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Abstract

We study the capacity of the range of a transient simple random walk on Z
d. Our main

result is a central limit theorem for the capacity of the range for d ≥ 6. We present a few open
questions in lower dimensions.
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1 Introduction

This paper is devoted to the study of the capacity of the range of a transient random walk on Z
d.

Let {Sk}k≥0 be a simple random walk in dimension d ≥ 3. For any integers m and n, we define the
range R[m,n] to be the set of visited sites during the interval [m,n], i.e.

R[m,n] = {Sm, . . . , Sn}.
We write simply Rn = R[0, n]. We recall that the capacity of a finite set A ⊆ Z

d is defined to be

Cap (A) =
∑

x∈A
Px

(
T+
A = ∞

)
,

where T+
A = inf{t ≥ 1 : St ∈ A} is the first return time to A.

The capacity of the range of a walk has a long history. Jain and Orey [5] proved, some fifty years
ago, that Cap (Rn) satisfies a law of large numbers for all d ≥ 3, i.e. almost surely

lim
n→∞

Cap (Rn)

n
= αd.

Moreover, they showed that αd > 0 if and only if d ≥ 5. In the eighties, Lawler established estimates
on intersection probabilities for random walks, which are relevant tools for estimating the expected
capacity of the range (see [7]). Recently, the study of random interlacements by Sznitman [12],
has given some momentum to the study of the capacity of the union of the ranges of a collection
of independent walks. In order to obtain bounds on the capacity of such union of ranges, Ráth
and Sapozhnikov in [11] have obtained bounds on the capacity of the range of a simple transient
walk. The capacity of the range is a natural object to probe the geometry of the walk under
localisation constraints. For instance, the first two authors have used the capacity of the range
in [2] to characterise the walk conditioned on having a small range.

In the present paper, we establish a central limit theorem for Cap (Rn) when d ≥ 6.
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†Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France;

bruno.schapira@univ-amu.fr
‡University of Cambridge, Cambridge, UK; p.sousi@statslab.cam.ac.uk

1



Theorem 1.1. For all d ≥ 6, there is a positive constant σd such that

Cap (Rn)− E[Cap (Rn)]√
n

=⇒ σdN (0, 1), as n → ∞,

where =⇒ denotes convergence in distribution, and N (0, 1) denotes a standard normal random
variable.

A key tool in the proof of Theorem 1.1 is the following inequality.

Proposition 1.2. Let A and B be finite subsets of Zd. Then,

Cap (A ∪B) ≥ Cap (A) + Cap (B)− 2
∑

x∈A

∑

y∈B
G(x, y), (1.1)

where G is Green’s kernel for a simple random walk in Z
d

G(x, y) = Ex

[ ∞∑

t=0

1(Xt = y)

]
.

Note in comparison the well known upper bound (see for instance [7, Proposition 2.2.1])

Cap (A ∪B) ≤ Cap (A) + Cap (B)− Cap (A ∩B) (1.2)

In dimension four, asymptotics of E[Cap (Rn)] can be obtained from Lawler’s estimates on non-
intersection probabilities for three random walks, that we recall here for convenience.

Theorem 1.3. ([7, Corollary 4.2.5]) Let R1,R2 and R3 be the ranges of three independent random
walks in Z

4 starting at 0. Then,

lim
n→∞

log n× P
(
R1[1, n] ∩ (R2[0, n] ∪R3[0, n]) = ∅, 0 6∈ R3[1, n]

)
=

π2

8
, (1.3)

and

lim
n→∞

log n× P
(
R1[1,∞) ∩ (R2[0, n] ∪R3[0, n]) = ∅, 0 6∈ R3[1, n]

)
=

π2

8
. (1.4)

Actually (1.4) is not stated exactly in this form in [7], but it can be proved using exactly the same
proof as for equation (4.11) in [7]. As mentioned, we deduce from this result, the following estimate
for the mean of the capacity.

Corollary 1.4. Assume that d = 4. Then,

lim
n→∞

log n

n
E[Cap (Rn)] =

π2

8
. (1.5)

In dimension three, we use the following representation of capacity (see [6, Lemma 2.3])

Cap (A) =
1

infν
∑

x∈A
∑

y∈AG(x, y)ν(x)ν(y)
, (1.6)

where the infimum is taken over all probability measures ν supported on A. We obtain the following
bounds:
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Proposition 1.5. Assume that d = 3. There are positive constants c and C, such that

c
√
n ≤ E[Cap (Rn)] ≤ C

√
n. (1.7)

The rest of the paper is organised as follows. In Section 2 we present the decomposition of the
range, which is at the heart of our central limit theorem. The capacity of the range is cut into a
self-similar part and an error term that we bound in Section 3. In Section 4 we check Lindeberg-
Feller’s conditions. We deal with dimension three and four in Section 5. Finally, we present some
open questions in Section 6.

Notation: When 0 ≤ a ≤ b are real numbers, we write R[a, b] to denote R[[a], [b]], where [x] stands
for the integer part of x. We also write Ra for R[0, [a]], and Sn/2 for S[n/2].

For positive functions f, g we write f(n) . g(n) if there exists a constant c > 0 such that f(n) ≤
cg(n) for all n. We write f(n) & g(n) if g(n) . f(n). Finally, we write f(n) ≍ g(n) if both
f(n) . g(n) and f(n) & g(n).

2 Decomposition for capacities

Proof of Proposition 1.2. Note first that by definition,

Cap (A ∪B) = Cap (A) + Cap (B)−
∑

x∈A\B
Px

(
T+
A = ∞, T+

B < ∞
)

−
∑

x∈A∩B
Px

(
T+
A = ∞, T+

B < ∞
)
−

∑

x∈B\A
Px

(
T+
A < ∞, T+

B = ∞
)

−
∑

x∈A∩B
Px

(
T+
A < ∞, T+

B = ∞
)
−

∑

x∈A∩B
Px

(
T+
A = ∞, T+

B = ∞
)

≥ Cap (A) + Cap (B)−
∑

x∈A\B
Px

(
T+
B < ∞

)
−

∑

x∈B\A
Px

(
T+
A < ∞

)
− |A ∩B|.

For any finite set K and all x /∈ K by considering the last visit to K we get

Px

(
T+
K < ∞

)
=

∑

y∈K
G(x, y)Py

(
T+
K = ∞

)
.

This way we obtain
∑

x∈A\B
Px

(
T+
B < ∞

)
≤

∑

x∈A\B

∑

y∈B
G(x, y) and

∑

x∈B\A
Px

(
T+
A < ∞

)
≤

∑

x∈B\A

∑

y∈A
G(x, y).

Hence we get

Cap (A ∪B) ≥ Cap (A) + Cap (B)− 2
∑

x∈A

∑

y∈B
G(x, y) +

∑

x∈A∩B

∑

y∈A
G(x, y)

+
∑

x∈A∩B

∑

y∈B
G(x, y)− |A ∩B|.

Since G(x, x) ≥ 1 for all x we get
∑

x∈A∩B

∑

y∈A
G(x, y) ≥ |A ∩B|

and this concludes the proof of the lower bound and also the proof of the lemma.

3



The decomposition of Cap (Rn) stated in the following corollary is crucial in the rest of the paper.

Corollary 2.1. For all L and n, with 2L ≤ n, we have

2L∑

i=1

Cap
(
R(i)

n/2L

)
− 2

L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ ≤ Cap (Rn) ≤

2L∑

i=1

Cap
(
R(i)

n/2L

)
,

where (Cap
(
R(i)

n/2L

)
, i = 1, . . . , 2L) are independent and R(i)

n/2L
has the same law as R[n/2L]

or R[n/2L+1] and for each ℓ the random variables (E(i)
ℓ )i are independent and have the same law as

∑
x∈R(i)

n/2L

∑
y∈R̃(i)

n/2L

G(x, y), with R̃ an independent copy of R.

Proof. Since we work on Z
d, the capacity is translation invariant, i.e. Cap (A) = Cap (A+ x) for

all x, and hence it follows that

Cap (Rn) = Cap
((
Rn/2 − Sn/2

)
∪
(
R[n/2, n]− Sn/2

))
.

The advantage of doing this is that now by the Markov property the random variables R(1)
n/2 =

Cap
(
Rn/2 − Sn/2

)
and R(2)

n/2 = Cap
(
R[n/2, n]− Sn/2

)
are independent. Moreover, by reversibility,

each of them has the same law as the range of a simple random walk started from 0 and run up to
time n/2. Applying Proposition 1.2 we get

Cap (Rn) ≥ Cap
(
R(1)

n/2

)
+Cap

(
R(2)

n/2

)
− 2

∑

x∈R(1)
n/2

∑

y∈R(2)
n/2

G(x, y). (2.1)

Applying the same subdivision to each of the terms R(1) and R(2) and iterating L times, we obtain

Cap (Rn) ≥
2L∑

i=1

Cap
(
R(i)

n/2L

)
− 2

L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ .

Here E(i)
ℓ has the same law as

∑
x∈R

n/2l

∑
y∈R′

n/2l
G(x, y), with R′ independent of R and the

random variables (E(i)
ℓ , i = 1, . . . , 2l) are independent. Moreover, the random variables (R(i)

n/2L
, i =

1, . . . , 2L) are independent. Using (1.2) for the upper bound on Cap (Rn) we get overall

2L∑

i=1

Cap
(
R(i)

n/2L

)
− 2

L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ ≤ Cap (Rn) ≤

2L∑

i=1

Cap
(
R(i)

n/2L

)

and this concludes the proof.

3 Variance of Cap (Rn) and error term

As outlined in the Introduction, we want to apply the Lindeberg-Feller theorem to obtain the central
limit theorem. In order to do so, we need to control the error term appearing in the decomposition
of Cap (Rn) in Corollary 2.1. Moreover, we need to show that the variance of Cap (Rn) /n converges
to a strictly positive constant as n tends to infinity. This is the goal of this section.
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3.1 On the error term

We write Gn(x, y) for the Green kernel up to time n, i.e. ,

Gn(x, y) = Ex

[
n−1∑

k=0

1(Sk = y)

]
.

We now recall a well-known bound (see for instance [8, Theorem 4.3.1])

G(0, x) ≤ C

1 + ‖x‖d−2
, (3.1)

where C is a positive constant. We start with a preliminary result.

Lemma 3.1. For all a ∈ Z
d we have

∑

x∈Zd

∑

y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y − a) ≤
∑

x∈Zd

∑

y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y).

Moreover,

∑

x∈Zd

∑

y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y) . fd(n),

where
f5(n) =

√
n, f6(n) = log n, and fd(n) = 1 ∀d ≥ 7. (3.2)

Proof. Let Sa =
∑

x,y Gn(0, x)p2k(x, y + a)Gn(0, y). Since

p2k(x, y − a) =
∑

z

pk(x, z)pk(z, y − a) =
∑

z

pk(z, x)pk(z, y − a)

letting Fa(z) =
∑

y Gn(0, y)pk(z, y + a) we have

Fa(z) =
∑

y

Gn(0, y)pk(z − a, y), and Sa =
∑

z

F0(z)Fa(z). (3.3)

By Cauchy-Schwartz, we obtain

S2
a ≤

∑

z

F 2
0 (z) ·

∑

z

F 2
a (z).

Notice however that a change of variable and using (3.3) yields

∑

z

F 2
a (z) =

∑

w

F 2
a (w − a) =

∑

w

F 2
0 (w),

and hence we deduce
S2
a ≤ S2

0 ∀ a.
We now note that if X is a lazy simple random walk, then the sums in the statement of the lemma
will only be affected by a multiplicative constant. So it suffices to prove the result for a lazy walk.
It is a standard fact (see for instance [10, Proposition 10.18]) that the transition matrix of a lazy
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chain can be written as the square of another transition matrix. This now concludes the proof of
the first inequality.

To simplify notation we write Gn(x) = Gn(0, x) and G(x) = G(0, x). To prove the second inequality
we split the second sum appearing in the statement of the lemma into three parts as follows

∑

x

∑

y

Gn(x)Gn(y)G(x− y) ≤
∑

‖x‖≤√
n

‖y‖≤√
n

Gn(x)Gn(y)G(x− y)

+2
∑

‖x‖≥√
n√

n
2

≤‖y‖≤√
n

Gn(x)Gn(y)G(x− y) + 2
∑

‖x‖≥√
n

‖y‖≤
√
n
2

Gn(x)Gn(y)G(x− y)

=: I1 + I2 + I3,

(3.4)

where Ik is the k-th sum appearing on the right hand side of the inequality above. The first sum I1
is upper bounded by

2

log2(n)
2∑

k=0

∑
√
n

2k+1≤‖x‖≤
√
n

2k




∑

‖y‖≤
√
n

2k+2

Gn(x)Gn(y)G(x− y) +

√
n

2k∑

r=0

∑

y: ‖y−x‖=r

‖x‖≥‖y‖≥
√
n

2k+2

Gn(x)Gn(y)G(x− y)




.

For any fixed k ≤ log2(n)/2, using (3.1) we get

∑
√

n

2k+1≤‖x‖≤
√

n

2k

∑

‖y‖≤
√
n

2k+2

Gn(x)Gn(y)G(x− y) .

(√
n

2k

)d(√
n

2k

)4−2d ∑

‖y‖≤
√
n

2k+2

Gn(y)

.

(√
n

2k

)4−d

·

√
n

2k+2∑

r=1

rd−1

rd−2
≍

(√
n

2k

)6−d

.

(3.5)

Similarly using (3.1) again for any fixed k ≤ log2(n)/2 we can bound

∑
√
n

2k+1≤‖x‖≤
√
n

2k

√
n

2k∑

r=0

∑

y: ‖y−x‖=r

‖x‖≥‖y‖≥
√
n

2k+2

Gn(x)Gn(y)G(x− y) .

(√
n

2k

)4−d

√
n

2k∑

r=1

rd−1

rd−2
≍

(√
n

2k

)6−d

. (3.6)

Therefore using (3.5) and (3.6) and summing over all k yields

I1 . fd(n).

We now turn to bound I2. From (3.1) we have

I2 .
∑

‖x‖≥2
√
n√

n
2

≤‖y‖≤√
n

Gn(x)Gn(y)G(x− y) +
∑

√
n≤‖x‖≤2

√
n√

n
2

≤‖y‖≤√
n

Gn(x)Gn(y)G(x− y)

. n2 · 1

(
√
n)d−2

+ (
√
n)4−d

√
n∑

r=1

rd−1

rd−2
≍ fd(n),
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where for the first sum we used that
∑

xGn(x) = n. Finally, I3 is treated similarly as above to
yield

I3 . n2 · 1

(
√
n)d−2

≍ fd(n).

Putting all these bounds together concludes the proof.

Lemma 3.2. For all n, let Rn and R̃n be the ranges up to time n of two independent simple
random walks in Z

d started from 0. For all k, n ∈ N we have

E







∑

x∈Rn

∑

y∈R̃n

G(x, y)




k

 ≤ C(k)(fd(n))

k,

where fd(n) is the function defined in the statement of Lemma 3.1 and C(k) is a constant that
depends only on k.

Proof. Let Lℓ(x) denote the local time at x up to time ℓ for the random walk S, i.e.

Lℓ(x) =
ℓ−1∑

i=0

1(Si = x).

Let S̃ be an independent walk and L̃ denote its local times. Then, we get

∑

x∈Rn

∑

y∈R̃n

G(x, y) ≤
∑

x∈Zd

∑

y∈Zd

Ln(x)L̃n(y)G(x, y).

So, for k = 1 by independence, we get using Lemma 3.1

E



∑

x∈Rn

∑

y∈R̃n

G(x, y)


 ≤

∑

x∈Zd

∑

y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y) . fd(n),

As in Lemma 3.1 to simplify notation we write Gn(x) = Gn(0, x).

For the k-th moment we have

E







∑

x∈Rn

∑

y∈R̃n

G(x, y)




k

 ≤

∑

x1,...,xk

∑

y1,...,yk

E

[
k∏

i=1

Ln(xi)

]
E

[
k∏

i=1

Ln(yi)

]
k∏

i=1

G(xi − yi). (3.7)

For any k-tuples x1, . . . , xk and y1, . . . , yk, we have

E

[
k∏

i=1

Ln(xi)

]
≤

∑

σ: permutation of {1,...,k}
Gn(xσ(1))

k∏

i=2

Gn(xσ(i) − xσ(i−1)) and

E

[
k∏

i=1

Ln(yi)

]
≤

∑

π: permutation of {1,...,k}
Gn(yπ(1))

k∏

i=2

Gn(yπ(i) − yπ(i−1)).

7



Without loss of generality, we consider the term corresponding to the identity permutation for x
and a permutation π for y. Then, the right hand side of (3.7) is a sum of terms of the form

Gn(x1)Gn(x2 − x1) . . . Gn(xk − xk−1)Gn(yπ(1))Gn(yπ(2) − yπ(1)) . . . Gn(yπ(k) − yπ(k−1))
k∏

i=1

G(xi − yi).

Suppose now that the term yk appears in two terms in the above product, i.e.

Gn(yk − yπ(i))Gn(yk − yπ(j)).

By the triangle inequality we have that one of the following two inequalities has to be true

‖yk − yπ(i)‖ ≥ 1

2
‖yπ(i) − yπ(j)‖ or ‖yk − yπ(j)‖ ≥ 1

2
‖yπ(i) − yπ(j)‖.

Since Green’s kernel is radially decreasing and satisfies G(x) ≍ |x|2−d for ‖x‖ > 1 we get

Gn(yk − yπ(i))Gn(yk − yπ(j)) . Gn(yπ(j) − yπ(i))
(
Gn(yk − yπ(j)) +Gn(yk − yπ(i))

)
.

Plugging this upper bound into the product and summing only over xk and yk, while fixing the
other terms, we obtain

∑

xk,yk

Gn(xk − xk−1)Gn(yk − yπ(i))G(xk − yk)

=
∑

xk,yk

Gn(xk − xk−1)Gn(yk − yπ(i))G((xk − xk−1)− (yk − yπ(i)))

=
∑

x,y

Gn(x)Gn(y)G((x− y)− (xk−1 − yπ(i))) . fd(n),

where the last inequality follows from Lemma 3.1. Continuing by induction completes the proof.

3.2 On the variance of Cap (Rn)

Lemma 3.3. For d ≥ 6 there exists a strictly positive constant γd so that

lim
n→∞

Var (Cap (Rn))

n
= γd > 0.

We split the proof of the lemma above in two parts. First we establish the existence of the limit
and then we show it is strictly positive. For the existence, we need to use Hammersley’s lemma [4],
which we recall here.

Lemma 3.4 (Hammersley). Let (an), (bn), (cn) be three sequences of real numbers satisfying for
all n,m

an + am − cn+m ≤ an+m ≤ an + am + bn+m.

If the sequences (bn), (cn) are positive and non-decreasing and additionally satisfy

∞∑

n=1

bn + cn
n(n+ 1)

< ∞,

then the limit as n → ∞ of an/n exists.
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For a random variable X we will write X = X − E[X].

Lemma 3.5. For d ≥ 6, the limit as n tends to infinity of Var (Cap (Rn)) /n exists.

Proof. We follow closely the proof of Lemma 6.2 of Le Gall [9]. To simplify notation we write
Xn = Cap (Rn), and we set for all k ≥ 1

ak = sup

{√
E

[
X

2
n

]
: 2k ≤ n < 2k+1

}
.

For k ≥ 2, take n such that 2k ≤ n < 2k+1 and write ℓ = [n/2] and m = n − ℓ. Then, from
Corollary 2.1 for L = 1 we get

X
(1)
ℓ +X(2)

m − 2Eℓ ≤ Xn ≤ X
(1)
ℓ +X(2)

m ,

where X(1) and X(2) are independent and Eℓ has the same law as
∑

x∈Rℓ

∑
y∈R̃m

G(x, y) with R̃
an independent copy of R.

Taking expectations and subtracting we obtain

|Xn − (X
(1)
ℓ +X

(2)
m )| ≤ 2max (Eℓ,E[Eℓ]) .

Since X
(1)

and X
(2)

are independent, we get

∥∥∥X(1)
ℓ +X

(2)
m

∥∥∥
2
=

(∥∥∥X(1)
ℓ

∥∥∥
2

2
+
∥∥∥X(2)

m

∥∥∥
2

2

)1/2

.

By the triangle inequality we now obtain

‖Xn‖2 ≤ ‖X(1)
ℓ +X

(2)
m ‖2 + ‖2max(Eℓ,E[Eℓ])‖2

≤
(∥∥∥X(1)

ℓ

∥∥∥
2

2
+
∥∥∥X(2)

m

∥∥∥
2

2

)1/2

+ 2 (‖Eℓ‖2 + E[Eℓ]) ≤
(∥∥∥X(1)

ℓ

∥∥∥
2

2
+
∥∥∥X(2)

m

∥∥∥
2

2

)1/2

+ c1fd(n)

≤
(∥∥∥X(1)

ℓ

∥∥∥
2

2
+
∥∥∥X(2)

m

∥∥∥
2

2

)1/2

+ c1 log n,

where c1 is a positive constant. The penultimate inequality follows from Lemma 3.2, and for the
last inequality we used that fd(n) ≤ log n for all d ≥ 6. From the definition of ak, we deduce that

ak ≤ 21/2ak−1 + c2k,

for another positive constant c2. Setting bk = akk
−1 gives for all k that

bk ≤ 21/2bk−1 + c2,

and hence bk . 2k/2, which implies that ak . k · 2k/2 for all k. This gives that for all n

Var
(
Xn

)
. n(log n)2. (3.8)

Proposition 1.2 and (1.2) give that for all n,m

X(1)
n +X(2)

m − 2E(n,m) ≤ Xn+m ≤ X(1)
n +X(2)

m ,

9



where again X(1) and X(2) are independent and

E(n,m) =
∑

x∈Rn

∑

y∈R̃m

G(x, y) ≤
∑

x∈Rn+m

∑

y∈R̃n+m

G(x, y) (3.9)

with R and R̃ independent. As above we get

∣∣∣Xn+m −
(
X

(1)
n +X

(2)
m

)∣∣∣ ≤ 2max(E(n,m),E[E(n,m)])

and by the triangle inequality again

∣∣∣
∥∥Xn+m

∥∥
2
−
∥∥∥X(1)

n +X
(2)
m

∥∥∥
2

∣∣∣ ≤ 4 ‖E(n,m)‖2 .

Taking the square of the above inequality and using that X
(1)
n and X

(2)
m are independent we obtain

∥∥Xn+m

∥∥2
2
≤

∥∥Xn

∥∥2
2
+

∥∥Xm

∥∥2
2
+ 8

√∥∥Xn

∥∥2
2
+
∥∥Xm

∥∥2
2
‖E(n,m)‖2 + 16 ‖E(n,m)‖22

∥∥Xn

∥∥2
2
+
∥∥Xm

∥∥2
2
≤

∥∥Xn+m

∥∥2
2
+ 8

∥∥Xn+m

∥∥
2
‖E(n,m)‖2 + 16 ‖E(n,m)‖22 .

We set γn =
∥∥Xn

∥∥2
2
, dn = c1

√
n(log n)2 and d′n = c2

√
n(log n)2, where c1 and c2 are two positive

constants. Using the bound from (3.8) together with (3.9) and Lemma 3.2 in the inequalities above
yields

γn + γm − d′n+m ≤ γn+m ≤ γn + γm + dn+m.

We can now apply Hammersley’s result, Lemma 3.4, to deduce that the limit γn/n exists, i.e.

lim
n→∞

Var
(
Xn

)

n
= γd ≥ 0

and this finishes the proof on the existence of the limit.

3.3 Non-degeneracy: γd > 0

To complete the proof of Lemma 3.3 we need to show that the limit γ is strictly positive. We
will achieve this by using the same trick of not allowing double-backtracks at even times (defined
below) as in [1, Section 4].

As in [1] we consider a walk with no double backtracks at even times. A walk makes a double
backtrack at time n if Sn−1 = Sn−3 and Sn = Sn−2. Let S̃ be a walk with no double backtracks
at even times constructed as follows: we set S̃0 = 0 and let S̃1 be a random neighbour of 0 and
S̃2 a random neighbour of S̃1. Suppose we have constructed S̃ for all times k ≤ 2n, then we let
(S̃2n+1, S̃2n+2) be uniform in the set

{(x, y) : ‖x− y‖ = ‖S̃2n − x‖ = 1 and (x, y) 6= (S̃2n−1, S̃2n)}.

Having constructed S̃ we can construct a simple random walk in Z
d by adding a geometric number

of double backtracks to S̃ at even times. More formally, let (ξi)i=2,4,... be i.i.d. geometric random
variables with mean p/(1− p) and

P(ξ = k) = (1− p)pk ∀ k ≥ 0,

10



where p = 1/(2d)2. Setting

Nk =

k∑

i=2
i even

ξi,

we construct S from S̃ as follows. First we set Si = S̃i for all i ≤ 2 and for all k ≥ 1 we set
Ik = [2k+ 2N2(k−1) + 1, 2k+ 2N2k]. If Ik 6= ∅, then if i ∈ Ik is odd, we set Si = S̃2k−1, while if i is

even, we set Si = S̃2k. Afterwards, for the next two time steps, we follow the path of S̃, i.e.,

S2k+2N2k+1 = S̃2k+1 and S2k+2N2k+2 = S̃2k+2.

From this construction, it is immediate that S is a simple random walk on Z
d. Let R̃ be the range

of S̃. From the construction of S from S̃ we immediately get that

R̃n = Rn+2Nn = Rn+2Nn−1 , (3.10)

where the second equality follows, since adding the double backtracks does not change the range.

Lemma 3.6. Let S̃ be a random walk on Z
d starting from 0 with no double backtracks at even

times. If R̃ stands for its range, then for any positive constants c and c′ we have

P




∑

x∈R̃2n

∑

y∈R̃[2n,(2+c′)n]

G(x, y) ≥ c
√
n


 → 0 as n → ∞.

Proof. Let M be the number of double backtracks added during the interval [2n, (2 + c′)n], i.e.,

M =

(2+c′)n∑

i=2n
i even

ξi. (3.11)

Then, we have that

R̃[2n, (2 + c′)n] ⊆ R[2n+ 2N2(n−1), (2 + c′)n+ 2N2(n−1) + 2M ].

Note that the inclusion above could be strict, since S̃ does not allow double backtracks, while S
does so. We now can write

P




∑

x∈R̃2n

∑

y∈R̃[2n,(2+c′)n]

G(x, y) ≥ c
√
n




≤ P




∑

x∈R[0,2n+2N2(n−1)]

∑

y∈R[2n+2N2(n−1),(2+c′)n+2N2(n−1)+2M ]

G(x, y) ≥ c
√
n




≤ P




∑

x∈R[0,2n+2N2(n−1)]

∑

y∈R[2n+2N2(n−1),(2+2C+c′)n+2N2(n−1)]

G(x, y) ≥ c
√
n


+ P(M ≥ Cn) .

By (3.11) and Chebyshev’s inequality we obtain that for some positive C, P(M ≥ Cn) vanishes
as n tends to infinity. Since G(x− a, y − a) = G(x, y) for all x, y, a, it follows that

11



P




∑

x∈R[0,2n+2N2(n−1)]

∑

y∈R[2n+N2(n−1),(2+2C+c′)n+2N2(n−1)]

G(x, y) ≥ c
√
n




= P




∑

x∈R1

∑

y∈R2

G(x, y) ≥ c
√
n


 ,

where R1 = R[0, 2n + 2N2(n−1)] − S2n+2N2(n−1)
and R2 = R[2n + 2N2(n−1), (2 + 2C + c′)n +

2N2(n−1)] − S2n+2N2(n−1)
. The importance of considering R1 up to time 2n + 2N2(n−1) and not

up to time 2n + 2N2n is in order to make R1 and R2 independent. Indeed, this follows since
after time 2n + 2N2(n−1) the walk S behaves as a simple random walk in Z

d independent of the
past. Hence we can replace R2 by R′

(2+2C+c′)n, where R′ is the range of a simple random walk
independent of R1. Therefore we obtain

P




∑

x∈R1

∑

y∈R′
(2+2C+c′)n

G(x, y) ≥ c
√
n


 ≤ P




∑

x∈R(2C′+2)n

∑

y∈R′
(2+2C+c′)n

G(x, y) ≥ c
√
n




+P
(
N2(n−1) ≥ C ′n

)
.

As before, by Chebyshev’s inequality for C ′ large enough P
(
N2(n−1) ≥ C ′n

)
→ 0 as n → ∞ and by

Markov’s inequality and Lemma 3.1

P




∑

x∈R(2C′+2)n

∑

y∈R′
(2+2C+c′)n

G(x, y) ≥ c
√
n


 ≤

E

[∑
x∈RC′n

∑
y∈R′

(2+2C+c′)n
G(x, y)

]

c
√
n

.
log n√

n
,

and this concludes the proof.

Claim 3.7. Let R̃ be the range of S̃. Then, almost surely

Cap
(
R̃[2k, 2k + n]

)

n
→ αd ·

(
p

1− p

)
as n → ∞.

Proof. As mentioned already in the Introduction, Jain and Orey [5] proved that

lim
n→∞

Cap (Rn)

n
= αd = inf

m

E[Cap (Rm)]

m
. (3.12)

with the limit αd being strictly positive for d ≥ 5.

Clearly the range of S̃ in [2k, 2k + n] satisfies

R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n] \ {S2k+2N2k−1+1, S2k+2N2k−1+2} ⊆ R̃[2k, 2k + n]

R̃[2k, 2k + n] ⊆ R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n],
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where N ′
n is the number of double backtracks added between times 2k and 2k + n. We now note

that after time 2k+2N2k−1 the walk S behaves as a simple random walk in Z
d. Hence using (3.12)

and the fact that N ′
n/n → p/(2(1− p)) as n → ∞ almost surely it follows that almost surely

lim
n→∞

Cap (R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n])

n
= αd ·

(
p

1− p

)
.

and this concludes the proof.

Proof of Lemma 3.3. Let S̃ be a random walk with no double backtracks at even times and S a
simple random walk constructed from S̃ as described at the beginning of Section 3.3. We thus have
R̃n = Rn+2Nn for all n. Let kn = [(1− p)n], in = [(1− p)(n+A

√
n)] and ℓn = [(1− p)(n−A

√
n)]

for a constant A to be determined later. Then, by Claim 3.7 for all n sufficiently large so that kn
and ℓn are even numbers we have

P

(
Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
· √n

)
≥ 7

8
and (3.13)

P




∑

x∈R̃[0,kn]

∑

y∈R̃[kn,in]

G(x, y) ≤ 1

8
·
(
A · αd · p
1− p

)
· √n


 ≥ 7

8
(3.14)

and

P

(
Cap

(
R̃[ℓn, kn]

)
≥ 3

4
·
(
A · αd · p
1− p

)
· √n

)
≥ 7

8
and (3.15)

P




∑

x∈R̃[0,ℓn]

∑

y∈R̃[ℓn,kn]

G(x, y) ≤ 1

8
·
(
A · αd · p
1− p

)
· √n


 ≥ 7

8
(3.16)

We now define the events

Bn =

{
2Nℓn − 2E[Nℓn ]√

n
∈ [A+ 1, A+ 2]

}
and Dn =

{
2Nin − 2E[Nin ]√

n
∈ [1−A, 2−A]

}
.

Then, for all n sufficiently large we have for a constant cA > 0 that depends on A

P(Bn) ≥ cA and P(Dn) ≥ cA. (3.17)

Since we have already showed the existence of the limit Var (Cap (Rn)) /n as n tends to infinity,
it suffices to prove that the limit is strictly positive along a subsequence. So we are only going to
take n such that kn is even. Take n sufficiently large so that (3.13) holds and kn is even. We then
consider two cases:

(i) P
(
Cap

(
R̃[0, kn]

)
≥ E[Cap (Rn)]

)
≥ 1

2
or (ii) P

(
Cap

(
R̃[0, kn]

)
≤ E[Cap (Rn)]

)
≥ 1

2
.

We start with case (i). Using Proposition 1.2 we have

Cap
(
R̃[0, in]

)
≥ Cap

(
R̃[0, kn]

)
+Cap

(
R̃[kn, in]

)
− 2

∑

x∈R̃[0,kn]

∑

y∈R̃[kn,in]

G(x, y).
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From this, we deduce that

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)√
n

)

≥ P

(
Cap

(
R̃[0, kn]

)
≥ E[Cap (R[0, n)] ,Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
· √n

)

−P




∑

x∈R̃[0,kn]

∑

y∈R̃[kn,in]

G(x, y) >
1

8
·
(
A · αd · p
1− p

)
· √n


 .

(3.18)

The assumption of case (i) and (3.13) give that

P

(
Cap

(
R̃[0, kn]

)
≥ E[Cap (R[0, n)] ,Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
· √n

)
≥ 3

8
.

Plugging this lower bound together with (3.14) into (3.18) yields

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
· √n

)
≥ 1

4
.

Since N is independent of S̃, using (3.17) it follows that

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
· √n,Dn

)
≥ cA

4
.

It is not hard to see that on the event Dn we have in + 2Nin ∈ [n, n + 3
√
n]. Therefore, since

R̃[0, k] = R[0, k + 2Nk] we deduce

P

(
∃ m ≤ 3

√
n : Cap (R[0, n+m]) ≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
· √n

)
≥ cA

4
.

Since Cap (R[0, ℓ]) is increasing in ℓ, we obtain

P

(
Cap

(
R[0, n+ 3

√
n]
)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
· √n

)
≥ cA

4
.

Using now the deterministic bound Cap (R[0, n+ 3
√
n]) ≤ Cap (R[0, n]) + 3

√
n gives

P

(
Cap (R[0, n]) ≥ E[Cap (Rn)] +

(
1

2
·
(
A · αd · p
1− p

)
− 3

)
· √n

)
≥ cA

4
,

and hence choosing A sufficiently large so that

1

2
·
(
A · αd · p
1− p

)
− 3 > 0

and using Chebyshev’s inequality shows in case (i) for a strictly positive constant c we have

Var (Cap (Rn)) ≥ c · n.

We now treat case (ii). We are only going to consider n so that ℓn is even. Using Proposition 1.2
again we have

Cap
(
R̃[0, ℓn]

)
≤ Cap

(
R̃[0, kn]

)
− Cap

(
R̃[ℓn, kn]

)
+ 2

∑

x∈R̃[0,ℓn]

∑

y∈R̃[ℓn,kn]

G(x, y).
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Then, similarly as before using (3.15), (3.16) and (3.17) we obtain

P

(
Cap

(
R̃[0, ℓn]

)
≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
· √n, Bn

)
≥ cA

4
.

Since on Bn we have ℓn + 2Nℓn ∈ [n, n+ 3
√
n], it follows that

P

(
∃ m ≤ 3

√
n : Cap (R[0, n+m]) ≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
· √n

)
≥ cA

4
.

Using the monotonicity property of Cap (Rl) in ℓ we finally conclude that

P

(
Cap (R[0, n]) ≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
· √n

)
≥ cA

4
,

and hence Chebyshev’s inequality again finishes the proof in case (ii).

4 Central limit theorem

We start this section by recalling the Lindeberg-Feller theorem. Then, we give the proof of Theo-
rem 1.1.

Theorem 4.1 (Lindeberg-Feller). For each n let (Xn,i : 1 ≤ i ≤ n) be a collection of independent
random variables with zero mean. Suppose that the following two conditions are satisfied

(i)
∑n

i=1 E

[
X2

n,i

]
→ σ2 > 0 as n → ∞ and

(ii)
∑n

i=1 E
[
(Xn,i)

2
1(|Xn,i| > ε)

]
→ 0 as n → ∞ for all ε > 0.

Then, Sn = Xn,1 + . . .+Xn,n =⇒ σN (0, 1) as n → ∞.

For a proof we refer the reader to [3, Theorem 3.4.5].

Before proving Theorem 1.1, we upper bound the fourth moment of Cap (Rn). Recall that for a
random variable X we write X = X − E[X].

Lemma 4.2. For all d ≥ 6 and for all n we have

E

[
(Cap (Rn))

4
]
. n2.

Proof. This proof is similar to the proof of Lemma 3.5. We only emphasize the points where they
differ. Again we write Xn = Cap (Rn) and we set for all k ≥ 1

ak = sup

{(
E

[
X

4
n

])1/4
: 2k ≤ n < 2k+1

}
.

For k ≥ 2 take n such that 2k ≤ n < 2k+1 and write n1 = [n/2] and n2 = n−ℓ. Then, Corollary 2.1
and the triangle inequality give

‖Xn‖4 ≤ ‖Xn1 +Xn2‖4 + 4‖E(n1, n2)‖4 ≤
(
E

[
X

4
n1

]
+ E

[
X

4
n2

]
+ 6E

[
X

2
n1

]
E

[
X

2
n2

])1/4
+ c1 log n,

where the last inequality follows from Lemma 3.2 and the fact that Xn1 and Xn2 are independent.
Using Lemma 3.3 we get that

E

[
X

2
n1

]
E

[
X

2
n2

]
≍ n2.
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Also using the obvious inequality for a, b > 0 that (a+ b)1/4 ≤ a1/4 + b1/4 we obtain

‖Xn‖4 ≤
(
E

[
X

4
n1

]
+ E

[
X

4
n2

])1/4
+ c2

√
n.

We deduce that

ak ≤ 21/4ak−1 + c32
k/2.

Setting bk = 2−k/2ak we get

bk ≤ 1

21/4
bk−1 + c3,

This implies that (bk, k ∈ N) is a bounded sequence, and hence ak ≤ C2k/2 for a positive constant
C, or in other words, (

E

[
X

4
n

])1/4
.

√
n

and this concludes the proof.

Proof of Theorem 1.1. From Corollary 2.1 we have

2L∑

i=1

Cap
(
R(i)

n/2L

)
− 2

L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ ≤ Cap (Rn) ≤

2L∑

i=1

Cap
(
R(i)

n/2L

)
, (4.1)

where (Cap
(
R(i)

n/2L

)
) are independent for different i’s and R(i)

n/2L
has the same law as R[n/2L]

or R[n/2L+1] and for each ℓ the random variables (E(i)
ℓ ) are independent and have the same law as

∑
x∈R(i)

n/2L

∑
y∈R̃(i)

n/2L

G(x, y), with R̃ and independent copy of R.

To simplify notation we set Xi,L = Cap
(
R(i)

n/2L

)
and Xn = Cap (Rn) and for convenience we

rewrite (4.1) as

2L∑

i=1

Xi,L − 2
L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ ≤ Xn ≤

2L∑

i=1

Xi,L. (4.2)

We now let

E(n) =
2L∑

i=1

Xi,L −Xn.

Using inequality (4.2) we get

E[|E(n)|] ≤ 4E




L∑

ℓ=1

2ℓ−1∑

i=1

E(i)
ℓ


 .

L∑

ℓ=1

2ℓ log n . 2L log n,

where the penultimate inequality follows from Lemma 3.2 for k = 1 and the fact that fd(n) ≤ log n
for all d ≥ 6.

Choosing L so that 2L = n1/4 gives E[|E(n)|] /√n → 0 as n → ∞. We can thus reduce the problem

of showing that Xn/
√
n converges in distribution to showing that

∑2L

i=1Xi,L/
√
n converges to a

normal random variable.
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We now focus on proving that

∑2L

i=1Xi,L√
n

=⇒ σN (0, 1) as n → ∞. (4.3)

We do so by invoking Lindeberg-Feller’s Theorem 4.1. From Lemma 3.3 we immediately get that
as n tends to infinity.

2L∑

i=1

1

n
·Var

(
Xi,L

)
∼ 2L

n
· γd ·

n

2L
= γd > 0,

which means that the first condition of Lindeberg-Feller is satisfied. It remains to check the second
one, i.e.,

lim
n→∞

2L∑

i=1

1

n
· E

[
X

2
i,L1(|Xi,L| > ε

√
n)
]
= 0.

By Cauchy-Schwartz, we have

E

[
X

2
i,L1(|Xi,L| > ε

√
n)
]
≤

√
E
[
(Xi,L)4

]
P
(
|Xi,L| > ε

√
n
)
.

By Chebyshev’s inequality and using that Var
(
Xi,L

)
∼ γd · n/2L from Lemma 3.3 we get

P
(
|Xi,L| > ε

√
n
)
≤ 1

ε22L
.

Using Lemma 4.2 we now get

2L∑

i=1

1

n
· E

[
X

2
i,L1(|Xi,L| > ε

√
n)
]
.

2L∑

i=1

1

n
· n

2L
1

ε2L/2
=

1

ε2L/2
→ 0,

since L = log n/4. Therefore, the second condition of Lindeberg-Feller Theorem 4.1 is satisfied and
this finishes the proof.

5 Rough estimates in d = 4 and d = 3

Proof of Corollary 1.4. In order to use Lawler’s Theorem 1.3, we introduce a random walk S̃
starting at the origin and independent from S, with distribution denoted P̃. Then, as noticed
already by Jain and Orey [5, Section 2], the capacity of the range reads (with the convention
R−1 = ∅)

Cap (Rn) =
n∑

k=0

1(Sk /∈ Rk−1)× P̃Sk

(
(Sk + R̃∞) ∩Rn = ∅

)
, (5.1)

where R̃∞ = R̃[1,∞).

Thus, for k fixed we can consider three independent walks. The first is S1 : [0, k] → Z
d with

S1
i = Sk − Sk−i, the second is S2 : [0, n − k] → Z

d with S2
i := Sk+i − Sk, and the third S3 ≡ S̃.

With these symbols, equality (5.1) reads

Cap (Rn) =
n∑

k=0

1(0 /∈ R1[1, k])× P̃
(
R3[1,∞) ∩ (R1[0, k] ∪R2[0, n− k]) = ∅

)
.

17



Then, taking expectation with respect to S1, S2 and S3, we get

E[Cap (Rn)] =

n∑

k=0

P
(
0 6∈ R1[1, k], R3[1,∞) ∩ (R1[0, k] ∪R2[0, n− k]) = ∅

)
. (5.2)

Now, ε ∈ (0, 1/2) being fixed, we define εn := εn/ log n, and divide the above sum into two subsets:
when k is smaller than εn or larger than n− εn, and when k is in between. The terms in the first
subset can be bounded just by one, and we obtain this way the following upper bound.

E[Cap (Rn)] ≤ 2εn + nP
(
0 6∈ R1[1, εn], R3[1, εn] ∩ (R1[0, εn] ∪R2[0, εn]) = ∅

)
.

Since this holds for any ε > 0, and log εn ∼ log n, we conclude using (1.3), that

lim sup
n→∞

log n

n
× E[Cap (Rn)] ≤ π2

8
. (5.3)

For the lower bound, we first observe that (5.2) gives

E[Cap (Rn)] ≥ nP
(
0 6∈ R1[1, n], R3[1,∞] ∩ (R1[0, n] ∪R2[0, n]) = ∅

)
,

and we conclude the proof using (1.3).

Proof of Proposition 1.5. We recall Ln(x) is the local time at x, i.e.,

Ln(x) =

n−1∑

i=0

1(Si = x).

The lower bound is obtained using the representation (1.6), as we choose ν(x) = Ln(x)/n. This
gives

Cap (Rn) ≥
n

1
n

∑
x,y∈Zd G(x, y)Ln(x)Ln(y)

, (5.4)

and using Jensen’s inequality, we deduce

E[Cap (Rn)] ≥
n

1
n

∑
x,y∈Zd G(x, y)E[Ln(x)Ln(y)]

. (5.5)

Note that ∑

x,y∈Zd

G(x, y)E[Ln(x)Ln(y)] =
∑

0≤k≤n

∑

0≤k′≤n

E[G(Sk, Sk′)] . (5.6)

We now obtain, using the local CLT,

∑

0≤k≤n

∑

0≤k′≤n

E[G(Sk, Sk′)] =
∑

0≤k≤n

∑

0≤k′≤n

E
[
G(0, S|k′−k|)

]
.

∑

0≤k≤n

∑

0≤k′≤n

E

[
1

1 + |S|k′−k||

]
. n

√
n

and this gives the desired lower bound. For the upper bound one can use that in dimension 3,

Cap (A) . rad(A),

where rad(A) = supx∈A ‖x‖ (see [7, Proposition 2.2.1(a) and (2.16)]). Therefore Doob’s inequality
gives

E[Cap (Rn)] . E

[
sup
k≤n

‖Sk‖
]

.
√
n

and this completes the proof.
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6 Open Questions

We focus on open questions concerning the typical behaviour of the capacity of the range.

Our main inequality (1.1) is reminiscent of the equality for the range

|R[0, 2n]| = |R[0, n]|+ |R[n, 2n]| − |R[0, n] ∩R[n, 2n]|. (6.1)

However, the intersection term |R[0, n] ∩R[n, 2n]| has a different asymptotics for d ≥ 3

E[|R[0, n] ∩R[n, 2n]|] ≍ fd+2(n). (6.2)

This leads us to add two dimensions when comparing the volume of the range with respect to the
capacity of the range. It is striking that the volume of the range in d = 1 is typically of order

√
n

as the capacity of the range in d = 3. The fact that the volume of the range in d = 2 is typically of
order n/ log n like the capacity of the range in d = 4 is as striking. Thus, based on these analogies,
we conjecture that the variance in dimension five behaves as follows.

Var (Cap (Rn)) ≍ n log n. (6.3)

Note that an upper bound with a similar nature as (1.1) is lacking, and that (1.2) is of a different
order of magnitude. Indeed,

E[Cap (R[0, n] ∩R[n, 2n])] ≤ E[|R[0, n] ∩R[n, 2n]|] . fd+2(n).

Another question would be to show a concentration result in dimension 4, i.e.,

Cap (Rn)

E[Cap (Rn)]

(P)−→ 1. (6.4)

We do not expect (6.4) to hold in dimension three, but rather that the limit would be random.
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