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Capacity of the Memoryless Additive Inverse
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Abstract—The memoryless additive inverse Gaussian noise
channel model describing communication based on the exchange
of chemical molecules in a drifting liquid medium is investigated
for the situation of simultaneously an average-delay and a peak-
delay constraint. Analytical upper and lower bounds on its
capacity in bits per molecule use are presented. These bounds are
shown to be asymptotically tight, i.e., for the delay constraints
tending to infinity with their ratio held constant (or for the drift
velocity of the fluid tending to infinity), the asymptotic capacity
is derived precisely. Moreover, characteristics of the capacity-
achieving input distribution are derived that allow the exact
numerical computation of capacity. It is argued that the optimal
input is a mixed continuous and discrete distribution.

Index Terms—Additive inverse Gaussian noise, average- and
peak-delay constraints, Brownian motion, channel capacity,
molecular communication.

I. INTRODUCTION

S
INCE nanoscale devices have very limited size, en-

ergy, and processing power, molecular communication

becomes a promising approach for nanonetworks. In this new

paradigm of communication, the transmitter releases infor-

mation carrying molecules, which then propagate through a

fluid medium, until the receiver captures them and decodes the

information [1]. As an example consider the communication

between two nanoscale devices in a blood vessel. Such a

system, of course, will behave fundamentally differently from

the usual information transmission systems. It is therefore a

very interesting task to model this communication scenario

and analyze it.

Consider a molecular communication system where the

transmitter encodes the message in the release timing of every

molecule. For example, if a binary message is encoded as

the release time T0 for symbol “0”, and T1 for symbol “1”,

the receiver will capture the molecule at time T0 + N or

T1 +N respectively, where N is a random propagation time,
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known as the first arrival time: the first passage time for a

molecule traveling from the transmitter to the receiver. In a

one-dimensional fluid medium and under the assumption of

Brownian motion, the first arrival time is inverse Gaussian (IG)

distributed [2]. Therefore, such a system can be modeled as

the so-called additive inverse Gaussian noise (AIGN) channel.

This model was first introduced in [3], where also some

upper and lower bounds on the capacity under an average-

delay constraint were presented and a maximum likelihood

(ML) receiver design was investigated. Additional bounds on

the capacity have been developed under either a peak-delay

constraint [4] or an average-delay constraint [5]. The capacity-

achieving input distribution of the AIGN channel with both

average- and peak-delay constraints was studied in [6].

In this paper, we study the capacity of the AIGN channel un-

der either both an average- and a peak-delay constraint (which

includes the special case of only a peak-delay constraint),

or under only an average-delay constraint. We provide tight

analytical upper and lower bounds that coincide asymptotically

when both average and peak delay tend to infinity with

their ratio held constant (which is equivalent to the situation

when the drift velocity of the liquid tends to infinity). Thus,

for the asymptotic capacity, we derive an exact analytical

expression. We also include improvements on some of the

bounds in [4] [5]. Moreover, we establish some properties of

the capacity-achieving input distribution, including sufficient

and necessary conditions for an optimal distribution. We show

that an optimal input distribution must be a mixture of a

continuous distribution and two point masses at “0” and the

peak, respectively. This is very different from the results

seen in common channel models under both average- and

peak-power constraints, like, e.g., the additive white Gaussian

noise (AWGN) channel [7], quadrature Gaussian channels,

or Rayleigh-fading channels [8]–[15], where the capacity-

achievable input is discrete. The presented insights into the

capacity-achieving input also allow us to numerically compute

the capacity. These numerical results correspond very well

with the analytical bounds presented in this paper and in [3]

[5].

The remainder of this paper is structured as follows. After a

few comments about notation, in Section II, we will introduce

the system model and its underlying assumptions more in

detail. In Section III, we present new analytical upper and

lower bounds on capacity and the exact asymptotic capacity

formulas. In Section IV, we then investigate the capacity-

achieving input distribution. We prove existence and unique-

ness, derive some properties, and we demonstrate that the

capacity-achieving input can be found through the method of
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Lagrangian multipliers for nonlinear optimization. Section V

then focuses on numerical methods for the calculation of the

capacity and the capacity-achieving input distribution. Finally,

we conclude in Section VI.

We try to use uppercase Romans (e.g., N ) for random

variables and lowercase Romans (e.g., n) for their realiza-

tions. For nonrandom quantities we use a sans-serif font in

uppercase, e.g., M or T. All logarithms log(·) refer to the

natural logarithm, i.e., all results are stated in nats. Following

engineering custom, though, we have scaled the plots given in

all figures to be in bits.

II. SYSTEM MODEL

We assume that a transmitter emits a molecule at a certain

time into a one-dimensional fluid that itself is drifting with

constant velocity v toward the receiver, which is at distance d
from the transmitter. The molecule is transported by the fluid

and its inherent Brownian motion. Once it reaches the receiver,

the molecule is removed from the fluid. In this diffusion-

mediated molecular communication system, the message is

encoded in the release timing of the molecules. The molecule

is released at time X ≥ 0, travels for a random time N ≥ 0
and arrives at the receiver at time

Y = X +N. (1)

The Brownian motion is modeled by a Wiener process with

infinitesimal variance σ2. Over any time interval τ , the dis-

placement of the molecule is Gaussian distributed with mean

vτ and variance σ2τ , independently of any other nonoverlap-

ping time intervals.

The random time N has an inverse Gaussian distribution

with the corresponding probability density function (PDF)1

pN (n) =

√

λ

2π
n− 3

2 exp

(

−λ(n− c)2

2c2n

)

I{n > 0}. (2)

Here c denotes the average travel time and λ relates to the

Brownian motion parameter σ2:

c =
d

v
, λ =

d2

σ2
. (3)

Throughout this paper we will assume that v > 0. For the

case v = 0—which corresponds to the case where the drift

velocity of the fluid is zero and where the molecules are

transported through the fluid only because of the inherent

Brownian motion—the random travel time N is not inverse

Gaussian distributed, but Lévy distributed:

pN (n) =

√

λ

2π
n− 3

2 exp

(

− λ

2n

)

I{n > 0}. (4)

Furthermore, if v < 0, the fluid drifts away from the receiver,

which means that there is a positive probability that a molecule

will never arrive at the receiver. Both these cases need a

separate investigation and are not considered in this paper.

For notational convenience, we shall redefine the units of

time and distance as follows without loss of generality. Let

1The function I{·} denotes the indicator function that takes on the values
1 or 0 depending on whether the statement holds true or not.

one unit of distance be the distance between the transmitter

and receiver. Let one unit of time be the average travel time

from the transmitter to the receiver due to the drift of the fluid.

Under this new system, the distance d = 1 and the average

travel time c = 1. The only free parameter is λ, which is the

ratio of the distance squared and the infinitesimal variance of

the Wiener process, a dimensionless quantity. We have

E[logN ] = e2λ Ei(−2λ) (5)

h(N) =
1

2
log

2πe

λ
+

3

2
e2λ Ei(−2λ) (6)

with Ei(·) denoting the exponential integral function

Ei(−t) = −
∫ ∞

t

e−τ

τ
dτ. (7)

It is interesting to note that the inverse Gaussian distribu-

tion is differential-entropy maximizing under the constraints

E[N ] = α1, E
[
N−1

]
= α2, and E[logN ] = α3.

The molecule channel with ℓ molecule uses consists of ℓ
independent uses of the random transformation (1), where

the ℓ release times form a codeword. It is referred to as

the additive inverse Gaussian noise (AIGN) channel. The

receiver decodes the message from the ℓ arrival times. The

following idealized assumptions are made to simplify our

channel model: 1) The transmitter and receiver are perfectly

synchronized; 2) the transmitter perfectly controls the release

time of the molecules; 3) the receiver perfectly measures

the arrival time of the molecules; 4) on first arrival at the

receiver, the molecules are captured and removed from the

system; 5) the movement of every molecule is independent;

6) every molecule can be distinguished from the others. The

last assumption guarantees that the channel is memoryless.

(If the molecules were indistinguishable, the order of arrivals

would be in general unknown, which introduces memory into

the channel. The capacity of such a channel with memory is

an open problem.)

The conditional PDF of the output Y given the input X
is pY |X(y|x) = pN (y − x). Let µ denote the distribution of

the channel input X . In general, µ is a probability measure

defined on the Borel algebra on the nonnegative real numbers,

denoted by B([0,∞]). The PDF of the channel output exists

and is given as

pY (y;µ) =

∫

pY |X(y|x) dµ(x) = Eµ[pN (y −X)]. (8)

The corresponding mutual information between channel input

and output per channel use (molecule use) then is

I(µ) , I(X;Y ) (9)

=

∫∫ ∞

0

pY |X(y|x) log pY |X(y|x)
pY (y;µ)

dy dµ(x). (10)

We define Q(x;µ) as

Q(x;µ) , −
∫ ∞

0

pY |X(y|x) log pY (y;µ) dy (11)

= −
∫ ∞

x

pN (y − x) log pY (y;µ) dy (12)
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such that the differential entropy of Y for the given input

distribution µ is

h(Y ;µ) = −
∫ ∞

0

pY (y;µ) log pY (y;µ) dy (13)

= −
∫ ∞

0

∫

pN (y − x) log pY (y;µ) dµ(x) dy (14)

=

∫

Q(x;µ) dµ(x). (15)

Together with the conditional entropy h(Y |X) = h(N), I(µ)
can now be expressed as

I(µ) = h(Y ;µ)− h(N) =

∫

Q(x;µ) dµ(x)− h(N). (16)

We consider two kinds of constraints on the release time of

the molecules. First, the transmitter is subject to an average-

delay constraint M:

E[X] ≤ M. (17)

Second, in addition to the average-delay constraint M, we

assume that the molecules can only be released during the

limited time interval [0,T], i.e., we impose the peak-delay

time constraint T where, without loss of generality, T ≥ M.

Both M and T are in the units of the average arrival time. We

define the average-to-peak delay ratio α as

α ,
M

T
. (18)

Note that 0 < α ≤ 1, where α = 1 corresponds to the situation

with only a peak-delay constraint.

We denote the set of distributions with the peak- and

average-delay constraint T and M by

Λ(T,M) ,
{
µ : µ

(
[0,T]

)
= 1, Eµ[X] ≤ M

}
. (19)

Similarly, we define the set of distributions with only an

average-delay constraint M as

Λm(M) , Λ(∞,M). (20)

(Here the subscript “m” stands for “mean time delay.”)

The capacity of the AIGN channel under both a peak- and

an average-delay constraint is given as

C(T,M) = sup
µ∈Λ(T,M)

I(µ) nats per molecule use. (21)

For simplicity, we omit the unit of the capacity in the sequel.

Similarly, the capacity of the AIGN channel with only an

average-delay constraint is

Cm(M) = sup
µ∈Λm(M)

I(µ). (22)

III. BOUNDS ON CAPACITY

A. Known Bounds on Capacity

In [3], two analytical bounds on capacity are presented.

First, an upper bound is derived based on the fact that

differential entropy h(Y ) under an expectation constraint

E[Y ] ≤ M + 1 is maximized by an exponential distribution:

h(Y ) ≤ log
(
e(M+ 1)

)
. This leads to the bound

Cm(M) = max
µ∈Λm(M)

h(Y ;µ)− h(N) (23)

≤ 1

2
log

λe(M+ 1)2

2π
− 3

2
e2λ Ei(−2λ). (24)

Second, a lower bound is given that is based on the suboptimal

input X ∼ IG
(
M, λM2

)
chosen in such a way that the

channel output is again inverse Gaussian distributed: Y ∼
IG
(
M+ 1, λ(M+ 1)2

)
. This yields

Cm(M) ≥ 1

2
log(M+ 1) +

3

2
e2λ(M+1) Ei(−2λ(M+ 1))

− 3

2
e2λ Ei(−2λ). (25)

B. Useful Mappings

The following mappings and their properties will turn out

to be useful for the derivations of the bounds given in

Section III-C.

Definition 1. For a > 0 and ζ ≥ 0, we define

g(a, ζ) , 1−Q
(√

ζ
(√

a−
√
a−1

))

+ e2ζ Q
(√

ζ
(√

a+
√
a−1

))

(26)

ḡ(a, ζ) , 1−Q
(√

ζ
(√

a−
√
a−1

))

− e2ζ Q
(√

ζ
(√

a+
√
a−1

))

(27)

where the Q-function is defined as

Q(ξ) ,
1√
2π

∫ ∞

ξ

e−
t2

2 dt. (28)

Lemma 2. The mappings a 7→ g(a, ζ) and a 7→ ḡ(a, ζ) are

both monotonically increasing and satisfy

lim
a↓0

g(a, ζ) = lim
a↓0

ḡ(a, ζ) = 0 (29)

lim
a↑∞

g(a, ζ) = lim
a↑∞

ḡ(a, ζ) = 1 (30)

for all ζ ≥ 0. Moreover, for all ζ ≥ 0 and a ≥ 1,

g(a, ζ) ≥ 1

2
. (31)

Proof: The derivatives of g(a, ζ) and ḡ(a, ζ) are positive:

∂

∂a
g(a, ζ) =

√

ζ

2πa3
e−

ζ
2 (

√
a−

√
a−1)

2

> 0, (32)

∂

∂a
ḡ(a, ζ) =

√

ζ

2πa
e−

ζ
2 (

√
a−

√
a−1)

2

> 0. (33)

The limiting behavior follows directly from the properties of

the Q-function. Finally, using monotonicity,

g(a, ζ) ≥ g(1, ζ) =
1

2
+ e2ζQ

(
2
√

ζ
)
≥ 1

2
. (34)
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Lemma 3. The mapping a 7→ log g(a, ζ) is monotonically

increasing and concave.

Proof: The monotonicity follows directly from Lemma 2

and the monotonicity of the logarithm. To confirm its concav-

ity, we derive the second derivative:

∂2

∂a2
log g(a, ζ)

= −
√

ζ

8πa7
e−

ζ
2 (

√
a−

√
a−1)

2

g2(a, ζ)

·
(

g(a, ζ)
(
ζa2 + 3a− ζ

)
+

√

2ζa

π
e−

ζ
2 (

√
a−

√
a−1)

2

)

(35)

which is seen to be nonpositive once we show that

r(a) , g(a, ζ)
(
ζa2 + 3a− ζ

)
+

√

2ζa

π
e−

ζ
2 (

√
a−

√
a−1)

2

(36)

≥ 0. (37)

This is indeed the case because lima↓0 r(a) = 0 and because

∂r(a)

∂a
= (3 + 2aζ)g(a, ζ) +

√

8ζ

πa
e−

ζ
2 (

√
a−

√
a−1)

2

(38)

≥ 0. (39)

C. New Bounds

In the following we will present our bounds on capacity.

The corresponding derivations can be found in Appendix A.

1) Peak- and Average-Delay Constraint with 1
2 ≤ α ≤ 1:

Theorem 4. For an average-to-peak delay ratio 1
2 ≤ α ≤ 1,

the capacity C(T, αT) is lower-bounded by

C(T, αT) ≥ 1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + logT

− log g(αT+ 1, λ), ∀T ≥ 0 (40)

and upper-bounded by

C(T, αT) ≤ 1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + log(T+ δ) + 1

− g(δ, λ)− 2
(
1− g(δ, λ)

)
log
(
1− g(δ, λ)

)

− g(δ, λ) log g(δ, λ), ∀T ≥ 0. (41)

Here, g(·, ·) is given in Definition 1 and δ ≥ 1 is a free

parameter.

Proof: The derivations of the upper and lower bound can

be found in Appendices A-A2 and A-B2, respectively.

The bound (41) can be optimized numerically over δ. A

suboptimal but useful choice of δ is

δ = 2 log(1 + T) +
1

α
. (42)

The bounds of Theorem 4 are depicted in Fig. 1.

As T increases without bound, the capacity increases as

logT. Intuitively, if the release time is chosen uniformly from

the set {0, t, 2t, . . . ,T} where t is a large constant, then

the release time can be estimated with low probability of
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upper bound (41) (δ given in (42))

upper bound (41) (δ optimized)

lower bound (40)

exact according to Section V

α = 0.80

C
(T

,
α
T
)

[b
it

s]

peak delay T

Fig. 1. Capacity and bounds on capacity as a function of T with α = 0.80
and λ = 1

2
. The choice of the free parameter δ is either according to (42) or

numerically optimized.

error, hence T/t messages can be sent reliably. (Note that

the average delay is T/2, i.e., the average-delay constraint is

satisfied.) The following result gives the precise gap between

the capacity and logT as T → ∞.

Corollary 5 (Asymptotics). For 1
2 ≤ α ≤ 1,

lim
T↑∞

{
C(T, αT)− logT

}
=

1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ). (43)

Proof: This follows from Theorem 4, the choice (42), and

the asymptotic behavior of g(·, ·) given in Lemma 2.

Note that for α ≥ 1
2 , the asymptotic capacity does not

depend on the average-delay constraint M and is identical to

the capacity under a peak-delay constraint only.

2) Peak- and Average-Delay Constraint with 0 < α < 1
2 :

Theorem 6. For an average-to-peak delay ratio 0 < α < 1
2 ,

the capacity C(T, αT) is lower-bounded by

C(T, αT) ≥ 1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + logT

+ log
1− e−β∗

β∗ + αβ∗ +
β

T
− λ+ λ

√

1− 2β∗

λT

− log g

(

(αT+ 1)

√

1− 2β∗

λT
, λ

√

1− 2β∗

λT

)

,

∀T >
2β∗

λ
(44)

and upper-bounded by

C(T, αT) ≤ 1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + log(αT+ 1)

+ αβ∗ − log(αβ∗) + log
(

1− e−
αβ∗(T+δ)

αT+1

)

+ 1

− g(δ, λ)− 2
(
1− g(δ, λ)

)
log
(
1− g(δ, λ)

)

− 2g(δ, λ) log g(δ, λ), ∀T ≥ 0. (45)
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Here g(·, ·) is given in Definition 1, β∗ is the nonnegative

solution to2

α =
1

β∗ − e−β∗

1− e−β∗ (46)

and δ ≥ 1 is a free parameter.

Proof: The derivations of the upper and lower bound can

be found in Appendices A-A1 and A-B1, respectively.

The bound (45) can be optimized numerically over δ, and

again, a suboptimal but useful choice of δ is given in (42).

The bounds of Theorem 6 are depicted in Fig. 2.

Similar asymptotics as Corollary 5 can be obtained, except

that with α < 1/2, the release time cannot be uniformly

chosen from equally spaced points between 0 and T.

Corollary 7 (Asymptotics). For 0 < α < 1
2 ,

lim
T↑∞

{
C(T, αT)− logT

}

=
1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + αβ∗ − log

β∗

1− e−β∗ . (47)

Proof: This follows from Theorem 6, the choice (42), and

the asymptotic behavior of g(·, ·) given in Lemma 2.

3) Average-Delay Constraint Only:

Theorem 8. If the input is constrained by an average-delay

constraint only, the capacity is lower-bounded by

Cm(M) ≥ 1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + logM

+ 1 +
1

M
− λ+ λ

√

1− 2

λM

− log g

(

(M+ 1)

√

1− 2

λM
, λ

√

1− 2

λM

)

,

∀M >
2

λ
(48)

and upper-bounded by either of the following three bounds:

Cm(M) ≤ 1

2
log

(

1 +
λM

M+ 1

)

+
3

2
log

(

1 +M

(

1 +
1

λ

))

,

∀M ≥ 0 (49)

Cm(M) ≤ 1

2
log λ+

η − 1

2
e2λ Ei(−2λ)

+
η + 2

2
log

(

1 +M

(

1 +
1

λ

))

− log η

+
1

2
log

(√

2λ

π
eλ Kη+ 1

2
(λ)− (M+ 1)−η

)

,

∀M ≥ 0 (50)

Cm(M) ≤ 1

2
log λ− e2λ Ei(−2λ)

+
1

2
log

(

1 +M

(

1 +
1

λ

))

+
1

2
log

(

1 +M− λ

1 + λ

)

, ∀M ≥ 0. (51)

2It is straightforward to show that for 0 < α < 1

2
, the solution to (46)

always exists and is unique.

Here, Ei(·) is defined in (7), Kν(·) represents the order-ν
modified Bessel function of the second kind, and 0 < η ≤ 1
is a free parameter.

Proof: The derivations of the upper bounds are given in

Appendix A-A3, and the derivation of the lower bound can be

found in Appendix A-B3.

The second bound (50) can be optimized numerically over

η. A suboptimal choice for η is

η , min

{

2

log
(
4 + 4M

λ

) , 1

}

. (52)

The bounds of Theorem 8 are depicted in Fig. 3.

Corollary 9 (Asymptotics). For the AIGN channel under only

an average-delay constraint,

lim
M↑∞

{
Cm(M)− logM

}

=
1

2
log

λ

2πe
− 3

2
e2λ Ei(−2λ) + 1. (53)

Proof: This follows from the lower bound in Theorem 8,

the upper bound (24), and the asymptotic behavior of g(·, ·)
given in Lemma 2.

This asymptotic result agrees with the approximations given

in [16].

IV. CAPACITY-ACHIEVING INPUT

In this section we study the properties of the capacity-

achieving input under either an average-delay constraint or

both a peak- and an average-delay constraint.

A. Existence and Uniqueness

Let P denote the collection of all Borel probability measures

defined on
(
R

+∪ {0},B(R+ ∪{0})
)
, which is a topological

space with the topology of weak convergence [17]. In order to

prove the existence of the capacity-achieving input distribution

under an average-delay constraint or under both a peak- and

an average-delay constraint, we first show that the set of

distributions subject to an average-delay constraint Λm(M) and

the set of distributions subject to both a peak- and an average-

delay constraint Λ(T,M) are compact in the topological space

P .

Lemma 10. Λm(M) is compact in the topological space P .

Proof: According to [17], the topology of weak conver-

gence on P is metrizable. Therefore, by Prokhorov’s theo-

rem [18], in order to prove that Λm(M) is compact in P , it

suffices to show that it is both tight and closed.

For any ε > 0, there exists an aε > 0 such that for all

µ ∈ Λm(M),

µ
(
|X| ≥ aε

)
≤ E[X]

aε
≤ M

aε
< ε (54)

by Markov’s inequality. Choose Kε = [0, aε], then Kε is

compact in R and µ(Kε) ≥ 1 − ε for all µ ∈ Λm(M), thus

Λm(M) is tight.
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Fig. 3. Bounds on capacity with only an average-delay constraint as a function of M with λ = 1

2
. The right plot is zoomed in at low values of M. The

choice of the free parameter η is according to (52).

Let {µn}∞n=1 be a convergent sequence in Λm(M) with limit

µ0. Let f(x) = x, which is continuous and bounded below.

By weak convergence [17, Section 3.1], we have

Eµ0
[X] =

∫

f dµ0 ≤ lim
n→∞

∫

f dµn ≤ M. (55)

Therefore, µ0 ∈ Λm(M), i.e., Λm(M) is closed, and the

compactness of Λm(M) follows.

Corollary 11. Λ(T,M) is compact in the topological space

P .

Proof: Following a similar procedure as in the proof of

Lemma 10, we can prove that Λ(T,M) is closed. Since a

closed subset of a compact space is also compact, Λ(T,M) ⊂
Λm(M) is compact.

Since the mutual information I(µ) is continuous on P [19,

Theorem 7], it must achieve its maximum on the compact set

Λm(M) or Λ(T,M). Hence the capacity-achieving distribution

µ0 exists under an average-delay constraint or under both a

peak- and an average-delay constraint.

In the remainder of Section IV, we will study the properties

of the capacity-achieving distribution in a compact space Λ̄,

which can be either Λm(M) or Λ(T,M).
In order to prove the uniqueness of the capacity-achieving

distribution, we first prove strict convexity of I(µ).

Theorem 12. The input–output mutual information I(µ) of the

AIGN channel is strictly convex in Λ̄.

Proof: For any µ0 and µ1 in Λ̄, let µθ = (1−θ)µ0+θµ1,

θ ∈ (0, 1). Then

pY (y;µθ) = (1− θ) pY (y;µ0) + θ pY (y;µ1). (56)

Thus,

I(µθ)− (1− θ)I(µ0)− θI(µ1)



LI et al.: CAPACITY OF THE MEMORYLESS ADDITIVE INVERSE GAUSSIAN NOISE CHANNEL 2321

= h(Y ;µθ)− (1− θ)h(Y ;µ1)− θh(Y ;µ2) (57)

= −
∫

pY (y;µθ) log pY (y;µθ) dy

+ (1− θ)

∫

pY (y;µ1) log pY (y;µ1) dy

+ θ

∫

pY (y;µ2) log pY (y;µ2) dy (58)

= (1− θ)D
(
pY (·;µ1)

∥
∥pY (·;µθ)

)

+ θD
(
pY (·;µ2)

∥
∥pY (·;µθ)

)
(59)

where D(·‖·) denotes the relative entropy [22]. Using the

nonnegativity property of the relative entropy [22], we have

I(µθ) ≥ (1− θ)I(µ0) + θI(µ1) (60)

with equality if and only if pY (y;µ1) = pY (y;µ0) =
pY (y;µθ). Hence the convexity of I(µ) is established.

To prove strict convexity, we show that if µ0, µ1 both

achieve the maximum, then µ0 and µ1 are identical. This is

implied if we show that pY (y;µ0) = pY (y;µ1) for all y.

Let ϕN (t) be the characteristic function of N ∼ IG(1, λ) and

ϕµ(t) be the characteristic function of distribution µ. We know

that pY (y;µ1) = pY (y;µ2) is equivalent to ϕN (t)ϕµ1
(t) =

ϕN (t)ϕµ2
(t). We have [2]

ϕN (t) = exp
{

λ
(

1−
(
1− 2iλ−1t

) 1
2

)}

(61)

which is nonzero for all t, i.e., pY (y;µ1) = pY (y;µ2) if and

only if ϕµ1
(t) = ϕµ2

(t). This requires that µ1 = µ2 = µθ.

B. Characterization of the Capacity-Achieving Distribution

We will next show that the capacity-achieving input dis-

tribution has the important property of assigning a positive

probability to any ε-environment around the zero input.

Definition 13. A point x is said to be a point of increase of

µ if for any open subset O containing x, µ(O) > 0.

Theorem 14. The supremum in (21) or (22) is a maximum

and is achieved by a unique µ0 ∈ Λ̄. Moreover, 0 is a point of

increase of the optimal input distribution, i.e., for any ε > 0,

µ0

(
[0, ε)

)
> 0. (62)

Proof: Due to the strict convexity of I(µ) established

in Theorem 12 and the compactness of Λ̄ established in

Lemma 10 and Corollary 11, the maximizer in (21) or (22)

must exist and be unique. We next prove (62). By contra-

diction, suppose that the optimal input is lower-bounded by

ε > 0, i.e., µ0

(
[0, ε)

)
= 0. Then consider the different

input X1 = X − ε. Evidently, I(µ1) = I(X1;X1 + N) =
I(X;X + N) = I(µ0). Since µ1 also belong to Λ̄, it thus

also is an optimal input distribution. This contradicts the

uniqueness of the optimal input.

By Theorem 14, the capacity-achieving input distribution

subject to either an average-delay constraint or subject to

both a peak- and an average-delay constraint can be found

respectively in the following distribution sets:

Λm,0(M) =
{
µ : Eµ[X] ≤ M, µ[0, ε) > 0, ∀ε > 0

}
(63)

Λ0(T,M) =
{
µ : µ

(
[0,T]

)
= 1,Eµ[X] ≤ M,

µ[0, ε) > 0, ∀ε > 0
}
. (64)

In the following we will use Λ̄0 to represent either Λm,0(M)
or Λ0(T,M).

Lemma 15. Consider an AIGN channel with noise N1 ∼
IG(1, λ) and input X1 ∼ µ1 ∈ Λm(M), and another AIGN

channel with noise N2 ∼ IG(a, aλ) and input X2 ∼ µ2 ∈
Λm(aM), where a > 0. Then the capacity between input and

output of both channels are identical.

Proof: Since inverse Gaussians are closed under scaling,

aN1 ∼ IG(a, aλ). Hence, aX1+aN1 is equivalent to X2+N2.

A similar result can be derived for the case of both a peak-

and an average-delay constraint.

We now define the set of all distributions with zero being a

point of increase and with an arbitrary finite average delay as

Λ∪
m,0 ,

⋃

0≤M<∞
Λm,0(M) (65)

for the case of an average-delay constraint, and

Λ∪
0 (T) ,

⋃

0≤M≤T

Λ0(T,M) (66)

for the case of both a peak- and an average-delay constraint.

We will use Λ̄
∪
0 to refer to either of them.

Lemma 16. The mutual information function I(µ) is weakly

differentiable in Λ̄∪
0 . The weak derivative I ′µ0

(µ), defined as

I ′µ0
(µ) , lim

θ↓0

I
(
(1− θ)µ0 + θµ

)
− I(µ0)

θ
(67)

can be expressed as

I ′µ0
(µ) =

∫

Q(x;µ0) dµ(x)− I(µ0)− h(N). (68)

Proof: See Appendix B-A.

The following Theorem gives necessary and sufficient con-

ditions on the channel input in order to be capacity achieving.

This is particularly useful for the numerical results presented

in Section V.

Theorem 17. Let µ0 be an admissible input probability mea-

sure, i.e., µ0 ∈ Λ̄. Then µ0 is capacity achieving if and only

if there exists a ν ≥ 0 such that for every x ≥ 0

Q(x;µ0)− h(N)− I(µ0)− ν(x−M) ≤ 0. (69)

Furthermore, (69) holds with equality for all points of increase

of µ0.

Proof: See Appendix B-B.

V. NUMERICAL CALCULATION OF THE

CAPACITY-ACHIEVING INPUT

Based on the insights obtained in Section IV, the capacity

under a peak- and an average-delay constraint can be achieved

in the set Λ0(T,M):

C(T,M) = max
µ∈Λ0(T,M)

I(µ). (70)
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In [7], Smith proves that only a discrete distribution can

achieve the capacity of an additive white Gaussian noise chan-

nel with amplitude and variance constraints. The discreteness

of the capacity-achieving input hinges on the fact that the

function Q(x;µ0) defined in (12) analytically extends to the

entire complex plane in the setting of [7]. However, for the

AIGN channel, it can be proved that Q(z;µ0) is not analytic

at z = 0. As demonstrated below, the resulting optimal input

for the AIGN channel appears to be a mixed discrete and

continuous distribution.

From Theorem 17, we can calculate the capacity-achievable

input µ0 through the method of Lagrangian multipliers on the

nonlinear program problem (70). Since a direct search of the

optimal input on an infinite dimensional functional space is

difficult, the following discrete approximation of (70) is solved

to estimate the optimal input:

maximize
PX

I(X;Y ) (71)

subject to E[X] ≤ M

X ∈ S = {x1, . . . , xn}
where 0 = x1 < · · · < xn = T

(72)

where S is the alphabet set of the input distribution. Evidently,

the set of distribution PX on S satisfying the average con-

straint in (72) is a convex set. Since the mutual information

I(X;Y ) is concave in PX for fixed PY |X and since the

average constraint is linear, the maximization problem in (71)

is a general convex programming problem. We solve this

problem by the interior point method. For pi = PX(xi), the

output distribution is

pY (y) =
n∑

i=1

pipN (y − xi) (73)

and we can solve (71) by maximizing

h(Y ) =

∫ ∞

0

pY (y) log
1

pY (y)
dy (74)

under the average-delay constraint

n∑

i=1

pixi −M ≤ 0. (75)

Plots of the rate achieved by this optimized input are shown

in Figs. 1 and 2 in combination with the bounds derived in

Section III. Evidently, the results are very close to capacity.

Fig. 4 shows the optimized input distribution (top) and

the corresponding a(x;µ0) (bottom) defined in (171), where

λ = 1, M = 1, T = 4 and xi = 0.01i, i = 0, . . . , 400. It is

shown that a(x;µ0) is essentially nonpositive. This indicates

that the optimized input distribution in Fig. 4 satisfies (69)

in Theorem 17. Thus the optimized input distribution in

(71) is the capacity-achieving input distribution, to numerical

precision. It is interesting to observe that a(x;µ0) is zero

over an interval where the input puts its probability masses

(including x = 0). The numerical result also indicates that

the optimized distribution is a mixture of a probability density

and two discrete mass points, one at “0” and the other at

the peak-delay time. This mixture distribution is in contrast
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Fig. 4. Optimized distribution (top) and a(x;µ0) (bottom) for λ = 1, M = 1,
and T = 4.

with the optimal distribution for additive white Gaussian noise

channels and Rayleigh-fading channels with an average-power

and a peak-amplitude constraint [7] [12] [11].

VI. CONCLUSION

We have studied the capacity of the memoryless additive

inverse Gaussian noise channel with an average-delay con-

straint or with both an average- and a peak-delay constraint.

New upper and lower bounds on the capacity in nats (or bits)

per molecule use are presented and properties of the capacity-

achieving input distribution are derived. The latter allows the

exact numerical computation of the capacity. Note that all

results are analytical results and are not based on simulations.

The numerical results show that the optimal input is a mixed

continuous and discrete distribution, which deserves further

study. It might also be helpful for improving on the bounds in

the low-delay region. Another promising approach for a lower

bound on capacity is to use the entropy power inequality [22,

Theorem 17.7.3] in combination with the chosen inputs given

in Appendix A-B.

In this paper, we assume that the molecules released by the

transmitter can be distinguished. It is an interesting and open

question how the results change when this assumption does

not hold.

APPENDIX A

DERIVATIONS OF SECTION III-C

A. Upper Bounds

The upper bounds on capacity are all based on the duality

technique that has successfully been used in previous works,

see, e.g., [20] or [21]. For an arbitrary choice of a distribution

f(·) on the channel output alphabet, we have

C ≤ Eµ∗

[
D
(
pY |X(·|X)

∥
∥f(·)

)]
(76)

where D(·‖·) is the relative entropy [22] and µ∗ denotes the

(unknown!) capacity-achieving input distribution. Note that

Theorem 14 guarantees the existence and uniqueness of µ∗.
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The challenge then lies in finding an elaborate choice of f(·)
that is simple enough to allow the evaluation of (76), but

that at the same time is good enough to result in a close

bound. Moreover, we need to find ways of dealing with the

expectation over the unknown µ∗.

1) Case with 0 < α < 1
2 : We make the following choice

for f(·):

f(y) ,







1
T

β(1−p)

1−e
−β(1+ δ

T )
e−

β
T
y 0 ≤ y ≤ T+ δ,

pη e−η(y−T−δ) y > T+ δ
(77)

where β > 0, η > 0, δ ≥ 0, and 0 ≤ p ≤ 1 are free parameters.

Equation (76) now evaluates as follows:

C(T, αT)

≤ Eµ∗

[(
βX

T
+ logT+ log

(

1− e−β(1+ δ
T )
)

− log β

− log(1− p)

)∫
T+δ−X

0

√

λ

2πt3
e−

λ(t−1)2

2t dt

︸ ︷︷ ︸

, r1(X)

]

+ Eµ∗

[

β

T

∫
T+δ−X

0

t

√

λ

2πt3
e−

λ(t−1)2

2t dt

︸ ︷︷ ︸

, r2(X)

]

+ Eµ∗

[

η

∫ ∞

T+δ−X

t

√

λ

2πt3
e−

λ(t−1)2

2t dt

]

+ Eµ∗

[

(
ηX − log p− log η − η(T+ δ)

)

·
∫ ∞

T+δ−X

√

λ

2πt3
e−

λ(t−1)2

2t dt

]

− h(N) (78)

= Eµ∗

[(
βX

T
+ logT+ log

(

1− e−β(1+ δ
T )
)

− log β

− log(1− p)

)

r1(X) +
β

T
r2(X)

+
(
ηX − log p− log η − η(T+ δ)

)(
1− r1(X)

)

+ η
(
1− r2(X)

)

]

− h(N). (79)

The integrals r1 and r2 can be evaluated as follows:

r1(x) = g(T+ δ − x, λ) (80)

r2(x) = ḡ(T+ δ − x, λ) (81)

where g(·, ·) and ḡ(·, ·) are given in Definition 1. From

Lemma 2 now immediately follow the following bounds on

r1 and r2.

Lemma 18. The expressions r1(·) and r2(·) given in (81)

satisfy:

0 ≤ g(δ, λ) ≤ r1(x) ≤ 1, ∀x ∈ [0,T] (82)

0 ≤ ḡ(δ, λ) ≤ r2(x) ≤ 1, ∀x ∈ [0,T]. (83)

Moreover, for δ ≥ 1 and irrespective of λ,

g(δ, λ) ≥ 1

2
. (84)

Proof: The lower bounds follow from the monotonicity

of g(·, ·) and ḡ(·, ·) and the fact that T+ δ−x ≥ δ. The other

statements are given directly in Lemma 2.

We now choose

p , 1− Eµ∗ [r1(X)] (85)

η ,
1− Eµ∗ [r1(X)]

αT+ 1− Eµ∗ [Xr1(X) + r2(X)]
(86)

where from Lemma 18 it follows that 0 ≤ p ≤ 1 and η ≥ 0
as required. Then (79) looks as follows:

C(T, αT)

≤ −h(N)− (1− Eµ∗ [r1(X)])

·
(

(T+ δ)(1− Eµ∗ [r1(X)])

αT+ 1− Eµ∗ [Xr1(X) + r2(X)]
− 1

)

− (1− Eµ∗ [r1(X)]) log
1− Eµ∗ [r1(X)]

αT+ 1− Eµ∗ [Xr1(X) + r2(X)]

− (1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

+
β

T
Eµ∗ [Xr1(X) + r2(X)]

+ Eµ∗ [r1(X)]

(

logT+ log
(

1− e−β(1+δ/T)
)

− log β

− log Eµ∗ [r1(X)]

)

(87)

= −h(N) + (1− Eµ∗ [r1(X)])

·
(

1− (T+ δ)(1− Eµ∗ [r1(X)])

αT+ 1− Eµ∗ [Xr1(X) + r2(X)]
︸ ︷︷ ︸

≥ 0

)

− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

+ (1− Eµ∗ [r1(X)])

· log
(
αT+ 1− Eµ∗ [Xr1(X) + r2(X)]

︸ ︷︷ ︸

≥ 0

)

− Eµ∗ [r1(X)] log Eµ∗ [r1(X)]

+
β

T
Eµ∗ [Xr1(X) + r2(X)]

+ Eµ∗ [r1(X)]
(

logT− log β + log
(

1− e−β(1+δ/T)
))

(88)

≤ −h(N) + 1− Eµ∗ [r1(X)]

− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

+ (1− Eµ∗ [r1(X)]) log(αT+ 1)

− Eµ∗ [r1(X)] log Eµ∗ [r1(X)]

+
β

T
Eµ∗ [Xr1(X) + r2(X)]

+ Eµ∗ [r1(X)]
(

logT− log β + log
(

1− e−β(1+δ/T)
))

.

(89)

Further we choose

β ,
αTEµ∗ [r1(X)]β∗

αT+ 1
> 0 (90)

where β∗ is the nonnegative solution to (46). It is not difficult

to see that for α < 1/2, this solution always exists and is
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unique. With this choice we get

β

T
Eµ∗ [Xr1(X) + r2(X)]

= αβ∗
Eµ∗ [r1(X)]

Eµ∗ [Xr1(X) + r2(X)]

αT+ 1
(91)

≤ αβ∗
Eµ∗ [r1(X)] (92)

and

− log β = − log(αTβ∗)− log Eµ∗ [r1(X)] + log(αT+ 1)

(93)

and

log
(

1− e−β(1+δ/T)
)

= log

(

1− e−
αβ∗(T+δ)Eµ∗ [r1(X)]

αT+1

)

(94)

≤ log
(

1− e−
αβ∗(T+δ)

αT+1

)

. (95)

Hence we obtain from (89)

C(T, αT)

≤ −h(N) + 1− Eµ∗ [r1(X)]

− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

+ (1− Eµ∗ [r1(X)]) log(αT+ 1)

− 2Eµ∗ [r1(X)] log Eµ∗ [r1(X)]

+ Eµ∗ [r1(X)]
(

αβ∗ − logαβ∗ + log(αT+ 1)

+ log
(

1− e−
αβ∗(T+δ)

αT+1

))

(96)

= −h(N) + 1− Eµ∗ [r1(X)]

− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

− 2Eµ∗ [r1(X)] log Eµ∗ [r1(X)] + log(αT+ 1)

+ Eµ∗ [r1(X)]
(

αβ∗ − logαβ∗ + log
(

1− e−
αβ∗(T+δ)

αT+1

))

.

(97)

Next we point out that the mapping z 7→ 1 − z − 2(1 −
z) log(1 − z) − 2z log z is monotonically decreasing for all

z ≥ 1√
e+1

≈ 0.378. Since by Lemma 18

Eµ∗ [r1(X)] ≥ g(δ, λ) ≥ 1

2
>

1√
e+ 1

(98)

as long as δ ≥ 1, we can bound

1− Eµ∗ [r1(X)]− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

− 2Eµ∗ [r1(X)] log Eµ∗ [r1(X)]

≤ 1− g(δ, λ)− 2
(
1− g(δ, λ)

)
log
(
1− g(δ, λ)

)

− 2g(δ, λ) log g(δ, λ). (99)

Finally, in order to be able to bound Eµ∗ [r1(X)] ≤ 1, we

derive conditions that guarantee that

αβ∗ − logαβ∗ + log
(

1− e−
αβ∗(T+δ)

αT+1

)

≥ 0. (100)

To that goal, we define ξ , T+δ
αT+1 and note from (46) that

αβ∗ = 1− β∗ e−β∗

1− e−β∗ ∈ [0, 1]. (101)

With φ ,
β∗ e−β∗

1−e−β∗ , where 0 ≤ φ ≤ 1, we then get that

αβ∗ − logαβ∗ + log
(

1− e−
αβ∗(T+δ)

αT+1

)

= 1− φ− log(1− φ) + log
(

1− e−ξ(1−φ)
)

≥ 0 (102)

if

ξ ≥ log
(
1− (1− φ) eφ−1

)

φ− 1
(103)

= 1− 1

1− φ
log
(
e1−φ − (1− φ)

)
. (104)

Note that

e1−φ − (1− φ)

= 1 +
1

2
(1− φ)2 +

1

6
(1− φ)3 +

1

24
(1− φ)4 + · · · (105)

≥ 1 (106)

such that Condition (104) (and therefore also (102)) is satisfied

if ξ ≥ 1, which is satisfied if δ ≥ 1.

2) Case with 1
2 ≤ α ≤ 1: The derivation of this case is

very similar to the derivations given in Section A-A1. Roughly

speaking, we take over the results with β∗ ↓ 0. More precisely,

we choose

f(y) ,

{
1−p
T+δ 0 ≤ y ≤ T+ δ,

pη e−η(y−T−δ) y > T+ δ
(107)

with δ ≥ 0 a free parameter, and with p and η chosen as in

(85) and (86). Then (89) changes to

C(T, αT) ≤ −h(N) + 1− Eµ∗ [r1(X)]

− 2(1− Eµ∗ [r1(X)]) log(1− Eµ∗ [r1(X)])

− Eµ∗ [r1(X)] log Eµ∗ [r1(X)] + log(αT+ 1)

+ Eµ∗ [r1(X)] log
T+ δ

αT+ 1
. (108)

Using that the mapping z 7→ 1 − z − 2(1 − z) log(1 − z) −
z log z is monotonically decreasing for all z ≥ (

√
5−1)2

4 ≈
0.382, the remaining derivation follows then analogously to

Section A-A1.

3) Case with Average-Delay Constraint Only: As discussed

in Section III-A, the basic idea of the upper bound (24)

was to upper-bound the output entropy by its maximum

possible value, which will be achieved if the output happens

to be exponentially distributed. It therefore does not come

as a surprise that if we choose f(·) to be an exponential

distribution, we can fully recover the upper bound (24) from

(76).

The upper bounds (49), (50), and (51) are based on a choice

of f(·) being a power inverse Gaussian distribution [23]:

f(y) =

√

δ

2πβ3

(
β

y

)1+ η
2

· exp



− δ

2η2β

((
y

β

) η
2

−
(
β

y

) η
2

)2


 I{y > 0}

(109)
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where β, δ > 0, and η ∈ R \ {0} are free parameters. The

family of power inverse Gaussian distributions contains the

IG distribution as a special case for the choice η = 1.

We use the choice (109) in (76) and get

Cm(M)

≤ −h(N)−
(

1 +
η

2

)

log β +
(

1 +
η

2

)

Eµ∗ [log(X +N)]

+
1

2
log

2π

δ
+

3

2
log β +

δ

2η2β1+η
Eµ∗ [(X +N)η]

+
δ

2η2β1−η
Eµ∗

[
(X +N)−η

]
− δ

η2β
. (110)

To minimize this upper bound we choose

δ ,
η2β

β−ηEµ∗ [(X +N)η] + βηEµ∗ [(X +N)−η]− 2
(111)

β , Eµ∗ [(X +N)η]
1
η (112)

which yields

Cm(M)

≤ −h(N) +
(

1 +
η

2

)

Eµ∗ [log(X +N)] +
1

2
log

2πe

η2

+
1

2
log

(

Eµ∗

[
(X +N)−η

]
− 1

Eµ∗ [(X +N)η]

)

. (113)

The first upper bound (49) now follows by picking η , 1
and continue bounding

Eµ∗

[
1

X +N

]

≤ E

[
1

N

]

=
1

λ
+ 1 (114)

and

Eµ∗ [log(N +X)]

≤ E[logN ] + Eµ∗

[

log

(

E

[

1 +
X

N

∣
∣
∣
∣
X = x

])]

(115)

≤ e2λ Ei(−2λ) + log

(

1 +M

(

1 +
1

λ

))

(116)

where we used twice Jensen’s inequality.

For the second upper bound (50), we restrict the parameter

η to 0 < η ≤ 1 such that ξ 7→ ξη is a concave function such

that by Jensen’s inequality:

Eµ∗ [(X +N)η] ≤ (Eµ∗ [X +N ])
η ≤ (M+ 1)η. (117)

Moreover, for η > 0 we have

Eµ∗

[
(X +N)−η

]
≤ E

[
N−η

]
=

√

2λ

π
eλ K 1

2+η(λ). (118)

Plugging (117) and (118) into (113) then yields the second

upper bound (50).

The third upper bound (51) follows from (113) with the

choice η , −1 and the bounds (114) and (116).

B. Lower Bounds

For the lower bounds, we simply omit the maximization

in the definition of capacity and choose a particular input

distribution µ:

C ≥ I(X;Y )
∣
∣
X∼µ

= h(Y )
∣
∣
X∼µ

− h(N). (119)

To make the lower bound as tight as possible, we choose

µ to satisfy the delay constraints with equality. Moreover,

motivated by the fact that under a constraint on E[X], the

differential entropy h(X) is maximized by X being exponen-

tially distributed, we choose µ to be a (truncated) exponential

distribution.

1) Case with 0 < α < 1
2 : We choose

µ(x) ,
β∗

T(1− e−β∗)
e−

β∗

T
x
I{0 ≤ x ≤ T} (120)

where β∗ is chosen such that Eµ[X] = αT, i.e., β∗ is the

nonnegative solution to (46). For this given input distribution,

the distribution at the channel output can now be derived as

follows:3

pY (y)

=

∫ ∞

−∞
µ(x) pY |X(y|x) dx (121)

=

∫ ∞

−∞

β∗

T(1− e−β∗)
e−

β∗

T
x
I{0 ≤ x} I{x ≤ T}

·
√

λ

2π(y − x)3
e−

λ(y−x−1)2

2(y−x) I{y > x}dx (122)

=

∫ ∞

−∞

β∗

T(1− e−β∗)
e−

β∗

T
(y−t)

I{0 ≤ y − t}

· I{y − t ≤ T}
√

λ

2πt3
e−

λ(t−1)2

2t I{t > 0}dt (123)

=
β∗

T(1− e−β∗)
e−

β∗

T
y+λ

·
∫ ∞

0

√

λ

2π
t−3/2 e

−t
(

λ
2 − β∗

T

)

− λ
2t I{y − T ≤ t ≤ y}dt

︸ ︷︷ ︸

, r0(y)

(124)

where in (123) we have made the substitution t = y − x.

For the evaluation of r0(y), we will assume that λ
2−

β∗

T
> 0,

i.e., T > 2β∗

λ . Let a2 , λ
2 and b2 , λ

2 −
β∗

T
and assume firstly

that y ≤ T. Then, using the substitution u = t−1/2, we get

r0(y)

=

∫ y

0

√

λ

2π
t−3/2 e−

a2

t
−b2t dt (125)

=

√

λ

2π
2

∫ ∞

1√
y

e−a2u2− b2

u2 du (126)

=

√

λ

2

e2ab

2a

(

1− erf

(
a√
y
+ b

√
y

))

+

√

λ

2

e−2ab

2a

(

1− erf

(
a√
y
− b

√
y

))

(127)

3The following derivation is inspired by [24].
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= e−λ
√

1− 2β∗

λT

(

1−Q
(
√
λ

(√

y

(

1− 2β∗

λT

)

−
√

1

y

))

+ e2λ
√

1− 2β∗

λT Q
(
√
λ

(√

y

(

1− 2β∗

λT

)

−
√

1

y

)))

(128)

= e−λ
√

1− 2β∗

λT g

(

y

√

1− 2β∗

λT
, λ

√

1− 2β∗

λT

)

(129)

, r1(y). (130)

Here, (127) follows from [25, 7.4.33], and g(·, ·) is given in

Definition 1. If y > T, we get

r0(y) =

∫ y

y−T

√

λ

2π
t−3/2 e−

a2

t
−b2t dt (131)

=

√

λ

2π
2

∫ 1√
y−T

1√
y

e−a2u2− b2

u2 du (132)

=

√

λ

2π
2

∫ ∞

1√
y

e−a2u2− b2

u2 du

−
√

λ

2π
2

∫ ∞

1√
y−T

e−a2u2− b2

u2 du (133)

= r1(y)− r2(y) (134)

where r1(y) is given in (130) and where

r2(y) , e−λ
√

1− 2β∗

λT g

(

(y − T)

√

1− 2β∗

λT
, λ

√

1− 2β∗

λT

)

.

(135)

Hence,

pY (y) =







β∗

T(1−e−β∗)
e−

β∗

T
y+λ r1(y) 0 ≤ y ≤ T,

β∗

T(1−e−β∗)
e−

β∗

T
y+λ
(
r1(y)− r2(y)

)
y > T.

(136)

The lower bound (119) now reads as follows:

C(T, αT)

≥ E[− log pY (Y )]− h(N) (137)

= Pr[Y ≤ T]E[− log pY (Y )|Y ≤ T]

+ Pr[Y > T]E[− log pY (Y )|Y > T]− h(N) (138)

= logT− log β∗ + log
(

1− e−β∗
)

+
β∗

T
E[Y ]− λ

− h(N)− Pr[Y ≤ T]E[log r1(Y )|Y ≤ T]

− Pr[Y > T]E
[
log
(
r1(Y )− r2(Y )

︸ ︷︷ ︸

≥ 0

)∣
∣Y > T

]
(139)

≥ logT− log β∗ + log
(

1− e−β∗
)

+
β∗

T
E[Y ]− λ

− h(N)− E[log r1(Y )] + λ

√

1− 2β∗

λT

− E

[

log g

(

Y

√

1− 2β∗

λT
, λ

√

1− 2β∗

λT

)]

(140)

≥ logT− log β∗ + log
(

1− e−β∗
)

+ αβ∗ +
β

T
− λ

+ λ

√

1− 2β∗

λT
− 1

2
log

2πe

λ
− 3

2
e2λ Ei(−2λ)

− log g

(

(αT+ 1)

√

1− 2β∗

λT
, λ

√

1− 2β∗

λT

)

(141)

where in the last step we used concavity (Lemma 3) and

Jensen’s inequality.

2) Case with 1
2 ≤ α ≤ 1: We choose

µ(x) ,
1

T
I{0 ≤ x ≤ T}. (142)

A derivation analogous to (121)–(135) then yields

pY (y) =

{
1
T
eλ r̃1(y) 0 ≤ y ≤ T,

1
T
eλ
(
r̃1(y)− r̃2(y)

)
y > T

(143)

where

r̃1(y) , e−λ g(y, λ) (144)

r̃2(y) , e−λ g(y − T, λ). (145)

The remainder is analogous to Section A-B1.

3) Case with Average-Delay Constraint Only: Choosing

µ(x) ,
1

M
e−x/M

I{x ≥ 0} (146)

we get analogously to (121)–(135) that

pY (y) =
1

M
e−

y
M
+λ r1(y) I{y > 0} (147)

and therefore

Cm(M)

≥ logM+
1

M
E[Y ]− λ− E[log r1(Y )]− h(N) (148)

= logM+
M+ 1

M
− λ+ λ

√

1− 2

λM
− 1

2
log

2πe

λ

− 3

2
e2λ Ei(−2λ)

− E

[

log g

(

Y

√

1− 2

λM
, λ

√

1− 2

λM

)]

. (149)

The lower bound (48) now follows from Jensen’s inequality.

APPENDIX B

DERIVATIONS OF SECTION IV

A. Proof of Lemma 16

Let µθ = (1− θ)µ0 + θµ. Using (16), we have

I(µθ)− I(µ0)

= h(Y ;µθ)− h(Y ;µ0) (150)

=

∫ ∞

0

pY (y;µθ) log
1

pY (y;µθ)
dy

−
∫ ∞

0

pY (y;µ0) log
1

pY (y;µ0)
dy (151)

= −D
(
pY (·;µθ)

∥
∥pY (·;µ0)

)

+ θ

∫ ∞

0

(
pY (y;µ0)− pY (y;µ)

)
log pY (y;µ0) dy. (152)
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Based on [26, Lemma on p. 1023], for any pair of probability

measures P1 ≪ P0, we have

lim
θ↓0

1

θ
D
(
θP1 + (1− θ)P0

∥
∥P0

)
= 0. (153)

Since for every pair of probability measures µ0 and µ in Λ̄′
0,

pY (y;µ) ≪ pY (y;µ0), we obtain

I ′µ0
(µ)

= lim
θ↓0

−1

θ
D
(
pY (·;µθ)

∥
∥pY (·;µ0)

)

+

∫ ∞

0

(
pY (y;µ0)− pY (y;µ)

)
log pY (y;µ0) dy (154)

=

∫ ∞

0

pY (y;µ) log
1

pY (y;µ0)
dy − I(µ0)− h(N) (155)

=

∫

Q(x;µ0) dµ(x)− I(µ0)− h(N). (156)

B. Proof of Theorem 17

Define the Lagrangian

J(µ) , I(µ)− νEµ[X −M] (157)

where ν is the Lagrangian multiplier. By the method of

Lagrangian multipliers [27], µ0 is capacity achieving if and

only if µ0 and ν are such that

(a) νEµ0
[X −M] = 0,

(b) for all µ ∈ Λ̄′
0, J(µ0) ≥ J(µ).

Since I(µ) is a strictly concave function on the convex set Λ̄,

J(µ) is also concave and the maximizer of (21) or (22) must

exist and be unique. Condition (b) is equivalent to J ′
µ0
(µ) ≤ 0,

where J ′
µ0
(µ) is the weak derivative of J(µ) at µ0 defined as

J ′
µ0
(µ) , lim

θ↓0

J
(
(1− θ)µ0 + θµ

)
− J(µ0)

θ
(158)

= I ′µ0
(µ)− ν

(
Eµ[X]− Eµ0

[X]
)

(159)

where I ′µ0
(µ) is given in (68). Then

J ′
µ0
(µ) =

∫

Q(x;µ0) dµ(x)− h(N)− I(µ0)

− ν
(
Eµ[X]− Eµ0

[X]
)
. (160)

We first prove the necessity of (69). Suppose µ0 achieves

the capacity. For any given x∗ ≥ 0 for the case of an average-

delay constraint and 0 ≤ x∗ ≤ T for the case of a peak- and an

average-delay constraint, let µ be the point measure at x∗, i.e.,

µ({x∗}) = 1, which clearly satisfies µ ∈ Λ̄. Substituting µ into

(160), we have, by the optimality of µ0 and the equivalence

of Condition (b) and J ′
µ0
(µ) ≤ 0,

0 ≥ J ′
µ0
(µ) (161)

= Q(x∗;µ0)− h(N)− I(µ0)− ν(x∗ −M)

+ νEµ0
[X −M] (162)

= Q(x∗;µ0)− h(N)− I(µ0)− ν(x∗ −M) (163)

where the in the last equality we used Condition (a). This

establishes (69).

We next prove the sufficiency of (69). Suppose inequality

(69) is satisfied. We integrate both side of (69) with respect

to µ0 and obtain

0 ≥
∫

Q(x;µ0) dµ0(x)− h(N)− I(µ0)

− νEµ0
[X −M] (164)

= −νEµ0
[X −M] (165)

≥ 0, (166)

where (165) follows from (16), and (166) holds because µ0 ∈
Λ̄0. Hence νEµ0

[X −M] = 0. Furthermore, if we integrate

(69) with respect to an arbitrary measure µ ∈ Λ̄∪
0 , we have

0 ≥
∫

Q(x;µ0) dµ(x)− h(N)− I(µ0)

− ν

∫

(x−M) dµ(x) (167)

= I ′µ0
(µ)− νEµ[X −M] (168)

= I ′µ0
(µ)− ν(Eµ[X]− Eµ0

[X])− ν(Eµ0
[X]−M) (169)

= J ′
µ0
(µ), (170)

where (168) follows from (156), and (170) follows from (159)

and (166). Since Condition (b) is equivalent to J ′
µ0
(µ) ≤ 0,

Conditions (a) and (b) are thus both satisfied. Hence µ0

achieves the capacity.

Finally, we prove that inequality (69) is satisfied with

equality at all points of increase. Define

a(x;µ0) , Q(x;µ0)− h(N)− I(µ0)− ν(x−M) ≤ 0 (171)

and by contradiction suppose that the inequality holds strictly

at a point of increase x∗, i.e., a(x∗;µ0) = −ε for some ε > 0.

Since pY (y;µ0) > 0 for y > 0 and pN (y − x) is continuous

for y ≥ x, Q(x;µ0) = −
∫∞
0

pN (y − x) log pY (y;µ0) dy is

continuous on x ≥ 0 and thus a(x;µ0) is also continuous

on x ≥ 0. Hence, there is an open subset O containing x∗

such that a(x, µ0) < −ε/2 for all x ∈ O. Consequently, if we

integrate both side of (69) with respect to µ0, we obtain

0 =

∫

a(x;µ0) dµ0(x) ≤
∫

O

a(x;µ0) dµ0(x) (172)

< −1

2
εµ0(O). (173)

Contradiction arises because εµ0(O) > 0, hence Theorem 17

is proved.
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[26] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. Inf. Theory,
vol. 36, no. 5, pp. 1019–1030, Sep. 1990.

[27] D. G. Luenberger, Optimization by Vector Space Methods. New York:
Wiley, 1969.

Hui Li received the B.Eng. degree in 1999 and
Ph.D. degree in 2004, all from the University of
Science and Technology of China, Hefei, China.
He joined the faculty of University of Science and
Technology of China, Hefei, China, in 2004, where
he is currently an Associate Professor in the De-
partment of Electronic Engineering and Information
Science. He has held visiting positions at North-
western University, Evanston, IL, in 2011–2012. His
research interests include wireless communication
and information theory.

Stefan M. Moser (S’01–M’05–SM’10) received the
diploma (M.Sc.) in electrical engineering in 1999,
the M.Sc. degree in industrial management (M.B.A.)
in 2003, and the Ph.D. degree (Dr. sc. techn.) in the
field of information theory in 2004, all from ETH
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From 2005 to 2013, he has been a Professor with the

Department of Electrical and Computer Engineering at National Chiao Tung
University (NCTU), Hsinchu, Taiwan. Currently he is a Senior Researcher
with the Signal and Information Processing Laboratory at ETH Zürich
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