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Capacity of MIMO Channels: Asymptotic
Evaluation Under Correlated Fading
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Abstract—This paper investigates the asymptotic uniform channels and in particular the actual data rates that they can
power allocation capacity of frequency nonselective multiple-input  support (at least, theoretically). Several papers (e.g., [1] and
multiple-output channels with fading correlation at either the [2]) have shown that the channel capacity of a MIMO channel

transmitter or the receiver. We consider the asymptotic situation, . h l | ith th . b
where the number of inputs and outputs increase without bound can Increase as much as finearly wi € minimum number

at the same rate. A Simp|e uniparametric model for the fadmg Of antennas Used at elthel’ the transmit or recelive S|de. The
correlation function is proposed and the asymptotic capacity per usual approach to reach this conclusion is to consider a random
antenna is derived in closed form. Although the proposed corre- model for the channel (usually a frequency nonselective

lation mode is introduced only for mathematical convenience, it pavieigh-fading distribution) and evaluate the mean value of its

is shown that its shape is very close to an exponentially decaying . . . .

correlation function. The asymptotic expression obtained pro- capacity averaging with respect to thg channel statistics. Unfor-
vides a simple and yet useful way of relating the actual fading tunately, one does not generally obtain a closed form analytical
correlation to the asymptotic capacity per antenna from a purely solution using this procedure and asymptotic approximations
analytical point of view. For example, the asymptotic expressions have to be considered.

indicate that fading correlation is more harmful when arising at . )

the side with less antennas. Moreover, fading correlation does not ~ Here, we analyze the asymptotic capacity when the number
influence the rate of growth of the asymptotic capacity per receive of transmit and receive antennas are driven to infinity at the

antenna with high Ey /No . same rate. This might seem an oversimplification of the model,
Index Terms—Correlated fading, free probability, multiple- but in practice it is experimentally observed that these type of
input multiple-output (MIMO) capacity, random matrix theory. limits are more representative of the nonasymptotic reality than
traditional asymptotic approaches, where only the number of

|. INTRODUCTION antennas at one side of the communications link is assumed

to grow. In our case, the ratio between transmit and receive

I T HAS traditionally been accepted that the use of multiplgiennas is held constant and consequently the asymptotic
antennas at bas_estatlons in mobile communications Sges its turn out to be “less biased.” The appropriate tool for
narios increases their coverage and spectral efficiency, aIIOW@ga”ng with these bidimensional limits is Free Probability

for ever higher data rate_s and a onver power ansumptiofheory, a probability theory for noncommutative random
Recently, the advent of third-generation (3G) mobile commigjapjeg introduced by Voiculescu in, e.g., [3], and [4]. This
nications standards has brought to consideration the use ' o

theory turns out to be very useful to describe the distribution

mqltlple_antennas at b(.)th mobile t'ermmgls and baseStat'OBfSthe eigenvalues of random matrices when their dimensions
This option had been disregarded in previous mobile commil - se without bound

nications standards, due basically to the limited size of the _ _
handsets and the low frequency band of operation. Nowadags!,“ this paper, we will use some of the results of Free Proba-
the proliferation of wireless local area networks and the ne&dity Theory to investigate the influence of fading correlation
for sophisticated and bandwidth-consuming services such@&sone side of the communications link on the actual MIMO
video over the radio interface has motivated the considerati@fymptotic capacity. We propose a fading correlation function
of multiple antennas at both sides of the communications linklepending on a single parameter that measures the degree of
The consequence of all this has been an increasing interedgi#ing correlation between antennas. In principle, this fading
the characterization of multiple-input multiple-output (MIMO)correlation function does not arise from a physical model and
is introduced merely for mathematical convenience. In practice,
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The rest of the paper is organized as follows. Section M/N = ¢ with 0 < ¢ < o0). For example, in [6] and [7] a
presents the signal model and the basic assumptions made irctbeed form expression for the asymptotic capacity per antenna
paper. Section Il derives the asymptotic capacity per antennarirthe uncorrelated model was derived. Later, this was general-
the correlated fading model and Section IV analyzes the efféped to include correlations at the transmit and receive sides in
of fading correlation in different asymptotic situations. Finally{8], but the considered scenario was so general that no closed
Section V presents a numerical validation of the theoreticilrm expression for the capacity was obtained. The asymptotic

results derived and Section VI concludes the paper. MIMO capacity in the presence of random Gaussian interfer-
ence hasrecently been analyzed in [9]. In all these contributions,
II. SIGNAL MODEL AND CHANNEL CAPACITY the asymptotic evaluation is based on random matrix theory and

. the study of the eigenvalue empirical distribution function (i.e.,
We focus on a general MIMO channel model with inputs the eigenvalue counting functiofi™ (z) = #{ < x}/N,

and N outputs, where the output signal can be modeled as 4 4 the eigenvalues of tha x N matrix and#{.} de-
column vector !

noting the cardinality of a set) when the matrix dimensions in-
y = /gHs +n crease without bound. The basic concept behind this approach
is that, as the dimensions of the random matrix are driven to
with ¢ € R a power gain factoffI an N x M channel ma- infinity, the empirical d_istribution function of the eigenvectors
trix with complex entriess a column vector containing the sig-Cf S0me random matrix models tends to a nonrandom quan-
nals transmitted by th&/ inputs, anch the noise component atity- For the case considered above, where the entri&$ afe
the input of the receiver, which is modeled as a circularly-syriidependent and identically distributed (i.i.d.) circularly sym-
metric complex Gaussian distributed random vector with zefgetric Gaussian-distributed with zero mean and unit variance,
mean and covariancE[nn’] = oIy (here,(-)¥ denotes it has been _shown (cf. [10]) that tlr}e empirical distribution func-
transpose conjugate aiig the N x IV identity matrix). We will  tion of the eigenvalues dV_lHH_ tends almost surely to the
assume that perfect channel state information is only availablégrcalled Magenko—Pastur distributiofi(z), corresponding to
the receiver, i.e., the channel realization is perfectly known orfydensity
at the receiving stage and is unknown to the transmitter. For ap (=)
similar analysis but in terms of the “closed-loop” capacity (i.e.,
the capacity when the channel state information is available at “*
both the transmitter and the receiver), the reader is referredatherea = (\/c—1)%,b = (\/c+1)?, éo(z) is the Dirac’s delta

(x—a)(b—1x)

2rx

= max{0,1 — c¢}bo(x) + Lap ()

[5]. function centered at = 0 and
As explained above, it is interesting to evaluate the actual ca- L ifeel
pacity in terms of bps/Hz that a MIMO system can support. Sev- 17(z) = { 0’ Iotﬁeerwise 3)

eral authors have considered this problem: for instance, in [1]

and [2] the channel matrix entries are modeled as independgfyy, the almost sure convergence of the distributiBAY z)

circularly symmetric random variables with zero mean and ufyard () follows the convergence with probability one@f
variance and the mean capacity under an average global trqﬁs(z) toN - C. where

mitter power constraint and uniform power allocation is shown
to be the expected value (in terms of the channel statistics) of

g

C=C(B,c)= / log, <1 + §L> dF(z) 4
C(B, M, N) = log, det [IN + MHHH} €))

which is a nonrandom quantity that will be referred to as asymp-
totic capacity per antenna or spatial efficiency (number of bits
where 3 is the quotient between the average received signgl receive antenna that can be transmitted arbitrarily reliably).
power and the noise power at each of the receivéinwe denote  The integral in (4) can be computed in closed form, as shown
by {7i}i=1..v the eigenvalues oV ~*HH* (with repetitions, in [6] and [7]. In this paper, we try to generalize that expres-
if there are multiplicities higher than one), we can express  sjon including the effect of correlation between the entrielof
N at either the transmitter or the receiver. This is motivated by the
C(B,M,N) = Zlog? [1 + %/3%} (2) factthat, in practical mobile communication systems, the fading
Py correlation between the array elements at the basestation can be
made as low as desired by placing the antennas far from one
and the capacity would be obtained after averaging with rgnother. This is more complicated in mobile stations, where the
spect to the eigenvalues statistics. Unfortunately, as shownsifhce limitations constitute a greatimpediment to achieving low
[2, Th. 2] the general expression for this capacity does not SegqQing correlations. This way, one can regard our model as the
to have a closed analytical form and the actual formula should k& it from a typical communication scenario both in the uplink
evaluated using numerical integration. For this reason, sevejglj the downlink, where the antennas at the basestation are far
authors have considered theymptoticexpression of such ca- from one another while the elements of the array at the mobile

pacity, i.e., the capacity when the two dimensions of the MIM@ation are confined to a more limited space.
system increase without bound at the same rafe — oo,
2We make the abuse of representiigz) as a differentiable function (al-
1if P denotes the total transmitted power, ther= o P/o2. though it is clearly not whenever < 1).
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[ll. CAPACITY UNDER CORRELATED FADING MODEL C is an N x N Hermitian Toeplitz matrix that contains, at
Recently, the evaluation of the MIMO capacity under SaCh of is entries, the fading °°”e'a“°F‘.betW€9’.‘ two receive
y pactty ﬁgements (here(2'/? stands for the Hermitian positive definite

correlated fading model has received much attention. In t . . X
g fldare root ofC). Note that the Toeplitz assumption restricts

nonasymptotic scenario, several papers have considered : . i
evaluation of the capacity under different channel models. ] e actual configuration of the system to a linear structure (for
%tance, a uniform linear array).

[11], the authors propose a scattering model and evaluate 0 der th . £ ih ot ity (4) but
capacity under different rank and correlation considerations onsider the expression of the asymplotic cap_aC|y( ) bu
of the channel matrix. A similar approach is also taken iwnh F(z) incorporating the fading correlation matrix at the re-

[12]. On the other hand, in an attempt to avoid the need fS?iver and Ie_@RX d?nOFe the _asymptotic capacity per receive
simulations or the channel model assumption, several papgpéenna. Taking derivatives with respecpiicone obtains

have considered and investigated bounds to the MIMO meary~rx 1 1 [ e [ 1

channel capacity under fading correlation. In [13], the authorsw :@ [ﬁ/ dF(z) — ﬁ/ £—+a:dF($)
obtain different interesting upper bounds to the mean capacity - > B

under uniform transmit power allocation and correlation at _ 1 F n o (_5)} ©6)
either the transmit or the receive side. These bounds were log2 |8 (2 6]

then evaluated under an abstract scatterer model and differe I o
antenna array configurations. Other bounds, based on WE&B m(2) the Stieltjes transform of the distributidry(z)
application of Jensen’s inequality can be found in [14]. m(z) = /'°° 1

The main drawback of all these contributions is the fact that B dF (z). ™

they are either based on numerical evaluations or they can oglg

o Z—T

already suggested in [19], given an expression for the
tieltjes transform of the asymptotic distribution of eigen-
\@Ayes of N~THHX | one can obtain the asymptotic capacity
pgl antenna integrating (6) and forciagfi* ;o = 0. The
leltjes transformn(z) will be derived using results from Free

describe the behavior of the capacity in terms of bounds. Th
in order to simplify the analysis and gain further insight int
the problem, several studies have focused on the asymptotic
pacity under the assumption of a high number of antennas

either the transmit or the receive side (or even both). In [15], t

authors considered an asymptotic situation where the numg Pb"f‘b'l'ty Theory [4]. and, in particular, t.h? theory of multi-
of transmit antennas increases without bound while the numi |Fat|ve free convolution of measures. This is a useful tool that

of receive antennas is held constant. The asymptotic distritﬁﬁscribes the eigenvalue distribution function of a product of

tion of the capacity under uniform power allocation was théﬂf|n|_te—d_|men5|onal matr.|ces as a function of th? eigenvalue
tribution of each matrix (see [4] for more details). The key

evaluated assuming correlation at both the transmitter and Q'E:S o bl is th h in 1201, wh
receiver. The same problem was also recently studied in [8] aggservation in our problem s that, as shown in [20], when

[16], although here the asymptotic approximation considergale dimensions of the problem increase without bound, the

a high number of antennas at both transmit and receive sid¥® matrices{C}, {1/NUU™} become asymptotically free

Some other asymptotic investigations, also taking into accodﬂfno‘c‘t surely (a concept similar to independence but applied

the fading correlation at both sides of the communication linf? noncommutative random vanables). Qnder thesg cireum-
have been proposed in [17] and [18]. stances, one can obtain the asymptotic eigenvalue distribution

Our asymptotic study is similar to that in [8] and [16]. In [8] function of the product of the two matrices from the asymptotic

no particular form is imposed on the fading correlation funée_|genvalue distribution of each one. This is achieved by means

tions and the capacity was to be the solution of an equation a)é_the so-called S-transform (the noncommutative analog of

pending on these general functions. In [16], a channel moc]g? Mellin transform), which can be obtained from the Stieltjes
based on physical approximations is proposed and the asyr“BDSform defined above as

totic capacity for that model is evaluated using numerical inte- S(z) = 142
gration. The main advantage of these two approaches resides in z
the fact that, since the quotient between transmit and receive @ith y(z) the formal inverse ofy(z) (i.e., ¥(x(z)) =
tennas is held constant, the asymptotic capacity can be more BRY(2)) = 2)

resentative in situations where the number of transmit antennas

is of the same order of magnitude as the number of receive ones. P(z) =27 'm(z7) -1

Next, we propose a similar approach to the problem, focusing

on the case where fading correlation arises at the receiver ofiyd(2) as in (7). Both the Stieltjes transform and the S-trans-
Later, we will indicate how to translate these results to the sit{2'M have already been used to model the asymptotic multipath

ation with fading correlation at the transmitter. MIMO channel in [16], [21].
The importance of the S-transform stems from the fact that
A. Correlation at the Receive Side the S-transform of the density of eigenvalues of a product of

two freely independent random matrices is equal to the product

Here, we will model the channel matrH in (1) as of S-transforms of each matrix, in our case

H=C!2u (5) S(z) = Sy(z)Sc(z)

whereU is an N x M matrix with i.i.d. circularly symmetric where Sy (z) and S¢(z) are the S-transforms of the densities
complex Gaussian entries with zero mean and unit variance ariceigenvalues of1/N)UU* and C, respectively. It can be
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shown [5] that the S-transform of the M@&nko—Pastur law is denotes the eigenvalue empirical distribution function of the ma-

given by trix with finite dimensions [V x N), one can express
1 " .
_ 1 —tr[C] = / zdFY (z).
Sy(z) = o N .

Now, sinceFY (z) — Fc(z) with probability one and’c ()
is differentiable with derivativefc(x), one readily sees that
1 (1/N)tr[C] tends almost surely, a& — oo, to the integral
S(z) = T CSC(Z) @) in (10). The integral itself can be computed in closed form and
turns out to be equal i@, o». Therefore, the normalization con-

At this point, one should choose a model for the fading corretraint in the asymptotic eigenvalue distribution @fwill be
lation, obtain the S-transform of the corresponding asymptotigpressed as; 0> = 1. This leaves us with a single degree of
eigenvalue distributiorS-(z), insert it into (8) and undo the freedom {) to parametrize the degree of correlation between
transformation to get to the corresponding Stieltjes transformmtennas, which, after the normalizatiepy, = 1, can be ex-
m(z). From that point, one would obtain the asymptotic cgressed as
pacity per antenna expression by integration in (6). The only

so that the S-transform of the final density takes the form

2
obstacle here is the fact that in order to get to the Stieltjes trans- (1 - /%)
form from the S-transform, one must find the formal inverse of p=—~—Y 17
x(z) = (2/1+ 2)S(z) and that can only be done with rela- 4,/ 22

tive ease of manipulation whey\(z) is a quotient of second-
order polynomials ire. Of course, a closed expression can bRote that\/o»/0; is the asymptotic eigenvalue spread of the
given for that inverse even whey{z) is a quotient of third- and correlation matrixC, which is higher than one by assumption.
fourth-order polynomials, but the analytical manipulation of theet us now discuss how to choogén a practical situation.
capacity expressions turns out to be very difficult. Thus, it seemsAssume, for example, that we want to model an exponentially
advisable to model the asymptotic density of eigenvalueS of decaying correlation model, i.6.C*P}, ; = pli=7l, with 0 <
with a function that yields a first-order polynomial as S-trang < 1 the correlation parameter. It is well known that the asymp-
form. Such density can be described as a tilted semicircular lastic density of eigenvalues of a Toeplitz matrix can be extracted
and takes the fortn from the Fourier transform of the sequence of its skew-diagonal
entries (assuming of course that the Fourier transform exists,

1 T x cf. [22]). In our case, it can be shown that the density of eigen-
fo(x) = 27 2 \/<g_1 - 1) (1 - 0'_2> re)(®) ) Valies ofCe has support — p/1+ p,1+ p/1 — p]. Thus,

if we want to model an exponentially decaying fading model,

with support p1, o2] and where we have defined we can fix
2
(voz - vo1)’ 2 (1) (1)
=y o1 Iy
0102

so that the distribution in (9) generates the same eigenvalue
spread as the exponential model. This is equivalent to fixing
in our distribution as

assuming of coursg > 0. Here,u is a parameter that controls
the degree of fading correlation: low valueso€orrespond to
uncorrelated fading models, so thategrows large, the fading
correlation between antennas becomes stronger. _ P (12)
We have two degrees of freedom to fix the supporfefz), =1z p2
namelyoy, os. One will be used to normaliz€ (setting for
instance its diagonal entries to one), while the other will be re
lated to the interelement fading correlation, which is in turn a
sociated with the eigenvalue spread®{namely, a zero eigen-
value spread will be related to a zero-correlation mdcietI »
while higher spreads will be associated with higher correlati

modes). To fix the asymptotic diagonal entries of the correlati ﬂding correlat_ion function around the origin, fixing for in_stance

matrix C to one, one must force the first-order moment of th%1/02 (or, equwalently,u) to gl_Jarantee that t_he_correlz_sltlon be- .

density in (9) to one, i.e., tyveen consec.utwe.elements in the array coincides with a speci-
fied value, which will be denoted by. This value can be chosen
from measurements—provided that we are trying to analyze a

/l'fc(x)dw =L (10)  real channel—or fixed as the corresponding correlation gener-

ated by the distribution that we are trying to approximate with

This is because, sind®@ is Toeplitz, fixing its diagonal entries our model.

to one is equivalent to fixingl /N )tr[C] = 1. Hence, if Y (z) Assume once more that we want to approximate an exponen-

3|t is important that the density chosen corresponds to a probability measut}g”y. decaymg C.Orrelatlon modeqoxx))_ Two different approx-
as it is the case. Otherwise, one cannot use the theory of free convolutiorlB¥ation alternatives have been presented so far. We have seen

measures. that . can be fixed as in (12) to guarantee that the eigenvalue

_Of course, fixing the support of the proposed distribution so

S to guarantee the same eigenvalue spread of another model
such as the exponential) is not the only alternative. In fact, pro-
vided that we are trying to approximate a nonasymptotic sit-
tion, a more sensible approach would be to approximate the
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mu=0.2, rho=0.40825, lambda=0.29511 Relationship between the different correlation parameters
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Fig. 2. Correlation between consecutive elemehtas a function of the
fading parametes and relationship with the exponential correlation parameter
that yields the same eigenvalue sprea)l For a givenu, the parametei

gives the correlation between consecutive elements that the proposed model
generates. The value pfshould be understood as the correlation parameter in
an exponentially decaying model that results in the same eigenvalue spread as
the proposed model.
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that even though we are imposing a certain shape of the eigen-
value distribution, we can still accommodate a more realistic
scenario through the paramejer

To illustrate the range of values pfthat one can expectin a
real situation, Fig. 2 represents the fading correlation between

Correlation Magnitude
o
~
T
L

o
w
T
L

o
N
T
L

consecutive elements\) and the exponential parameterin
o Tﬂ TTT 1 (12) as a function of the correlation parameter of the proposed
e 90 22 L . L L T i £ ?0 = model (). We observe that in practic_al sitgations the correlation
Antenna separation (in number elements) parameter of the proposed model will oscillate between 0.01 and

1 (which generate an approximate correlation between consec-

Fig. 1. Qomparatl\_/e representation .of the shape of the _prqused and {J; e elements oft ~ 0.05 and\ ~ 0.6, respectively).
exponential correlation models. Stems: proposed model. Solid line: exponent

model that generates the same eigenvalue spread of the covariance matrihlOW, returning to the derivation of the asymptotic capacity
(exponential correlation parameter denoted by rho). Dotted line: exponen@r antenna, the S-transform of the distributy@j{gy) takes the
model that generates the same correlation between consecutive elemﬁ5||tFn (see [5] for the derivation)

(denoted by lambda).

2
spread ofC*P is the same as the eigenvalue spreadofAn Sc(z) = L (\/C’ - \/‘71) 2=1-pz
alternative approach is to fix so that the correlation between V0102 do102

consecutive elements of our model is the same as the correla-

tion between consecutive elements in the exponential correfglere we have introduced the normalization constraint
tion case (which in turn is equal 9. In Fig. 1, we represent o102 = 1. Inserting this expression in (8) and using the
with stems, our proposed correlation model for= 0.2 and formulas above, one easily gets to the Stieltjes transform of the
1 = 1 (see [22] for indications on how to obtain the actual cofinal global matrix
relation model from the density of eigenvalues). In solid line

we represent the exponential correlation model that generat;ans(z> _zt2zptl—ct VI = (1 + )2 —4e(1 + pz)
the same eigenvalue spread [fixipgaccording to (12)] and in 22(1 4 pz)

dotted line the exponential model that results in the same cor-

relation between consecutive elements (fixing the exponentia obtain the asymptotic density of eigenvalues of the global
parameter to be equal 9. It is observed that the exponentialmatrix N ~1HH | one can use the inverse Stieltjes transform
model generating the same eigenvalue spread is a good apprpsésented in, e.g., [3], which gives

mation of the global correlation function that we are proposing,

whereas the exponential model that generates the same corréla¢z) (x—&) (& —x)
tion between consecutive elements is more adjusted to the cofrep, max{0, 1 —c}bo(z) + 2na(1 + px) L e21()
lation shape around the origin. In any case, itis important to see (13)
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wheredg(r) andly, ¢,1(+) are as defined in (3) and side). The capacity with correlation at the transmit side can be
expressed as the expectation of
=14c+2uc—2vc\/(1+ 1+ puc ,
5 pe = 2/ey/ (L4 w1 + o) X = ) / log, det[1 + Sa]dGM (x).
fo =1+ c+2uc+2Ve /(1 + p)(1 + pe).  (14) :

As M,N — oo the empirical distribution functiortz ()

From this point, one can obtain a closed expression for the, 45 aimost surely t6(x), which corresponds t&(x) re-
asymptotic capacity per antenna integrating (6) with respectﬁ%cingc by 1/cin (13). Therefore, a8/, N — oo, the quantity
B and forcingC®X|5-¢ = 0. The capacity per antenna take%l/N)CTX will tend to '
the form (see [5] for details) 81

_ C™X(8, ¢, p) = cCRX (—.—. > 18
CT™(8, ¢, 1) =logy |Bw™ (8, ¢, )| (5,210 cet (18)

1 ith CRX(3, ¢, 1) as in (15).

| 1— e - oR%(3. wit (B, ¢,

+ I 082 | pe-v=(Bye, M)l Taking nowp — 0, we recover the same expression for the

— (e = Dlog, [u™*(B, ¢, )| two capacities per receive antenna, 4.e.,
bps/Hz/receive antenna (15) 111% CRX (B, e, p) = 111% CT™(B, ¢, )
H—= n—
where the expressions of X, vBX | andw?X are given in (16), clog —c+(c—1)8- VR n
at the bottom of the page. Note that the expression obtained is 2 2¢
qui_te similar to the one presented in [7], which can be recovered 1 ¢c+(1+¢)f—VRo
tak|ngl,l, — 0 - 10g2 2/3
i Qi +(c-1)p—-+VR

B. Correlation at the Transmit Side —log, ct(c 2)[3[} 0

Let us now analyze the case where fading correlation islg Re— & 1 90(1 . 252 Th h
present at the transmit side. In this case, we model the chanff@f"®t = ¢* + ¢(1 +¢)f + (1 —c)*". The same happens

if the number of sensors is the same at both sides of the com-

matrix as TR ;
munication link ¢ = 1), i.e.,
H=UC'? 17) CR¥(B,1,u) =C™*(B.1, 1)

. " . R 1+2p) (142 VR —2 -
whereC now is anM x M Hermitian Toeplitz deterministic =log, (420 [1+26+ 21] LGk
matrix with limiting eigenvalue distribution given by (9) with 21+ 4]
the normalization constraint imposed befosed> = 1). The 1 1+28+206u—+/Rq

. . + —logy |1 —p
capacity can be expressed as the expected value (in terms of the 1 208[1 + p?

statistics ofU) of
) where nowR; = 1+ 43(1 + p).

CTX =log, det [IN + [—Ai[UCUH] C. Preliminary Analysis

B
M

Having arrived at this point and before considering a rigorous
cu# U} . analysis of the asymptotic capacity expressions, let us compare
the expressions obtained in the last two sections. Our main moti-
vation here is to investigate whether the effect of fading correla-
tion is worse at the receiver or at the transmitter. Thus, in Fig. 3,

=log, det {IM +

Now, let us denote by (z) the empirical distribution func-
tion of the eigenvalues of th&/ x M matrix C(1/M)UHU
(as opposed té'V () for the case of correlation at the receive “This is the expression obtained in [6] and [7].

c+(1—c)B4+2uc® —/RRX
+(1-0)B+2pc” —v B # uc

RX _ 2c(B—pc)
U (B C,ll/) - { c(1+43
- c+<(1+’c§/i’ [3 = pc

’URX(/BC )_C-l—ﬂ(l—i—C)— VRRX+2/36M
O TR+ (L + op + o]

14+ 1 +op) [c +6(l+¢)+ \/RRX} — 2cu(f — pe)
2¢B[1+ (1 + c)p+ cp?)

W (B, e, 1) =

and
REX —[c+ (1 4+ ¢)f]? — 4¢B(B — cp). (16)
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Asymptotic capacity per receive antenna, u=5

7 ‘ , ; ; : its effect is more noticeable when it arises at the side with less

Corrat TX antennas.
----- Corr at RX

IV. ANALYSIS OF THE RESULTS

In this section, we analyze the influence of the correlation
parametey. on the spatial efficiency of the MIMO system. To
homogenize the results with those presented in [6], we define
the bit energy to noise spectral density at the receiver as

] E, pB

No R

o
T

c—>infinity \

ES
T

bps/Hz/receive antenna
w
T
o
L

whereR is the data rate (information bits per receive antenna

c=0.1 b
transmitted in a channel use). If the maximum efficiency is
| reached, one has

N
T

E, f
-10 -5 0 5 10 15 20 Ny C

whereC is the asymptotic capacity per antenigarepresents
Fig. 3. Asymptotic capacity per receive antenna as a function of the signalgitherCTX or CRX depending on whether fading correlation is

noise ratio for different values of the ratio= M/N. present at the transmit or receive side). One can express
a function of E, / Ny denoted byCT* andCRX depending on
Asymptotic capacity per receive antenna, p=10 whether transmit or receive correlation is modeled, by finding

i ' ' ‘ ‘ ' the solution to (15)—(18) replacing with (E;/Ny)CR* and
— CorratRX | | (E'b/]\/YO)C’TX7 reSpeCtiVer, i-e-,

Ey RX RX Ey RX
O OoRX =
No v

w

n
®

C”X =log, N

E
1—MC'URX<FZCRX>‘

’U,RX (&01{){)

g
[

g
~

1
+ . log,

N
)

— (c—1)log,

bps/Hz/receive antenna

and equivalently foC™,
Fig. 5 represents the asymptotic capacity per antenna as a
function of £} /N, for different values of the correlation pa-
rametery whenc = 0.5 andc = 2. The simulated values of
the correlation parameter (hamely= 0, 1, 5) correspond to a
12 1 correlation between consecutive elements ef 0, 0.56, 0.82.

Note that the degradation of the asymptotic capacity per antenna
does not seem very significant for typical values of the correla-

Fig.4. Asymptotic capacity per receive antenna as a function of the correlatibnN Parameter between 0.1 and 1).

parametey: for different values of the aspect ratio

Let us now analyze the general expression at high and low

E, /Ny situations.

we represent the asymptotic capacity per antenna as a functior® LOW Es/No. The minimumg, /N, required for reliable

of the signal to noise rati@ for different values of the aspect communication is not influenced by fading correlation,
ratio ¢ fixing u = 5 (this corresponds to a very high correlation 1.e.,

between consecutive elements, iJes 0.82). The capacity for Ey ) I&; ) J¢]

correlation at the transmitter is plotted in dotted line and the ca- <ﬁ0> - - };3}) CTX(B) - },13}) CRX(3)

pacity obtained with correlation at the receiver is represented in —log2 = —1.5917 dB

solid line. Observe that when the number of transmit antennas

is higher than the number of receive antennas (1) the effect * High E},/Ny. As E, / Ny — o0, the slope of the achievable
of fading correlation is worse at the receiver, while the opposite  capacity per antenna with respectp/ Ny tends to

is true in the reverse situation. In conclusion, one can state the RX X

effect of fading correlation is more harmful at the side equipped |y, B G — lim I

with less antennas. In Fig. 4, we represent the asymptotic cB+/No—2 1(]og, (]‘3—3) FL—o0 101ogy, (ﬁ—f})

pacity per antenna as a function of the correlation parameter .

for different values of the aspect ratidfixing 3 = 10. Note =(10-log2-logyge)” min(c,1)
that fading correlation has always a detrimental effect and that =0.3322 min(c, 1) bits/dB



836
Asymptotic capacity per receive antenna, c=0.5
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Fig. 5. Asymptotic capacity per receive antenna as a functiof,gfN,
for different values of the correlation paramejer In particular, the values
p# = 0,1,5 correspond to a correlation between consecutive elements
A = 0,0.56,0.82, respectively.

which does not depend on the correlation coefficignt
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Loss in capacity per receive antenna at high Eb/No (Correlation at TX)
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o
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Loss (bps/Hz/receive antenna)
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Loss (bps/Hz/receive antenna)

o
o

0.4
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|
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Loss in capacity per receive antenna at high Eb/No (Correlation at RX)

Fig.

of

Now let C° denote the capacity per receive antenna when

u = 0. The efficiency loss at high, /Ny can be expressed

as
E 1 . _ _c
00 _ GRXFT (i +c)togy |14+ pel = 7 e <1
(L+1)loga 1+ 4l - ey e>1
Ep 1 B
CO—CTXN_:]—_;OO ¢ 1+H)log2|1+u| ez <1
(ﬁ+1)log2 C"'T”|—@ ¢ > 1.

of receive antennag, > 1. On the other hand, if fading

T T T T T T T T T

c=0.1

[
Loss in capacity per receive antenna in presence of fading correlation.
creases witla. In any case, we see that the relative penalty
introduced vanishes with;, /Ny, i.e.,

CO _ CRX
ol

CO—CTX

lim
E,/No—oo

lim
E,/Ny—oo
In conclusion, at highE, /N, the influence of fading cor-
relation is stronger when the number of transmit antennas
is higher than the number of receive ones (irrespective of
whether the fading correlation arises at the transmitter or
the receiver).

Fig. 7 represents the capacity per antenna as a function of
the ratioc for different values of the correlation parameter
Observe that as grows, the capacity per antenna saturates to
) ) ) a constant value that depends on the correlation parameter. If
InFig. 6, we represent the loss in capacity per antenna aga fading correlation is present at the transmitter, this limit (de-
function of the correlation parametefor differentvalues noted here by TX = lim,_.. CTX) is the same regardless of

of the ratioc. Note that, if fading correlation is preseniihe correlation parameterand is given as the nontrivial solu-
at the receiver, the loss is maximum when the number g4, to the equation

transmit antennas is higher than (or equal to) the number

correlation is present at the transmitter, the loss always in-

CL* = log,

Ey 1rx
1+ —C
+ 3 0%
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Asymptotic capacity per receive antenna, Eb/No=10dB Convergence of the asymptotic capacity per antenna (c=0.5)
6 T T 1.6 T T T

bps/Hz/antenna
- o
o N

T T

bps/Hz/receive antenna
N
&
T

Corrat TX 1421 b
— Corr at RX
1
0 I L 1 5 10 15 20 25 30
1072 107 10° 10" 102 Receive Antennas
c=M/N

Fig. 8. Convergence of the mean value of the capacity per antenna toward its

Fig. 7. Asymptotic capacity per antenna 5 /N, = 10 dB. asymptotic value for = 0.5. Dotted lines: asymptotic efficiency. Solid lines:
simulation with the proposed correlation model. Asterisks: simulation with
exponential model with the same correlation between consecutive elements.

This coincides with the asymptotic value presented in [6]. Con-
versely, if the fading correlation is present at the receiver, thec ,, _ Gonvergancs of the asymplotic capaciy per antenna (c-=2)
pacity per antenna levels off to a constant value that depends

the correlation parametgr DenoteCEX = lim,._,., CRX.0One .| |
easily finds thatZX is the nontrivial solution to the equation

L+ 21+ foo +/[L+ Bucl + 4Bt

CRX =10 asf
e T 21 + 1]
5 Sas
oL Boo =1+ /1L + Bucl? + 4
— O Q
P 2fs0[1 + 4] 37

1 /Boo +1- \/[1 + ﬂoo]2 + 4/300/1'
log 2 2p 35+

— RX
wheref., = (Ep/No)C:™. 2al : - - . . .
Receive Antennas

V. NUMERICAL VALIDATION Fig. 9. Convergence of the mean value of the capacity per antenna toward its

In this section, we validate the asymptotic capacity formul&gymptotic value for: = 2. Dotted lines: asymptotic efficiency. Solid lines:
ulation with the proposed correlation model. Asterisks: simulation with

. . . . ]
.Obta'r.‘ed_ above via simulation. In Figs. 8 .and 9, we repres_%dgonential model with the same correlation between consecutive elements.
in solid line the mean value of the capacity per antenna with

the proposed correlation model as a function of the number . .
. ) . _ : antenna and that the asymptotic expressions are always more
of receive antennas for a fixed rato The efficiency obtained

. . ) : . Bessimistic than the reality. On the other hand, the convergence
with an exponential model with the same fading correlation be- .
IS very fast for low values of the correlation parameteand

tween consecutive elements is plotted with asterisks and the pre: . . S
dicted asymptotic value is represented in dotted line. The mega%ts slower as the interelement fading correlation increases.
value of the simulated capacity per antenna was obtained av-
eraging 10 independent realizations of (1), modeling the en-
tries of the channel matrix as circularly symmetric Gaussian We have presented a closed form expression of the asymptotic
random variables with zero mean, variance 10-dB higher thaniform power allocation capacity of a MIMO system assuming
the noise power and mutual relative covariance given by the coprrelated fading at one side of the communications link. The
responding model. We only represent the results for correlatierpression is obtained modeling the asymptotic eigenvalue dis-
at the receiver (the other case yields almost the same plots withution of the fading correlation matrix as a tilted semicir-
a scale factor variation). cular law depending on a parameter that describes the degree
Note that the proposed and the exponential correlatiofifading correlation between antennas (at either the transmit or
models yield almost identical values of the capacity peeceive side). It has been shown that the proposed modelis close

VI. CONCLUSION
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to an exponentially decaying function and it has been demorfis]
strated via simulation that, fixing the same correlation between
consecutive elements, the two models yield almost the identicg{g,
nonasymptotic capacity per antenna. The analytical expression
obtained has been used to investigate several interesting prdp?]
erties of the asymptotic spatial efficiency and its relationship
with the fading correlation. For instance, we have seen that, ac-
cording to our model, fading correlation does not influence thé!8l
rate of growth withE, /Ny (at high values of, /Ny) and its ef-

fectis more harmful at the side with less number of antennas. We
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stant, the asymptotic spatial efficiency saturates to a constarso]

value that depends on the fading correlation parameter only. 211
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