multiple access interference, a Protocol Model is

considered [24] for the successful communication between

UTs. According to this model, if the UT i is placed at the

coordinates Yi, then a transmission from i to another UT j is

successful if |Yi−Yj | < s(n) and for any other UT k transmit-

ting on the same frequency band, |Yk−Yj | > (1+∆)s(n) for

a fixed guard zone factor ∆. A Time Division Multiple Access

(TDMA) scheme is assumed for the transmission between the

square-lets. With the assumption of Protocol Model, it was

shown [16] that if the square-lets have a side length of C1s(n)
for a fixed constant C1 and if the square-lets with a distance

of C2 = 2+∆
C1

square-lets apart from each other transmit

simultaneously, then there will be no interference between the

concurrent transmissions.

Lets denote the data rate for each UT by λ, the number of

hops between each UT and its helper by x, its average value by

E[x], and the total network throughput by nλ. Therefore, on

average the network delivers nλE[x] bits in a unit of time.

There are exactly 1
(C2C1s(n))2

square-lets at any time slot

available for transmission and if the total network bandwidth

is W which is a constant value independent of n, then the

total number of bits that the network is capable of delivering

is upper bounded [14] by W
(C2C1s(n))2

. Hence,

λ ≤ λmax =
W

nE[x](C2C1s(n))2
= Θ

(

1

E[x] log n

)

. (1)

This result implies that the maximum throughput can be

derived by computing E[x]. The capacity problem is therefore

reduced to computing the average number of hops traveled

between the UTs and the helper.

We assume the number of contents in the network is m

which grows polynomially with n [10] as m = C3n
α. We

denote the set of indices of all contents by ξ = {1, 2, . . . ,m}.

Without loss of generality we assume that the contents with

lower indices are more popular compared to the ones with

higher indices. We further assume that the contents can be

categorized into two groups of highly popular contents and

less popular contents. Let’s denote the requested content by
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r, then the probability that r belongs to the highly popular

group of contents should be close to one. The highly popular

and less popular groups can be defined as

Definition 1. For ǫ ∈ (0, 1), define hǫ as the smallest integer

such that if ξ1−ǫ = {1, 2, . . . , hǫ} and ξǫ = {hǫ + 1, hǫ +
2, . . . ,m}, then P[r ∈ ξ1−ǫ] ≥ 1− ǫ.

We refer to ξ1−ǫ as the group of highly popular contents

and ξǫ as the group of less popular contents. We assume that

the helper has access to all the contents in ξ but the UTs

are assumed to have a limited cache of size M = C4n
β . For

the purpose of this paper, we assume that all UTs have the

same cache size and the helper (or base station) is applying

a decentralized caching strategy to populate a UT cache

independently of other UTs. Since the UTs have limited cache

size, we assume that only popular contents in ξ1−ǫ are stored

in UTs caches. Any request for the less popular contents from

ξǫ will be satisfied directly by the helper or base station.

When a UT i requests a content, if that specific content or

a group of coded contents which can be used to decode the

content are available in the caches of the UTs in the routing

path between the UT i and the helper, then the helper informs

the UTs which have the coded contents in their caches to

send the content to UT i. If the content or a set of coded

contents do not exist in the caches of the UTs between UT i

and helper, then the content is routed to UT i from the helper

through on average s(n)−1 = Θ(
√

n
logn

) hops. Since majority

of the requests are from popular contents, these requests

can be satisfied by the UTs instead of helper which reduces

the average number of transmissions per request. Therefore,

provided that the content request probability distribution is

known, the average number of traveled hops in the network

can be written as

E[x] = E[x|r ∈ ξǫ]P[r ∈ ξǫ] + E[x|r ∈ ξ1−ǫ]P[r ∈ ξ1−ǫ],

= ǫ

√

n

log n
+ (1− ǫ)E[x|r ∈ ξ1−ǫ]. (2)

Remark 1. By choosing ǫ = 1√
n

, the average hop count of

the contents in ξǫ will become less than one and therefore the

total average hop count can be approximated by the average

hop counts of the files in ξ1− 1
√

n
, i.e.,

E[x] =
1√
n

√

n

log n
+ (1− 1√

n
)E[x|r ∈ ξ1− 1

√

n
]

= Θ(E[x|r ∈ ξ1− 1
√

n
]) (3)

For many web applications [3], [4], the content request

popularity follows Zipfian-like distributions. Although we will

express our results in general form without any specific

assumption, we will later compute explicit capacity results

assuming a Zipfian content popularity distribution. Our main

results in proving the gain of coded caching over uncoded

caching is independent of the content popularity distribution.

For a Zipfian content popularity distribution with parameter

s, the probability of requesting a content with popularity

index i will have the form P[r = i] = i−s
∑

m
j=1

j−s = i−s

Hm,s
,

where Hm,s represents the generalized harmonic number with

parameter s.

Remark 2. In case of Zipfian distribution with s > 1, when

few popular contents are widely requested by the UTs, we

have

P[r ∈ ξǫ] =

m
∑

i=hǫ+1

i−s

Hm,s

≤ (m− hǫ)(hǫ)
−s

Hm,s

. (4)

Assuming that m = C3n
α is a large number, Hm,s converges

to Reimann Zeta function ζ(s). Since the number of popular

contents is negligible compared to the total number of con-

tents, m−hǫ

Hm,s
can be upper bounded by 2m

ζ(s) and therefore in

case of a Zipfian distribution with s > 1, we have

P[r ∈ ξǫ] ≤
2C3n

α(hǫ)
−s

ζ(s)
. (5)

In order to compute h 1
√

n
such that P[r ∈ ξ 1

√

n
] ≤ 1√

n
, it is

sufficient to have

h 1
√

n
= Θ

(

n
1

s
(α+ 1

2
)
)

. (6)

Since we implicitly assume that h 1
√

n
= O(m) = O(C3n

α),

equation (6) is valid when α > 1
2(s−1) .

Remark 3. In case when β > 1
s
(α+ 1

2 ), the average number

of traveled hops can be zero since in that case, all UTs can

store all the popular contents in their caches. Therefore, in

this case, the maximum per node capacity Θ(1) is trivially

achievable.

For the rest of paper, we compute capacity assuming that

the number of popular contents hǫ is known. The capacity for

the special case of Zipfian distribution will be derived as well.

IV. DECENTRALIZED UNCODED CACHING

This section focuses on computing the capacity of cellular

networks when UTs cache uncoded contents in a distributed

fashion. It is assumed that the UTs only cache the most popular

contents from ξ1−ǫ.

Lemma 1. If a content is drawn uniformly at random from the

set of most popular contents in ξ1−ǫ, then the average required

number of requests to have at least one copy of each content

from ξ1−ǫ is equal to

E[l] = hǫHhǫ
= hǫ

hǫ
∑

i=1

1

i
= Θ(hǫ log hǫ), (7)

where Hhǫ
is the hth

ǫ harmonic number. This problem is

similar to the well-known coupon collector problem.

Proof: Denote ti as the number of required requests

to collect the ith content after (i − 1)th content have been

collected. Notice that the probability of collecting a new

content given that i− 1 contents have been collected is equal

to pi = hǫ−(i−1)
hǫ

. Therefore, ti has geometric distribution

with expected value of 1
pi

= hǫ

hǫ−(i−1) . By the linearity of

expectation we have:

E[l] =

hǫ
∑

i=1

E[ti] =

hǫ
∑

i=1

hǫ

hǫ − (i− 1)
= hǫ

hǫ
∑

i=1

1

i
= hǫHhǫ



4

Remark 4. Notice that the contents in UT caches should

be stored such that each UT does not cache a content more

than once. Therefore, this problem cannot exactly be modeled

by the coupon collector problem but when hǫ >> M , the

probability of having multiple instances of the same content

in one UT goes to zero and hence the above argument is valid

and E[l] = hǫHhǫ
.

Note that during placement phase, we cache contents from

the popular set ξ1−ǫ inside the UTs independently and with

uniform distribution. The distribution of placement of contents

inside the UTs is different from the popularity distribution of

the contents.

Theorem 1. In a cellular network with femtocaching oper-

ating under a decentralized uncoded caching assumption, the

average number of traveled hops is

E[x] = E[x|r ∈ ξ1− 1
√

n
] = Θ

(

h 1
√

n
log h 1

√

n

M

)

. (8)

Therefore, the following capacity is achievable

λuncoded = Θ(
1

E[x] log n
) = Θ

(

M

h 1
√

n
log h 1

√

n
log n

)

. (9)

Proof: Lemma 1 shows that the average number of cache

places needed so that all of the requests can be satisfied is

Θ(h 1
√

n
log h 1

√

n
). Since each UT has a cache size M , it is

obvious that the average number of users needed such that at

least one copy of each content is available in their caches is

Θ(
h 1

√

n

log h 1
√

n

M
). Hence, along the routing path to the helper,

the average number of required hops needed so that the UT

can reach its desired content is Θ(
h 1

√

n

log h 1
√

n

M
). This proves

the theorem. Equation (1) can be used to compute the capacity

by replacing E[x] with the above result.

We can use equation (6) to simplify the results of theorem

1 to the case of Zipfian content request distribution.

Corollary 1. In a cellular femtocaching network with Zipfian

content request distribution with parameter s > 1 and assum-

ing α > 1
2(s−1) , the following capacity result is achievable.

λ
Zipf
uncoded = Θ

(

nβ− 1

s
(α+ 1

2
) 1

(log n)2

)

(10)

V. DECENTRALIZED CODED CACHING

In this section we will find capacity results assuming that

the UTs are caching coded contents from the set of popular

contents in ξ1−ǫ independently of other UTs. We propose a

random coding strategy and we will prove that if UTs follow

this random coding strategy, the capacity will be increased

by a factor of log hǫ. The result proves that not only coded

caching is more efficient in small storage scenarios [17], but

also it increases the capacity. We first describe the random

coding cache placement and the decoding procedure.

Coded cache placement: For the purposes of this paper,

we assume that random coding is done over Galois Field

GF(2). For each encoded file, the helper node (or base station)

randomly selects each one of contents from the set ξ1−ǫ with

probability 1
2 and then add all the selected contents to create

one encoded file. For a UT with cache size M , the helper node

creates M of these encoded files. Therefore, each one of the

contents in ξ1−ǫ has been used on average M
2 times to create

the M coded files.

Coded file reconstruction: When a UT requests a content,

if the content is among the set of popular contents ξ1−ǫ, it

sends the request to the helper. The helper then decides to send

the file through a routing path as proposed in [16]. However, it

is highly possible that the content can be reconstructed using

the coded contents in the caches of UTs between the requesting

UT and the helper along the routing path. If that is the case,

then the helper sends appropriate coding information to the

relaying UTs along the routing path and each relay UT that has

useful information, add that information to the file that is being

relayed to the requesting UT. This procedure continues hop

by hop until the content reaches the requesting UT. After the

requesting UT receives this file, it can reconstruct the desired

content by applying its own coding gains to the received coded

file. By doing so, there will not be multiple transmissions by

relaying UTs to construct the requested content.

To prove our results we will first prove the following lemma.

Lemma 2. If for a vector vi ∈ F
hǫ

2 , every element is equal

to 1 with probability 1
2 and equal to 0 with probability 1

2

and {v1, v2, . . . , vq} span the vector space of F
hǫ

2 , then the

average required number of such vectors to span the set Fhǫ

2

equals E[q] = hǫ +
∑hǫ

i=1
1

2i−1 = hǫ + γ where γ ≈ 1.6067
is called the Erdős–Borwein constant.

Proof: We can form a Markov chain to model the

problem. The states of this Markov chain are equal to the

dimension of the space spanned by vectors v1, v2, . . . , vl. Let

kl (kl ≤ hǫ) denote the dimension of the space spanned by

vectors v1, v2, . . . , vl. Therefore, the Markov chain will have

kl+1 distinct states. Assuming that we are in state kl, we want

to find the probability that adding a new vector will change the

state to kl+1. When we are in state kl, adding 2kl vectors out

of the total 2hǫ possible vectors will not change the dimension

while adding any one of 2hǫ − 2kl new vectors will change

the dimension to kl + 1. Therefore, the Markov chain can be

represented as the one in Figure 2.

kl = 0 kl = 1 kl = 2 kl = 3 kl = hǫ

1
2hǫ

1− 1
2hǫ

2
2hǫ

1− 2
2hǫ

22

2hǫ

1− 22

2hǫ

23

2hǫ 1

Fig. 2. The state space of the Markov chain used in proof of lemma 2.

The state transition matrix for this Markov chain can be

written in the form of a discrete phase-type distribution as

P =

[

T T0

0 1

]

, (11)
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where

T =



















1
2hǫ

1− 1
2hǫ

0 · · · 0 0
0 2

2hǫ
1− 2

2hǫ
· · · 0 0

0 0 4
2hǫ

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2hǫ−2

2hǫ
1− 2hǫ−2

2hǫ

0 0 0 · · · 0 2hǫ−1

2hǫ



















,

(12)

T t
0 = [0 0 . . . 1− 2hǫ−1

2hǫ
], (13)

and t denotes transpose operation. If e denotes all one vector

of size hǫ, since P is a probability distribution we have

P

[

e

1

]

=

[

e

1

]

. This implies that Te + T0 = e, hence

T0 = (I − T )e. Therefore, it is easy to show by induction

that the state transition matrix in l steps can be written as

P l =

[

T l (I − T l)e
0 1

]

. (14)

This equation implies that if we define the absorption time as

q = inf{l ≥ 1 | kl = hǫ}, (15)

and if l is strictly less than the absorption time, the probability

of transitioning from state i to state j by having l new vectors

can be found from the submatrix T l of P l. In other words,

Pl
i[kl = j, l < q] = (T l)ij . (16)

Therefore, starting from state i, if tij denotes the time spent

in state j before absorption, tij can be written as

tij =

q−1
∑

l=0

1{kl = j} (17)

Therefore, starting from state i, the average time spent in state

j will be equal to

E[tij ] = E

[

q−1
∑

l=0

1{kl = j}
]

=

q−1
∑

l=0

E [1{kl = j}] .

Since E [1{kl = j}] = Pl
i(kl = j, l ≤ q − 1), we have

E[tij ] =

q−1
∑

l=0

Pl
i(kl = j, l ≤ q − 1) =

∞
∑

l=0

Pl
i(kl = j, l ≤ q − 1)

=
∞
∑

l=0

Pl
i(kl = j, l < q) =

∞
∑

l=0

(T l)ij . (18)

Since the probability is nonzero up to q − 1, then we can

extend the summation to infinity adding zero terms in (18).

Notice that the equality in the last line comes from equation

(16). If we denote matrix U = (E[tij ])ij , using equation (18)

and using matrix algebra, we have

U =
∞
∑

i=0

T i = (I − T )−1. (19)

It is not difficult to verify that

U = (I − T )−1 =

















2hǫ

2hǫ−1
2hǫ−1

2hǫ−1−1
2hǫ−2

2hǫ−2−1
· · · 2

0 2hǫ−1

2hǫ−1−1
2hǫ−2

2hǫ−2−1
· · · 2

0 0 2hǫ−2

2hǫ−2−1
· · · 2

...
...

...
. . .

...

0 0 0 · · · 2

















Therefore, starting at kl = 0, the average time it takes to get

to absorption is equal to

E[q] =
[

1 0 · · · 0
]

Ue

=
[

1 0 · · · 0
]

(I − T )−1e

=

hǫ
∑

i=1

2i

2i − 1
= hǫ +

hǫ
∑

i=1

1

2i − 1
(20)

This proves the lemma.

This lemma shows that each UT’s request can be satisfied

in a smaller number of hops compared to an uncoded caching

strategy. Therefore, the capacity will be increased. The fol-

lowing theorem formalizes this.

Theorem 2. In a cellular network with femtocaching, our

proposed decentralized coded caching in which each popular

content in ξ1−ǫ is present in any cache location with probabil-

ity 1
2 reduces the required number of traveled hops for each

request by UTs to at most

E[x] = E[x|r ∈ ξ1− 1
√

n
] = Θ

(

h 1
√

n

M

)

. (21)

Therefore, the following capacity is achievable through decen-

tralized coded caching.

λcoded = Θ(
1

E[x] log n
) = Θ

(

M

h 1
√

n
log n

)

(22)

Proof: Lemma 2 shows that to be able to decode a

requested content, on average Θ(h 1
√

n
) coded contents are

required. Since each UT has a cache of size M , we need

Θ(
h 1

√

n

M
) UTs to be able to decode the desired content. This

means that along the routing path, we only need to travel a

distance of Θ(
h 1

√

n

M
) hops away from each UT to find all the

contents that the UT requires for decoding its desired content.

Notice that individual UTs do not need to separately send their

coded content to the requesting node. Each UT can combine

the appropriate encoded files to the received file along the

route to the requesting node.

Similarly, the results of theorem 2 can be simplified by using

equation (6) for the case of Zipfian content request distribution.

Corollary 2. In a cellular femtocaching network with Zipfian

content request distribution with parameter s > 1 and assum-

ing α > 1
2(s−1) , the following capacity result is achievable

through decentralized coded caching.

λ
Zipf
coded = Θ

(

nβ− 1

s
(α+ 1

2
) 1

log n

)

(23)
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Fig. 3. Simulation results show that the expected number of hops in case of
decentralized coded caching is significantly lower than the expected number
of hops for decentralized uncoded caching.

Our proposed coded caching strategy can be done with

insignificant overhead as the coding instructions sent from

the helper is negligible compared to the size of the files. The

computational complexity of in each UT (XOR operation) is

also not significant. However, the helper requires to have high

computational complexity capability. Future works should

concentrate on the ways to reduce the complexity and delay

for this approach.

VI. SIMULATIONS

The simulation results compare the performance of our

proposed decentralized random coded caching with decentral-

ized random uncoded caching. We assume a helper which is

serving n = 2500 UTs. The Zipfian content request probability

parameter is s = 2.5, α = 1.5, and C3 = 8 which means

that a total of m = 1000000 contents exist in the network

and 523 popular contents are considered for this simulation.

The cache size parameter β is ranging from 0.3 to 0.8 while

C4 = 1. Figure 3 shows the simulation results comparing

the average number of hops required to decode the content in

both decentralized coded and uncoded caching. As can be seen

from this figure, our proposed decentralized random coded

cache placement algorithm can significantly reduce the average

number of traveled hops compared to decentralized uncoded

cache placement. Further, the theoretical results match the

simulation results for both cases.

VII. CONCLUSIONS

In this paper, we studied the content delivery capacity in

cellular networks with femtocaching with decentralized un-

coded and coded caching for UTs. We computed the capacity

of random decentralized uncoded caching. We then proposed a

random coded caching strategy for network users and proved

that this random coded caching technique can improve the

capacity. Note that we did not consider the possibility of

congestion near helper node since all contents are moving

toward that node. In the future work, we intend to study the

effects of congestion on the capacity of the network.
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