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Abstract—The finite-state Markov channel (FSMC) is a time-

varying channel having states that are characterized by a finite-

state Markov chain. These channels have infinite memory, which

complicates their capacity analysis. We develop a new method to

characterize the capacity of these channels based on Lyapunov

exponents. Specifically, we show that the input, output, and con-

ditional entropies for this channel are equivalent to the largest

Lyapunov exponents for a particular class of random matrix

products. We then show that the Lyapunov exponents can be

expressed as expectations with respect to the stationary distri-

butions of a class of continuous-state space Markov chains. This

class of Markov chains, which is closely related to the prediction

filter in hidden Markov models, is shown to be nonirreducible.

Hence, much of the standard theory for continuous state-space

Markov chains cannot be applied to establish the existence and

uniqueness of stationary distributions, nor do we have direct

access to a central limit theorem (CLT). In order to address these

shortcomings, we utilize several results from the theory of random

matrix products and Lyapunov exponents. The stationary distri-

butions for this class of Markov chains are shown to be unique and

continuous functions of the input symbol probabilities, provided

that the input sequence has finite memory. These properties allow

us to express mutual information and channel capacity in terms

of Lyapunov exponents. We then leverage this connection between

entropy and Lyapunov exponents to develop a rigorous theory for

computing or approximating entropy and mutual information for

finite-state channels with dependent inputs. We develop a method

for directly computing entropy of finite-state channels that does

not rely on simulation and establish its convergence. We also

obtain a new asymptotically tight lower bound for entropy based

on norms of random matrix products. In addition, we prove a

new functional CLT for sample entropy and apply this theorem to

characterize the error in simulated estimates of entropy. Finally,

we present numerical examples of mutual information computa-

tion for intersymbol interference (ISI) channels and observe the

capacity benefits of adding memory to the input sequence for such

channels.

Index Terms—Finite-state channel, hidden Markov model, Lya-
punov exponent, random matrices, Shannon capacity.
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I. INTRODUCTION

I
N this work, we develop the theory required to compute

entropy and mutual information for Markov channels with

dependent inputs using Lyapunov exponents. We model the

channel as a finite state discrete-time Markov chain (DTMC).

Each state in the DTMC corresponds to a memoryless channel

with finite input and output alphabets. The capacity of the

Markov channel is well known for the case of perfect state

information at the transmitter and receiver. We consider the

case where only the transition dynamics of the DTMC are

known (i.e., no state information).

This problem was orginally considered by Mushkin and Bar-

David [38] for the Gilbert–Elliot channel. Their results show

that the mutual information for the Gilbert–Elliot channel can be

computed as a continuous function of the stationary distribution

for a continuous-state space Markov chain. The results of [38]

were later extended by Goldsmith and Varaiya [24] to Markov

channels with independent and identically distributed (i.i.d.) in-

puts and channel transition probabilities that are not dependent

on the input symbol process. The key result of [24] is that the

mutual information for this class of Markov channels can be

computed as expectations with respect to the stationary distri-

bution of the channel prediction filter. In both of these papers,

it is noted that these results fail for non-i.i.d. input sequences or

if the channel transitions depend on the input sequence. These

restrictions rule out a number of interesting problems. In partic-

ular, intersymbol interference (ISI) channels do not fall into the

above frameworks. In a more general setting, Blackwell origi-

nally considered the connection between entropy rates and the

prediction filter in [10]. The assumptions in [10] are somewhat

different than those used here, and we detail these issues in Sec-

tions III-D and V-B of this paper.

Recently, several authors ([1]–[3], [44], [31]) have proposed

simulation-based methods for computing the sample mutual

information of finite-state channels. A key advantage of the

proposed simulation algorithms is that they can compute mutual

information for Markov channels with non-i.i.d. input symbols

as well as for ISI channels. In particular, simulation-based

algorithms were used in [2] to quantify the capacity increase

associated with input memory. All of the simulation-based

results use similar methods to compute the sample mutual

information of a simulated sequence of symbols that are

generated by a finite-state channel. These works rely on the

Shannon–McMillan–Breiman theorem to ensure convergence

of the sample mutual information to the expected mutual infor-

mation. However, the theory of simulation for these channels is

still incomplete. We will show in Section VI that the Markov

chain we must simulate is typically not irreducible. Hence, we
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cannot apply the standard theory of simulation to construct

rigorous confidence intervals or error bounds on the simulated

estimate of mutual information. The lack of error bounds for

these simulation estimates means that we cannot determine, a

priori, the length of time needed to run a simulation nor can we

determine the termination time by observing the simulated data

[28]. Furthermore, simulations used to compute mutual infor-

mation may require extremely long “startup” times to remove

initial transient bias. Examples demonstrating this problem can

be found in [20] and [13]. We will discuss this issue in more

detail in Section VI and Appendix I of this paper.

Our goal in this paper is to present a detailed and rigorous

treatment of the computational and statistical properties of

entropy and mutual information for finite-state channels with

dependent inputs. Our first result, which we will exploit

throughout this paper, is that the entropy rate of a symbol

sequence generated by a Markov channel is equivalent to the

largest Lyapunov exponent for a product of random matrices.

This connection between entropy and Lyapunov exponents

provides us with a substantial body of theory that we may

apply to the problem of computing entropy and mutual infor-

mation for finite-state channels. In addition, this result provides

many interesting connections between the theory of dynamic

systems, hidden Markov models, and information theory,

thereby offering a different perspective on traditional notions

of information-theoretic concepts. A number of recent papers

have explored these issues. The authors of [39] and [40] con-

sider closed-form computation of entropy rates for finite-state

channels in particular asymptotic regimes. In [27], conditions

similar to those in Theorem 6 of this paper are provided that

guarantee analyticity of entropy rates for finite-state channels.

In [23], the authors provide new low-complexity bounds on

the computation of Lyapunov exponents, which can be directly

applied to entropy.

Our results fall into two categories: extensions of previous re-

search and entirely new results—we summarize the new results

first. We provide a new connection between entropy and Lya-

punov exponents that allows us to prove several new theorems

for entropy and mutual information of finite-state channels. In

particular, we present new lower bounds for entropy in terms of

matrix and vector norms for products of random matrices (Sec-

tion VI and Appendix I). We also provide an explicit connection

between computation of Lyapunov exponents, entropy, and the

prediction filter problem in hidden Markov models (Section IV).

In conjunction with the Lyapunov exponent results, we utilize

ideas from continuous-state space Markov chains to prove the

following new results:

• a method for directly computing entropy and mutual infor-

mation for finite-state channels (Theorem 7);

• a functional central limit theorem (CLT) for sample en-

tropy under easily verifiable conditions (Theorem 8);

• a functional CLT for a simulation based estimate of entropy

(Theorem 8);

• a rigorous confidence interval methodology for simula-

tion based computation of entropy (Section VI and Ap-

pendix I);

• a rigorous method for bounding the amount of initialization

bias present in a simulation-based estimate (Appendix I).

A functional CLT is a stronger form of the standard CLT. It

shows that the sample entropy, when viewed as a function

of the amount of observed data, can be approximated by a

Brownian motion. In addition, the proof techniques utilized in

Section V, which exploit the contraction property of positive

matrices, will likely be of interest to some readers. This

powerful property allows us to prove existence, uniqueness,

and continuity of a stationary distribution for the generalized

hidden Markov prediction filter, even though the filter process

is not irreducible.

In addition to the above new results, we provide several ex-

tensions of the work presented in [24]. In [24], the authors show

that mutual information can be computed as a function of the

conditional channel state probabilities (where the conditioning

is on past input/output symbols). Moreover they show that for

the case of i.i.d. inputs, the conditional channel probabilities

converge weakly and their limit distributions are continuous

functions of the input probabilities and channel parameters. In

this paper, we will show that all of these properties hold for

a much more general class of finite-state channels and inputs

(Sections III–V). Furthermore, we also strengthen the results

in [24] to show that the conditional channel probabilities con-

verge exponentially fast. In addition, we apply results from Lya-

punov exponent theory to show that there may be cases where

entropy and mutual information for finite-state channels are not

“well-behaved” quantities (Section IV). For example, we show

that the conditional channel probability process does not have

even the weakest form of irreducibility (i.e., Harris recurrence),

and may have multiple stationary distributions. While entropy

is always a continuous function of the input probabilities and

channel parameters [15, Theorem 4.4.1], we show that the con-

ditional channel probability process may have discontinuous

stationary distributions. This lack of continuity could prove sig-

nificant when computing functions of hidden Markov models

other than entropy.

The rest of this paper is organized as follows. In Sec-

tion II, we show that the conditional entropy of the output

symbols given the input symbols can be represented as a

Lyapunov exponent for a product of random matrices. We

show that this property holds for any ergodic input sequence.

In Section III, we show that under stronger conditions on

the input sequence, the entropy of the outputs and the joint

input/output entropy are also Lyapunov exponents. In Sec-

tion IV, we show that entropies can be computed as expec-

tations with respect to the stationary distributions of a class

of continuous-state space Markov chains. We also provide

an example in which such a Markov chain has multiple sta-

tionary distributions. In Section V, we provide conditions on

the finite-state channel and input symbol process that guar-

antee uniqueness and continuity of the stationary distributions

for the continuous-state space Markov chains. In Section VI,

we discuss both simulation-based and non-simulation-based

computation of entropy and mutual information for finite-state

channels. In Section VII, we present numerical examples of

computing mutual information for finite-state channels with

general inputs. Finally, in Appendix I, we present a rigorous

treatment of the theory required to construct simulation-based

estimates of entropy.
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II. MARKOV CHANNELS WITH ERGODIC INPUT

SYMBOL SEQUENCES

We consider here a communication channel with (channel)

state sequence , input symbol sequence

, and output symbol sequence .

The channel states take values in , whereas the input and output

symbols take values in and , respectively. In this paper, we

shall adopt the notational convention that if is

any generic sequence, then for

denotes the finite segment of starting at index and ending

at index .

In this section, we show that the conditional entropy of the

output symbols given the input symbols can be represented as a

Lyapunov exponent for a product of random matrices. In order

to state this relation, we only require that the input symbol

sequence be stationary and ergodic. Unfortunately, we cannot

show an equivalence between unconditional entropies and

Lyapunov exponents for such a general class of inputs. In Sec-

tion III, we will discuss the equivalence of Lyapunov exponents

and unconditional entropies for the case of Markov-dependent

inputs.

A. Channel Model Assumptions

With the above notational convention in hand, we are now

ready to describe this section’s assumptions on the channel

model. While some of these assumptions will be strengthend

in the following sections, we will use the same notation for the

channel throughout the paper.

A1: is a stationary finite-state

irreducible Markov chain, possessing transition matrix

. In particular

for , where is the unique stationary

distribution of .

A2: The input symbol sequence is a

stationary ergodic sequence independent of .

A3: The output symbols are conditionally in-

dependent given and , so that

for .

A4: For each triplet , there exists a prob-

ability mass function on such that

The dependence of on is introduced strictly for math-

ematical convenience that will become clear shortly. While this

extension does allow us to address noncausal channel models,

it is of little practical use.

B. The Conditional Entropy as a Lyapunov Exponent

Let the stationary distribution of the channel be represented

as a row vector , and let be a column

vector in which every entry is equal to one. Furthermore, for

, let be the

square matrix with entries

Observe that

Taking logarithms, dividing by , and letting we con-

clude that

(1)

where

(2)

The quantity is the largest Lyapunov exponent (or,

simply, Lyapunov exponent) associated with the sequence of

random matrix products

. Lyapunov exponents have been widely studied in

many areas of applied mathematics, including discrete linear

differential inclusions (Boyd et al. [11]), statistical physics

(Ravishankar [45]), mathematical demography (Cohen [14]),

percolation processes (Darling [16]), and Kalman filtering

(Atar and Zeitouni [7]).

Let be any matrix norm for which

for any two matrices and . Within the Lyapunov exponent

literature, the following result is of central importance.

Theorem 1: Let be a stationary ergodic se-

quence of random matrices for which

. Then, there exists a deterministic constant (known as the

Lyapunov exponent) such that

a.s.

as . Furthermore

The standard Proof of Theorem 1 is based on the subadditive

ergodic theorem due to Kingman [33].
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Note that for

The positivity of therefore guarantees that

(3)

as , so that the existence of the limit in (2) may be

deduced either from information theory (Shannon–McMillan–

Breiman theorem) or from random matrix theory (Theorem 1).

For certain purposes, it may be useful to know that the

conditional entropy (i.e., ) is smooth in the

problem data. Here, “smooth in the problem data” means the

Lyapunov exponent is differentiable with respect to the channel

transition probabilities , as well as the probability mass func-

tion for the output symbols . Arnold et al.

[4, Corollary 4.11] provide sufficient conditions under which

the Lyapunov exponent is analytic in the entries of

the random matrices. However, in our case, perturbations in

and simultaneously affect both the entries of the ’s

and the probability distribution generating them. Therefore, the

results of [4] are difficult to apply in our setting. This coupling

between the matrix entries for and the mass function has

also been studied in [39], which examines continuity properties

of entropy in several asymptotic regimes associated with the

binary-symmetric channel. A recent result [27] actually shows

that the entropy (or Lyapunov exponent) in this formulation is

an analytic function of the problem data. Their condition for

analyticity of entropy is identical to our condition in Theorem 6

for continuity of the stationary distribution for the conditional

channel probabilities.

It is in fact remarkable that this relationship holds for

at this level of generality (i.e., for any stationary and

ergodic input sequence). The main reason we can state this

result is that the amount of memory in the inputs is irrelevant to

the computation of conditional entropy. However, at the current

level of generality, there is no obvious way to compute

itself. As a consequence, the mutual information rate

cannot be computed, and calculation of capacity for the channel

is infeasible. In Section III, we strengthen our hypotheses on

so as to ensure computability of mutual information in terms of

Lyapunov exponents.

III. MARKOV CHANNELS WITH MARKOV-DEPENDENT

INPUT SYMBOLS

In this section, we prove a number of important connections

between entropy, Lyapunov exponents, Markov chains, and

hidden Markov models (HMMs). First, we present examples of

channels that can be modeled using Markov-dependent inputs.

We then show that any entropy quantity (and hence mutual

information) for these channels can be represented as a Lya-

punov exponent. In addition to proving the Lyapunov exponent

connection with entropy, we must also develop a framework

for computing such quantities and evaluating their properties.

To this end, we show that symbol entropies for finite-state

channels with Markov-dependent inputs can be computed as

expectations with respect to the stationary distributions of a

class of Markov chains. Furthermore, we will also show that

in some cases the Markov chain of interest is an augmented

version of the well-known channel prediction filter from HMM

theory.

A. Channel Assumptions and Examples

In this section (and throughout the rest of this paper), we will

assume the following.

B1: satisfies A1.

B2: The input/output symbol pairs are

conditionally independent given , so that

for .

B3: For each pair , there exists a probability

mass function on such that

Again, the noncausal dependence of the symbols is introduced

strictly for mathematical convenience. It is clear that typical

causal channel models fit into this framework.

A number of important channel models are subsumed by

B1–B3, in particular channels with ISI and dependent inputs.

We now outline a number of channel examples.

Example 1: The Gilbert–Elliot channel is a special case in

which , and are all binary sets.

Example 2: Goldsmith and Varaiya [24] consider the special

class of finite-state Markov channels for which the input sym-

bols are i.i.d. with in B1–B3 taking the form

for some functions , .

Example 3: Suppose that we wish to model a channel in

which the input symbol sequence is Markov. Specifically,

suppose that is an aperiodic irreducible finite-state Markov

chain on , independent of . Assume that the output symbols

are conditionally independent given , with

To incorporate this model into our framework, we augment the

channel state (artificially), forming . Note that

is a finite-state irreducible Markov chain on

under our assumptions. The triplet then

satisfies the requirements demanded of in B1–B3.
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Example 4: In this example, we extend Example 3 to include

the possibility of ISI. As above, we assume that is an ape-

riodic irreducible finite-state Markov chain, independent of .

Suppose that the output symbol sequence satisfies

with for all .

To incorporate this model, we augment the channel state

to include previous input symbols. Specifically, we set

and use to validate the

requirements of B1–B3.

B. Entropies as Lyapunov Exponents

With the channel model described by B1–B3, each of the en-

tropies , , and turn out to be Lyapunov

exponents for products of random matrices (up to a change in

sign).

Proposition 1: For and , let

be matrices with entries given by

Assume B1–B3. Then , and

, where , and are

the Lyapunov exponents defined as the following limits:

a.s.

a.s.

a.s.

The proof of the preceding proposition is virtually identical

to the argument of Theorem 1, and is therefore omitted.

At this point, it is useful to provide a bit of intuition regarding

the connection between Lyapunov exponents and entropy. Fol-

lowing the development of Section II we can write

(4)

where is the stationary distribution for the channel . Using

Proposition 1 and (3), we can interpret the Lyapunov exponent

as the average exponential rate of growth for the probability

of the sequence . Since as for

any nontrivial sequence, the rate of growth will be negative. (If

the probability of the input sequence does not converge to zero

then .)

This view of the Lyapunov exponent facilitates a straightfor-

ward information-theoretic interpretation based on the notion of

typical sequences. From Cover and Thomas [15], the typical set

is the set of sequences satisfying

and for sufficiently large. Hence, we can

see that, asymptotically, any observed sequence must be a typ-

ical sequence with high probability. Furthermore, the asymp-

totic exponential rate of growth of the probability for any typ-

ical sequence must be or . This intuition will be

useful in understanding the results presented in the next subsec-

tion where we show that can also be viewed as an expec-

tation rather than an asymptotic quantity.

C. A Markov Chain Representation for Lyapunov Exponents

Proposition 1 establishes that the mutual information

can be easily expressed

in terms of Lyapunov exponents, and that the channel capacity

involves an optimization of the Lyapunov exponents relative

to the input symbol distribution. However, the above random

matrix product representation is of little use when trying to

prove certain properties for Lyapunov exponents, nor does it

readily facilitate computation. In order to address these issues,

we will now show that the Lyapunov exponents of interest in

this paper can also be represented as expectations with respect

to the stationary distributions for a class of Markov chains.

From this point onward, we will focus our attention on the

Lyapunov exponent , since the conclusions for and

are analogous. In much of the literature on Lyapunov

exponents for i.i.d. products of random matrices, the basic the-

oretical tool for analysis is a particular continuous state space

Markov chain [22]. Since our matrices are not i.i.d. we will use

a slightly modified version of this Markov chain, namely

Here, is a -dimensional stochastic (row) vector, and the

norm appearing in the definition of is any norm on . If

we view as a vector, then we can interpret the

first component of as the direction of the vector at time . The

second and third components of determine the probability

distribution of the random matrix that will be applied at time

. We choose the normalized direction vector

(5)

rather than the vector itself because as

, but we expect some sort of nontrivial steady-state be-

havior for the normalized version. The structure of should

make sense given the intuition discussion in the previous sub-

section. If we want to compute the average rate of growth (i.e.,

the average one-step growth) for then all we
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should need is a stationary distribution on the space of direc-

tions combined with a distribution on the space of matrices.

The steady-state theory for Markov chains on continuous

state space, while technically sophisticated, is a highly de-

veloped area of probability. The Markov chain allows one

to potentially apply this set of tools to the analysis of the

Lyapunov exponent . Assuming for the moment that

has a steady-state , we can then expect to find that

(6)

as , where and

(7)

for . If is positive, the same argument as that leading to

(3) shows that

a.s.

(8)

as , which implies

(9)

Furthermore, it is easily verified that

(10)

Relations (8) and (10) together guarantee that

a.s. (11)

In view of (6), this suggests that

(12)

where . Recall the above dis-

cussion regarding the intuitive interpretation of Lyapunov expo-

nents and entropy and suppose we apply the -norm, given by

, in (12). Then the representation (12) com-

putes the expected exponential rate of growth for the probability

, where the expectation is with respect to the sta-

tionary distribution of the continuous state space Markov chain

.1 Thus, assuming the validity of (6), computing the Lyapunov

exponent effectively amounts to computing the stationary distri-

bution of the Markov chain . Because of the importance of this

representation, we will return to providing rigorous conditions

guaranteeing the validity of such representations in Sections IV

and V.

D. The Connection to HMMs

As noted above, is a Markov chain regardless of the choice

of norm on . If we specialize to the -norm, it turns out that

1Note that while (12) holds for any choice of norm, the 1-norm provides the
most intuitive interpretation.

the first component of can be viewed as the prediction filter

for the channel given the input symbol sequence .

Proposition 2: Assume B1–B3, and let , the stationary

distribution of the channel . Then, for and

Proof: The result follows by an induction on . For ,

the result is trivial. For , note that

The general induction step follows similarly.

It turns out that the prediction filter is it-

self Markov, without appending to as a state

variable.

Proposition 3: Assume B1–B3 and suppose . Then,

the sequence is a Markov chain taking values

in the continuous state space .

Furthermore

Proof: See Appendix II-A.

In view of Proposition 3, the terms appearing in the sum (10)

have interpretations as conditional entropies, namely

(13)

so that the formula (11) for can be interpreted as the

well-known representation for in terms of the averaged

conditional entropies

It should be noted that Blackwell originally proposed an

expected value formulation similar to (12) utilizing a predic-

tion filter in his 1957 paper [10]. There he considered a filter

that conditioned on an infinite history of observations, such

as . His filter also contained the channel

state as an augmenting variable to ensure that it was always a

stationary Markov chain. By conditioning on the infinite past,

Blackwell was able to remove many of the convergence issues

that we discuss in the next section. He also provided rather

strong conditions for uniqueness of the stationary distribution

for his prediction filter. We contrast those with our results
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in Section V, which are based on more intuitive and general

conditions.

For the single-sided filter that does not assume an infinite his-

tory, an expected value representation of , similar in spirit

to (12), is a well-known result in the HMM literature [18]. Note,

however, that the analysis of the hidden Markov prediction filter

with is only a special case of the problem

we consider here. First, the above conditional entropy interpre-

tation of holds only when we choose to use

the -norm. Moreover, the above interpretations also require that

we initialize with , the stationary distribution of the

channel (i.e., Proposition 3 does not hold). Hence, if we want

to use an arbitrary initial vector we must use the multivariate

process , which is always a Markov chain. In the next sec-

tion, we introduce a new process that is similar to the prediction

filter and permits analysis with any choice of norm and any ini-

tial distribution.

We note, in passing, that in [24] it is shown that the predic-

tion filter can be non-Markov in certain settings. However, we

can include these non-Markov examples in our Markov frame-

work by augmenting the channel states as in Examples 3 and 4.

Thus, our process for these examples can be Markov without

violating the conclusions in [24].

IV. COMPUTING THE LYAPUNOV EXPONENT AS AN

EXPECTATION

In the previous section, we showed that the Lyapunov expo-

nent can be directly computed as an expectation with re-

spect to the stationary distribution of the Markov chain . How-

ever, in order to make this statement rigorous, we must first

prove that in fact has a stationary distribution. Furthermore,

we should also determine if the stationary distribution for is

unique and if this distribution is a continuous function of the

input symbol and channel transition probabilities.

As it turns out, the Markov chain with

is a very cumbersome theoretical tool for

analyzing many properties of Lyapunov exponents. The main

difficulty is that we must carry around the extra augmenting

variables in order to make a Markov chain.

Unfortunately, we cannot utilize the channel prediction filter

alone since it is only a Markov chain when . In

order to prove properties such as existence and uniqueness of

a stationary distribution for a Markov chain, we must be able

to characterize the Markov chain’s behavior for any initial

point.

In this section, we introduce a new Markov chain , which we

will refer to as the “ -chain.” It is closely related to the predic-

tion filter and, in some cases, will be identical to the prediction

filter. However, the Markov chain possess one important ad-

ditional property—it is always a Markov chain regardless of its

initial point. The reason for introducing this new Markov chain

is that the asymptotic properties of are the same as those of the

prediction filter (we show this in Section V), and the analysis

of is substantially easier than that of . Therefore, the results

we are about to prove for can be applied to and hence the

Lyapunov exponent .

A. The Channel -Chain

We will define the random evolution of the -chain using the

following algorithm.

Algorithm A:

1) Initialize and , where

2) Generate from the probability mass function

.

3) Set

4) Set and return to 2.

The output produced by Algorithm A clearly exhibits the

Markov property, for any initial vector . Let

denote the output of Algorithm A when .

Proposition 3 proves that for coincides with the se-

quence , where for

is defined by the recursion (also known as the forward Baum

equation)

(14)

where is a stationary version of the input

symbol sequence. Note that in the above algorithm the symbol

sequence is determined in an unconventional fashion. In a

traditional filtering problem, the symbol sequence follows an

exogenous random process and the channel state predictor uses

the observed symbols to update the prediction vector. However,

in Algorithm A, the probability distribution of the symbol

depends on the random vector , hence the symbol sequence

is not an exogenous process. Rather, the symbols are generated

according to a probability distribution determined by the state

of the -chain. Proposition 3 establishes a relationship between

the prediction filter and the -chain when . As

noted above, we shall need to study the relationship for arbitrary

. Proposition 4 provides the key link.

Proposition 4: Assume B1–B3. Then, if

where is the input symbol sequence

when is sampled from the mass function . In particular

Proof: See Appendix II-B.

Indeed, Proposition 4 is critical to the remaining analysis

in this paper and therefore warrants careful examination.

In Algorithm A, the probability distribution of the symbol
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depends on the state of the Markov chain . This de-

pendence makes it difficult to explicitly determine the joint

probability distribution for the symbol sequence .

Proposition 4 shows that we can take an alternative view

of the -chain. Rather than generating the -chain with an

endogenous sequence of symbols , we can use the

exogenous sequence , where the sequence

is the input sequence generated when

the channel is initialized with the probability mass function .

In other words, we can view the chain as being generated by

a stationary channel , whereas the -chain is generated

by a nonstationary version of the channel , using as the

initial channel distribution. Hence, the input symbol sequences

for the Markov chains and can be generated by two

different versions of the same Markov chain (i.e., the channel).

In Section V, we will use this critical property (along with

some results on products of random matrices) to show that the

asymptotic behaviors of and are identical.

The stochastic sequence is the prediction filter that arises

in the study of “HMMs.” As is natural in the filtering theory

context, the filter is driven by the exogenously determined

observations . On the other hand, it appears that has no

obvious filtering interpretation, except when . However,

for reasons discussed above, is the more appropriate object

for us to study. As is common in the Markov chain literature,

we shall frequently choose to suppress the dependence on ,

choosing to denote the Markov chain as .

B. The Lyapunov Exponent as an Expectation

Our goal now is to analyze the steady-state behavior of the

Markov chain and show that the Lyapunov exponent can be

computed as an expectation with respect to ’s stationary distri-

bution. In particular, if has a stationary distribution we should

expect

(15)

where is a random vector distributed according to ’s sta-

tionary distribution.

As mentioned earlier in this section, the “channel -chain”

that arises here is closely related to the prediction filter

that arises in the study of “HMMs.” A sizeable lit-

erature exists on steady-state behavior of prediction filters for

HMMs. An excellent recent survey of the HMM literature can

be found in Ephraim and Merhav [18]. However, this literature

involves significantly stronger hypotheses than we shall make

in this section, potentially ruling out certain channel models as-

sociated with Examples 3 and 4. We shall return to this issue in

Section V, in which we strengthen our hypotheses to ones com-

parable to those used in the HMM literature. We also note that

the Markov chain , while closely related to , requires some-

what different methods of analysis.

Theorem 2: Assume B1–B3 and let

Then we have the following.

i) For any stationary distribution of

ii) For any stationary distribution satisfying

Proof: See Appendix II-C.

Note that Theorem 2 suggests that may have

multiple stationary distributions. The following example shows

that this may indeed occur, even in the presence of B1–B3.

Example 5: Suppose , and , with

and

Then, both and are stationary distributions for , where

and

Theorem 2 leaves open the possibility that stationary dis-

tributions with support on the boundary of will fail to sat-

isfy (15). Furstenberg and Kifer [22] discuss the behavior of

when has multiple stationary distributions,

some of which violate (15) (under an invertibility hypotheses on

the ’s). Theorem 2 also fails to resolve the question of exis-

tence of a stationary distribution for . To remedy this situation

we impose additional hypotheses:

B4: and .

B5: For each for which ,

the matrix is row-allowable (i.e., it has no row in which

every entry is zero).

Theorem 3: Assume B1–B5. Then, pos-

sesses a stationary distribution .

Proof: See Appendix II-D.

As we shall see in the next section, much more can be said

about the channel -chain in the presence

of strong positivity hypotheses on the matrices .

The Markov chain , as studied in this section,

is challenging largely because we permit a great deal of sparsity

in the matrices . The challenges we face here are

largely driven by the inherent complexity of the behavior that

Lyapunov exponents can exhibit in the presence of such spar-

sity. We will alleviate these problems in the next section through

additional assumptions on the aperiodicty of the channel as well

as the conditional probability distributions on the input/output

symbols.
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V. THE STATIONARY DISTRIBUTION OF THE CHANNEL

-CHAIN UNDER POSITIVITY CONDITIONS

In this section, we introduce extra conditions that guarantee

the existence of a unique stationary distribution for the Markov

chains and . By necessity, the discussion in this section and

the resulting proofs in the Appendix are rather technical. Hence

we will first summarize the results of this section and then prove

further details.

The key assumption we will make in this section is that the

probability of observing any symbol pair is strictly pos-

itive for any valid channel transition (i.e., if is pos-

itive)—recall that the probability mass function for the input/

output symbols depends on the channel transition

rather than just the channel state. This assumption, together with

aperiodicity of , will guarantee that the random matrix product

can be split into a product of strictly positive

random matrices. We then exploit the fact that strictly positive

matrices are strict contractions on

for an appropriate distance metric. This contraction property al-

lows us to show that both the prediction filter and the -chain

converge exponentially fast to the same limiting random vari-

able. Hence, both and have the same unique stationary dis-

tribution that we can use to compute the Lyapunov exponent

. This result is stated formally in Theorem 5. In Theorem

6, we show that the stationary distribution of the -chain (and

hence the prediction filter) is a continuous function of both the

transition matrix and the symbol probabilities .

A. The Contraction Property of Positive Matrices

We assume here the following.

B6: The transition matrix is aperiodic.

B7: For each

whenever .

Under B6–B7, all the matrices

exhibit the same (aperiodic) sparsity pattern as . That is, the

matrices have the same pattern of zero and nonzero elements.

Note that under B1 and B6, is strictly positive for some finite

value of . So

is strictly positive for . The key mathematical property that

we shall now repeatedly exploit is the fact that positive matrices

are contracting on in a certain sense.

For , let

The distance is called “Hilbert’s projective distance”

between and , and is a metric on ; see page 90 of Seneta

[46]. For any nonnegative matrix , let

where

Note that if is strictly positive (i.e., if all the ele-

ments of are strictly positive).

Theorem 4: Suppose are row vectors. Then, if

is strictly positive

For a proof, see Seneta [46, pp. 100–110 ]. The quantity

is called “Birkhoff’s contraction coefficient.”

Our first application of this idea is to establish that the asymp-

totic behavior of the channel -chain and the prediction filter

coincide. Note that for and both lie in , so

is well defined for . Proposition 5 will allow us

to show that has a unique stationary distribu-

tion. Proposition 6 will allow us to show that

must have the same stationary distribution as .

Proposition 5: Assume B1–B4 and B6–B7. If , then

a.s.

as , where

Proof: The proof follows a greatly simplified version of the

proof for Proposition 6, and is therefore omitted.

Proposition 6: Assume B1–B4 and B6–B7. For , there

exists a probability space upon which

a.s., as

Proof: See Appendix II-E.

The Proof of Proposition 6 relies on Proposition 4 and a

coupling arguement that we will summarize here. Recall from

Proposition 4 that we can view and as being generated

by a stationary and nonstationary versions of the channel ,

respectively. The key idea is that the nonstationary version of

the channel will eventually couple with the stationary version.

Furthermore, the nonstationary version of the symbol sequence

will also couple with the stationary version . Once this

coupling occurs, say at time , the symbol sequences

and will be identical. This

means that for all , the matrices applied to and
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will also be identical. This allows us to apply the contraction

result from Theorem 4 and complete the proof.

B. A Unique Stationary Distribution for the Prediction Filter

and the -Chain

We will now show that there exists a limiting random variable

such that as . In view of Propositions

5 and 6, this will ensure that for each as

. To prove this result, we will use an idea borrowed

from the theory of “random iterated functions”; see Diaconis

and Freedman [17]. Let be a

doubly infinite stationary version of the input symbol sequence,

and put for . Then

(16)

where denotes equality in distribution. Put and

for , and

Then

where

It easily follows that is a.s. a Cauchy sequence, so

there exists a random variable such that a.s. as

. Furthermore

(17)

The constant can be bounded in terms of easier-to-compute

quantities. Note that

where . Repeating the argu-

ment additional times yields the bound . The

above argument proves parts ii) and iii) of the following result.

Theorem 5: Assume B1–B4 and B6–B7. Let

. Then we have the following.

i) has a unique stationary distribution .

ii) and .

iii) For each as .

iv) is absorbing for , in the sense that

for and .

Proof: See Appendix II-F for the proofs of parts i) and iv),

parts ii) and iii) are proved above.

Applying Theorem 2, we may conclude that under B1–B4 and

B6–B7, the channel -chain has a unique stationary distribution

on satisfying

(18)

It is interesting to note that Blackwell also provided unique-

ness conditions for the stationary distribution of his infinite

memory prediction filter in [10]. There he required that the

rows of the channel transition matrix be nearly identical

with no element very near zero. The constraints we present in

this section are much more general as we do not require either

of Blackwell’s properties. Perhaps even more interesting is

that Blackwell conjectured that irreducibility of should be

sufficient to guarantee uniqueness, though he did not prove it.

From our preceding results it appears this conjecture was close

to the mark. Rather than an irreducibility constraint on , we

show that (assumptions B6 and B7) an irreducibility constraint

on the family of random matrices is required in order

to guarantee uniqueness of the stationary distribution for our

prediction filter.

We can also use our Markov chain machinery to establish

continuity of the stationary distribution for the the -chain as

a function of and . Such a continuity result is of theoretical

importance in optimizing the mutual information between

and , or when computing functions of the channel estimator in

HMMs. The following theorem generalizes the continuity result

of Goldsmith and Varaiya [24] obtained in the setting of i.i.d.

input symbol sequences.

Theorem 6: Assume B1–B4 and B6–B7. Suppose that

is a sequence of transition matrices on for which

as . Also, suppose that for

is a probability mass function on for each

and that as . If is the stationary distribution

of the -chain associated with the channel model characterized

by , then as .

Proof: See Appendix II-K.

We should note here that continuity of the entropies

, and are easily shown using standard

bounds in Cover and Thomas [15, Theorem 4.4.1]. The result in

Theorem 6 proves continuity of for any continuous

function . These results essentially require that the

stationary distribution for the -chain have support strictly on

the interior of the simplex. It is interesting to note that entropy

is a rather well-behaved function in this regard and is still

continuous when that distribution has support on the simplex

boundary. In [27], it is shown that our condition for continuity

of a general function is also required to prove analyticity of

entropy.
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VI. NUMERICAL METHODS FOR COMPUTING ENTROPY

In this section, we discuss numerical methods for computing

the entropy . In the first subsection, we will discuss simu-

lation-based methods for computing sample entropy. Recently,

several authors [2], [31], [44], [1] have proposed similar simu-

lation algorithms for entropy computation. However, a number

of important theoretical and practical issues regarding simula-

tion-based estimates for entropy remain to be addressed. In par-

ticular, there is currently no general method for computing con-

fidence intervals for simulated entropy estimates. Furthermore,

there is no method for determining how long a simulation must

run in order to reach “steady state.” We will summarize the key

difficulties surrounding these issues below. In Appendix I, we

present a new CLT for sample entropy. This new theorem allows

us to compute rigorous confidence intervals for simulated esti-

mates of entropy. We also present a method for computing the

initialization bias in entropy simulations, which together with

the confidence intervals, allows us to determine the appropriate

run time of a simulation.

In the second subsection, we present two methods for directly

computing the entropy . We first present asymptotically

tight upper and lower bounds for the entropy in terms of matrix

norms. These bounds are likely to be of more use in proof tech-

niques rather than actual computation since their computational

complexity is quite high. The second method develops a discrete

approximation to the Markov chain and its stationary distribu-

tion. We show that the discrete approximation for the stationary

distribution can be used to approximate . We also show

that the approximation for converges to the true value of

as the discretization intervals for become finer.

In general, none of these computational methods (simulation

based or direct) should necessarily be considered superior.

While the simulation methods may have issues with initial-

ization bias (thereby requiring extremely long run times),

the complexity of the direct methods increases exponentially

with the number of states in the channel. In fact, it is well

known that Lyapunov exponents can be extremely difficult to

compute [23], [50], [4] and the computational performance of

simulation-based methods versus direct computation can be

highly model dependent [20]. Indeed, Tsitsiklis and Blondel

[50] study computational complexity issues associated with

calculating Lyapunov exponents (and hence entropies for our

class of channel models). They prove that, in general, Lyapunov

exponents are not algorithmically approximable. However, their

class of problem instances contain nonirreducible matrices.

Consequently, in the presence of the irreducibility assumptions

made in this paper, the question of computability remains open.

A. Simulation-Based Computation of the Entropy

One consequence of Theorem 1 in Section III is that we can

use simulation to calculate our entropy rates by applying Algo-

rithm A and using the process to create the following estimator

(19)

Although the authors of [2], [31], [44], [1] did not make the

connection to Lyapunov exponents and products of random ma-

Fig. 1. A Single simulation trace from time 0 to 50 000. The estimate is� =
�H(X;Y ) for the ISI channel we consider in Section VII.

trices, they propose a similar version of this simulation-based

algorithm in their work. More generally, a version of this simu-

lation algorithm is a common method for computing Lyapunov

exponents in chaotic dynamic systems literature [20]. Indeed,

as noted both in [1] and [20], simulation is often the only op-

tion available for this computation problem due to the high com-

plexity of direct computation methods. When applying simula-

tion to this problem we must consider two important theoretical

questions:

1) “How long should we run the simulation?”

2) “How accurate is our simulated estimate?”

In general, there exists a well-developed theory for answering

these questions when the simulated Markov chain is “well be-

haved.” For continuous-state space Markov chains such as and

the term “well behaved” usually means that the Markov chain

is Harris recurrent (see [37] for the theory of Harris chains). The

key condition required to show that a Markov chain is Harris

recurrent is the notion of -irreducibility. Consider the Markov

chain defined on the space with Borel sets

. Define as the first return time to the set . Then,

the Markov chain is -irreducible if there

exists a nontrivial measure on such that for every state

(20)

However,2 the Markov chains and are never irreducible, as

illustrated by the following example.

Suppose we wish to use simulation to compute the entropy of

an output symbol process from a finite-state channel. Further,

suppose that the output symbols are binary, hence the random

matrices can only take two values, say and . cor-

responding to output symbols and , respectively. Suppose

we initialize and examine the possible values for .

Notice that for any , the random vector can take on only

2In [47], the authors assumed the augmented filter processZ was Harris recur-
rent. Though that publication and a following extended version gained traction
in the Information Theory community, it should be noted that those results are
incorrect.
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Fig. 2. Ten simulation traces from time 1,950,000 to 2,000,000. The estimate is � = �H(X;Y ) for the ISI channel we consider in Section VII.

a finite number of values, where each possible value is deter-

mined by one of the -length permutations of the matrices

and , and the initial condition . One can easily find two

initial vectors belonging to for which the supports of their

corresponding ’s are disjoint for all . This contradicts

(20). Hence, the Markov chain has infinite memory and is not

irreducible.

This technical difficulty means that we cannot apply the stan-

dard theory of simulation for continuous state-space Harris re-

current Markov chains to this problem. The authors of [44], [2],

[34] note an important exception to this problem for the case

of ISI channels with Gaussian noise. When Gaussian noise is

added to the output symbols the random matrix is selected

from a continuous population. In this case, the Markov chain

is in fact irreducible and standard theory applies. However,

since we wish to simulate any finite-state channel, including

those with finite symbol sets, we cannot appeal to existing Harris

chain theory to answer the two questions raised earlier regarding

simulation-based methods.

Given the infinite memory problem discussed above we

should pay special attention to the first question regarding

simulation length. In particular, we need to be able to determine

how long a simulation must run for the Markov chain to

be “close enough” to steady state. The bias introduced by

the initial condition of the simulation is known as the “initial

transient,” and for some problems its impact can be quite sig-

nificant. For example, in the Numerical Results section of this

paper, we will compute mutual information for two different

channels. Using the above simulation algorithm, we estimated

for the ISI channel model in Section VII.

Figs. 1 and 2 contain graphs of several traces taken from our

simulations at different time intervals and resolutions.

The first figure shows a single sample path starting from time

0 to time 50 000. From this perspective it certainly appears that

the sample path has converged (note that Fig. 2 in [1] shows

similar behavior). However, closer examination suggests that

this may not be the case. Fig. 2 shows ten sample paths taken

from independent simulations after 2 000 000 iterations. Here

we can see the simulation traces have minor fluctuations along

each sample path. Furthermore, the variations in each trace are

smaller than the distance between traces. This illustrates the

potential numerical problems that arise when using simulation

to compute Lyapunov exponents. Even though the traces in

Figs. 1 and 2 are close in a relative sense, we have no way of

determining which trace is “the correct” one or if any of the

traces have even converged at all. Perhaps, even after 2 000 000

channel iterations, we are still stuck in an initial transient. In-

deed, this type of behavior is frequently observed in Lyapunov

exponent calculation, see Fig. 2 in [20] for an example.

In Appendix I, we develop a rigorous method for computing

bounds on the initialization bias. This allows us to compute an

explicit (although possibly very conservative) bound on the time

required for the simulation to reach steady state. We also present

a less conservative but more computationally intensive simula-

tion-based bound in the same section.

Another means for addressing the uncertainty in simulated

estimates is to develop confidence intervals. In order to produce

confidence intervals we need access to a CLT for the sample

entropy . Unfortunately, since is not irreducible we

cannot apply the standard CLT for functions of Harris recur-

rent Markov chains. Therefore, in the first section of Appendix I

we develop a new functional CLT for the sample entropy of fi-

nite-state channels. The “functional” form of the CLT implies

the ordinary CLT. However, it also provides some stronger re-

sults which assist us in creating confidence intervals for simu-

lated estimates of entropy. Using the techniques developed in

Appendix A, we plot a 95% confidence interval for the simula-

tion example in Fig. 3. If the simulation has reached steady state,
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Fig. 3. Confidence interval for the middle trace in Fig. 2. The 95% confidence interval is plotted with bold lines. Notice that half of the traces fall outside the 95%
interval.

and the functional CLT can be applied, then we should expect

95% of the traces to fall within the interval. In Fig. 3, the confi-

dence interval is for the middle simulation trace and is shown in

bold; the original traces from Fig. 2 are shown as dotted lines.

Notice that five of the ten simulated traces fall outside the 95%

confidence interval after 2 000 000 iterations. Moreover, if we

chose to plot a confidence interval for the lower-most trace then

eight of ten traces would fall outside the interval. Even after

2 000 000 iterations we still have not removed the initialization

bias from the simulation and will have to run it for much longer

to achieve a rigorous answer. In fact, the results in Appendix I-B

suggest that we should run the above example for over 8 000 000

iterations to remove most of the initialization bias. Alternatively,

if we believe the estimators in Fig. 3 are derived from a sta-

tionary sequence and a CLT applies; then we should expect the

traces to converge on the order of [28]. Clearly, this is not

the case and the reason is that the sequences have not coupled

with their stationary versions yet. Given the technical nature of

the remaining discussion on simulation based estimates of en-

tropy we direct the reader to Appendix I for the details on this

topic.

We should note that in many practical applications the above

convergence issue may not be a significant problem. It is likely

that the traces in Figs. 1–3 are close to the correct answer.

Specifically, it appears that we have achieved three significant

figures of accuracy, provided that we do not converge to a new

equilibrium when the initial transient is removed. It is unlikely

that this pathology will occur, but we cannot rule it out. To make

a rigorous probabilistic statement regarding the value of en-

tropy we require the CLT and confidence interval methodology

described herein. In addition, the convergence problem noted

in Fig. 3 can cause significant accuracy issues when estimating

the mutual information of a “low-SNR” channel. Estimating the

mutual information involves computing the difference between

estimates of and . In the low-SNR regime

we should expect these entropies to be very close in value

(i.e., the mutual information will be small). Hence, the small

relative errors observed in Figs. 2 and 3 can cause significant

absolute errors in the estimated mutual information. In these

cases, a direct computation algorithm may prove useful. In

the next subsection, we discuss an algorithm that allows us to

directly compute the entropy rates for a Markov channel—thus

avoiding many of the convergence problems arising from a sim-

ulation based algorithm (at the potential cost of computational

complexity).

B. Bounds and Direct Computation of the Entropy

Recall that if , then (15) shows

that

(21)

But the stationarity of implies that

as ; see Cover and Thomas [15]. So

(22)

for . Note that this is precisely the bound from [15, The-

orem 4.4.1] expressed as a matrix norm. For small values of

, this upper bound can be numerically computed by summing

over all possible paths for . We note, in passing, that The-

orem 5 shows that . An addi-

tional upper bound on can be obtained from the existing

general theory on lower bounds for Lyapunov exponents; see,

for example, Key [32].
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We obtain a new lower bound on the entropy through

an upper bound on the Lyapunov exponent . According to

Theorem 1, we therefore have the matrix norm lower bound

(23)

for . As in the case of (22), this lower bound can be

numerically computed for small values of by summing over

all possible paths for . Observe that both our upper bound

and lower bound converge to as , so that our

bounds on are asymptotically tight. From [15], the upper

bound is guaranteed to converge monotonically to , but

no monotonicity guarantee exists for the lower bound. In both

cases, the computational complexity required to compute these

bounds for large values of can be quite high. Hence, these

bounds are likely to be more useful in proof techniques or in

computing probability one bounds on entropy. An additional

upper bound on the Lyapunov exponent (i.e., lower bound on

entropy) can be found in [23].

We conclude this section with a discussion of a second direct

approximation scheme for entropy. This numerical discretiza-

tion scheme computes by approximating the stationary

distribution of via that of an appropriately chosen finite-state

Markov chain. Specifically, for , let be a

partition of such that

(24)

as . For each set , choose a representative point

. Approximate the channel -chain via the Markov

chain , where

(25)

for . Then,

for . Furthermore, any stationary distribution of

concentrates all its mass on . Its mass function

must satisfy the finite linear system

(26)

for . Once has been computed, one can approxi-

mate by

(27)

The following theorem proves that can provide a good

approximation to when is large enough.

Theorem 7: Assume B1–B4 and B6–B7. Then,

as .

Proof: See Appendix II-J.

Note that Theorem 5 asserts that the set is absorbing

for . Thus, we could also compute numeri-

cally by forming a discretization for the -step “skeleton chain”

Fig. 4. Mutual Information of the Gilbert–Elliot channel with i.i.d. inputs.

over only. This has the advantage of shrinking

the set over which the discretization is made, but at the cost of

having to discretize the -step transition structure of the channel

-chain.

VII. NUMERICAL EXAMPLES

In this section, we present two numerical examples. The first

example examines the mutual information for a Gilbert–Elliot

channel with i.i.d. and Markov-modulated inputs. We know that

i.i.d. inputs are optimal for this channel, so we should see no

difference between the maximum mutual information for i.i.d.

inputs and Markov-modulated inputs. Hence, we can view the

first example as a check to ensure that our theory and algorithm

are working properly. The second example considers i.i.d. and

Markov modulated inputs for an ISI channel. In this case, we do

see a difference in the maximum mutual information achieved

by the different inputs.

A. Gilbert–Elliot Channel

The Gilbert–Elliot channel [48] is modeled by a simple two-

state Markov chain with one “good” state and one “bad” state. In

the good (resp., bad) state the probability of successfully trans-

mitting a bit is (resp., ). We use the good/bad naming

convention for the states since . The transition matrix

for our example channel is

We consider two different types of inputs for this channel.

The first case is that of i.i.d. inputs. In every time slot we set

the input symbol to with probability and with probability

. The graph in Fig. 4 plots the mutual information as

ranges from to .

Next we examine the mutual information for the Gilbert–El-

liot channel using Markov-modulated inputs. We define a

second two-state Markov chain with transition matrix
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Fig. 5. Mutual information of the Gilbert–Elliot channel with Markov-modulated inputs.

TABLE I
CONDITIONAL OUTPUT SYMBOL PROBABILITIES

that assigns probability distributions to the inputs. If the Markov

chain is in state we set the input to with probability . If the

Markov chain is in state we set the input to with probability

. Using the formulation from Section IV, we must combine

the Markov chain for the channel and the Markov chain for the

inputs into one channel model. Hence, we now have a four-state

channel. The graph in Fig. 5 plots the mutual information for

this channel as both and range from to .

Notice that the maximum mutual information is identical to

the i.i.d. case. In fact, there appears to be a curve consisting of

linear combinations of and where the maximum is achieved.

This provides a good check of the algorithm’s validity as this

result agrees with theory.

B. ISI Channel

The next numerical example examines the mutual in-

formation for an ISI channel. The model we will use here

allows the output symbol at time to depend on the

output symbol at time (i.e.,

). Again, is modeled as a simple

two-state Markov chain with transition matrix

The conditional probability distribution of for each com-

bination of , and is listed in Table I.

Fig. 6. Mutual information of an ISI channel with i.i.d. inputs.

We use the same input setup from the above Gilbert–Elliot

example. Figs. 6 and 7 plot the mutual information for the

i.i.d. inputs case and the Markov modulated inputs case. We

can see that adding memory to the inputs for the ISI channel

increases maximum mutual information by a small amount

(approximately 8%).

VIII. CONCLUSION

We have formulated entropy and mutual information for

finite-state channels in terms of Lyapunov exponents for prod-

ucts of random matrices, yielding

We showed that the Lyapunov exponents can be computed as

expectations with respect to the stationary distributions of a

class of continuous state-space Markov chains. Furthermore, we
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Fig. 7. Mutual information of an ISI channel with Markov-modulated inputs.

showed these stationary distributions are continuous functions

of the input symbol distribution and the transition probabili-

ties for the finite-state channel—thereby allowing us to write

channel capacity in terms of Lyapunov exponents

These results extend work by previous authors to finite-state

channel models that include ISI channels and channels with

non-i.i.d. inputs.

In addition, we presented rigourous numerical methods for

computing Lyapunov exponents through direct computation and

by using simulations. The rigorous simulation formulation re-

quired us to develop a new functional CLT for sample entropy,

as well as bounds on the initialization bias inherent in simula-

tion. Our proposed direct computation is based on the represen-

tation of Lyapunov exponents as expectations and avoids many

of the convergence problems that often arise in simulation-based

computation of Lyapunov exponents.

Finally, we presented numerical results for the mutual infor-

mation of a Gilbert–Elliot channel and an ISI channel. In both

cases we computed the mutual information resulting from i.i.d.

and Markov modulated inputs. In the Gilbert–Elliot case our nu-

merical results agreed with known theory. For the ISI channel

our results showed that adding memory to the inputs can indeed

increase mutual information.

APPENDIX I

RIGOROUS SIMULATION OF LYAPUNOV EXPONENTS AND

SAMPLE ENTROPY

In this appendix, we provide a rigorous treatment of the

theory required to construct simulation-based estimates of Lya-

punov exponents and entropy. This requires us to prove a new

CLT for Lyapunov exponents and sample entropy as well as a

means to analyze the initialization bias in these simulations.

The proofs of the proposition and theorems in this appendix

will be presented in Appendix II (along with the proofs of all

the other propositions and theorems in the paper).

A. A Central Limit Theorem (CLT) for the Sample Entropy

The sample entropy for based on observing is given by

(28)

where , and is a stationary version of

the input symbol sequence. In this section, we provide a proof

of the CLT for under easily verifiable conditions on the

channel model. At the same time, we also provide a CLT for the

simulation estimator .

The key to a CLT for is to use methods associated with

the CLT for Markov chains. (Note that we can not apply the CLTs

for Harris chains directly, since our chains are not -irreducible.)

To obtain our desired CLT, we shall represent in terms

of an appropriate martingale. The required CLT will then follow

via an application of the martingale central limit theorem. This

idea also appears in Heyde [26], but the conditions appearing

there are difficult to verify in the current circumstances. Set

(29)

and

(30)

Then, according to Proposition 3
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Note that is a martingale difference that

is adapted to . It remains only to provide a martingale

representation for .

To obtain this representation, we suppose (temporarily) that

there exists a solution to the equation

(31)

Equation (31) is known as Poisson’s equation for the Markov

chain , and is a standard tool for proving Markov chain CLTs;

see Maigret [36] and Glynn and Meyn [25]. In the presence of

a solution to Poisson’s equation

each of the terms is then a martin-

gale difference that is adapted to , thereby completing our

development of a martingale representation for .

To implement this approach, we need to establish existence of

a solution to (31). A related result appears in the HMM paper

of Le Gland and Mevel [34]. However, their analysis studies not

the channel -chain, but instead focuses on the Markov chain

. Furthermore, they assume that is

Lipschitz (which is violated over for our choice of ).

Let . Set

Note that and are finite, because does not include

the boundaries of .

Proposition 7: The function defined by

(32)

satisfies (31) for each . Furthermore,

, where

(33)

Proof: See Appendix II-G.

We are now ready to state the main result of this section. We

shall show that the sample entropy, when viewed as a function of

the amount of observed data, can be approximated by Brownian

motion. This so-called “functional” form of the CLT, known in

the probability literature as a functional central limit theorem

(FCLT), implies the ordinary CLT. This stronger form will prove

useful in developing confidence interval procedures for simula-

tion-based entropy computation methods. A rigorous statement

of the FCLT involves weak convergence on the function space

, the space of right continuous functions with left limits

on . See Ethier and Kurtz [19] for a discussion of this no-

tion of weak convergence.

Let be the channel -chain when initi-

ated under the stationary distribution .

Theorem 8: Assume B1–B4 and B6–B7. Then

(34)

and

(35)

as , where is a standard Brownian

motion and denotes weak convergence on . Further-

more

(36)

(37)

and

(38)

(39)

Proof: See Appendix II-H.

Theorem 8 proves that the sample entropy satisfies a CLT, and

provides computable upper bounds on the asymptotic variances

of and .

B. Simulation Methods for Computing Entropy

Computing the entropy requires calculation of an expectation

with respect to the channel -chain’s stationary distribution.

Note that because the channel -chain is not -irreducible, it

effectively remembers its initial condition forever. In par-

ticular, the support of the random vectors ’s mass function

is effectively determined by the choice of . Because of this

memory issue, it seems appropriate to pay special attention in

this setting to the issue of the “initial transient.” Specifically, we

shall focus first on the question of how long one must simulate

in order that is effectively in

“steady state,” where

(40)

The Proof of Proposition 7 shows that for and

(41)

so that we have an explicit computable bound on the rate at

which the initialization bias decays to zero. One problem with

the upper bound (41) is that it tends to be very conservative. For

example, the key factors and that determine the exponential

rate at which the initialization bias decays to zero are clearly

(very) loose upper bounds on the contraction rate and coupling

rate for the chain, respectively.
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We now offer a simulation-based numerical method for diag-

nosing the level of initialization bias. The method requires that

we estimate via the (slightly) modified estimator

(42)

The Proof of Theorem 7 shows that satisfies precisely

the same FCLT as does . For , let , where

is the unit vector in which unit probability mass is assigned

to . The ’s are generated via a common sequence of random

matrices, namely

(43)

where is a stationary version of the input symbol

sequence. Also, let

be the convex hull of the random vectors . Finally,

for , let be the Euclidean norm

of .

Proposition 8: Assume B1–B4 and B6–B7. Then, for

Proof: See Appendix II-I.

With Proposition 8 in hand, we can now describe our simula-

tion-based algorithm for numerically bounding the initialization

bias. In particular, let

(44)

Suppose that we independently simulate copies of the

random variable , thereby providing of .

Then is, for large , a simulation-based upper

bound on the bias of . Such a simulation-based bound

can be used to plan one’s simulation. In particular, as a rule

of thumb, the sample size used to compute should

ideally be at least a couple of orders of magnitude greater

than the value at which the initialization bias is practically

eliminated. Exercising some care in the selection of the sample

size is important in this setting. There is significant empirical

evidence in the literature suggesting that the type of steady-state

simulation under consideration here can require surprisingly

large sample sizes in order to achieve convergence; see [20].

In the remainder of this section, we take the point of view

that initialization bias has been eliminated (either by choosing

a sample size for the simulation that is so large that the initial

transient is irrelevant, or because we have applied the bounds

above so as to reduce the impact of such bias).

To provide a confidence interval for , we appeal to the

FCLT for derived in Section VI. For and

, set

(45)

The FCLT of Theorem 8 guarantees that

(46)

as , where the random variables

(47)

are i.i.d. Gaussian random variables with mean zero and unit

variance. It follows that

(48)

as , where is a Student-t random variable [28]

with degrees of freedom. Hence, if we select such that

, the random interval

(49)

is guaranteed to be an asymptotic % confidence in-

terval for , where

(50)

We have proved the following theorem.

Theorem 9: Assume B1–B4 and B6–B7. Then, if

as .

We conclude this section with a brief discussion of variance

reduction techniques that can be applied in conjunction with the

simulation-based estimators and . Recall that

is the realization of that arises in step 2 of Algorithm

A when generating . Set

(51)

where

(52)

where is the spectral radius (or Perron–Frobenius

eigenvalue) of , and has the input symbol sequence’s

steady-state distribution. Note that can be easily

computed, so that the ’s can be easily calculated during the
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course of the simulation (by precomputing for

each prior to running the simulation). Clearly

a.s. (53)

(by the strong law for finite-state Markov chains) so

a.s. (54)

as . The idea is to select so as to minimize the

asymptotic variance of .

The quantity is known in the simulation

literature as a control variate; see Bratley, Fox, and Schrage [12]

for a discussion of how to estimate the optimal value of from

the simulated data. We choose as a control

variate because we expect the ’s to be strongly correlated

with the ’s. It is when the correlation is high that we can

expect control variates to be most effective in reducing variance.

We can also try to improve the simulation’s efficiency by

taking advantage of the regenerative structure of the ’s. This

idea is easiest to implement in conjunction with the estimator

. Suppose that is obtained by simulation of a sta-

tionary version of the ’s. Set , and put

. Then, conditional on , the se-

quence is a sequence of regeneration times for the

’s; see Asmussen [5] for a definition of regeneration. It fol-

lows that, conditional on is a sequence of

i.i.d. random matrices, where

(55)

Then

(56)

for any permutation of the integers

through . Hence, given a simulation to time , we may obtain

a lower variance estimator by averaging

(57)

over a certain number of permutations . One difficulty with

this method is that it is expensive to compute such a “permu-

tation estimator.” It is also unclear whether the variance reduc-

tion achieved compensates adequately for the increased compu-

tational expenditure.

APPENDIX II

PROOFS OF THEOREMS AND PROPOSITIONS

A. Proof of Proposition 3

For any function , observe that

(58)

On the other hand, B1–B3 imply that

Hence,

(59)

proving the Markov property.

B. Proof of Proposition 4

Let be the sequence of -values sampled

at step 2 of Algorithm A. Clearly

(60)

Note that

Repeating this process more times proves that

(61)

as desired.

C. Proof of Theorem 2

For and , put

(62)

and

(63)
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Note that the sequence generated by Algorithm A

(when initiated by having stationary distribution ) is such

that is stationary. Since

(64)

it follows that

(65)

Hence,

a.s. (66)

Fatou’s lemma then yields

(67)

But the stationarity of shows that

(68)

Conditioning on then gives part i).

For part ii), we need to argue that when

In this case, (11) ensures that

a.s. (69)

as . According to Birkhoff’s ergodic theorem

a.s. (70)

as , where is ’s invariant -algebra. Since

, (69) and (70) prove that

a.s. (71)

Taking expectations in (71) and applying the Monotone

Convergence Theorem completes the proof that

.

D. Proof of Theorem 3

Because is row-allowable a.s., a.s. for

every . So is a Markov chain that is well

defined for every initial vector . Also, for bounded and

continuous

(72)

is continuous in . It follows that the Markov chain

is a Feller Markov chain (see Karr [30, p. 44] for a

definition) living on a compact state space. The chain therefore

possesses a stationary distribution ; see [30].

E. Proof of Proposition 6

Recall Proposition 4, which stated that

(73)

where is the input symbol sequence

when is sampled from the mass function . In particular

Hence we can generate the Markov chain using nonsta-

tionary versions of the channel and symbol sequence

. Since the channel transition matrix is aperiodic, we

can find a probability space upon which can

be coupled to a stationary version of , call it ;

see, for example, Lindvall [35].

Consequently, there exists a finite-valued random time (i.e.,

the coupling time) so that for . Since

for , Theorem 4 shows that

(74)

from which the result follows.

F. Proof of Theorem 5

We need to prove parts i) and iv). Because , we

have

(75)

as . Assumptions B6-B7 ensure that each of the matrices

in is row-allowable, so the proof of Theorem 3

shows that is Feller on . The limiting distribution

must therefore be a stationary distribution for

; see [35]. For the uniqueness, suppose is a second stationary

distribution. Then

(76)

Taking limits as and using (75) proves that ,

establishing uniqueness.

To prove part iv), we first prove that for

. Recall that . So
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Hence, , so that for

all . However, according to Proposition 4

(77)

so we may conclude that for . Since

is Markov, it follows that for and

.

G. Proof of Proposition 7

We start by showing that if , then

for . (Part iv) of Theorem 5 proves this if is a multiple

of . Here, we show this for all .) According to the Proof

of Theorem 5, it suffices to establish that for

and . Now, for

The same argument as used to show that a.s. as

shows that

(78)

It follows that .

The key to analyzing the expectations appearing in the defi-

nition of is to observe that

Suppose that for . Since for

, we have

Also,

To analyze , we couple the Markov chain

to its stationary version , as

in the proof of Proposition 5. If is the coupling time

the bound can be found in As-

mussen, Glynn, and Thorisson [5]. Summing our bounds over ,

it follows that the sum defining converges absolutely for each

, and the sum is dominated by the bound appearing in

the statement of the proposition. Given that the sum converges,

it is then straightforward to show that satisfies (31).

H. Proof of Theorem 8

Note that

(79)

where

is a martingale difference. Since is the unique stationary distri-

bution of , it follows that is an ergodic stationary sequence;

see [5]. Because , Theorem 23.1 of Billingsley

[9] applies, so that

(80)

as in , where . Since is a.s. a

bounded sequence (by Proposition 7), it follows that

(81)

as in .

We now represent and in the form

where is a common stationary version of the input

symbol sequence (and is correlated with ). But

(82)
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so

(83)

Hence,

(84)

Thus, we may conclude that

(85)

as in .

We can now simplify the expression for . Note that

this proves the first of our two FCLTs.

The second FCLT is proved in the same way. The martingale

difference is replaced by , where

the remainder of the proof is similar to that for and is

therefore omitted.

I. Proof of Proposition 8

Let be a stationary version of the channel

-chain, and recall that

(86)

where is stationary. Define as in (43), where

the ’s appearing in (43) are precisely those of (86).

We claim that for . The result is obvious if

. Suppose that , so that

(87)

for some . Then

where

(88)

Since , the required induction is complete. Now

(89)

and

(90)

for some . So

(91)

The random vector ; the proof is identical to that for

. So

for some . Observe that

Combining this bound with (91) completes the proof.

J. Proof of Theorem 7

We will apply the corollary to Theorem 6 of Karr [30]. Our

Theorem 5 establishes the required uniqueness for the stationary

distribution of the channel -chain. Furthermore, the compact-

ness of yields the necessary tightness. The corollary also

demands that one establish that if is continuous on and

, then

(92)

Observe that

where is the representative point associated with the

set of which is a member, and

(93)
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Since is compact, is uniformly continuous on . Thus,

(94)

as . It follows that

(95)

as . But is a Feller chain (see the Proof of Theorem

5), so is continuous in . Since ,

the proof of (92) is complete. The corollary of [30] therefore

guarantees that as , where is the stationary

distribution of .

Finally, note that B6–B7 forces each to be row-admis-

sible. As a consequence, for , and thus,

is bounded and continuous over . It follows that

as , as desired.

K. Proof of Theorem 6

We use an argument similar to that employed in the proof of

Theorem 7. Let be the channel -chain associated

with , and let be the associated family

of matrices corresponding to model . Note that

for sufficiently large, satisfies the conditions B1–B4

and B6–B7, so that Theorem 5 applies to for

large. Let and be, respectively, the unique stationary

distribution of and the -set guaranteed by The-

orem 5. For any continuous function and sequence

as (because of the fact that the ’s are row-allowable,

so for and ). As in the Proof of

Theorem 9, we may therefore conclude that as

, where is the unique stationary distribution of the channel

-chain associated with .

Note that

(96)

where

(97)

and is a compact set containing all the ’s for

sufficiently large. Since as uniformly on ,

it follows from (96) and as that

as .
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