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Abstract

This paper studies how the capacity of a static multichannelnetwork scales as the number of nodes,n, increases.

Gupta and Kumar have determined the capacity of single channel networks, and those bounds are applicable to

multichannel networks as well, provided each node in the network has a dedicated interface per channel. In this

work, we establish the capacity of general multichannel networks wherein the number of interfaces,m, may be

smaller than the number of channels,c. We show that the capacity of multichannel networks exhibits different

bounds that are dependent on the ratio betweenc andm. When the number of interfaces per node is smaller than

the number of channels, there is a degradation in the networkcapacity in many scenarios. However, one important

exception is a random network with up toO (log n) channels, wherein the network capacity remains at the Gupta

and Kumar bound ofΘ
(

W
√

n

log n

)

bits/sec, independent of the number of interfaces available at each node. Since

in many practical networks, number of channels available issmall (e.g., IEEE 802.11 networks), this bound is of

practical interest. This implies that it may be possible to build capacity-optimal multichannel networks with as

few as one interface per node. We also extend our model to consider the impact of interface switching delay, and

show that in a random network with up toO (log n) channels, switching delay may not affect capacity if multiple

interfaces are used.

∗This report is an extended version of the Mobicom 2005 paper [1]. This work was funded in part by National Science Foundation grants

ANI-0125859 and CNS 06-27074, and a Vodafone Graduate Fellowship.
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I. INTRODUCTION

In this report, we study the asymptotic capacity of multichannel wireless networks with varying number of

interfaces. Past research on wireless network capacity [2], [3] has typically considered wireless networks with a

single channel, although the results are applicable to a wireless network with multiple channels as well, provided

that at each node there is a dedicated interface per channel.With a dedicated interface per channel, a node can use

all the available channels simultaneously. However, the number of available channels in a wireless network can be

fairly large, and it may not be feasible to have a dedicated interface per channel at each node. When nodes are

not equipped with a dedicated interface per channel, thencapacity degradationmay occur, compared to using a

dedicated interface per channel.

In this report, we characterize the impact of number of channels and interfaces per node on the network capacity,

and show that in certain scenarios, even with only a single interface per node, there is no capacity degradation. This

implies that it may be possible to build capacity-optimal multichannel networks with as few as one interface per

node. Our initial analysis assumes that the interface switching delay is zero, which may not be valid in practice.

Nevertheless, even when interface switching delay is accounted for, capacity-optimal performance can be achieved

by using only a few interfaces per node. In addition, if each node has a single interface that is never switched, then

there is a degradation in the network capacity. However, with only two interfaces per node, there is no capacity

degradation even if the interfaces are not switched.

The rest of this report is organized as follows. We present the channel and network model, as well as an overview

of the main results in Section II. We present related work in Section III. In Section IV, we establish the capacity of

multichannel networks under arbitrary network setting. Section V establishes the capacity of multichannel networks

under random network setting. Section VI characterizes theimpact of interface switching delay, and Section VII

studies the capacity when interfaces do not switch at all. Weconclude this report in Section VIII.

II. PRELIMINARIES

In this section, we first define the channel and network model,and then provide an overview of results.

A. Channel and interface model

We consider a static wireless network containingn nodes. In our model there arec channels, and we assume

that every node is equipped withm interfaces,1 ≤ m ≤ c. We assume that an interface is capable of transmitting

or receiving data on any one channel at a given time. We use thenotation(m, c)-network to refer to a network

with m interfaces per node, andc channels.

We define two channel models to represent the data rate supported by each channel:
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Channel Model 1:In model 1, we assume that the total data rate possible by using all channels is W . The

total data rate is divided equally among the channels, and therefore the data rate supported by any one of thec

channels isW/c. This was the channel model used by Gupta and Kumar [2], and weprimarily use this model in

our analysis. In this model, as the number of channels increases, each channel supports a smaller data rate. This

model is applicable to the scenario where the total available bandwidth is fixed, and new channels are created by

partitioning existing channels.

Channel Model 2:In model2, we assume that each channel can support a fixed data rate ofW , independent of

the number of channels. Therefore, the aggregate data rate possible by using allc channels isWc. This model is

applicable to the scenario where new channels are created byutilizing additional frequency spectrum.

The capacity results are derived using channel model1. However, all the derivations are applicable for channel

model2 as well, and the results for model2 are obtained by replacingW in the results of model1 by Wc.

B. Network and traffic model

We study the capacity of static multichannel wireless networks under the two settings introduced by Gupta and

Kumar [2].

Arbitrary Networks:In the arbitrary network setting, the location of nodes, andtraffic patterns can be controlled.

Since any suitable traffic pattern and node placement can be used, the bounds for this scenario are applicable to any

network. Therefore, the arbitrary network bounds may be viewed as thebest casebounds on network capacity, as

the bounds are applicable to all networks. The network capacity is measured in terms of “bit-meters/sec” (originally

introduced by Gupta and Kumar [2]). The network is said to transport one “bit-meter/sec” when one bit has been

transported across a distance of one meter in one second.

Random Networks:In the random network setting, node locations are randomly chosen, i.e. independently and

uniformly chosen, on the surface of an unit torus. Each node sets up one flow to a randomly chosen destination1.

The network capacity is defined to be the aggregate throughput over all the flows in the network, and is measured

in terms of bits/sec.

C. Definitions

We use the following notation [4] to represent asymptotic bounds:

1) f(n) = O(g(n)) implies that there exists some constantd and integerN such thatf(n) ≤ dg(n) for n > N .

1Gupta and Kumar [2] choose a random point and then choose the node nearest to the chosen point as the destination. Our modelis

slightly different as we directly choose a random node as thedestination.
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2) f(n) = o(g(n)) implies thatlimn→∞
f(n)
g(n) = 0.

3) f(n) = Ω(g(n)) implies g(n) = O(f(n)).

4) f(n) = ω(g(n)) implies g(n) = o(f(n)).

5) f(n) = Θ(g(n)) implies f(n) = O(g(n)) andg(n) = O(f(n)).

6) MINO (f(n), g(n)) is equal tof(n), if f(n) = O(g(n)), else, is equal tog(n).

The bounds for random networks holdwith high probability (whp). In this report,whp implies “with probability

1 whenn → ∞.”

D. Main Results

Gupta and Kumar [2] have shown that in an arbitrary network, network capacity scales asΘ (W
√

n) bit-

meters/sec, and in a random network, the network capacity scales asΘ
(

W
√

n
log n

)

bits/sec. Under the channel

model 1, which was the model used by Gupta and Kumar [2], the capacityof a network with a single channel

and one interface per node (that is, a(1, 1)-network in our notation) is equal to the capacity of a network with c

channels andm = c interfaces per node (that is, a(c, c)-network). This equivalence arises because thec interfaces

can operate in parallel over channels of data rateW
c

to mimic the operation of one interface operating over a channel

of data rateW (this is formally proved in Lemma 1). Furthermore, under both channel models, the capacity of a

(c, c)-network is at least as large as the capacity of a(m, c)-network, whenm ≤ c (this is trivially true, by not

usingc − m interfaces in the(c, c)-network).

In the results presented in this report, we capture the impact of using fewer thanc interfaces per node by

establishing theloss in capacity, if any, of a(m, c)-network in comparison to a(c, c)-network. We show that there

are distinct capacity regions, the boundaries of which depend on the ratio c
m

, and not on the exact values of either

c or m. Here we present an overview of the main results, under channel model1.

1. Results for arbitrary network:The network capacity of a(m, c)-network has two regions (see Figure 1) as

follows (from Theorem 2 and Theorem 4):

1) When c
m

is O(n), the network capacity isΘ
(

W
√

nm
c

)

bit-meters/sec (segment A-B in Figure 1). Compared

to a (c, c)-network, there is a capacity loss by a factor of1 −
√

m
c

.

2) When c
m

is Ω(n), the network capacity isΘ
(

W nm
c

)

bit-meters/sec (line B-C in Figure 1). In this case, there

is a larger capacity degradation than case 1, asnm
c

≤
√

nm
c

when c
m

≥ n.

Therefore, there is always a capacity loss in arbitrary networks whenever the number of interfaces per node is fewer

than the number of channels.

2. Results for random network:The network capacity of a(m, c)-network has three regions (see Figure 2) as follows

(from Theorem 6 and Theorem 9):
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1) When c
m

is O(log n), network capacity isΘ
(

W
√

n
log n

)

bits/sec (segment D-E in Figure 2). In this case,

there is no losscompared to a(c, c)-network. Hence, in many practical scenarios wherec may be constant

or small,a single interface per node suffices.

2) When c
m

is Ω(log n) and alsoO

(

n
(

log log n
log n

)2
)

, the network capacity isΘ
(

W
√

nm
c

)

bits/sec (segment

E-F in Figure 2). In this case, there is some capacity loss. Furthermore, in this region, the capacity of a

(m, c)-random networkis the sameas that of a(m, c)-arbitrary network (segment E-F in Figure 2 overlaps

part of segment A-B in Figure 1), implying that “randomness”does not incur a capacity penalty.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, the network capacity isΘ
(

Wnm log log n
c log n

)

bits/sec (line F-G in Figure 2). In

this case, there is a larger capacity degradation than case 2. Furthermore, in this region, the capacity of a

(m, c)-random networkis smaller thanthat of a(m, c)-arbitrary network, in contrast to case 2.

3. Impact of switching delay:The results presented above are derived under the assumption that there is no delay

in switching an interface from one channel to another. However, we show that in a random network with up to

O (log n) channels, even if interface switching delay is considered,the network capacity is not reduced, provided a
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few additional interfaces are provisioned for at each node.This implies that it may be possible to hide the interface

switching delay by using extra interfaces in conjunction with carefully designed routing and transmission scheduling

protocols.

4. Impact of keeping interfaces fixed:In practice, protocol implementation can be simplified if interfaces are fixed

to channels. We show that if every node has a single interface, and the interface is never switched (after initially

assigning the interface to some channel), then there is a loss in the network capacity. This loss in capacity can be

avoided, by having only two interfaces per node, even if the interfaces do not switch.

III. R ELATED WORK

In their seminal work, Gupta and Kumar [2] established the capacity of ad hoc wireless networks. The results are

applicable to single channel wireless networks, or multichannel wireless networks where every node has a dedicated

interface per channel. We extend the results of Gupta and Kumar to those multichannel wireless networks where

nodes may not have a dedicated interface per channel, and we also consider the impact of interface switching delay

on network capacity.

Grossglauser and Tse [3] showed that mobility can improve network capacity, though at the cost of increased

end-to-end delay. Subsequently, other research [5], [6] has analyzed the trade-off between delay and capacity in

mobile networks. Gamal et al. [4] characterize the optimal throughput-delay trade-off for both static and mobile

networks. In this thesis, we adapt some of the proof techniques presented by Gamal et al. [4] to the multichannel

capacity problem. Lin et al. [7], [8] also study the throughput-delay trade-off in wireless networks.

Recent results have shown that the capacity of wireless networks can be enhanced by introducing infrastructure

support [9]–[11]. Other approaches for improving network capacity include the use of directional antennas [12], and

the use of unlimited bandwidth resources (UWB), albeit withpower constraints [13], [14]. Li et al. [15] have used

simulations to evaluate the capacity of multichannel networks based on IEEE 802.11. Other research on capacity is

based on considerations of alternate communication models[16]–[18], but do not consider the multichannel scaling

problem.

Kodialam et al. [19] have studied the throughput achievablein a multichannel multi-interface network by using

constrained optimization techniques. Their work is applicable to scenarios where the network topology and traffic

patterns are known a priori. Alicherry et al. [20] have considered a similar multichannel multi-interface problem,

but for a restricted class of mesh networks (where all trafficis directed toward gateway nodes). Zhang et al. [21]

have studied the benefits of jointly optimizing both routingand scheduling in multichannel multi-interface networks.

All these works are well suited for network planning, but areless useful in understanding scaling properties of the

network.
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IV. CAPACITY RESULTS FOR ARBITRARY NETWORKS

We assume that all nodes transmit at the same data rate, and use the same transmission power. We model the

impact of interference by using the protocol model proposedby Gupta and Kumar [2]. The transmission from a

node i to a nodej on some channelx is successful, if for every other nodek simultaneously transmitting on

channelx, the following condition holds:

d(k, j) ≥ (1 + ∆)d(i, j), ∆ > 0

where d(i, j) is the distance between nodesi and j, and ∆ is a “guard” parameter to ensure that any other

concurrently transmitting nodes are sufficiently farther away from the receiver to prevent excessive interference.

It is shown in [2] that the protocol model is equivalent to an alternate physical model that is based on received

Signal-to-Interference-Noise Ratio (SINR) (when path loss exponent is greater than2). Therefore, the results in

this thesis are applicable under the physical model as well.We do not consider other physical layer characteristics

such as channel fading in our analysis. We derive the capacity results for arbitrary and random networks under the

assumption that there is no switching delay. We extend our model to consider the impact of switching delay in

Section VI.

In an arbitrary network, the location of nodes, and traffic patterns can be controlled. Recall that the network is

said to transport one “bit-meter/sec” when one bit has been transported across a distance of one meter in a second.

The network capacity of an arbitrary network is measured in terms of bit-meters per second, instead of bits per

second. The bit-meters/sec metric is a measure of the “work”that is done by the network in transporting bits. In

the case of random networks, the average distance traveled by any bit isΘ(1), and therefore the “bit-meters/sec”

and “bits/sec” capacity is of the same order.

We assume thatn nodes can be located anywhere on the surface of a torus of unitarea, as in [4]. The assumption

of a torus enables us to avoid technicalities arising out of edge effects, but the results are applicable for nodes

located on an unit square as well. We first establish an upper bound on the network capacity of arbitrary networks,

and then construct a network to prove that the bound is tight.

A. Upper bound on capacity

The capacity of multichannel arbitrary networks is limitedby two constraints (described below), and each of

them is used to obtain a bound on the network capacity. The minimum of the two bounds (the bounds depend on

ratio between the number of channelsc and the number of interfacesm) is an upper bound on the network capacity.

While there may be other constraints on capacity as well, theconstraints we consider are sufficient to provide a

tight bound. Later in this section, we will present a lower bound that matches the upper bound established by the
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two constraints, which validates our claim that the constraints are tight. We derive the bounds under channel model

1, although the derivation can be applied to channel model2 as well2.

Constraint 1 – Interference constraint:The capacity of any wireless network is constrained by interference.

Since the wireless channel is a shared medium, under the assumed protocol model of interference, two nodes

simultaneously receiving a packet from two different transmitters must have a minimum separation between them,

which depends on∆. This implies that there is a bound on the maximum number of simultaneous transmissions

in the network. Based on this observation, using the proof techniques presented in [2] with some modifications to

account for multiple interfaces and channels, one bound on the network capacity isO
(

W
√

nm
c

)

bit-meters/sec.

The detailed derivation is below in Theorem 1.

Theorem 1:An upper bound on the capacity of a(m, c)-network under the arbitrary network setting isO
(

W
√

nm
c

)

bit-meters/sec under channel model1.

Proof: We prove the result under channel model1. The proof is based on a proof in [2]. We assume that nodes

are synchronized, and slotted transmissions of durationτ are used. We assume that each source node originatesλ

bits/sec. Let the average distance between source and destination pairs bēL. Therefore, the capacity of the network

is λnL̄ bit-meters/sec.

We consider any time period of length one second. In this timeinterval, consider a bitb, 1 ≤ b ≤ λn. We assume

that bit b traversesh(b) hops on the path from its source to its destination, where theh-th hop traverses a distance

of rh
b . Since the distance traversed by a bit from its source to its destination is at least equal to the length of the

line joining the source and the destination, by summing overall bits we obtain,

λn
∑

b=1

h(b)
∑

h=1

rh
b ≥ λnL̄ (1)

Let us defineH to be the total number of hops traversed by all transmitted bits in a second, i.e.,H =
∑λn

b=1 h(b).

Therefore, the number of bits transmitted by all nodes in a second (including bits relayed) is equal toH. Since

each node hasm interfaces, and each interface transmits over a channel with rateW/c (assuming channel model

1), the total bits that can be transmitted by all nodes over allinterfaces is at mostWmn
2c

(Transporting a bit across

one hop requirestwo interfaces, one each at the transmitting and the receiving nodes). Hence, we have,

H ≤ Wmn

2c
(2)

Under the protocol model, a transmission over a hop of lengthr is successful only if there is no other node

transmitting within a distance of(1 + ∆)r of the receiver. Suppose node A is transmitting a bit to node B, while

node C is simultaneously transmitting a bit to node D, and both the transmissions are over a common channel.

Then, using the protocol interference model, both transmissions are successful only if

2Recall that the results under channel model2 can be obtained by replacingW with Wc in the results derived under channel model1.
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d(C,B) ≥ (1 + ∆)d(A,B)

d(A,D) ≥ (1 + ∆)d(C,D)

Adding the above two expressions together, and applying triangle inequality, we obtain,

d(B,D) ≥ ∆

2
(d(A,B) + d(C,D))

This implies that the receivers of two simultaneous transmissions have to be separated by a distance proportional

to the distance from their senders. This may be viewed as eachhop consuming a disk of radius∆2 times the length

of the hop around each receiver. Since the area “consumed” oneach channel is bounded above by the area of the

domain (1 sq meter), summing over all channels (which can in total potentially transportW bits) we have the

constraint,
λn
∑

b=1

h(b)
∑

h=1

π∆2

4
(rh

b )2 ≤ W (3)

which can be rewritten as,

λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 ≤ 4W

π∆2H
(4)

Since the expression on the left hand side is convex, we have,

(
λn
∑

b=1

h(b)
∑

h=1

1

H
rh
b )2 ≤

λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 (5)

Therefore, from (4) and (5),
λn
∑

b=1

h(b)
∑

h=1

rh
b ≤

√

4WH

π∆2
(6)

Substituting forH from (2), and using (1) we have,

λnL̄ ≤ W

√

2mn

π∆2c
(7)

This proves that the network capacity of an arbitrary network is O
(

W
√

nm
c

)

bit-meters/sec under channel model

1.

Constraint 2 – Interface bottleneck constraint:The capacity of a wireless network is also constrained by the

maximum number of bits that can be transmitted simultaneously over all interfaces in the network. Since each node

hasm interfaces, there are a total ofmn interfaces in the(m, c)-network. Each interface can transmit at a rate of

W
c

bits/sec. Also, the maximum distance a bit can travel in the network isO(1) meters. Hence, the total network

capacity is at mostO
(

W nm
c

)

bit-meters/sec. This bound is tight whenc
m

is Ω(n).
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Combining the two constraints, the network capacity isO
(

MINO

(

W
√

nm
c

,W nm
c

))

bit-meters/sec, under chan-

nel model1. Therefore, we have the following theorem on the network capacity of arbitrary networks (Figure 1

has a pictorial representation).

Theorem 2:The upper bound on the capacity of a(m, c)-arbitrary network under channel model1 is as follows:

1) When c
m

is O(n), network capacity isO
(

W
√

nm
c

)

bit-meters/sec.

2) When c
m

is Ω(n), network capacity isO
(

W nm
c

)

bit-meters/sec.

The result for channel model2 can be similarly derived, and is given by:

Theorem 3:The upper bound on the capacity of a(m, c)-arbitrary network under channel model2 is as follows:

1) When c
m

is O(n), network capacity isO (W
√

nmc) bit-meters/sec.

2) When c
m

is Ω(n), network capacity isO (Wnm) bit-meters/sec.

The network capacity of a(c, c)-network is O (W
√

n) bit-meters/sec under channel model1, which was the

result obtained by Gupta and Kumar [2]. When fewer interfaces are available, there is a capacity degradation by at

least a factor of1−
√

m
c

. Intuitively, the capacity degradation arises because thetotal bits that can be simultaneously

transmitted decreases.

B. Constructive lower bound

In this section, we construct a network to establish a lower bound on the network capacity. The lower bound

matches the upper bound, implying that the bounds are tight.We first establish two results that we use in the rest

of the report. The results are proved under channel model1, but hold for channel model2 as well.

Lemma 1:Supposem, c, c̃ are positive integers such thatc̃ = c
m

. Then, a(m, c)-network can support at least

the capacity supported by a(1, c̃)-network, under channel model1.

Proof: Consider a(m, c)-network. We group thec channels intõc groups (numbered from1 to c̃), with m

channels per group as shown in Figure 3. Specifically, channel group i, 1 ≤ i ≤ c̃, contains all channelsj such

that (i − 1)m + 1 ≤ j ≤ im.

Assume that time on the channels is divided into slots of duration τ . Consider any slots. Suppose a nodeX in

the (1, c̃)-network has its interface on some channeli, 1 ≤ i ≤ c̃, in slot s. We simulate this behavior in the(m, c)-

network by assigning them interfaces ofX in the slots to them channels in the channel groupi. In this fashion,

in any slot, them interfaces of any node in the(m, c)-network are mapped to a channel group. The aggregate data

rate of each channel group isWm/c = W/c̃ (sincec = mc̃). Therefore, a channel group in the(m, c)-network can

support the same data rate as a channel in the(1, c̃)-network. This mapping allows the(m, c)-network to mimic

the behavior of(1, c̃)-network; theWτ/c̃ bits sent on some channel in any time slots in the (1, c̃)-network can

be simulated by sendingWτ/c bits (in the same slots) on each of them channels in the corresponding channel

group of the(m, c)-network. Hence, a(m, c)-network can support the capacity of a(1, c̃) network, whenc = mc̃.
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Individual Channels Channel groups

Mapping

Group c̃

Group1
1

m

c = c̃m

(c̃ − 1)m + 1

Fig. 3. Lemma 1 construction: Forming̃c channel groups, withm channels per group, in a(m, c)-network.

Lemma 2:Supposem and c are positive integers. Then, a(m, c)-network can support at least1
2 the capacity

supported by a
(

1,
⌊

c
m

⌋)

-network, under channel model1.

Proof: Suppose
⌊

c
m

⌋

= c
m

. Then the result directly follows from the previous lemma. Otherwise,m < c, and

we usec′ = m
⌊

c
m

⌋

of the channels in the(m, c)-network, and ignore the rest of the channels. This can be viewed

as a(m, c′)-network, with a total data rate ofW ′ = W m
c

⌊

c
m

⌋

(as each channel supportsW
c

bits/sec). Using Lemma

1, a (m, c′)-network with total data rate ofW ′ can support at least the capacity of a
(

1,
⌊

c
m

⌋)

-network with total

data rate ofW ′. However, whenW ′ < W , the (m, c′)-network with total data rateW ′ can achieve only a fraction

W ′

W
of the capacity of a

(

1,
⌊

c
m

⌋)

-network with total data rateW (instead ofW ′). Now,

W ′

W
=

m

c

⌊

c

m

⌋

=

⌊

c
m

⌋

c
m

≥
⌊

c
m

⌋

⌊

c
m

⌋

+ 1
, since

c

m
≤
⌊

c

m

⌋

+ 1

≥ 1

2
, since

⌊

c

m

⌋

≥ 1

Hence, a(m, c)-network can support at least1
2 the capacity supported by a

(

1,
⌊

c
m

⌋)

network. Hence, asymptot-

ically, a (m, c)-network has the same order of capacity as a
(

1,
⌊

c
m

⌋)

-network.

We now provide the construction to establish that a capacityof Ω
(

MINO

(

W
√

nm
c

,W nm
c

))

bit-meters/sec is

achievable in a(1, c)-network, under the channel model1. The result is then extended to a(m, c)-network by using

Lemma 2.

Step 1:We consider a torus of unit area. Letk = min
(

c, n
8

)

. This implies thatk ≤ c. Partition the square area

into n
8k

equal-sized square cells, and place8k nodes in each cell. Since the total area is1, each cell has an area of

8k
n

, and sides of lengthl =
√

8k
n

.

Step 2:The 8k nodes within each cell are distributed by placingk nodes at each of the eight positions shown

in Figure 4. Nodes placed at locations S1, S2, S3, S4 act as senders, and nodes placed at remaining locations act
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R4

R2

S4

S3

R1

rr∆ r∆

l = 2(1 + 2∆)r

r(1 + ∆)

Fig. 4. The placement of nodes within a cell. There arek nodes at each of the labeled positions.

as receivers. The sender locations S1 through S4 are at a distance ofr∆ from the center of the cell (recall that∆

is the “guard” parameter from the protocol model of interference), wherer = l
2(1+2∆) = 1

(1+2∆)

√

2k
n

. The receiver

locations R1 through R4 are at a distance ofr(1 + ∆) from the center of the cell. Therefore, the distance between

S1-R1, S2-R2, S3-R3, and S4-R4 is equal tor. Each receiver location is at a distance ofr∆ from nearest edge of

the cell, and each sender location is at a distance ofr(1 + ∆) from the nearest edge of the cell.

Step 3:Label thek nodes in any location (S1 through S4, R1 through R4) as1 throughk. Thejth node in each

sender location,1 ≤ j ≤ k, communicates with thejth node in the nearest receiver location (at a distance ofr)

on channelj. Consider any pair of communicating nodes A and B that are located at, say, S1 and R1 respectively.

Then, the nearest senders within the cell, other than A (located at S1), which are sending on the same channel as

A are located at one of S2, S3, S4, and are at least a distance ofr(1+ ∆) away from B (located at R1). Similarly,

in every cell, senders are at leastr(1 + ∆) distance from the cell boundary. Therefore, senders in adjacent cells of

B are at least a distance ofr(1 + ∆) away from B as well. Hence, under the protocol model of interference, the

transmission between A and B is not interfered with by any other transmission in the network, and this property

holds for all communicating pairs.

From the above construction, there aren
2 pairs of nodes in the(1, c)-network, each transmitting at a rate of

W
c

over a distancer = 1
(1+2∆)

√

2k
n

. Hence, the total capacity of the network (summing over alln nodes) is

n
2

W
c

r = W
c

1
(1+2∆)

√

nk
2 bit-meters/sec. Recall thatk = min

(

c, n
8

)

. Substituting fork in the above derivation, we

obtain the capacity of a(1, c)-network to beΩ
(

MINO

(

W
√

n
c
,W n

c

))

bit-meters/sec under channel model1, since

∆ is a constant.

Using Lemma 2, the capacity of a(m, c)-network, under the arbitrary network setting and channel model 1, is

Ω

(

MINO

(

W
√

n
⌊ c

m
⌋ ,W

n
⌊ c

m
⌋

))

bit-meters/sec. Since1
⌊ c

m
⌋ ≥ 1

c

m

, we have the capacity of arbitrary networks to be
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Ω
(

MINO

(

W
√

mn
c

,W mn
c

))

bit-meters/sec, which leads to the following theorem:

Theorem 4:The achievable network capacity of a(m, c)-arbitrary network under channel model1 is as follows:

1) When c
m

is O(n), network capacity isΩ
(

W
√

nm
c

)

bit-meters/sec.

2) When c
m

is Ω(n), network capacity isΩ
(

W nm
c

)

bit-meters/sec.

The result for channel model2 can be similarly derived, and is given by:

Theorem 5:The achievable network capacity of a(m, c)-arbitrary network under channel model2 is as follows:

1) When c
m

is O(n), network capacity isΩ (W
√

nmc) bit-meters/sec.

2) When c
m

is Ω(n), network capacity isΩ (Wnm) bit-meters/sec.

The upper bound and lower bound of the capacity of arbitrary networks have the same order, indicating that the

bounds are tight.

C. Implications

A common scenario is when the number of channels is not too large ( c
m

= O(n)). Under this scenario, the

capacity of a(m, c)-network in the arbitrary setting scales asΘ
(

W
√

nm
c

)

under channel model1. Similarly,

under channel model 2, the capacity of the network scales asΘ (W
√

nmc). Under either model, the capacity of

a (m, c)-network goes down by a factor of1 −
√

m
c

, when compared with a(c, c)-network. Therefore, doubling

the number of interfaces at each node (as long as number of interfaces is smaller than the number of channels)

increases the channel capacity by a factor of only
√

2. Furthermore, the ratio betweenm and c demarcates the

capacity regions, rather than the individual values ofm and c. Increasing the number of interfaces may result in

a linear increase in the cost but only a sub-linear (proportional to square-root of number of interfaces) increase

in the capacity. Therefore, the optimal number of interfaces to use may be smaller than the number of channels

depending on the relationship between cost of interfaces and utility obtained by higher capacity.

Different network architectures have been proposed for utilizing multiple channels when the number of available

interfaces is smaller than the number of available channels[22]–[24]. The construction used in proving lower bound

shows that capacity is maximized when all channels are utilized. One architecture used in the past [22] is to use only

m channels whenm interfaces are available, leading to wastage of the remaining c−m channels. That architecture

results in a factor of1− m
c

loss in capacity which can be significantly higher than the optimal 1−
√

m
c

loss (when

c
m

= O(n)). Hence, in general, higher capacity may be achievable byarchitectures that use all channels, possibly

by dynamically switching channels.
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V. CAPACITY RESULTS FOR RANDOM NETWORKS

We assume thatn nodes are randomly located on the surface of a torus of unit area. Each node selects a destination

uniformly at random from the remaining nodes3, and sendsλ(n) bits/sec to the destination. The highest value of

λ(n) which can be supported byeverysource-destination pair with high probability is defined asthe per-node

throughputof the network. The traffic between a source-destination pair is referred to as a “flow”. Since there are

a total ofn flows, the network capacity is defined to benλ(n).

Note that each node picks a destination node randomly, and therefore, a node may be the destination of multiple

flows. Let D(n) be the maximum number of flows for which a node in the network isa destination. We use the

following result to boundD(n).

Lemma 3:The maximum number of flows for which a node in the network is a destination,D(n), is Θ
(

log n
log log n

)

,

with high probability.

Proof: The process of nodes selecting a random destination may be mapped to the well-known “Balls into

Bins” problem [25]. Each source node may be viewed as a “ball”, and each destination node may be viewed as

a “bin”. The process of selecting a destination node may be viewed as randomly dropping a “ball” into a “bin”.

Based on this mapping, the proof of the lemma follows from well-known results (cf. [25], Section 4).

A. Upper bound for random networks

The capacity of multichannel random networks is limited by three constraints, and each of them is used to obtain

a bound on the network capacity. The minimum of the three bounds (the bounds depend on ratio between the

number of channelsc and the number of interfacesm) is an upper bound on the network capacity. While there

may be other constraints on capacity as well, the constraints we consider are sufficient to provide a tight bound.

We derive the bounds under channel model1, but the results are applicable under channel model2 as well.

Constraint 1 – Connectivity constraint:The capacity of random networks is constrained by the need toensure that

the network is connected, so that every source-destinationpair can successfully communicate. Since node locations

are randomly chosen, there is some minimum transmission range each node should use to ensure that the network

is connected. Since all transmissions cover at least an areaproportional to the square of the minimum transmission

range, there is a bound on the number of simultaneous transmissions that can occur in the network. Based on this

observation, Gupta and Kumar [2] have presented one bound onthe network capacity to beO
(

W
√

n
log n

)

bits/sec.

This bound is applicable to multichannel networks as well.

3Recall that Gupta and Kumar [2] choose a random point and thenchoose the node nearest to the chosen point as the destination. Our

model is slightly different as we directly choose a random node as the destination.
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Constraint 2 – Interference constraint:A random network is a special case of an arbitrary network, and therefore

the arbitrary network constraints are applicable to randomnetworks as well. Therefore, the capacity of multichannel

random networks is also constrained by interference (this is same as the constraint 1 listed for arbitrary networks

in Section IV-A). This constraint was already captured in the upper bound for arbitrary networks, and we had

obtained a bound ofO
(

W
√

nm
c

)

bit-meters/sec. In a random network, each of then source-destination pairs are

separated by an average distance ofΘ(1) meter. Consequently, the network capacity of random networks is at

mostO
(

W
√

nm
c

)

bits/sec. We do not explicitly use the second arbitrary network constraint (“Interface bottleneck

constraint” from Section IV-A) in the random network proof as the bounds established by that constraint are not

tight, and that bound is subsumed by the bound for “destination bottleneck constraint” below.

Constraint 3 – Destination bottleneck constraint:The capacity of a multichannel network is constrained by the

data that can be received by a destination node. Consider a node X which is the destination of the maximum number

(that is,D(n)) of flows. Recall that in a(m, c)-network, each channel supports a data rate ofW
c

bits/sec. Therefore,

the total data rate at which X can receive data overm interfaces isWm
c

bits/sec. Since X hasD(n) incoming flows,

the data rate of the minimum rate flow is at mostWm
cD(n) bits/sec. Therefore, by definition ofλ(n), λ(n) ≤ Wm

cD(n) ,

implying that network capacity (which by definition isnλ(n)) is at mostO
(

Wmn
cD(n)

)

bits/sec. Substituting forD(n)

from Lemma 3, the network capacity is at mostO
(

Wmn log log n
c log n

)

bits/sec.

The bound obtained from constraint 3 is applicable to any network, including mobile networks, as long as

the destination of every flow is randomly chosen among the nodes in the network. Even whenm = c, this bound

implies that the per-flow throughput,λ(n), is at mostO
(

W log log n
log n

)

bits/sec. Previous results on capacity of mobile

networks [3], [4], [26] have stated a per-flow throughput ofO(W ) bits/sec is possible, as in their models, each

node does not randomly select a destination node. Recall that in our work we choose the destination of a flow

randomly from amongn − 1 possible destinations. Considering the discussion above,the O(W ) bits/sec bound

with mobility cannot apply when destination nodes are randomly chosen. The previous results for mobile networks

hold under other models of selecting destination nodes, wherein each node is the destination of at mostO(1) flows

(for example, such a constraint is satisfied when permutation routing is used).

Combining the above three bounds, the capacity of a random network, under channel model1, is upper bounded

by O

(

MINO

(

W
√

n
log n

,W
√

nm
c

, Wmn log log n
c log n

))

bits/sec. From this, we have the following theorem on the upper

bound on capacity of random networks (Figure 2 has a pictorial representation).

Theorem 6:The upper bound on the capacity of a(m, c)-random network under channel model1 is as follows:

1) When c
m

is O(log n), network capacity isO
(

W
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO
(

n
(

log log n
log n

)2
)

, network capacity isO
(

W
√

nm
c

)

bits/sec.
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3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, the network capacity isO
(

Wmn log log n
c log n

)

bits/sec.

The result for channel model2 can be similarly derived, and is given by:

Theorem 7:The upper bound on the capacity of a(m, c)-random network under channel model2 is as follows:

1) When c
m

is O(log n), network capacity isO
(

Wc
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO
(

n
(

log log n
log n

)2
)

, network capacity isO (W
√

nmc) bits/sec.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, the network capacity isO
(

Wmn log log n
log n

)

bits/sec.

An interesting observation from the upper bound result is that as long asc
m

is O(log n), the number of interfaces

has no impact on channel capacity. This implies that when thenumber of channels isO(log n) (which is the

common case today), there is no loss in network capacity evenif each node has a single interface.

B. Constructive lower bound

The lower bound is established by constructing a routing scheme and a transmission schedule for any random

network. The lower bound matches the upper bound implying that the bounds are tight. We will provide a

construction for a(1, c)-network (a network wherein each node has a single interface) under channel model1,

and then invoke Lemma 2 to extend the result to a(m, c)-network. The steps involved in the construction are

described next.

Cell construction

The surface of the unit torus is divided using a square grid into square cells (see Figure 5), each of areaa(n),

similar to the approach used in [4]. The key difference in ourwork from [4] is that the size of the cell,a(n), varies

with the number of channels, and has to be carefully chosen tomeet multiple constraints (which are described

later in the text). In particular, we seta(n) = min

(

max
(

100 log n
n

, c
n

)

,
(

1
D(n)

)2
)

, whereD(n) = Θ
(

log n
log log n

)

as described before. Intuitively, the three values that influencea(n) are based on the three constraints that were

described in the upper bound proof: cell size needed to ensure connectivity, cell size needed when capacity is

constrained by interference, and cell size needed when capacity is constrained by the maximum number of flows

to any destination node, respectively.

We need to bound the number of nodes that are present in each cell, which is derived in Lemma 4.

Lemma 4: If a(n) ≥ 100 log n
n

, then each cell hasΘ (na(n)) nodes per cell, with high probability.

Proof: A similar result was stated in [4] without proof. Here we provide a proof based on VC-theory (see [27]

for details on VC-theory), similar to the approach used by Gupta and Kumar [2]. The total number of square cells

is 1
a(n) . Since nodes are randomly located on the torus, the probability that any given node will lie in a specific

cell is a(n). We want to derive bounds on number of nodes ineverycell in the square grid, which requires a proof

of uniform convergence. The set of axis-parallel squaresC are known to have VC-dimension 3. By applying the
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Fig. 5. Routing through cells: Packets are routed first alonga row till the destination column is reached, and then along the column to the

destination cell.

Vapnik-Chervonekis theorem [28], similar to the approach used in [2], we have the following bound on the number

of nodesNC in any cellC:

Prob

(

sup
C∈C

∣

∣

∣

∣

NC

n
− a(n)

∣

∣

∣

∣

≤ 50 log n

n

)

> 1 − 50 log n

n
(8)

where the constants in the above expression have been carefully chosen to satisfy the Vapnik-Chervonekis theorem.

The above result implies that with high probability, we have

na(n) − 50 log n ≤ NC ≤ na(n) + 50 log n

provided thata(n) ≥ 100 log n
n

.

Hence, we can conclude that the number of nodes in any cell isΘ(na(n)) with high probability, as long as

a(n) ≥ 100 log n
n

.

By construction, we ensure thata(n) ≥ 100 log n
n

for largen becausemax
(

100 log n
n

, c
n

)

is at least100 log n
n

, and
(

1
D(n)

)2
is asymptotically at least as large as100 log n

n
as long asD(n) = O

(

√

n
100 log n

)

. Thus, with our choice

of a(n), Lemma 4 holds for suitably largen, and each cell hasΘ (na(n)) nodes per cell,whp.

The transmission range4 of each node,r(n), is set to be
√

8a(n). With this transmission range, a node in one

cell can communicate with any node in its eight neighboring cells. Note that when the cell sizea(n) increases,

larger transmission range is required, asr(n) is dependent ona(n).

4Transmission range is defined to be the maximum distance overwhich any node can communicate.
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A transmission originating from a node S interferes with another transmission from A destined to B, only if S

is within a distance of(1 + ∆)r(n) of receiver B (using the interference definition of protocolmodel). Since the

distance between A and B is at mostr(n), the distance between the two transmitters, S and A, must be less than

(2 + ∆)r(n) if the transmissions were to interfere. Hence, any transmission can possibly interfere with only those

transmissions from transmitters within a distance of(2+∆)r(n). Therefore, nodes in a cell can be interfered with by

only nodes in cells within a distance of(2+∆)r(n), and this interfering area can be completely enclosed in a larger

square of side3(2 + ∆)r(n) (this is a loose bound). Consequently, there are at most(3(2+∆)r(n))2

a(n) = 72(2 + ∆)2

interfering cells (recallr(n) =
√

8a(n)). Hence, the number of interfering cells,kinter ≤ 72(2+∆)2, is a constant

that only depends on∆ (and is independent ofa(n) andn).

Routing Scheme

We use a “row-column” strategy for routing the packets (cf. [18]). A random cell is chosen as the origin of a

cell co-ordinate system. Each cell is assigned X and Y co-ordinates, such that the co-ordinate values change by

1 per cell (along each axis from the origin). The X-axis is assumed to be along a line from east to west, and the

Y-axis is assumed to be along a line from north to south. To route from a node in a cell with co-ordinates(x1, y1)

to a node in a cell with co-ordinates(x2, y2), the packets are first sent east along the row containing the source

till it intersects with the column containing the destination (i.e., follow along the row till the X-coordinate of the

cell is x2). After that, packets are sent south along the column containing the destination till the destination cell is

reached. Figure 5 shows an example of the cells used to route data for a flow between sourceS and destinationD.

In previously proposed constructions for proving lower bound on capacity [2], [4], it was immaterial which

node in a chosen cell forwarded packets for some flow. However, such an approach may “overload” certain nodes,

leading to capacity degradation, when the number of interfaces per node is smaller than the number of channels.

Consequently, it is important to ensure that the routing load is distributed among the nodes in a cell. This is a key

extension to the routing procedure used in earlier capacityresults [2], and the extension is described next.

For each flow passing through a cell, one node in the cell is “assigned” to the flow. The assigned node of a

flow in a cell is the only node in that cell which may receive/transmit data along that flow. The assignment is done

using aflow distribution procedureas below:

Step 1 – Assign source and destination nodes:For any flow that originates in a cell, the source nodeS is assigned

to the flow (S is necessarily in the originating cell). Similarly, for anyflow that terminates in a cell, the destination

nodeD is assigned to the flow. Since a single node in each cell is allowed to receive or transmit data for a flow,

it is required that the source and destination nodes be assigned to flows originating or terminating from them.

Step 2 – Balance distribution of remaining flows:After step 1 is complete, we are left with only those flows that

pass through a cell. Each such remaining flow passing througha cell is assigned to the node in the cell that has
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the least number of flows assigned to it so far. This step balances the assignment of flows to ensure that all nodes

are assigned (nearly) the same number of flows. The node assigned to a flow will receive packets from some node

in the previous cell and send the packet to a node in the next cell.

Each node is the originator of one flow. Each node is the destination of at mostD(n) flows, which by Lemma 3

is Θ
(

log n
log log n

)

. Therefore, step 1 of the flow distribution procedure assigns to each node at most1 + D(n) flows.

We use the following lemma to bound the number of flows that pass through any cell when using the routing

strategy described above.

Lemma 5:When the row-column routing is used, anda(n) > log n
n

, the maximum number of flows that pass

through any cell (including flows originating and terminating in the cell) isO
(

n
√

a(n)
)

, with high probability.

Proof: See Appendix I for the proof.

The bound from the lemma always holds because by construction we ensure thata(n) ≥ 100 log n
n

. Step 2 of the

flow distribution procedure carefully assigns the remaining flows among the nodes in the cell to ensure that all

nodes end up with nearly same number of flows. By Lemma 4, each cell hasΘ (na(n)) nodes, and by Lemma 5

at mostO
(

n
√

a(n)
)

flows pass through a cell. Therefore, step 2 will assign to anynode in the network at most

O

(

1√
a(n)

)

flows. Therefore the total flows assigned to any node is at mostO

(

1 + D(n) + 1√
a(n)

)

. Based on

the rules to seta(n), described earlier, the maximum value ofa(n) is at most
(

1
D(n)

)2
, which implies 1√

a(n)
is

at leastD(n). Hence, the total flows assigned to any node is always asymptotically dominated by 1√
a(n)

, and is

therefore equal toO
(

1√
a(n)

)

flows.

Scheduling transmissions

The transmission scheduling scheme is responsible for generating a transmission schedule for each node in the

(1, c)-network that satisfies the following constraints:

Constraint 1:When a nodeX transmits a packet to a nodeY over a channelj for some flow,X andY should

not be scheduled to transmit/receive at the same time for anyother flow (since each node is assumed to have a

single interface in the construction).

Constraint 2:Any two simultaneous transmissions on any channel should not interfere.

The multichannel construction differs from the mechanismsused in earlier constructions [2], [4] in two ways.

First, the scheduling is on a per-node basis since flows are distributed among nodes, whereas in the past work it

was sufficient to schedule on a per-cell basis. Second, sincethere is a single interface, butc channels are available

(recall that we are assuming a(1, c)-network for now), the schedule has to additionally ensure that at most a single

transmission/reception is scheduled for a node at any time (constraint 1).
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We build a suitable schedule using a two-step process. In thefirst step, we satisfy constraint 1 by scheduling

transmissions in “edge-color” slots so that at every node during any edge-color slot, at most one transmission or

reception is scheduled. In the second step, we satisfy constraint 2 by dividing each edge-color slot into “mini-slots”,

and assigning mini-slots to channels such that any scheduled transmission is interference-free. By using the two-step

process, each transmission in a mini-slot satisfies both constraint 1 and constraint 2.

Step 1 – Build a routing graph:We build a graph, called the “routing graph”, whose verticesare the nodes in the

network. One edge is inserted between all node pairs, sayA andB, for every flow on whichA andB are consecutive

nodes (the routing scheme for selecting nodes along a flow wasdescribed earlier). Therefore, by this construction,

every hop5 in the network along any flow is associated with one edge in therouting graph. The resulting routing

graph is a multi-graph6 in which each node has at mostO

(

1√
a(n)

)

edges, since each flow through a node can

result in at most two edges, one incoming and one outgoing, and we have already shown that each node is assigned

to at mostO
(

1√
a(n)

)

flows. It is a well-known result [29] that a multi-graph with at most e edges per vertex

can be edge-colored7 with at most3e
2 colors. Therefore, the routing graph can be edge colored with at most some

f = O

(

1√
a(n)

)

colors.

We use edge coloring to ensure that when a transmission is scheduled along an edge, the interfaces on the nodes

at either end of the edge are free, thereby satisfying constraint 1. We divide every 1 second period intof (which is

O

(

1√
a(n)

)

) “edge-color” slots, each of length1
f

(which is Ω
(

√

a(n)
)

) seconds. Each of these edge-color slots is

associated with an unique edge color. An edge is scheduled for transmission some time during the slot associated

with its edge color (the exact duration of transmission is decided in step 2). Since edge coloring ensures that at a

vertex, all edges connected to the vertex use different colors, each node will have at most one transmission/reception

scheduled in any edge-color slot. By construction, each edge corresponds to a hop in the network. Therefore this

scheme ensures that during every 1 second interval, along any flow in the network, one transmission is scheduled

on each hop of a flow.

Step 2 – Build an interference graph:In step 2, each edge-color slot is further sub-divided into “mini-slots” as

explained below, and every node has an opportunity to transmit in some mini-slot. We develop a schedule for using

mini-slots, which satisfies constraint 2. The schedule decides on which mini-slot within an edge-color slot and on

what channel a node may transmit, and the same schedule is used in every edge-color slot.

We build another graph, called the “interference graph”, wherein, vertices are nodes in the network, and there

is an edge between two nodes if they may interfere with each other. Since every cell has at most some constant

5A hop is a pair of consecutive nodes on a flow.
6A graph with possibly multiple edges between a pair of nodes.
7Edge-coloring requires any two edges incident on a common vertex to use different colors.
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Mini−slot
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c

c−1

One Second 

Edge−color slot

Fig. 6. Transmission schedule: Every hop along every flow is assigned to exactly one edge-color slot in each one second interval. Within

the edge-color slot assigned to a hop, a specific mini-slot ischosen during which the transmitter node on that hop may transmit.

kinter number of cells that may interfere with each other, and each cell hasΘ (na(n)) nodes, each node has at

mostg = O (na(n)) edges in the interference graph. It is well-known that a graph with maximum degreee can be

vertex-colored8 with at moste + 1 colors [29]. Therefore, the graph can be vertex-colored with someO (na(n))

colors, i.e., at mostk1na(n) colors for some constantk1. Transmissions by two nodes assigned the same vertex-

color do not interfere with each other. Hence, they can be scheduled to transmit on the same channel at the same

time. On the other hand, nodes colored with different colorsmay interfere with each other, and need to be scheduled

either on different channels, or at different time slots on the same channel.

We divide each edge-color slot into
⌈

k1na(n)
c

⌉

mini-slots on every channel, and number the slots on each channel

from 1 to
⌈

k1na(n)
c

⌉

. There is a total ofc
⌈

k1na(n)
c

⌉

mini-slots across thec channels. Channels are numbered from

1 to c. A node which is allocated a colorp, 1 ≤ p ≤ k1na(n) is allowed to transmit in mini-slot
⌈p

c

⌉

on channel

(p mod c) + 1. The node actually transmits if the edge-coloring has allocated an outgoing edge from the node to

the corresponding edge-color slot, in which case a packet issent in that mini-slot on that outgoing edge.

Figure 6 depicts a schedule of transmissions on the network developed after the two-step scheduling process. The

first step allocates one edge-color slot for each hop of everyflow. The second step decides within each edge-color

slot when the transmitter node on a hop may actually transmita packet.

From step 1, each edge-color slot is of lengthΩ
(

√

a(n)
)

seconds. From step 2, each edge-color slot is sub-

divided into
⌈

k1na(n)
c

⌉

mini-slots. Therefore, each mini-slot is of lengthΩ

( √
a(n)

⌈ k1na(n)

c
⌉

)

seconds. Each channel can

transmit at the rate ofW
c

bits/second. Hence, in each mini-slot,λ(n) = Ω

(

W
√

a(n)

c⌈k1na(n)

c
⌉

)

bits can be transported.

8Vertex-coloring requires any two vertices sharing a commonedge to use different colors.
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Since
⌈

k1na(n)
c

⌉

≤ k1na(n)
c

+ 1, we have,λ(n) = Ω

(

W
√

a(n)

k1na(n)+c

)

bits/sec. Depending on the asymptotic order ofc,

eitherna(n) or c will dominate the denominator ofλ(n). Hence,λ(n) = Ω

(

MINO

(

W

n
√

a(n)
,

W
√

a(n)

c

))

bits/sec.

Since each flow is scheduled to receive one mini-slot on each hop during every 1 second interval, every source-

destination flow can support a per-node throughput ofλ(n) bits/sec. Therefore, the total network capacity is equal

to nλ(n) which is equal toΩ
(

MINO

(

W√
a(n)

,
Wn

√
a(n)

c

))

bits/sec.

Recall thata(n) is set tomin

(

max
(

100 log n
n

, c
n

)

,
(

1
D(n)

)2
)

, whereD(n) = Θ
(

log n
log log n

)

. Substituting fora(n)

(the three possible values ofa(n) gives rise to three capacity regions) in the equation for capacity (derived above),

we have the result:

Theorem 8:The achievable capacity of a(1, c)-random network under channel model1 is as follows:

1) Whenc is O(log n), a(n) = Θ
(

log n
n

)

, and the network capacity isΩ
(

W
√

n
log n

)

bits/sec.

2) When c is Ω(log n) and alsoO

(

n
(

log log n
log n

)2
)

, a(n) = Θ
(

c
n

)

, and the network capacity isΩ
(

W
√

n
c

)

bits/sec.

3) Whenc is Ω

(

n
(

log log n
log n

)2
)

, a(n) = Θ

(

(

log log n
log n

)2
)

, and the network capacity is

Ω
(

Wn log log n
c log n

)

bits/sec.

Using Lemma 2, the results for a(m, c)-network can be obtained by replacing every usage ofc in Theorem 8

by c
m

. Therefore, we have:

Theorem 9:The achievable capacity of a(m, c)-random network under channel model1 is as follows:

1) When c
m

is O(log n), a(n) = Θ
(

log n
n

)

, and the network capacity isΩ
(

W
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO
(

n
(

log log n
log n

)2
)

, a(n) = Θ
(

c
mn

)

, and the network capacity isΩ
(

W
√

nm
c

)

bits/sec.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, a(n) = Θ

(

(

log log n
log n

)2
)

, and the network capacity is

Ω
(

Wmn log log n
c log n

)

bits/sec.

The result for channel model2 can be similarly derived, and is given by:

Theorem 10:The achievable capacity of a(m, c)-random network under channel model2 is as follows:

1) When c
m

is O(log n), a(n) = Θ
(

log n
n

)

, and the network capacity isΩ
(

Wc
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO
(

n
(

log log n
log n

)2
)

, a(n) = Θ
(

c
mn

)

, and the network capacity isΩ (W
√

nmc)

bits/sec.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, a(n) = Θ

(

(

log log n
log n

)2
)

, and the network capacity is

Ω
(

Wmn log log n
log n

)

bits/sec.

The lower bound matches the upper bound implying that the bounds are tight. Recall that the transmission

ranger(n) has been set to
√

8a(n). Hence, thetransmission range is largerin case 2 and case 3 of Theorem 9
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as compared to case 1 (sincea(n) increases). This implies that in multichannel networks with large number of

channels, higher transmission power is necessary for meeting capacity bounds than is required in a single channel

network.

C. Capacity results with other traffic models

The multichannel network capacity under the random destination model was stated in Theorem 10. The construc-

tions and the results are applicable to some other traffic models that have been proposed in the literature. Alternate

traffic models may result in different values ofD(n) (recall thatD(n) is the maximum number of flows for which

a given node is the destination). The capacity results presented before can be restated in terms ofD(n). However,

the results hold for those traffic models where it is equally likely for the destination node of any flow to be in any

cell (this is required for row-column routing to work). In addition, the results hold only ifD(n) is not too large.

Specifically, recall thata(n) has been chosen such that it is at most
(

1
D(n)

)2
, and a(n) should also be at least

100 log n
n

. This implies that a valida(n) can be chosen only ifD(n) ≤
√

n
100 log n

. Under these restrictions on traffic

models, the capacity of a multichannel network is:

Theorem 11:The capacity of a(m, c)-random network under channel model1 as a function ofD(n) is as

follows:

1) When c
m

is O(log n), a(n) = Θ
(

log n
n

)

, and the network capacity isΩ
(

W
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO

(

n
(

1
D(n)

)2
)

, a(n) = Θ
(

c
mn

)

, and the network capacity isΩ
(

W
√

nm
c

)

bits/sec.

3) When c
m

is Ω

(

n
(

1
D(n)

)2
)

, a(n) = Θ

(

(

1
D(n)

)2
)

, and the network capacity isΩ
(

Wmn
cD(n)

)

bits/sec.

Gupta and Kumar [2] choose the destination for each source node by first picking a random point, and then

selecting the node closest to this point as the destination.For this model of selecting destinations, it has been shown

[30] thatD(n) = Θ(log n). This traffic model meets the requirements of Theorem 11 (as destinations are randomly

located, andD(n) is small enough). Therefore, the capacity results for Guptaand Kumar model can be obtained

by substitutingD(n) = Θ(log n) in Theorem 11. The lower bound for multichannel networks under the Gupta and

Kumar traffic model can also be proved using an alternate routing approach, called “straight-line routing” (which

we used in [1]), instead of using the row-column routing. However, straight-line routing may not hold under the

random traffic model used in this paper (where each node chooses a random node as the destination, instead of

picking a node closest to a random point). The straight-linerouting proof uses some results from [4] which have

not been proved for the version of random traffic model used inthis report.

In another traffic model considered in literature,n
2 nodes are designated as sources, and the remainingn

2 nodes

are designated as destinations. A random one-to-one mapping is set up between source and destination nodes. In
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Fig. 7. Example plot of network capacity as the number of channels is scaled. Capacity values are normalized to capacity in a(1, 1)-network.

this model,D(n) = 1, and destinations are randomly located because nodes are still placed uniformly at random

on the torus, and the mapping between sources and destinations is random. Therefore, the capacity results under

this traffic model can be derived by replacingD(n) = 1 in Theorem 11..

Permutation routing is yet another traffic model consideredin literature. Under permutation routing, each node is

the source of exactly one flow and also the destination of exactly one flow. We discuss this traffic model further in

Section VII. Under permutation routing,D(n) = 1 and destinations are randomly located. Therefore, resultsunder

permutation routing model can also be derived using Theorem11.

D. Implications

Figure 7 plots the network capacity as the number of channelsin the network is scaled, for a one interface and a

two interface network. The figure plots the scaling with somefixed n, without accounting for constants, for the two

channel models. As we can see from the figure, under the channel model 1, the total bandwidth is fixed, and the

network capacity reduces when the number of channels increases. In contrast, under channel model2, bandwidth

is added when the number of channels increases, thereby increasing network capacity (up to a point). Note that the

results under the two models are not contradictory, becausethe capacity always degrades with more channels when

compared to the capacity in a(c, c)-network. Furthermore, when the number of interfaces is increased, there is no

improvement in capacity as long asc
m

is O(log n), but beyond that threshold, adding more interfaces improves

capacity. Since the curves in Figure 7 plot the number of channels on the X-axis, the thresholdc
m

is achieved for

a larger value ofc whenm is increased.

Figure 8 plots the network capacity as the ratio of channels to interfaces,c
m

, is increased for a one interface and

a two interface network. When the number of interfaces is increased by some factor ofk, then for the any given

ratio of c
m

, this implies that the number of channels is also increased by a factor ofk. Since the total bandwidth

is fixed under channel model1, a k-fold increase in channels does not increase network capacity (and therefore,
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Fig. 8. Example plot of network capacity as the ratio betweenchannels to interfaces is scaled.Capacity values are normalized to capacity

in a (1, 1)-network. The two curves under channel model1 overlap.

the curves for different number of interfaces overlap in Figure 8). However, since the bandwidth per channel is

fixed under channel model2, a k-fold increase in channels implies ak-fold increase in bandwidth, leading to a

k-fold increase in the network capacity. In addition, under both channel models, the boundaries of the three capacity

regions depend onc
m

.

The results imply that the capacity of multichannel random networks with total channel data rate ofW is the

same as that of a single channel network with data rateW as long as the ratioc
m

is O(log n). When the number

of nodesn in the network increases, we can also scale the number of channels (for example, by using additional

bandwidth, or by dividing available bandwidth into multiple sub-channels). Even then, as long as the channels are

scaled at a rate not more thanlog n, there is no loss in capacity even if a single interface is available at each node.

In particular, if the number of channelsc is a fixed constant, independent of the node density, then as the node

density increases beyond some threshold density (at which point c = O(log n)), there is no loss in capacity even

if just a single interface is available per node. Thus, this result may be used to roughly estimate the number of

interfaces each node has to be equipped with for a given node density and a given number of channels.

In a single channel random network, i.e., a(1, 1)-network, the capacity bottleneck arises out of the channel

becoming fully utilized, and not because interface at any node is fully utilized. On an average, the interface of a

node in a single channel network is busy only for1
X

fraction of the time, whereX is the average number of nodes

that interfere with a given node. In a(1, 1)-random network withn nodes, each node on an average hasΘ(log n)

neighbors to maintain connectivity [2]. This implies that in a single channel network, each interface is busy for only

Θ
(

1
log n

)

time. Our construction utilizes this slack time of interfaces to support up toO(log n) channels without

loss in capacity. In general, the loss in capacity in a randomnetwork is a function of the number of channels and



26

the number of nodes in a neighborhood9.

In earlier capacity results [2], [4], the transmission range, and therefore the neighborhood size, is a function

of only the node density. However, for multichannel networks, the transmission range has to be chosen based on

ratio of channels to interfaces, in addition to the node density. For example, with a given node density, when the

ratio of number of channels to number of interfaces is large (specifically,ω(log n)), the number of interfaces in

a neighborhood will be smaller than the total number of channels. Therefore, even if all the interfaces are being

used continuously, it is not possible to fully saturate the available channels. This can result in significant capacity

degradation.

The capacity degradation can be reduced by increasing the size of a neighborhood, thereby ensuring that the

number of interfaces in a neighborhood is equal to the numberof channels. Therefore, the lower bound construction

requires the cell size to be chosen such that the number of interfaces (or nodes, when each node has a single interface)

in each neighborhood is greater than or equal to the number ofchannels. Hence, it turns out that the optimal strategy

for maximizing capacity when number of channels is large is to sufficiently increase the cell sizea(n), which implies

that a larger transmission ranger(n) is neededto allow communication with neighboring cells. However, there

is still some capacity loss because larger transmission range (than that is needed for connectivity alone) lowers

capacity by “consuming” more area. In summary, in a single channel random network, the transmission range is

chosen to be large enough to ensure connectivity. However, in the case of multichannel networks, the transmission

range has to be chosen such that it is sufficiently large to ensure that all channels are utilized, in addition to

guaranteeing connectivity.

VI. I MPACT OF SWITCHING DELAY

The previous discussion on multichannel capacity has not considered the impact of interface switching delay.

When the number of interfaces at each node is smaller than thenumber of channels, interfaces may have to be

switched between channels. Switching an interface from onechannel to another may incur a switching delay, say

S. For example, existing IEEE 802.11-based wireless interfaces require [23] between few tens to hundreds of

microseconds to switch from one channel to another. However, switching delay is independent of the number of

nodes in the network.

We will show that if there are no end-to-end delay constraints, switching delay will not affect network capacity.

For this, we use the end-to-end delay constraint definition from [4]. Each packet is assumed to have a sizeL, and

L is scaled with respect to the throughput obtained for each end-to-end flow. If each flow can transportλ bits/sec,

then each flow is assumed to send packets of sizeL = λ. In the lower bound construction provided before, if

packet sizes are set toλ bits, each packet traverses at least one hop in one second. Therefore, the end-to-end delay

9The neighborhood of a node consists of all other nodes that may interfere with it.
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of a flow will be bounded by the number of hops on the flow, when there is no interface switching latency. Let us

assume that the minimum end-to-end delay in the absence of interface switching latency isDopt. A reasonable delay

constraint in the presence of switching latency is to require that the end-to-end delay is at most a small constant

multiple of Dopt; otherwise applications may see a large increase in the end-to-end delay. This requirement may

be equivalently translated to allow a maximum packet size ofL.

A. Capacity in the absence of end-to-end delay constraints

In the case of arbitrary networks, capacity bounds are met without requiring interface switching at all (as was

shown in the construction used for lower bound). Hence, switching delay will not impact the capacity of arbitrary

networks, even if there is an end-to-end delay constraint. In the absence of any end-to-end delay constraints, we

show next that the capacity of random networks is independent of switching delay (the construction is described

next).

In the construction we use to establish lower bound for random networks, interfaces may have to be switched

between channels (when receiving data). In the worst case, an interface may have to be switched between channels

for every packet transmission. If there is no end-to-end delay constraint, then we propose a simple “guard slot”

approach which ensures that capacity loss can be made arbitrarily small even in the presence of switching delay.

The “guard slot” approach is as follows. Suppose that each packet isL bits long. This implies that the length of

each edge color slot isT = Lc
W

seconds (since each channel supports a data rate ofW
c

bits/sec under channel model

1). One simple way of hiding the interface switching delayS is to insert a “guard” slot of durationS between two

“edge-color” slots during which all channels are idle, to ensure that there is sufficient time for interface switching.

With this approach, the network capacity will be onlyT
T+S

fraction of the capacity when there is no switching

delay. However, the capacity reduction can be made arbitrarily small by sending extremely large packets (L ≫ λ)

resulting inT ≫ S, leading to large end-to-end delay. Therefore, in the absence of end-to-end delay constraints,

by using large data packets, the capacity degradation in random networks can be made arbitrarily small.

B. Capacity in the presence of end-to-end delay constraints

From prior discussions, even in the presence of delay constraints, the capacity of arbitrary networks is not affected

by switching delay, since switching is not required to meet the capacity bounds. In the case of random networks as

well, the upper bound proofs do not mandate interfaces to be switched, and therefore, even with switching delay,

there may be no change in the capacity. However, so far we havenot addressed the question whether the capacity

of random networks is independent of the switching delay when there are end-to-end delay constraints.

In the presence of end-to-end delay constraints, switchingdelaydoes reducethe achievable network capacity in

the lower bound constructions proposed earlier. For example, considering the guard-slot approach described above,
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when there is a restriction on the maximum packet size, each edge-color slot is bounded by some lengthT , and

the network capacity will be only T
T+S

of the capacity without switching delay, We next describe anapproach that

shows using additional interfaces at each node issufficientin many scenarios to hide the switching delay, even with

end-to-end delay constraints.

The new approach simulates avirtual interfacehaving zero switching delay using multiple physical interfaces

that each have a switching delayS. By this construction, the use ofv−1 additional interfaces per node can hide the

switching delay, i.e., a(v, c)-network using interfaces with switching delayS can achieve the same capacity and

end-to-end delay bounds as a(1, c)-network using one interface with0 switching delay. This construction suggests

that multiple interfaces aresufficientto overcome the impact of switching delay, though multiple interfaces may

not benecessary.

Lemma 6:Suppose that the time required for packet transmission in a(1, c)-network isT = Lc
W

, and suppose

v =
⌈

S
T

⌉

+ 1. Then a(v, c)-network built with interfaces having switching delayS, can achieve the same capacity

and end-to-end delay as a(1, c)-network built with interfaces having0 switching delay.

Proof: Let us assume that each node hasv =
⌈

S
T

⌉

+ 1 interfaces, each having a switching delayS. We build

a virtual interfacewith zero switching delay by using thev physical interfaces, as shown in Figure 9. We consider

any time interval of lengthvT . We divide this time intov slots of lengthT , and only allow theith interface,

1 ≤ i ≤ v, to transmit/receive in sloti. Thus, each physical interface is used for transmission/reception in one slot,

and is idle for the next(v − 1) slots of total duration(v − 1)T seconds. Sincev =
⌈

S
T

⌉

+ 1, we have:

(v − 1)T =

⌈

S

T

⌉

T

≥ S

Hence, between two successive operations of a physical interface there is at least a gap ofS, which ensures

that switching delay is provisioned for. By this construction, the simulated virtual interface can continuously

transmit/receive, with0 switching delay. Therefore, a network usingv interfaces having switching delayS, can

mimic the behavior of a(1, c)-network built with interfaces having switching delay0.

From the previous lemma, by increasing the number of interfaces at each node by a factor ofv, switching delay

is completely hidden. We next discuss the capacity implications of usingv physical interfaces at each node to

construct a virtual interface, instead of directly using the v interfaces to send data in parallel.

From Theorem 9, we note that when the number of channels isO(log n) and there is no switching delay, the

capacity of a(v, c)-network is the same as that of a(1, c)-network. Using this observation along with Lemma 6,

we can conclude that by using the virtual interface technique, the capacity of a(v, c)-network with each interface

having switching delayS is the same as the capacity of a(v, c)-network with each interface having switching delay
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Fig. 9. Constructing one virtual interface with zero switching delay by usingv physical interfaces with switching delayS. Each packet

transmission requiresT seconds.

0. Hence, when the number of channels isO(log n), which is a scenario of significant practical interest,there is

no capacity loss even with switching delay, provided multiple interfaces are used.

Again, from Theorem 9, we note that when the number of channels is larger (Ω(log n)) and there is no switching

delay, the capacity of a(1, c)-network is lower than that of a(v, c)-network. Hence, using this observation along

with Lemma 6, we can conclude that using the virtual interface technique when the number of channels is larger

(Ω(log n)), a (v, c)-network with each interface having switching delayS will have lower capacitythan a(v, c)-

network with each interface having switching delay 0. UsingTheorem 9, we can show that for this scenario, the

capacity will be lower by a factor of1√
v
≈
√

T
T+S

(sincev ≈ T+S
T

) when number of channels is betweenΩ(log n)

andO

(

n
(

log log n
log n

)2
)

, and by a factor of1
v
≈ T

T+S
when number of channels isΩ

(

n
(

log log n
log n

)2
)

. In contrast, if

the guard slot approach is used, the capacity is lower by a factor T
T+S

in all cases, independent of the number of

channels. Therefore, although there is a capacity loss withswitching delay for certain scenarios using the virtual

interface technique, it is still significantly better than the guard slot approach when the number of channels is small.

C. Other constructions

The constructions used to establish lower bound on capacitypotentially require interface switches at several hops

of a flow. Alternate constructions are possible [31] such that an interface switch is required on at most one hop of

each flow. Such a construction may reduce the number of switches required in the network, and could be used to

reduce the impact of switching delay.

The capacity analysis has assumed that each node has one flow active all the time. Typically, in deployed

networks, every node may not have an active flow all the time. In such a scenario, nodes without active flows could

still forward data for other nodes, and the interfaces of theinactive nodes may be viewed as “spare” interfaces that

are available in the network. Such spare interfaces could also be used to hide interface switching delay, instead of
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requiring additional interfaces at each node to hide the switching delay. We defer a formal study on hiding interface

switching delay by using spare interfaces to future work.

VII. C APACITY WITH FIXED INTERFACES

In the previous section, we considered the capacity of multichannel networks when switching interfaces incurs

a delay. In this section, we study the capacity of multichannel networks when interfaces do not switch at all. We

assume that each interface is fixed to some channel, and the channel to which an interface is fixed can be set by

the network designer. It may be beneficial to keep interfacesfixed when the interface switching delay is large. For

tractability, we study the capacity problem under a slightly different model for selecting source-destination pairs,

called the permutation traffic model. Under this model, we show that there is a degradation in capacity, proportional

to the number of channels, when there is a single interface per node, and interfaces are not allowed to switch.

However, the capacity degradation can be prevented if each node is equipped with two interfaces (and interfaces

continue to be fixed on some channels).

A permutation is an one-to-one correspondence from a set{1, 2, ..n} to itself. There aren! possible permutations,

and a random permutation is defined as a permutation chosen uniformly at random from all the possible permutations.

The permutation routing model assumes that the source-destination pairs are chosen as a random permutation. This

implies that each node is the source of exactly one flow, and each node is the destination of exactly one flow.

In contrast, the traffic model used earlier in this report allowed nodes to be destinations of more than one flow.

Permutation routing model has been assumed by other works oncapacity in the past (e.g. [7], [8]), and is simpler

to analyze.

Under the permutation traffic model, the maximum number of flows per destination,D(n) = 1. Recall from

the discussions in Section V-C, that the capacity results for permutation model can be obtained by substituting

D(n) = 1 in Theorem 11. Therefore, the random network capacity underpermutation routing model is given by,

Theorem 12:The capacity of a(m, c)-random network under channel model1, and permutation traffic model,

is as follows:

1) When c
m

is O(log n), the network capacity isΩ
(

W
√

n
log n

)

bits/sec.

2) When c
m

is Ω(log n) and alsoO(n), the network capacity isΩ
(

W
√

nm
c

)

bits/sec.

3) When c
m

is Ω(n), the network capacity isΩ
(

Wnm
c

)

bits/sec.

A. Capacity bound with a single fixed interface

When every node has a single fixed interface, nodes fixed on a certain channel cannot communicate with nodes

fixed on any other channel. Network capacity depends on the smallest throughput obtained by any flow, and to

ensure that the network capacity is greater than zero, any pair of source-destination nodes must be fixed to a

common channel. This constraint precludes fixing nodes to channels arbitrarily.
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Source−Destination pair

S D D1 Dk

Fig. 10. Example of a cycle formed by source-destination pairs under the permutation traffic model.

Let us suppose that each node has been fixed on a channel, and this channel assignment has been done while

ensuring that any source-destination pair uses the same channel. Let a channeli, 1 ≤ i ≤ c, haveni nodes fixed

on it, and letλi be the smallest flow throughput among the flows on channeli. Consider some channeli. Now,

the ni nodes must still satisfy the connectivity constraint to ensure that no nodes are disconnected from each

other. As before, we assume that all nodes use a common transmission range. Therefore, the transmission range

on channeli must be at least as large as the transmission range required when all nodes share a common channel,

i.e., transmission ranger(ni) = Ω

(

√

log n
n

)

. Furthermore, the average distance between the source-destination

pairs on channeli continues to beΘ(1) meters. Using upper bound results from Gupta and Kumar [2], per-flow

throughput of a network havingni nodes using transmission ranger(ni), and channel bandwidthW
c

(we assume

channel modeli) is upper-bounded as follows:

λi = O

(

W

c

1

nir(ni)

)

(9)

Substituting forr(ni), we get

λi = O

(

W

cni

√

n

log n

)

By definition, the network-wide per-flow throughput,λ, is defined to be the minimum throughput achieved by

any flow, i.e.,λ = min
i

(λi). Therefore,λ is limited by the per-flow capacity in the channel having the maximum

number of nodes. Using this observation, the network capacity nλ is given by,

nλ = O





Wn

cmax
i

(ni)

√

n

log n



 (10)

We now estimate the value ofmax
i

(ni). Recall our requirement that if a source node S is assigned toa channel,

then its corresponding destination D should be assigned to the same channel. In turn, the destination of node D,

say D1, should also be assigned the same channel. This process continues till the destination of one of the nodes

is the first node S. Therefore, the source-destination assignments form a cycle as shown in Figure 10. Hence, the

value ofmax
i

(ni) is equal to the size of the largest cycle in a random permutation.
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It is well-known [32] that the probability a random permutation has a cycle of lengthm,m > n
2 , is 1

m
. Therefore,

the probability that a permutation has a cycle of length greater thann
2 is given by [33],

Prob(cycle length greater thann2 ) =
n
∑

m= n

2
+1

1

m

≃ ln(n) − ln

(

n

2

)

(for large n)

= ln(2)

≃ 0.69

Therefore,max
i

(ni) is at leastn2 with a non-zero probability exceeding a constant (independent ofn). This implies

that an upper bound on network capacity can be obtained by replacing max
i

(ni) by n
2 in Equation 10 giving,

nλ = O

(

W

c

√

n

log n

)

(11)

This bound can be shown to be tight. A simple construction is to assign all nodes to a common channel,

independent of the total channels available. Then, the common channel can support a data rate ofW
c

, and the

network can be operated using the Gupta and Kumar construction for a single channel network. This construction

yields the same capacity as specified by the upper bound in Equation 11, proving the upper bound is tight.

Comparing Equation 11 with Theorem 12, we can see that keeping the single interface at a node fixed results in a

capacity loss. The loss can be as large as1
c

in the first capacity region (whenc = O(log n)). Therefore, this clearly

suggests that if each node has a single interface, switchinginterfaces is necessary to avoid capacity degradation.

The random traffic model used earlier in the paper requires each node to randomly select a destination. Consider

a graph built from the random traffic model, where vertices are nodes in the network, and two vertices are connected

by an undirected edge if their corresponding nodes form a source-destination pair. In this graph, each vertex has

an average degree of 2 (the graph hasn edges, resulting in an average vertex degree of 2). A similargraph, called

the random graph [34], can be constructed by takingn vertices and choosing every edge between vertices with

a probability of 2
n

. The resultant graph also has an average vertex degree of 2, but is not identical to the graphs

formed by the random traffic model. It has been shown that random graphs have a connected component of size

Θ(n) when their average degree is greater than 1. Therefore, if source-destination pairs where chosen using the

random graph approach, even then the network capacity wouldfollow Equation 11. We speculate that the bound

of Equation 11 also applies to the random traffic model considered earlier in the paper, though we do not have a

proof to support the conjecture.
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B. Lower bound with two fixed interfaces: permutation routing model

In the previous section, we showed that if nodes have a singleinterface, and if channel assigned to the interface

is fixed, then there is a capacity degradation. In this section, we show that if all nodes have two interfaces, and even

if channels assigned to the interfaces are fixed, there is no loss in capacity, under the permutation traffic model. We

designate the first interface at each node as the “primary interface”, and the channel assigned to the first interface

as the “primary channel”. Similarly, the second interface is designated as the “secondary interface”. The key idea

here is that different nodes in a cell are assigned the primary channels such that in a cell, all channels have the

same number of primary interfaces fixed to them. The secondary interface of a node is fixed to the primary channel

of the node’s destination. Data is sent from a source to a destination on the primary channel of the destination

(over all hops). In the rest of this section, we show that thisconstruction is feasible and achieves the same capacity

as a network with one interface that can switch.

As before, the surface of the unit torus is divided into square cells each of areaa(n). We assume thatc is at

mostn. Since the destination bottleneck constraint is not present in the random permutation model, we choose the

areaa(n) slightly differently from before. Specifically, we seta(n) = max(100 log n
n

, c
n
). From Lemma 4, we know

that each cell hasΘ(na(n)) nodes with high probability. Therefore, every cell has at leastk2na(n) nodes, where

k2 is a constant. Ifk2na(n) < c, we increase the areaa(n) by a factor of c
k2na(n) , and this factor can always be

bounded by a constant (becausec = Θ(na(n))). The scaling ensures that every cell has at leastc nodes. From now

on, we assume that we are considering the scaled cells. Within each (scaled) cell there are at mostk3na(n) nodes,

wherek3 is a constant. We number these nodes from1 to k3na(n), and assign nodei to channel(i mod c) + 1.

With this assignment there arenc = Θ
(

na(n)
c

)

nodes per channel in each cell.

We continue to use the row-column routing technique that wasused earlier in the paper. Figure 11 shows the

routing scheme. Recall that in row-column routing, packetsare first sent east along the row containing the source

till it intersects with the column containing the destination. After that, packets are sent south along the column

containing the destination till the destination cell is reached.

Let us consider the traffic going through some cell L on some channeli. There are 1√
a(n)

cells per column, and

therefore, each column will havenc√
a(n)

nodes on channeli. Since each node is the destination of exactly one flow

under the permutation routing model, cell L will forward at most nc√
a(n)

flows that are headed along the column

containing L toward their destinations.

The network has nc

a(n) total destination nodes (there are1
a(n) cells, and at mostnc nodes on a channel in each

cell) receiving data on channeli. We now want to bound the number of source nodes sending data on channeli

on any row. Since node locations are chosen independently atrandom, it is equally probable that the source node

corresponding to a destination node is in any given row. Therefore, the number of source nodes in any given row
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Fig. 11. Routing through cells: Packets are routed first along a row till the destination column is reached, and then alongthe column to

the destination cell.

may be modeled as a “Balls and Bins” problem wherenc

a(n) balls are thrown into 1√
a(n)

bins. Results from [25]

show that ifx balls are thrown intoy bins, andx ≥ y log y, then each bin hasΘ
(

x
y

)

balls w.h.p. Since in our

casex = nc

a(n) , y = 1√
a(n)

, andnc ≥ 1, implying x ≥ y2, each row will haveΘ
(

nc√
a(n)

)

source nodes. Therefore,

as each source node originates one flow, the number of flows on any channel that pass through a cell L while

traversing the row containing L (i.e., flows originate at some source node along the row containing L), is bounded

by Θ

(

nc√
a(n)

)

.

Adding the flows along rows and columns, the total flows on any channel i passing through any cell L is

Θ

(

nc√
a(n)

)

. Since each cell hasnc nodes on channeli, if the flows are carefully balanced across nodes, the

number of flows per node is given byΘ
(

1√
a(n)

)

. Using the Gupta and Kumar [2] construction for a single

channel, each node receives a fractionΘ
(

1
nc

)

of the channel time (as there areΘ (nc) nodes on any channel in

a neighborhood). Therefore, each flow receives a throughputof Θ

(

W
c

√
a(n)

nc

)

bits/sec. Substituting fornc, and

multiplying by n, the network capacity isΘ
(

W 1√
a(n)

)

bits/sec. Substituting fora(n), we have the following

theorem:

Theorem 13:The capacity of a random network with two fixed interfaces pernode under channel model1, and

permutation traffic model, is as follows:

1) Whenc is O(log n), a(n) = Θ
(

log n
n

)

, and the network capacity isΩ
(

W
√

n
log n

)

bits/sec.

2) Whenc is Ω(log n) and alsoO(n), a(n) = Θ
(

c
n

)

, and the network capacity isΩ
(

W
√

n
c

)

bits/sec.

The construction presented above could be easily generalized when more than two interfaces are available (by

grouping interfaces using Lemma 2). Similarly, the constructions can be extended to the scenario withc = Ω(n)

channels (by applying the earlier construction, but using only n channels), for which the network capacity is given
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by Ω
(

Wn
c

)

bits/sec. Comparing with Theorem 12, we see that there is no loss in capacity even if interfaces are

fixed, provided the number of interfaces is doubled.

C. Lower bound with two fixed interfaces: random routing model

The lower bound construction used for the permutation routing model is also applicable under the random routing

model. Therefore, it can be shown that there is no loss in network capacity for up toO(log n) channels even under

the random traffic model.

The results for random traffic model can also be proved by using the construction techniques from [31]. In this

approach, as before, the primary interfaces in each cell arecarefully assigned to channels to balance the interfaces

across all channels. The secondary interface at each node isindependently assigned to a random channel, which

is the key difference from the earlier construction. Trafficis initially sent from the source to the destination on

the secondary channel, says (at each hop, a node with primary interface tuned to channels relays the packet).

When the packet is withinc log n hops of the destination10, then the packet enters a transition phase. During the

transition phase, if the packet is at a node that has its primary channel ons and the secondary channel on the

destination’s primary channel, sayd, then the packet is sent out on channeld. After the packet transitions to the

destination’s primary channel, it is relayed on that channel till it reaches the destination. This construction can be

shown to achieve the same network capacity as a network whereinterfaces can switch (see constructions in [31]

for more details). Hence, even under the random traffic model, two fixed interfaces per node is sufficient to achieve

asymptotically optimal capacity.

VIII. D ISCUSSIONS

The theoretical analysis has yielded the capacity of wireless networks with the number of channels varying across

a wide range. The region where the number of channels is scaled asO(log n) seems to be of immediate practical

interest, since the number of channels provisioned for in current wireless technologies is not too large. However,

there are many recent efforts aimed at utilizing frequency spectrum in higher frequency bands, where significantly

larger bandwidth is available for use. For example, there isaround 7 GHz of spectrum available for unlicensed use

in the 60 GHz band [35], whereas the total bandwidth used in current wireless technologies, such as IEEE 802.11,

is less than 500 MHz. The bandwidth that may become availablein higher frequency bands can be split up into

a large number of channels, and therefore the region with number of channels greater thanΩ(log n) may be of

practical interest in the near future.

The capacity analysis has shown that a single interface may suffice for random networks with up toO(log n)

channels. The capacity-optimal lower bound construction used to support the above claim is based on certain

10If a route requires fewer thanc log n hops, then the route length is intentionally increased by using a detour [31].
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assumptions, all of which may not be satisfied in practice. For example, we assume that interface switching delay

is zero, transmission range of interfaces can be carefully controlled, and there is a centralized mechanism for

co-ordinating route assignment and scheduling. In addition, the theoretical analysis derives asymptotic results, and

capacity can be improved by constant factors in the lower bound constructions by using multiple interfaces. From

Section VI, we note that when interface switching delay is not zero, having more than one interface may be

beneficial. Furthermore, protocol design has identified many benefits of using at least two interfaces at each node,

such as allowing full-duplex transfer, and simplifying thedevelopment of distributed protocols for utilizing multiple

channels, as seen in our other work.

Our simulation and testbed experiments [36] have shown thathaving more than one interface may be beneficial

in practice. However, these experiments do not prove multiple interfaces are necessary for obtaining all the observed

performance improvement. In addition, our simulation results also show that it is not necessary to have one interface

per channel to utilize all the channels, and in fact even many(e.g., 12) channels can be fully utilized by using

only two interfaces, which validates the theoretical claim. Therefore, in practice, the theoretical claim that a single

interface suffices withO(log n) channels is reasonably accurate, with the caveat that additional interfaces may be

useful in simplifying protocol design and hiding switchingdelay.

In summary, in this report we have derived the lower and upperbounds on the capacity of static multichannel

wireless networks. We have considered wireless networks having c channels, andm ≤ c interfaces per node.

Each interface is capable of selecting appropriate transmission power, and lower bound constructions require global

knowledge. Under this model, we have shown that in an arbitrary network, there is a loss in the network capacity

when the number of interfaces per node is smaller than the number of channels. However, we have shown that in a

random network, a single interface may suffice for utilizingmultiple channels, as long as the number of channels

is scaled asO(log n). We have then considered the impact of non-zero interface switching delay on capacity, and

shown that in a random network with up toO(log n) channels, interface switching delay has no impact on capacity,

provided each node is provisioned with a few extra interfaces. We have also considered the scenario where after an

initial channel assignment, interfaces are not allowed to switch channels. Under this model, we show that if each

node has only one interface, then there is a loss in network capacity. However, the capacity loss can be eliminated

by providing an additional interface at each node, which shows that it may be possible to develop protocols which

do not require interface switching, albeit at the cost of using extra hardware.

APPENDIX I

MAXIMUM NUMBER OF FLOWS PASSING THROUGH A CELL

Recall that each cell (see Figure 5) has an areaa(n). The unit square region is divided by the square grid into

1√
a(n)

rows and columns. The proofs here use the following versionsof Chernoff bound:
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Lemma 7: (Chernoff Upper Tail Bound [37]) LetX1, . . . ,Xn be independent Poisson trials, wherePr[Xi =

1] = pi. Let X =
n
∑

i=1

Xi. Then, for0 < β ≤ 1:

Pr [X ≥ (1 + β)E[X]] ≤ exp

(

−β2

3
E[X]

)

Lemma 8: (Chernoff Lower Tail Bound [37]) LetX1, . . . ,Xn be independent Poisson trials, wherePr[Xi =

1] = pi. Let X =
n
∑

i=1

Xi. Then, for0 < β < 1:

Pr[X ≤ (1 − β)E[X]] ≤ exp

(

−β2

2
E[X]

)

We next bound the maximum number of nodes in any row (or column).

Lemma 9:Whenn nodes are randomly placed on a unit torus that is divided intoYr = 1√
a(n)

rows (or columns)

with a(n) > 0, thenPr[ any row (or column) has≥ 2n
√

a(n) nodes] ≤ 1√
a(n)

exp
(

−1
3 n
√

a(n)
)

for sufficiently

largen.

Proof: Recall that each node is placed uniformly at random on the unit torus. Therefore, since there areYr

rows of equal size, a node has a probability1
Yr

of being placed in a particular row. Consider some rowi. Let Xij

be an indicator variable that is1 if node j is placed in rowi. Let Xi =
n
∑

j=1

Xij be the total number of nodes that

are placed in rowi. Then,E[Xi] = n
Yr

= n
√

a(n). By applying the Chernoff bound from Lemma 7 (withβ = 1),

we have

Pr

[

row i has≥ 2n
√

a(n) nodes
]

≤ exp

(−1

3
n
√

a(n)

)

Since there areYr rows, applying the union bound, we have

Pr[ any row has≥ 2n
√

a(n) nodes] ≤ Yr exp

(−1

3
n
√

a(n)

)

=
1

√

a(n)
exp

(−1

3
n
√

a(n)

)

The bound for maximum number of nodes in a column can be similarly derived.

Lemma 5:(restated here)

When the row-column routing is used, anda(n) > log n
n

, the maximum number of flows that pass through any

cell (including flows originating and terminating in the cell) is O
(

n
√

a(n)
)

, with high probability.

Proof: Using the row-column routing technique, the flows that pass through any cell can be divided into

two groups; flows that are being routed along the row containing the cell, from some source node till the desired



38

destination column is reached, and flows that are being routed along the column containing the cell toward some

destination node.

Each node is the originator of exactly one flow. From Lemma 9, the probability any row has more than2n
√

a(n)

nodes is at most 1√
a(n)

exp
(

−1
3 n
√

a(n)
)

. Therefore, the probability of having more than2n
√

a(n) flows along

a row is at most 1√
a(n)

exp
(

−1
3 n
√

a(n)
)

. This probability is a decreasing function ofa(n). Whena(n) > log n
n

,

this probability (maximized for this range ofa(n) whena(n) → log n
n

) is upper bounded by
√

n

exp( 1

3

√
n
√

log n)

1√
log n

and tends to 0 asn → ∞. Therefore, this result implies that the number of flows along a row is bounded by

O
(

n
√

a(n)
)

whp.

Next, we bound the number of flows along a column. Consider some columni. Let Ni be a random variable

representing the number of nodes in columni. Let Xi be the number of flows along columni. Then, conditioning

on the value ofNi,

Pr

[

Xi ≥ 4n
√

a(n)

]

=
n
∑

ni=1

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni]

=

1

2
n
√

a(n)
∑

ni=1

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni]

+

2n
√

a(n)−1
∑

ni=
1

2
n
√

a(n)+1

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni]

+
n
∑

ni=2n
√

a(n)

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni]

≤ Pr

[

Ni ≤
1

2
n
√

a(n)

]

+

2n
√

a(n)−1
∑

ni=
1

2
n
√

a(n)+1

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni]

+ Pr

[

Ni ≥ 2n
√

a(n)

]

(12)

The first and third terms in the above equation are simplified by noting Pr[A|B = b]Pr[B = b] ≤ Pr[B = b].

Using the Chernoff upper tail bound (Lemma 7) withβ = 1 (the proof technique is similar to Lemma 9), we have

Pr[Ni ≥ 2n
√

a(n)] ≤ exp

(−1

3
n
√

a(n)

)

(13)

Similarly, using the Chernoff lower tail bound (Lemma 8) with β = 1
2 , we have

Pr[Ni ≤
1

2
n
√

a(n)] ≤ exp

(−1

8
n
√

a(n)

)

(14)

For a given topology, letNi = ni. The number of flows along columni is equal to the number of source nodes

that have chosen a node in columni as the destination. Since each source node chooses a destination uniformly
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at random, any source node has a probabilityni

n
of choosing a node in columni as its destination. LetXij be

an indicator variable that is1 if node j has picked a node in columni as its destination. Then,Xi =
n
∑

j=1

Xij .

Therefore,E[Xi] = ni. Using the Chernoff bound from Lemma 7 withβ = 1, we have

Pr[Xi ≥ 2ni] ≤ exp

(−1

3
ni

)

(15)

In the range1
2n
√

a(n) < Ni < 2n
√

a(n), for anyNi = ni, Pr[Xi ≥ 4n
√

a(n)] ≤ Pr[Xi ≥ 2ni] (because when

a < b, Pr[Xi ≥ b] ≤ Pr[Xi ≥ a]). Simplifying further using the same technique, for anyNi = ni in this range,

Pr[Xi ≥ 2ni] ≤ Pr[Xi ≥ n
√

a(n)] (because the smallest value ofni in this range is1
2n
√

a(n)). Therefore, in the

range 1
2n
√

a(n) < Ni < 2n
√

a(n) we have,

Pr

[

Xi ≥ 4n
√

a(n) | 1

2
n
√

a(n) < Ni < 2n
√

a(n)

]

≤ Pr

[

Xi ≥ 2Ni |
1

2
n
√

a(n) < Ni < 2n
√

a(n)

]

≤ Pr[Xi ≥ 2(
1

2
n
√

a(n))]

BecausePr [Xi ≥ 2ni] is a decreasing function ofni

≤ exp

(−1

6
n
√

a(n)

)

(using Equation 15)

Therefore, we have

2n
√

a(n)−1
∑

ni=
1

2
n
√

a(n)+1

Pr

[

Xi ≥ 4n
√

a(n) | Ni = ni

]

Pr [Ni = ni] ≤
2n
√

a(n)−1
∑

ni=
1

2
n
√

a(n)+1

exp

(−1

6
n
√

a(n)

)

Pr [Ni = ni]

= exp

(−1

6
n
√

a(n)

) 2n
√

a(n)−1
∑

ni=
1

2
n
√

a(n)+1

Pr [Ni = ni]

≤ exp

(−1

6
n
√

a(n)

)

∗ 1

= exp

(−1

6
n
√

a(n)

)

(16)

Substituting the results from Equation 13, Equation 14, andEquation 16 into Equation 12 we have,

Pr[Xi ≥ 4n
√

a(n)] ≤ exp

(−1

8
n
√

a(n)

)

+ exp

(−1

3
n
√

a(n)

)

+ exp

(−1

6
n
√

a(n)

)

≤ 3 exp

(−1

8
n
√

a(n)

)

sincen
√

a(n) > 1 (17)

Applying the union bound (there are a total of1√
a(n)

columns) and using Equation 17, we can show that for

any column

Pr[ any column has≥ 4n
√

a(n) flows ] ≤ 1
√

a(n)
3 exp

(−1

8
n
√

a(n)

)

(18)

The above probability is a decreasing function ofa(n). Therefore, whena(n) > log n
n

, the above probability

(maximized for this range ofa(n) when a(n) → log n
n

) is upper bounded by3
√

n√
log n

exp
(

−1
8

√
n log n

)

. This

probability tends to 0 asn → ∞. Therefore, the number of flows routed along any column is bounded by
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O(n
√

a(n)), with high probability. Combining the bounds for flows alongrows and columns, whena(n) > log n
n

,

the total number of flows in any cell isO(n
√

a(n)) whp.
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