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I. INTRODUCTION 
In this paper we investigate the use of multi-antennas at 

both ends of a point-to-point communication system over the 
additive Gaussian channel. We consider a system with t trans- 
mit antennas and T receive antennas in which the received 
vector v E CY depends on the transmitted vector U E d via: 

v = H u  + w, (1) 

where H E CXt  is the channel transfer matrix and w is zero- 
mean complex circular symmetric Gaussian noise. We assume 
that E [ w w t ]  = u21,. The transmitter is constrained in its 
total power, i.e., E[utu]  5 E,. 

We assume that the channel matrix H is known at both 
ends of the communication system, and that the waveform 
channel is flat over the bandwidth of interest. The capacity 
of this channel is known to be (See e.g. [l]): 

C = 2 log (1 + %) bits/use, 
i= l  

where Xi is the ith eigenvalue of the Hermitian matrix H H t ,  
n = min{r, t } ,  and PI, . . . , P, is the “waterfilling” power allo- 
cation with Ci Pi = E,.  

11. JOINT OPTIMIZATION 
One can change the values of the eigenvalues XI,. . . , A, by 

moving around the transmit/receive antennas. In the first 
part of this paper we investigate the problem of choosing 
XI, . . . , A, so as to maximize the capacity expression in (2). 

We consider first the simpler case of line-of-sight channels 
with far-field approximation. When this is the case, small per- 
turbations of the antenna locations do not change Xi X i  (See 
example in [ 2 ] ) .  In general, Xi X i  = Cij (hij12, so the con- 
straint on the sum of the eigenvalues corresponds to setting a 
limit on the total power gain of the channel. Now, the problem 
becomes that of finding Xi’s and Pi’s that jointly maximize the 
capacity under the constraints Ci Pi 5 E, and xi X i  = L for 
given E, and L. This is a standard maximization problem 
that we solve using Lagrange multipliers. 

From the solution we make the following observations. 
Without loss of generality assume XI 2 XZ 2 . . .  2 An. 
When the signal-to-noise ratio (LE,) /02  is sufficiently small, 
then the optimal solution requires XI = L,  PI = E,, and 
X j  = Pj = 0 for all j > 1. Physically, this corresponds 
to using the transmit and receive antennas to generate a fo- 
cused beam. The channel model is then a single channel with 
maximal signal-to-noise ratio. On the other extreme, when 
(LE,) /u2  is sufficiently large, then the optimal solution calls 

cally, this corresponds to creating n parallel channels of small 
signal-to-noise ratio. 

for X1 = ... = X, = 4 and pl = . . .  = P, = a. Physi- 
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111. PESSIMISTIC CAPACITY 

In the second part of this paper we look at the other ex- 
treme: we search for XI,. . . , A, that minimize the capacity 
subject to 5 E, and CiXi 2 L. This corresponds to 
studying the capacity if an adversary chooses Xi’s. In other 
words, here we do a worst-case analysis when the channel is 
only assumed to have Ci Xi 2 L but otherwise is as bad as 
possible. We still maximize over the input power distribution 
while minimizing over the eigenvalues distribution. We study 
two possibilities. The first possibility is when the choice of the 
Xi’s is known only at the receiver, so that {Pi} cannot depend 
on { X i } .  This leads to 

Solving this optimization problem, we find that the maximia- 
ing power distribution should be uniform. This is an intuitive 
result: if we put much of the power in one channel, the ”adver- 
sary” can defeat us by setting the gain of that channel to zero. 
For the eigenvalues, we find that we need only one subchannel, 
X1 = L and X j  = 0 for j > 1. 

The second possibility is when the Xi’s axe known at both 
transmitter and receiver. We then find 

One can prove that the minimum is achieved only if all the 
eigenvalues are nonzero and all the parallel channels are active, 
i.e., Pi > 0 V i .  One also finds that the minimum achieving 
eigenvalues can take at most two possible values. Further 
more, there is a threshold T > 4(n - 1) such that if LE,/u2 5 
T, then the minimum is achieved when XI = A2 = . . . = An = 
4.  In the joint optimization problem we found that at low 
SNR, the best channel is the one that has exactly one nonzero 
eigenvalue. As one would expect, the worst channel is the one 
that makes all the eigenvalues equal. 
For LE,/u2 > T the solution requires that the eigenvalues 
are all equal except for one dominant eigenvalue. As LE,/u2 
increases, the dominant eigenvalue grows towards L, while the 
others, strictly positive, decrease towards zero. Again, this is 
almost the opposite of the result from joint optimization that 
required n equal strength eigenvalues for high LE, /u2 .  
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