Capacity of Multi-antenna Gaussian Channels — Source link

Emre Telatar

Institutions: Alcatel-Lucent

Published on: 01 Nov 1999 - Transactions on Emerging Telecommunications Technologies

Topics: Fading, Channel capacity, Water filling algorithm, Space–time code and Pairwise error probability

Related papers:

- On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas
- Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas
- A simple transmit diversity technique for wireless communications
- Space-time codes for high data rate wireless communication: performance criterion and code construction
- Space-time block codes from orthogonal designs

Share this paper:

View more about this paper here: https://typeset.io/papers/capacity-of-multi-antenna-gaussian-channels-3axdfdd5ns
On The Capacity Of Multi-Antenna Gaussian Channels

Nicolae Chiurttu, Bixio Rimoldi and Emre Telatar
Communication Systems Department
Swiss Federal Institute of Technology, Lausanne, Switzerland
e-mail: {Nicolae.Chiurttu, Bixio.Rimoldi, Emre.Telatar}@epfl.ch

I. INTRODUCTION

In this paper we investigate the use of multi-antennas at both ends of a point-to-point communication system over the additive Gaussian channel. We consider a system with \(t \) transmit antennas and \(r \) receive antennas in which the received vector \(\mathbf{v} \in \mathbb{C}^r \) depends on the transmitted vector \(\mathbf{u} \in \mathbb{C}^t \) via:

\[
\mathbf{v} = \mathbf{H} \mathbf{u} + \mathbf{w},
\]

where \(\mathbf{H} \in \mathbb{C}^{r \times t} \) is the channel matrix and \(\mathbf{w} \) is zero-mean complex circular symmetric Gaussian noise. We assume that \(\mathbb{E}[\mathbf{w} \mathbf{w}^H] = \sigma^2 \mathbf{I}_r \). The transmitter is constrained in its total power, i.e., \(\mathbb{E}[\mathbf{u}^H \mathbf{u}] \leq E_s \).

We assume that the channel matrix \(\mathbf{H} \) is known at both ends of the communication system, and that the waveform channel is flat over the bandwidth of interest. The capacity of this channel is known to be (See e.g. [1]):

\[
C = \sum_{i=1}^{n} \log \left(1 + \frac{\lambda_i P_i}{\sigma^2} \right) \text{ bits/second},
\]

where \(\lambda_i \) is the \(i \)th eigenvalue of the Hermitian matrix \(\mathbf{H} \mathbf{H}^H \), \(n = \min\{r, t\} \), and \(P_1, \ldots, P_n \) is the “waterfilling” power allocation with \(\sum_i P_i = E_s \).

II. JOINT OPTIMIZATION

One can change the values of the eigenvalues \(\lambda_1, \ldots, \lambda_n \) by moving around the transmit/receive antennas. In the first part of this paper we investigate the problem of choosing \(\lambda_1, \ldots, \lambda_n \) so as to maximize the capacity expression in (2).

We consider first the simpler case of one-of-eight channels with far-field approximation. When this is the case, small perturbations of the antenna locations do not change \(\sum_i \lambda_i \) (See example in [2]). In general, \(\sum_i \lambda_i = \sum_j h_{ij}^2 \), so the constraint on the sum of the eigenvalues corresponds to setting a limit on the total power gain of the channel. Now, the problem becomes that of finding \(\lambda_1 \)'s and \(P_1 \)'s that jointly maximize the capacity under the constraints \(\sum_i P_i \leq E_s \) and \(\sum_i \lambda_i = L \) for given \(E_s \) and \(L \). This is a standard maximization problem that we solve using Lagrange multipliers.

From the solution we make the following observations. Without loss of generality assume \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). When the signal-to-noise ratio \((LE_s)/\sigma^2 \) is sufficiently small, then the optimal solution requires \(\lambda_1 = L \), \(P_1 = E_s \), and \(\lambda_i = P_i = 0 \) for all \(i > 1 \). Physically, this corresponds to using the transmit and receive antennas to generate a focused beam. The channel model then is a single channel with maximal signal-to-noise ratio. On the other extreme, when \((LE_s)/\sigma^2 \) is sufficiently large, then the optimal solution calls for \(\lambda_1 = \cdots = \lambda_m = \frac{L}{m} \) and \(P_1 = \cdots = P_m = E_s \). Physically, this corresponds to creating \(m \) parallel channels of small signal-to-noise ratio.

III. PESSIMISTIC CAPACITY

In the second part of this paper we look at the other extreme: we search for \(\lambda_1, \ldots, \lambda_n \) that minimize the capacity subject to \(\sum_i P_i \leq E_s \) and \(\sum_i \lambda_i \geq L \). This corresponds to studying the capacity if an adversary chooses \(\lambda_i \)'s. In other words, here we do a worst-case analysis when the channel is only assumed to have \(\sum_i \lambda_i \geq L \) but otherwise is as bad as possible. We still maximize over the input power distribution while minimizing over the eigenvalues distribution. We study two possibilities. The first possibility is when the choice of the \(\lambda_i \)'s is known only at the receiver, so that \(\{P_i\} \) cannot depend on \(\{\lambda_i\} \). This leads to

\[
C_{PL} = \max_{\sum_i P_i \leq E_s} \min_{\sum_i \lambda_i \geq L} \sum_{i=1}^{n} \log \left(1 + \frac{\lambda_i P_i}{\sigma^2} \right).
\]

Solving this optimization problem, we find that the maximizing power distribution should be uniform. This is an intuitive result: if we push much of the power in one channel, the "adversary" can defeat us by setting the gain of that channel to zero. For the eigenvalues, we find that we need only one subchannel, \(\lambda_1 = L \) and \(\lambda_j = 0 \) for \(j > 1 \).

The second possibility is when the \(\lambda_i \)'s are known at both transmitter and receiver. We then find

\[
C_{P2} = \min_{\sum_i \lambda_i \geq L} \max_{\sum_i P_i \leq E_s} \sum_{i=1}^{n} \log \left(1 + \frac{\lambda_i P_i}{\sigma^2} \right).
\]

One can prove that the minimum is achieved only if all the eigenvalues are nonzero and all the parallel channels are active, i.e., \(P_i > 0 \) Vi. One also finds that the minimum achieving eigenvalues can take at most two possible values. Further, more, there is a threshold \(T > 4(n-1) \) such that if \(LE_s/\sigma^2 \leq T \), then the minimum is achieved when \(\lambda_1 = \lambda_2 = \cdots = \lambda_n = \frac{L}{n} \). In the joint optimization problem we found that at low SNR, the best channel is the one that has exactly one nonzero eigenvalue. As one would expect, the worst channel is the one that makes all the eigenvalues equal.

For \(LE_s/\sigma^2 > T \) the solution requires that the eigenvalues are all equal except for one dominant eigenvalue. As \(LE_s/\sigma^2 \) increases, the dominant eigenvalue grows towards \(L \), while the others, strictly positive, decrease towards zero. Again, this is almost the opposite of the result from joint optimization that required \(n \) equal strength eigenvalues for high \(LE_s/\sigma^2 \).

REFERENCES

1This work was partially supported by NOKIA/diAx/SBC.