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Abstract

The capacity of multiple antenna systems in the pres-
ence of Rayleigh flat fading is considered under the as-
sumption that channel state information (CSI) is avail-
able at both transmitter and receiver. The capacity
expression for a general dual antenna array system of
multiple transmitter and receiver antennae is derived
together with an equation that determines the cut-off
value for such a system. It is shown that, compared to
the case in which there is only receiver CSI, large ca-
pacity gains are available with optimal power and rate
adaptation scheme.
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distribution. Section treats the capacity of a general system
having multiple antennae at both transmitter and the receiver.
We obtain the capacity of such systems under optimal power
adaptation as well as the determining equation for the cut-off
value of the optimal transmission scheme. In Section we
numerically evaluate the derived capacity results for some
representative situations. Finally, in Section we give some
concluding remarks.

SYSTEM MODEL DESCRIPTION

We consider a single user, flat fading communications link
in which transmitter and receiver are equipped with and
Ny antennae, respectively. The discrete-time received signal

in such a system can be written in matrix form as
H(i)x (i) + n(i),

y(i) = (1)

The problem of determining the capacity of fading channels Wherey (i), x(i) andn(i) are the complexV-vector of
under various assumptions has received considerable attent€ceived signals at th& receive antennas, the (possibly)
tion over the years. the capacity of such channels of courseCOmplexNr-vector of transmit signals on th¥; transmit
varies depending on the assumptions one makes about th@ntennas, and the compleéxz-vector of additive receiver
fading statistics and about the knowledge of fading coeffi- Noise, respectively, atsymbol timeThe components af(:)

cients.

are independent, zero-mean, circularly symmetric complex

When both transmitter and receiver have access to CSl, in-Gaussian with independent real and imaginary parts having
tuitively one would expect the transmitter to adjust its power €qual variance. The noise is also assumed to be independent
and rate depending on the instantaneous value of the CSIWith respect to the time index, adt{n(i)n (i)} = In,.

This results in adaptive transmission techniques. The ca-The matrixH(i) in (1) is the Ng x Ny matrix of complex
pacity of fading channels with such adaptive transmission fading coefficients which are assumed to be stationary and
schemes has been treated previously in [3] for the case ofergodic. The(ng,nr)-th element of the matri¥i (i) repre-
single-antenna systems and in [1] for the case of receiversents the fading coefficient value at timeorresponding to

diversity. However, with the recent interest in multiple trans-

the path between theg-th receiver antenna and thg--th

mit antennae systems for wireless communications, it is alsotransmitter antenna. We assume that elements of the matrix

of interest to consider this problem in the context of multi-

H(i) are independent, identically distributed (iid) complex

ple antennas at both transmitter and receiver. In this paperGaussian random variables with zero mean gfvariance
we investigate the capacity of such systems under adaptivePer dimension (i.e. the Rayleigh fading channel model) and

transmission techniques.

are known to both transmitter and the receiver. This is a

We derive the capacity of optimal power and rate allocation reasonable assumption when the channel varies at a much
scheme for such systems and evaluate this capacity for severaglower rate compared to the data rate of the system.
representative situations showing that the capacity of suchAs we will see shortly, the capacity will be dependent on the
systems could be much larger than corresponding systemswumber of transmitter and receiver antennas only through
with only the receiver CSI. The increased capacity comes atthe relative parameters definedras= max{Ng, Nr} and

the price of channel outage which may result in large delays. m = min{Ng, Nr}.

The rest of this paper is organized as follows: In Section we

outline our system model and the assumptions on the fadingCAPACITY OF MULTI-ANTENNA SYSTEMS WITH

*This research was supported in part by the Army Research
Laboratory under contract DAAD 19 — 01 — 2 — 0011, and in
part by the New Jersey Center for Wireless Telecommunications.

CSI AT BOTH TRANSMITTER AND THE RECEIVER
In general we may decompose the fading coefficient matrix



H using the singular value decomposition:
H UAVT 2)

whereU, A andV are matrices of dimensioiVr x Ng,
Ng x Ny andNrt x N, respectively. The matricd$ andV
are unitary matrices satisfyilngU* = U#U = I, and
VVH =VHV =1y,. The matrixA = [\, ;] is a diagonal

matrix with diagonal entries being equal to the non-negative

square roots of the eigenvalues of eitHE" or H”H, and

wherev; is defined, for = 1,...,m, as

where)\; are the eigenvalues of the Wishart mafiik and
we have defined as
P
N = . 11
V=N (11)
The cut-off valuesy; ¢ in (9) are chosen to satisfy the power

thus being uniquely determined. For later use, we may also constraint,

define the followingn x m matrix,

_ ( HHY if Nj < Ny
W= {HHH if Np > Ny (3)

Note that,W can have onlyn non-zero eigenvalues and thus
correspondingly onlyn diagonal entries of the matrix are
non-zero. It is also worth mentioning that the distribution of
the matrixW is given by the well-known Wishart distribution
[5].

Defining the transformationg = Ufy, x = VHx and

n = Un, we see that the channel in (1) is equivalent to

y = AX + 0. (4)
If the average transmit power is constrained as
E{x"x} =tr [B{xx"}] = P, (5)
then we also have that
E{x"x} =t [B{xx"}] = P. (6)
Let us introduce the following notation:
A = meOA(i). (7)

We may interpret each diagonal element of the matr'i)xz')

P tr(E{Q

A
- z/(7 ) Fl) dvi - (12)

wheref,, (;) denotes the pdf of thieth non-zero eigenvalue
of the Wishart matriXW. If we let f, (v) denotes the pdf of
any~y;, fori =1,...,m, then (12) leads to

/:O (710 - i) £y () dy

where~ is the cut off transmission value corresponding to
any eigenvalue.

The probability distribution functiop, (\) of an un-ordered
eigenvalue of a Wishart distributed matrix can be written as

[6]

pA(N)

1, (13)

e (k—1)!

D L= (). (19)

m

where the associated Laguerre polynomial of okdér! ~™ (),
is defined as [2, 4],

AP

(i)

, (15)
= P!

as arepresentation of the average Signal-to-Noise-Ratio (SNR)

per mode.

with the binomial coefficienf}) = ﬁ'k),

We let the transmit power vary with the observed channel Then from the definition in (10) we have thdt(y) =

state information subject to the average power constraint
If we defineQ = xx’!, then the instantaneous transmit

power can be written ast = tr [Q] and the average

power constraint becomds{tr [Q } < P. Hence in this

case the adaptive transmission strategy based on the observed =

channel state information can be achieved by lethbe a

function of A'(7). Thus, we denote the instantaneous value

of Q(i) as Q(A'(i)). Then, we may define the average
capacity of the vector, time-varying channel with adaptive
transmission scheme as

A')} .

Q)

©= (P/m

max
tr(E{Q(/\ )H=P

Q’)>o0

E, {logdet (I+A (8)

,p)\(’y), and substituting this into (13), the equation that
must be satisfied by the cut off becomes

> (n 7(:;1]6)!7 0! /i (i N %) T LT )]y

k=1
my
wherey is defined as
_ T
=
In the next section we show that for afiy> 0, the above cut
off equation (16) has anique solution.

(17)

Uniqueness of the Cut-off Value
Intuitively one would expect (16) to have a unique solution

It can be shown that the above maximization is achieved by ;,. In fact, by studying the properties of (16) we may show

a dlagonaQ( ) and that the diagonal entries are given by
a matrix water filling formula to be, for=1,...,m,
Qi A,io - % if vi > 70 )
(P/m) 0 if v <o

that this indeed holds true.
For convenience let us define the integrand in (16) to be

fn—m,k’('sz) = <i - i) efw,ynfm [LZ:{"(’Y)] %]‘8)



Next, define the functiod’(z) as

; n—m—i—k—l

Note that (16) is then equivalent to the caserdt) =
Differentiating (19) with respect to gives

Fl(z) = - e /Oo e Ty [LZ I"(’v)} dv, (20)

and we immediately notice that, since the integrand in (20)

is positive,

F'(z) < 0forz>0. (21)

Similarly, one can also show that’(z) > 0 for z > 0.

Next, either relying on the normalization property of a pdf
or by explicitly recalling the integral equatiam14.9 of [4]

we have that,

e Ty L= ()]
_ _ |
= (n—m+k—1) for n —m > 0.

(k—1)!

Using equatiory.414.12 of [4], for n —m > 0, we also have
that, forn —m > 0

2
li d
S— !

(22)

. < —m— _ 2 I'(n—m)I'(n —m + k)
1 v n—m=1[n-m Ay =
Z,T}ﬁ/z . [z ] an F(n7m+1)[(k71)!]2
n—m n—m 1.
g1 | F(5=2, 5= 4+ gsn—m+ 1 (1+h)2 ) (23)
dhk—1 (17h)(1+h)n m
h=0

where F'(a, b; ¢; ) is the hypergeometric function defined
as [2, 4]

F(a,b;c;x) i (azf:)(f)kalj’ (24)
k=0
with hypergeometric coefficierf.), defined as the product
(a)p = ala+1)...(a+k—1), (25)
with (a)o = 1.

Applying a transformation formula for a hypergeometric
function (equatior9.134.2 of [4]) to (23) we have, fon —
m > 0,

(n—m+k—1)!
m)(k—1)! "

lim
z——01 J 2

e — mn—1m— n—m 2
e Ty ! [Lk 1 (v)] dy = (26)

(n—
Substitution of (22) and (26) into (19) shows that,/fierm >
01

lim F(z) =

z—0t

+oo for n—m > 0. (27)

Similarly, forn — m = 0,

li -—-F
n—m—i—k—l).zg%ﬁ [z 1(2)]’
m=0, (28)

lim F(z) =

z—01

\g

= +oo for n—m

/ Py, 2)dy — mA.(19)

where E' is the Euler's constantl; (z) is the exponential
integral function [2, 4] defined as

Ei(z) = /oo ? dt, (29)
and we have also made use of the fact that
Zl'inozlog(z) = 0.
Also from (19) it is easily seen that
zirgoo F(z) = —m¥y for n—m>0. (30)

Thus, from (21), (27), (28) and (30) it follows that for> 0,
the functionF'(z) has a unique zero for all—m > 0. From
(17) then we see that for arty > 0 there exists a unique
cut-off value~, for anyn — m > 0 which satisfies (16), as
we expected.

Evaluation of Cut-off Value
Substituting the polynomial representation (15)¢f 1) in
(16) we obtain

m k—1k—1

n—-—m+k-—1
Simrma ()
n—m+k—1\ (=1)PT¢ _
( k—1— q ) p|q' G;!Lq(,u) = my, (31)
where, forp+ ¢ =10,1,...,2(m — 1), we have defined the

integralG), (1) to be

* /1 1
Gra) = [ (53 ) e mertian. 2
D,q . T

Next, we consider the two casesof m > 0andn—m =0
separately in order to obtain an explicit solution to (31).

Casel:n—m>0

Note that, whem —m > 0,forp+¢ =0,...,2(m—1), we
have than —m+p+¢—1 > 0andn — m+p+q >1>0.
Then we easily have that

'n—m+p+q+1,p)
Gpqp) = m

for p+¢=0,1,...

~Tln—m+p+q.n)
,2(m —1) and n—m > ((33)

where, forRe{a} > 0, the complementary incomplete gamma
function,T'(a, x), is defined as the integral,

o0
F(a,x):/ e ta®ldt,
xT

and we have also made use of the integral identity

(34)

o] n Mj
/ e "y"dy = nle* Z — for n>0, (35)
1 —o0 7

which can be verified straightforwardly via repeated appli-
cation of integration by parts.

Substituting (33) into (31) we obtain a closed form equation
that can be solved for a uniqugwhich is known to exist by
the previous section), in general, via numerical root finding.



Capacuy with Optimal Adaptive Transmission for m = t Capacity with Optimal Adaptive Transmission for m =
T T T T T T

e—o Adaptive capacity 6—>o  Adaptive capacity
18F |0 o Receiver CSl only capacity

L]o Receiver CSI only capacity

14F

Capacity per Channel Use in Bits
Capacity per Channel Use in Bits

5
SNR in dB

Figure 1. Capacity of the Multiple Antenna System with Optimal Adaptive Transmission Versus SNR (in dB). m = 2. (a)
N7 = m in the Receiver CSl only System. (b) Npgr = m in the Receiver CSl only System.

Case2:n—m=20 Using the explicit form of the pdf., () and the representa-
Whenn—m = 0,forp+¢ =0,...,2(m—1), we still have tion of Laguerre polynomial given in (15), we can write (38)
thatn — m + p+ ¢ > 0. However, in this case —m + p + as

g—1>—1. Forn —m = 0 (31) reduces to m

k—1k—1 n—m _
ikzlki p+q< kip)(,gkglq)Gp,q(u):m% ©= ;( (m+k 'Z;;( +kp 1)

plq! +
k=1p=0 q=0 n—m4+k—1\ (=1)Pte
" . (_1 _ ( b1 )(,), n—m-+p+q+1(1) (39)
and similarly, fop+q = 0,1, ..., 2(m—1), integralG,, , (1) q pq:
in (36) becomes where 7, (u), for p = 1,2, ..., is an integral function that
<1 1 can be evaluated in closed form to be [1]
Gpqln) = / (u - ) e TyPTdy.  (36) -
u 73]
Then, we can easily show that Jp(p) = (p=1) )+ - (40)
=
Ly E ( ; — . . .
1(p) ifp+qg=0
Gpa(lt) = ¢ rrartn : ,(37)  With the Poisson sur®, (1) given by
—==E =T +qp) ifpt+g>0
R
whereFE (1) is the exponential integral function defined in Pr(p) = e Z e (41)

(29).

Substituting (37) into (31) again we may obtain a closed form Sybstituting (40) into (39) we obtain the capacity of the
equation inu that can be solved for a unique solution. Itis multiple antenna system, in Bits per Channel Use, to be

also easily verified that this general equation reduces to the . 1 k1 N
. X L2 (k —1)! (-1)PT p—m 4k —1
corresponding equation givenin [1] forthe caseef t = 1. C = logy(e) Y [ — g ( k—1-p ) x
It may be observed via numerical evaluation of the cut off P 0 =0
i A e —m . n—m-+p+q (2
value, thaty, lies in the ran_gé) < < _1, and specifically (n ) +k 1) (n-m+p+a)l |Er(x)+ 3 L() (42)
79 — 1 asy — oo. This was previously observed for k=1-q i=1
single transmitter antenna systems by Alouini in [1].
Evaluation of Capacity NUMERICAL RESULTS
Substituting (9) into (8) we can show that the capacity of the Figure 1 plots the capacity of a multiple antenna system for
multiple antenna system is m = 2 with different values of: versus the SNR. Shown on
) the same figure is the capacity of the corresponding multi-
C = m log (7 ) f(7) dv, (38) ple antenna system with only receiver CSI obtained in [6].
Yo

While capacity of a multiple antenna system with CSl at both
where~, is the cut off transmission value corresponding to transmitter and receiver is invariant to which end of the link
any eigenvalue derived in the previous section gng) is has the larger number of antennas, this is not the case with
the pdf of any scaled, un-ordered eigenvalue given in earlier. only receiver CSI. Thus, Fig. 1 (a) specifically corresponds
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Figure 2. Dependence of Multiple Antenna System Capacity on the Relative Values os the Number of Antennas. (a)
Versus Maximum Number of Antennas ( n). (b) Versus Minimum Number of Antennas ( m). n = 18.

to the case when the receiver CSI system Nas= m and CONCLUSIONS

Ngr = n, while 1 (b) corresponds to the case when the re- In this paper we have derived the capacity of multiple an-

ceiver CSI only system ha&; = n and Ng = m. Itis tenna systems in the presence of Rayleigh flat fading under
clear from Fig. 1 (a) that large capacity improvements can the assumption that CSl is available at both transmitter and
be achieved with adaptive power and rate allocation when receiver. We obtained the optimal power and rate adaptation
CSl is available at both ends of the system as compared toscheme for such a system with the determining equation for
the case when there is only receiver CSl available. the associated cut-off transmission value. By numerically

Note that, the receiver CSI only system has a lower capacity €valuating the derived capacity expressions it was shown
in the case of Fig. 1 (b) than in the case of Fig. 1 (a) that large capacity gains are available with optimal power
resulting in a larger capacity gap compared to our adaptive @nd rate adaptation scheme when CSl is available at both
transmission system. In fact, it was shown in [6] that the €nds, compared to the receiver CSl only case.

asymptotic capacity of the receiver CSI only system in the

Fig. 1 (a) case idog(l + Nz#) while in the Fig. 1 ~ REFERENCES

(b) system it islog(1 + ). However, the capacity of the ~ [1] M. S. Alouini, and A. J. Goldsmith, *Capacity of

adaptive transmission scheme is invariant under the swapping ~ Rayleigh fading channels under different adaptive

of the transmitter and receiver antennae and also larger than ~ fransmission and diversity-combining techniques,”

either of the cases in receiver CSI only system. IEEE Trans. Veh. Technol., vol. 48, pp. 1165 - 1181,

- . July 1999.
Next, in Fig. 2 we plot the dependence of the multiple an- o . .
tenna system capacity on the relative values of the number[z] C{,|Er1d?\%’Glfg\l:,miIﬁlgEZi,vT\l;i?sczngzntla&;l;umtIOHS7
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) : . N Stat., vol. 35, pp. 475-501, June 1964.
is available only at the receiver end of the communications M . . .
link [6]. [6] I. E. Telatar, “Capacity of multi-antenna Gaussian
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Finally, Fig. 2 (b) shows the capacity against the minimum 585-595 Nov. 1999.
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fixed but large maximum number of antennaat the other
end of the link. Figure 2 (b) corresponds#o= 18. As
observed in the case of CSI available only at the receiver in
[6], from Fig. 2 (b) we see that again the capacity is almost
linear in the minimum number of antennae
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