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Capacity of MRC on Correlated Rician Fading Channels

Khairi Ashour Hamdi, Senior Member, IEEE

Abstract—A new exact explicit expression is derived for the
ergodic capacity of maximal ratio combining (MRC) schemes
over arbitrarily correlated Rician fading channels. This is used
to study the effects of channel correlation on the ergodic capacity.
Numerical results reveal that both the phase and the magnitude
of correlation have an impact on the ergodic capacity of Rician
fading channels. This is in contrast to correlated Rayleigh fading,
where the phase of the correlation has no effect on the ergodic
capacity. It is also observed that negatively correlated branches
in Rician fading may lead to an increase in ergodic capacity
beyond that obtained by uncorrelated branches.

Index Terms—Channel capacity, maximal ratio combining
(MRC), Rician fading, correlated fading, wireless SIMO systems.

I. INTRODUCTION

IVERSITY reception is increasingly becoming a primary

technique for improving the performance of radio com-
munication systems in multipath propagation environments.
Therefore, the performance of diversity schemes has recently
received a considerable research efforts (e.g. [1]-[15]).

Recent relevant research on the evaluation of ergodic ca-
pacity in correlated fading channels include [3]-[12]. Boche
and Jorswieck [3] has analytically shown that, correlation in
Rayleigh fading causes a loss in the ergodic capacity (com-
pared to uncorrelated fading), and gave a simple expression
for the capacity loss in a fully correlated diversity system.
Closed-form expressions for the capacity in the special case
of correlated Rayleigh fading are given in [4]-[6]. Capacity
analysis in case of Rician fading are given in [7]-[12]. Zhang
and Liu in [7] used Porteous’ lemma to find a simple ap-
proximate expression for the ergodic capacity in correlated
Rician fading channels. Taylor series expansions are used in
[8] to obtain more accurate approximations for the ergodic
capacity in terms of the moments of the combined channel
gain. Laguerre-series expansions are used in [9], [11] for the
distribution of the combined SNR. The accuracy of some other
approximations for the ergodic capacity in Rician fading has
recently been analyzed in [12].

On the other hand, recent advances on performance analysis
of digital communication systems in fading channels has
recognized the potential importance of moment generating
functions (MGF), or Laplace transforms, as a powerful tool for
simplifying the analysis of diversity communication systems.
This has led to simple expressions to average bit and symbol
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error rates for a wide variety of digital signaling schemes on
fading channels, including multichannel reception with corre-
lated diversity (e.g. [14]-[16]). Key to these developments was
the transformations of the conditional error rate expressions
into different equivalent forms in which the conditional vari-
able appears only as an exponent. For instance, the following
identity has been widely employed to simplify the error rate
analysis of coherent communication systems in fading

/2
erfcy/SNR = g/ / exp (112\“2) do. @))
T Jo sin” 6

In this letter, we show that it is possible to express the
conditional capacity log (1 + SNR) in a form similar to (1), in
which SNR appears only as an exponent. This facilitates using
the moment generating functions and leads to a new simple
expression for the ergodic capacity in arbitrarily correlated
Rician fading channels.

This letter is organized as follows. The problem is stated in
Section II, and the proposed new solution is given in Section
III. Some numerical examples are given in Section IV, and
Section V concludes this letter.

II. THE PROBLEM

The purpose of this letter is to derive a simple expression for
computing the following average, which represents the ergodic
(average) capacity of the MRC diversity system

C=Elog, (1+g'g)] )

where E [.] is the expectation operator, g is a M x 1 complex
random vector that represents the normalized complex channel
gains, and the superscript T denotes Hermitian transposition.
Here, the instantaneous signal-to-noise ratio (SNR) at the
mth channel is |gm|2 ., m = 1,2,..,M, whereas gfg =
SM_|gm|? is the combined SNR.

In Rician fading channels, g is a complex Gaussian vector
having a probability density function (pdf) given by

1
Jg) = M det (A)

Elg] is the mean vector and A =

e (g=m A (g—p) (3)

where p =
E [(g - M)T (g — u)} is the covariance matrix. The Rician

2
factor for the mth channel is equal to x,, = ‘1{’—"‘
Direct evaluation of the average in (2), ’

— gy L (g AT (g-w)
C/glogg(l—kg 9) 7eret(A)e dg
“)
where the integration is over the M dimensional vector g,
requires a huge computational efforts. Other common methods
use the pdf for the quadratic form ng, instead. However,
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simple closed-form expressions for the pdf of the Gaussian
quadratic forms are known only in some special cases. Oth-
erwise, the cumulative probability distribution function of
arbitrary Gaussian quadratic forms are expressed as infinite
series with coefficients being determined recursively in terms
of the eigenvalues of the covariance matrix (e.g., [1], [9], [11],
[18]).

On the other hand, closed-form expressions for the MGFs
(or Laplace transforms) of Gaussian quadratic forms are
readily known for arbitrarily complex Gaussian vectors (e.g.
[17], [18])

-1
M (z) =E [e29'9] = LI WT{ZAIMM} '
2)= {e }_det(IM—i—zA)e
5)

where Iy is the M x M identity matrix.

This has been successfully employed in [14] and [15] to
obtain simple expressions for bit and symbol error rates of
different digital communication systems. However, in order
to utilize (5) for computing the ergodic capacity, it is re-
quired, firstly, to represent the conditional capacity expression
log, (1 + ng) in a different equivalent form in which the
quadratic random variable gfg would appear only as an
exponent. In next section, we show that this is possible.

III. THE ERGODIC CAPACITY EVALUATION

In order to employ the available closed-form expression for
the MGF of the Gaussian quadratic forms (5) for evaluating the
ergodic capacity in correlated Rician fading, we need firstly
the following lemma.

Lemma 1: For any x > 0

In(1+z)= /OO % (1—e %) e *dz. (6)
0

Proof: The proof is given in the Appendix. [ ]

Now, with (6), the conditional capacity expression
log, (1 + ng) can be expressed in the following desirable
form

o0 1 T
log, (1+ ng) = log, e/ - (1 —e 9 9) e “dz (7)
0 Z

in which the quadratic form gfg appears only at the exponent.
Therefore, from (7) and (5), the ergodic capacity (2) can be
evaluated as follows
C = log, e/ 177/\/{(Z)efzdz
0

z
—1
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which involves only one single-integral over the non-negative
real line R™.

As far the evaluation of the integral in (8) is concerned,
we prove in what follows that the integrand is continuos and
bounded (and therefore has no singular points in the range
of integration). To prove this, notice from [21, Equ. 2.6, pp.

435]) that the term &) with M (2) =
related to the tail probability as follows

= =/ e *"Priglg > a}da.
0

Now, owing to the fact that 0 < Pr {g'g >z} <1, it can
be shown by applying the Steffensen’s inequality for integrals
[19, Equ. 12.316] that ¥z € R

0< 1-M(z)

:/ e*”Pr{ng>x}dx§/
0 0

_ o—2E[g'd]
Ay

E[g'g]
e “*dx
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where we have used the fact that, for any non-negative random
variable X, [ Pr{X > a}dz = E[X].

(9) proves that the integrand in (8) is bounded. Furthermore,
it can be seen that it is also continuous and possess all deriva-
tives Vz € RT. Therefore, standard numerical integration
packages can be used straightforwardly to compute (8)

To summarize, (8) gives the ergodic capacity of MRC over
correlated Rician fading directly in terms of the covariance
matrix A and the mean vector u. It should be emphasized
at this point that though (8) involves a single numerical
integration, however it offers a huge reduction in the re-
quired computational complexity when compared to the direct
method (4) which requires M-fold integrals. On the other
hand, when comparing the computational complexity of the
new expression (8) with other known methods, it is to be
noticed that the ergodic capacity (8) is given directly in terms
of the original covariance matrix A, without the need of any
eigendecomposition operations. This is in contrast to most
previous research on the capacity of MRC over correlated fad-
ing channels (e.g. [5], [6], [9]-[11]) which require all distinct
eigenvalues of the covariance matrix with their multiplicities.
It is also worth mentioning that although an expression for
the pdf of the combined SNR can be obtained by the Laplace
inversion of M (z), however this would take the form of an
infinite series (Laguerre-series) and involves (in addition to
the eigendecomposition of the covariance matrix) solving a
large set of linear equations recursively (e.g., [9], [11], [18]).

IV. NUMERICAL EXAMPLES

This section gives some numerical examples that demon-
strate the effects of correlation on the ergodic capacity. In
Fig. 1, we consider a constant correlation model in Rayleigh
fading (x = 0) with p;; =SNRp Vi # j, and p; =SNR,
1 =1,2,.., M, where SNR is the average signal-to-noise ratio
(SNR) per branch. Here, we plot the ergodic capacity against
SNR for M = 2 and 10 branches in cases of uncorrelated,
and negatively and positively correlated branches. Fig. 1 shows
that correlation (positively or negatively) decreases the ergodic
capacity of MRC in Rayleigh fading. However, the loss in
ergodic capacity does not exceed 7% when M = 10. (from
11.554 bps/Hz into 10.798 pbs/Hz at SNR= 25 dB). We also
note from Fig. 1, that negative and positive correlations result
in identical capacities in case of Rayleigh fading.
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Fig. 1. The ergodic capacity against SNR [dB] in case of M = 2 and 10.

p =0 and %1 in case of Rayleigh fading channel < = 0.
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Fig. 2. The ergodic capacity against the correlation magnitude |p| = 1 for
several values of the correlation phase argp = 0,7, 3, %’r,fr. M = 2,
x = 1 and SNR=10 dB.

In order to gain insight into the effect of correlation on the
ergodic capacity of MRC in Rician fading, we consider in
Figs. 2-4 a dual diversity system in a Rician fading scenario
SNR, m = 1,2, and a covariance

K

of mean vector i, =

1+k
matrix
SNR SNR
A _ |: 1+x 1+/{p :|
- SNR SNR
1+k 1+k

with SNR= 10 dB.

In Fig. 2, we let the Rice factor k = 1, and plot the ergodic
capacity against the correlation’s magnitude |p| for several
correlation’s phase argp = 0, 7, 5, 37”, 7. We observe that, in
contrast to Rayleigh fading, the ergodic capacity depends on
the correlation’s phase. Furthermore, depending on the size of
the correlation’s phase, the ergodic capacity can be increased
with increasing the magnitude of the correlation. Specifically,
as can be seen from Fig. 2, the ergodic capacity increases with
increasing |p| when argp > 7/2.

In Fig. 3, we plot the ergodic capacity against arg p when
|| =1 and k = 0,0.2,0.5,1,5. We observe that when x = 0,
then the phase arg p has no affect on the capacity. However,
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Fig. 3. The ergodic capacity against the correlation phase [degrees] arg p°®
for fully correlated dual branches with |p| = 1 and several values of Rice
factor k = 0,0.2,0.5,1,5. SNR=10 dB.
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Fig. 4. The ergodic capacity against the Rice factor k. M = 2, SNR=10

dB, and for several correlation coefficients p = 0, 40.5, £1.

when x > 0, then the ergodic capacity is maximized when
arg p = 7 (i.e., negative correlation). In Fig. 4, we plot the
ergodic capacity against « for different correlations. One can
make the following observations from Figs. 2-4: 1) For a
given correlation, increasing the Rice factor x leads to an
increase in the ergodic capacity. 2) For any value of Rice factor
k, the capacity with positively correlated branches does not
exceed that with negatively correlated branches. 3) Negatively
correlated branches perform better than uncorrelated branches
when x > 0.4. On the other hand, increasing the magnitude
of correlation when x < 0.2 causes to decrease the ergodic
capacity.

V. SUMMARY

A new simple expression is derived for computing the er-
godic capacity of MRC with arbitrarily correlated Rician faded
branches. This is used to determine the effect of correlated
branches on the performance of MRC diversity. Numerical
results indicate that the ergodic capacity of MRC in negatively
correlated Rician fading channels can be improved beyond
what would be achieved in uncorrelated channels.
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APPENDIX

In order to give a formal proof of Lemma 1, consider the
following series expansion of In (1 + ) which is valid for
all x > 0 [20, Eq. 4.1.25]

o0 1 n
1n(1+x)—zg<1j_x> , ¢ >0.

n=1

(10)

Now, using the identity' (e.g. [19, Eqgs. 8.312.2 or 3.381.4])
-1
" = /00 i e %/%ds,
0

(10) becomes

n,x >0 (11)

In(l+z) =

12)

which reduces to (6) when we substitute s = zx.
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