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Abstract—In this paper, a special class of wireless networks,
called wireless erasure networks, is considered. In these networks,
each node is connected to a set of nodes by possibly correlated
erasure channels. The network model incorporates the broad-
cast nature of the wireless environment by requiring each node
to send the same signal on all outgoing channels. However, we
assume there is no interference in reception. Such models are
therefore appropriate for wireless networks where all informa-
tion transmission is packetized and where some mechanism for
interference avoidance is already built in. This paper looks at
multicast problems over these networks. The capacity under the
assumption that erasure locations on all the links of the network
are provided to the destinations is obtained. It turns out that
the capacity region has a nice max-flow min-cut interpretation.
The definition of cut-capacity in these networks incorporates the
broadcast property of the wireless medium. It is further shown
that linear coding at nodes in the network suffices to achieve
the capacity region. Finally, the performance of different coding
schemes in these networks when no side information is available
to the destinations is analyzed.

Index Terms—Wireless erasure networks, multicast problems.

I. INTRODUCTION

DETERMINING the capacity region for general multiter-
minal networks has been a long-standing open problem.

An outer bound for the capacity region is proposed in [1]. This
outer bound has a nice min-cut interpretation: The rate of flow
of information across any cut (a cut is a partition of the network
into two parts) is less than the corresponding cut-capacity. The
cut-capacity is defined as the maximum rate that can be achieved
if the nodes on each side of the cut can fully cooperate and also
use their inputs as side information.

The difficulty in multiterminal information theory is that this
outer bound is not necessarily tight. For instance, for the single-
relay channels introduced in [2], no known scheme achieves the
min-cut outer bound of [1].

However, for a class of network problems called multicast
problems in wireline networks, it is shown that the max-flow
min-cut outer bound can be achieved [3]–[5]. A multicast
problem comprises one or more source nodes (at which in-
formation is generated), several destinations (that demand all
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information available at the source nodes), relay nodes, and
directed communication channels between some nodes. It is
assumed that each channel is statistically independent of all
other channels. Also, as the name suggests, the communication
between different nodes is done through physically separated
channels (wires). This means that the communication between
two particular nodes does not affect the communication be-
tween others. In this setup, the maximum achievable rate is
given by the minimum cut-capacity over all cuts separating the
source nodes and a destination node. Because of the special
structure of wireline networks, the cut-capacity for any cut is
equal to the sum of the capacities of the channels crossing the
cut.

This remarkable result for wireline networks is proved by per-
forming separate channel and network coding in the network.
First, we perform channel coding on each link of the network,
so as to make it operate error free at any rate below its capacity.
This way, the problem is transformed into a flow problem in
a graph where the capacity of each edge is equal to the infor-
mation-theoretic capacity of the corresponding channel in the
original network. If there is only one destination node, stan-
dard routing algorithms for finding the max-flow (min-cut) in
graphs [6] achieve the capacity. However, when the number of
destinations is more than one, these algorithms can fail. The key
idea in [3] is to perform coding at the relay nodes. By [4], [5],
linear codes are sufficient to achieve the capacity in multicast
problems. These ideas are formulated in an algebraic framework
and generalized to some other special network problems in [5].
Since then, there has been a lot of research on the benefits of
coding over traditional routing schemes in networks from dif-
ferent viewpoints such as network management, security, etc.
[7], [8]. In a wireless setup, however, the problem of finding the
capacity region is more complicated. The main reason is that
unlike wireline networks, in which communication between dif-
ferent nodes is done using separated media, in a wireless system
the communication medium is shared. Hence, all transmissions
across a wireless network are broadcast. Also any communica-
tion between two users can cause interference to the commu-
nication of other nodes. These two features, broadcast and in-
terference, present new issues and challenges for performance
analysis and system design. The capacity regions of many in-
formation-theoretic channels that capture these effects are not
known. For instance, the capacity region for general broadcast
channels is an unsolved problem [9]. The capacity of general
relay channels is not known. However, there are some achiev-
able results based on block Markov encoding and random bin-
ning [10]. These ideas have been generalized and applied to a
multiple relay setup in [11], [12].

0018-9448/$20.00 © 2006 IEEE
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In this paper, we look at a special class of wireless networks
which only incorporates the broadcast feature of wireless net-
works.1 We model each communication channel in the network
as a memoryless erasure channel. We will often assume that the
erasure channels are independent; however, we show that the re-
sults also hold when the various erasure channels are correlated.
We require that each node sends out the same signal on each
outgoing link. However, for reception we use a multiple-access
model without interference, i.e., messages coming into a node
from different incoming links do not interfere. In general, this
is not true for a wireless system. However, this can be realized
through some time, frequency, or code-division multiple-access
scheme. This simplification is important in making solution of
the problem tractable.

Finally, we assume that complete side information regarding
erasure locations on each link is available to the destination (but
not to the relay) nodes. If we assume that the erasure network op-
erates on long packets, i.e., packets are either erased or received
exactly on each link, then this assumption can be justified by
using headers in the packets to convey erasure locations or by
sending a number of extra packets containing this information.
By making the packets very long, the overhead of transmitting
the erasure locations can be made negligible compared to the
packet length. We should remark that provided that the side in-
formation is available to the destinations, all the results in this
paper hold for any packet length.

We should mention that our model is appropriate for wireless
networks where all information transmission is packetized and
where some form of interference avoidance is already in place.
Channel coding within each packet can be used to make each
link behave as a packet erasure channel. Although our model
does not incorporate interference (primarily because it is not
clear what interference means for erasure channels) one way,
perhaps, to account for interference is to allow the erasure chan-
nels coming into any particular node to be correlated (something
that is permitted in our model).

The main result is that a max-flow min-cut type of result holds
for multicast problems in wireless erasure networks under the
assumptions mentioned above. The definition of cut-capacity in
these networks is such that it incorporates the broadcast nature
of the network. We further show that similar to the wireline case,
for multicast problems over wireless erasure networks, linear
encoding at nodes achieves all the points in the capacity region.
Working with linear encoding functions reduces the complexity
of encoding and decoding. Building on the results of this paper
and using ideas from LT coding [15], it is shown in [16] that
it is possible to reduce the delay incurred in the network. In
their scheme, instead of using linear block codes, which is what
we do here, the nodes send random linear combinations of their
previously received signals at each time. This way, nodes do not
need to wait for receiving a full block before transmitting, which
reduces the delay.

We once more need to emphasize the importance of the side
information on the erasure locations (or any other mechanism

1References [13], [14] have considered applications of network coding at the
network layer for cost (energy) minimization in lossless wireless ad hoc net-
works. In this paper, we look at wireless features of the network in the physical
layer.

that provides the destination with the mapping from the source
nodes to their incoming signals) for our result to hold. Interest-
ingly, all the cut capacities of the network remain unchanged by
making the above described side information available to the re-
ceiver nodes. Thus, in some sense, what is shown in this paper is
that with appropriate side information made available to the re-
ceivers, the min-cut upper bound on capacity can be made tight.
It would therefore be of further interest to see whether for other
classes of networks it is possible to come up with the appropriate
side information to make the min-cut bounds tight.

This paper is organized as follows. Section II defines notation
used in this paper and reviews some graph-theoretic definitions
of importance. We introduce the network model in Section III
and the problem setup in Section IV. Section V states the main
result for multicast problems over wireless erasure networks
with side information available at destinations. Section VI in-
cludes proofs of these results. Section VII demonstrates the op-
timality of linear encoding. Section VIII includes a discussion
of our network assumptions. Also the performance of different
coding schemes when side information is not available is ana-
lyzed and compared. We mention future directions of our work
and conclude in Section IX.

II. PRELIMINARIES

A. Notation

Throughout this paper, upper case letters (e.g., )
usually denote random variables and lower case letters (e.g.,

) denote the values they take. Underlined letters (e.g.,
) are used to denote vectors. Sets are denoted by calligraphic

alphabet (e.g., ). The complement of a set is shown
by . The transpose of matrix is shown by . is
used to denote .

Subscripts specify nodes, edges, inputs, outputs, and time.
For instance, and could denote node number two and the
output of node number two in the network, respectively. Unless
otherwise mentioned, commas are used to separate time sub-
scripts from other subscripts. Superscripts are also used to refer
to different sources. For example, could denote the mes-
sage sent by node .

We use notation to denote the sequence .
We also use notation to denote the ordered tuple
specified by index set . Finally, is the cardinality of set .
Table I summarizes our notation.

B. Definitions for Directed Graphs

In this part, we briefly review the concepts and definitions
from graph theory used in this paper [17].

A directed graph has vertex set and directed
edge set . Without loss of generality, let

We assume that the graph is finite, i.e., . For each node
and are the set of edges leaving from and

the set of edge going into , respectively. Formally
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TABLE I
SOME IMPORTANT NOTATION IN THIS PAPER

The out-degree and in-degree of are defined as
and . A sequence of nodes

such that are all in
is called a cycle. An acyclic graph is a directed graph with no

cycles.
An cut for is a partition of into two subsets
and such that and . The -set,
(or -set, ) determines the cut uniquely. For the cut

given by , the cut-set is the set of edges going from
the -set to -set, i.e.,

We also define as

s. t.

is the set of nodes in the -set that has at least one of its
outgoing edges in the cut-set.

Example 2.1: Consider the acyclic directed graph shown in
Fig. 1. is the set of nodes and

is the set of edges. The source and destination nodes are
and , respectively. The out-degree of node is , i.e.,

. Looking at the cut specified by -set
, the cut-set is the set and

.

III. NETWORK MODEL

A. Wireless Packet Erasure Networks

We model the wireless packet2 erasure network by a directed
acyclic graph . Each edge represents
a memoryless packet erasure channel from node to node .
For most of this paper, we assume that erasure events across
different links are independent. However, as described later in
the paper, the results go through for correlated erasure events.
For independent erasure events, a packet sent across link is
either erased with probability of erasure or received without

2Throughout this paper, a packet can be of any length. When the length of
packets is one, the channel is a binary-erasure channel.

Fig. 1. A directed acyclic graph with four nodes and five edges. The cut-set
f(3; 4); (3;2); (1; 2)g is shown by the dashed line.

Fig. 2. i) An erasure wireless network with the graph representation of
Example 2.1. Probability of erasure on link (i; j) is � . Each node (e.g.,
node 3) transmits the same signal (X ) across its outgoing channels. Since
the network is interference free, node 4 receives both signals Y and Y
completely. ii) In this network, cut-capacity for s-set V = f1;3g is
C(V ) = 1 � � + 1 � � � .

error. We denote the input alphabet (the set of possible packets)
of the erasure channel by .3

Let be a random variable indicating erasure occurrence
across channel at time . For independent erasure events,

has a Bernoulli distribution with parameter . If an era-
sure occurs on link at time , the value of will
be one, otherwise will be zero. Note that the behavior of
the network can be fully determined by the values of for
all links and all times and the operation performed at each node.

We assume that transmissions on each channel experience
one unit of time delay. The input of all the channels originating
from node is denoted by chosen from input alphabet .
Note that with this definition, we have required that each node
transmits the same symbol on all its outgoing edges, i.e., all
channels corresponding to edges in have the (same) input

(see Fig. 2). This constraint incorporates broadcast in our
network model. The output of the communication channel cor-
responding to edge is denoted by lies in
output alphabet , where denotes the erasure
symbol. We also assume that the outputs of all channels corre-
sponding to edges in are available at node . This condi-
tion is equivalent to having no interference in receptions in the
network. Having this, let be the sym-
bols that are received at node from all its incoming channels.
We have . The relation between the ’s and

’s defines a coding scheme for the network.
Based on the properties of the network mentioned above, if

we consider the inputs and outputs up to time , then the con-
ditional probability function of the outputs of all the channels

3For simplicity and without loss of generality, we considerX = f0; 1g in our
analysis and proofs. However, we should remark that all the results and analysis
hold for input alphabet of arbitrary length.
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(edges) up to time given all the inputs of all the channels up
to time and all the previous outputs, can be written as follows
for all :

For independent erasure events, we further have

(1)

B. Multicast Problem

In this paper, we consider a class of network problems called
multicast problems. Any network problem is characterized by a
collection of information sources, a collection of source nodes
at which one or more information sources are available, and a
collection of destination nodes. Each destination node demands
a subset of information sources. The class of network problems
that we consider in this paper is the multiple source/multiple
destination multicast, where each of the destinations demands
all of the information sources. This problem can be further spec-
ified by the following sets.

• denotes the information
source nodes. We assume that each of the source nodes
generates an information (message) which is modeled
by an independent and identically distributed (i.i.d.) uni-
formly distributed random process. Information sources
at different nodes are assumed to be independent.

• denotes the set of
destination nodes.

Note that may not be empty, i.e., a node can be a
destination node for one information source and a source node
for another. Also, destination nodes can act as relay nodes for
other destination nodes in the network.

C. Side Information at Destinations

In most parts of the paper we assume that each destination
node has complete knowledge of the erasure locations on
each link of the network that is on a path from the source set to .
In other words, knows values of the , for all and
all times , for which is on at least one path from one of the
sources to . This serves as channel side information provided
to the destinations from across the network. In the case when
we consider large packets (alphabet), this side information can
be provided using negligible overhead. More discussion of this
model appears in Section VIII.

D. Cut-Capacity Definition

Consider an cut given by -set, as defined in Sec-
tion II-B. We define and as

(2)

Fig. 3. For the cut-set specified by the s-set V = f1; 3; 4g the cut-capacity
is C(V ) = 1� � + 1� � + 1� � � .

At the end of this section, we define the cut-capacity for wireless
erasure networks. In wireline networks, the value of the cut-
capacity is the sum of the capacities of the edges in the cut-set
[5]. Such a definition of cut-capacity in wireline networks makes
sense because the nodes can send out different signals across
their outgoing edges. However, this is not the case for wireless
erasure networks where broadcast transmissions are required.
The following definition of cut-capacity is different from that in
the wireline network settings, and it incorporates the broadcast
nature of transmission in our network.

Definition: Consider an erasure wireless network repre-
sented by and probabilities of erasure as
described in Section III. Let and be the source and destina-
tion nodes, respectively. The cut-capacity corresponding to any

cut represented by -set is denoted by and is
equal to

(3)

Example 3.1: Consider the network represented by the di-
rected graph of Example 2.1 (see Fig. 2). For the cut spec-
ified by the -set, , the cut-capacity is

Looking at this example, we see that all edges in the cut-set
that originate from a common node, i.e., edges and ,
together contribute a value of one minus the product of their
erasure probabilities, i.e., to the cut-capacity. This
observation holds in general for wireless erasure networks.

Example 3.2: As another example, consider the network
shown in Fig. 3 with one source and one destination

. The cut-capacity corresponding to the cut specified
by is .

IV. PROBLEM STATEMENT

We next define the class of block codes considered in this
paper. A code for the multicast prob-
lem in a wireless erasure network described in the previous sec-
tions, consists of the following components.

• A set of integers for each
source node . represents the set of message
indices corresponding to node . denotes the mes-
sage of source . We assume that the messages are
equally likely and independent.
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• A set of encoding functions for each node ,
where

is the signal transmitted by node at time . Note that
is a function of the message that node wants
to transmit in the current block4 and all symbols received
so far by node from its incoming channels. If is not a
source node, we set for all blocks and all times.

• A decoding function at destination node

such that

(4)

where is the estimate of the message sent from source
based on received signals at , information source

available at ,5 , and also the erasure occurrences on
all the links of the network in the current block.

Note that and all depend on the message vector
that is being transmitted. Therefore, we

will write them as and to specify what
specific set of messages is transmitted.

Associated with every destination node and every
information source is a probability that the message will
not be decoded correctly6

(5)

where is defined under the assumption that all the mes-
sages are independent and uniformly distributed over

. The set of rates is said to be achievable if there
exist a sequence of codes such that

as for all and . The capacity
region is the closure of the set of achievable rates.

V. MAIN RESULTS

In this section we present the main results of this paper.

Theorem 1: Consider a single-source/single-destination
wireless erasure network described by the directed acyclic
graph and the assumptions of Section III. Let
and denote the network’s source and destination, respec-
tively. Then the capacity of the network with side information
at the destination is given by the value of the minimum value

cut. More precisely, we have

(6)

Remark 1: The results derived in this paper are stated for era-
sure wireless networks with broadcast property (and no interfer-
ence). However, based on the results of this paper, it is possible

4The value of w does not change in one block.
5If d =2 S , without loss of generality we set w = 0 and W = f0g

for all blocks.
6Note that if d is a source node, we assume without loss of generality that

P = 0.

to derive the capacity of multicast problems over error-free net-
works (with the broadcast property and without interference),
with or without capacitated links.

Remark 2: Although we have assumed that the erasure
events across the network are independent, the capacity results
of this paper also hold for the case when the erasure events are
correlated, i.e., are dependent on each other. In
that case, the definition of the cut capacity should be modified
as described in (A3). (See Remark 4 in Appendix A).

Example 5.1: Recall the single-source/single-destination
network of Example 3.1 (see Fig. 2). By Theorem 1, the ca-
pacity of this network is

The following theorems generalize the single-source/single-
destination result to general multicast problems.

Theorem 2: Consider a multiple-source/single-destination
wireless erasure network described by directed acyclic graph

and the assumptions of Section III. Suppose that
the destination requests all of the information from all of the
sources. Let and denote the set of source nodes
and the destination node, respectively. The capacity region of
the network with side information provided at the destination
is given by

(7)

In other words, the total rate of information transmission to
across any cut , should not exceed the cut-capacity of
that cut.

Example 5.2: Consider the network shown in Fig. 4 with two
sources and one destination . Then according to The-
orem 2, the capacity region is

Theorem 3: Consider a multicast problem with multiple
sources and multiple destinations. Let denote the
set of source nodes and destination nodes, respectively. The
capacity region of the network with side information is given
by the intersection of the capacity regions of the multicast
problem between the sources and each of the destinations, i.e.,

(8)

Corollary 1: Consider a multicast problem with one source
denoted by and multiple destinations denoted by .
The capacity of the network is given by the minimum value of
the cuts between the source node and any of the destinations,
i.e.,
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Fig. 4. A wireless erasure network with two sources S = f1; 2g and one
destination D = f3g.

Example 5.3: Consider the network shown in Fig. 2. Sup-
pose that we are decoding at node and , i.e., .
Based on Corollary 1, the capacity of this network is

The preceding results show that the capacity region for mul-
ticast problems over wireless erasure networks has a max-flow
min-cut interpretation. This result is similar to multicast prob-
lems in wireline networks [3], however, the definition of the
cut-capacity is different. Recall from [3] that in wireline net-
works, the cut-capacity is the sum of the capacities of the links in
the cut-set. Since wireless erasure networks incorporate broad-
cast, the cut-capacity is the sum of the capacities of each broad-
cast system that operates across the cut.

The next theorem states that linear network coding is suffi-
cient for achieving the capacity region.

Theorem 4: Consider a multicast problem with multiple
sources and multiple destinations. Then any rate vector in the
capacity region of the network defined in The-
orem 3 is achievable with linear block coding.

In the next section, we prove Theorems 1–3. In Section VII,
we look at the performance of the network using random linear
coding and prove Theorem 4.

VI. PROOF OF THEOREMS

A. Proof of Theorems 1 and 2

In this subsection, we prove the results stated for mul-
tiple- source/single-destination network problems. We start by
proving the converse.

1) Converse: We prove the converse part by considering
perfect cooperation among subsets of nodes. Consider the cut
specified by -set . Let all of the nodes in and all of the
nodes in cooperate perfectly, i.e., each node has access to
all of the information known to nodes in its set. In this case, we
have a multiple-input, multiple-output point-to-point erasure
channel. Consider all source nodes in . Then, clearly, the
sum-rate of these source nodes must be less than the capacity
of the multiple-input multiple-output point-to-point erasure
channel. The capacity of this point-to-point communication
channel is

Since the channels are independent and memoryless, the mutual
information is maximized when the different ’s are i.i.d. and

uniform on the input alphabet . In this case, the above mutual
information equals the cut-capacity corresponding to the cut-set

, i.e.,

Therefore, for any cut-set the sum-rate of the informa-
tion sources in set satisfies

The complete analysis appears in Appendix A. The proof fol-
lows the same lines as the min-cut upper bound of Cover and
Thomas for multiterminal networks [1, Sec. 14.10].

2) Achievability: In this subsection, we prove that all of the
rates arbitrarily close to rates in the capacity regions given in
Theorems 1 and 2 are achievable for a multiple-sources/single-
destination multicast problem. We next use random coding tech-
niques to show this result.

We employ random block codes in the network. Each node
transmits the next block of symbols only after it has received
all symbols corresponding to the present block from each
of its incoming channels. Let denote the length of the
longest path from a source to the destination in the network.
Since each transmission introduces one unit of time delay, the
maximal delay between the transmission of a message from one
source and its receipt at the destination using block codes of
length is . We do not use any information from pre-
viously decoded blocks to decode the current set of messages.
Also note that since our model assumes that the reception is in-
terference free, there is no confusion among different blocks at
any node. Therefore, if the network operates for units of
time (i.e., blocks of length- symbols) then the destination
has received all of the information required for decoding the

first messages transmitted from each source ,
i.e., . Since the network size is fi-
nite, as , for fixed , the rate approaches

.7 The same codebook and encoding and decoding functions
are used for all the blocks. We explain the coding scheme for
transmitting one set of messages from the sources to the desti-
nation. In the following, we describe the encoding and decoding
processes.

• Codebook Generation and Encoding: For each node
, the encoding function

is generated randomly as follows. For each
and for each we draw the symbols of

randomly and independently ac-
cording to a binary Bernoulli distribution with param-
eter . Thus, the channel input at node is

when the message at node is
and the incoming sequence is . The destination

7We could also consider the case when different sources transmit different
numbers of messages in B block uses. In that case, if L denotes the longest
path from s 2 S to the destination, we could transmit B � L messages from
information source s to the destination. However, for simplicity of notation and
analysis we assume that all of the nodes send the same number of messages in
a synchronized fashion.
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has perfect knowledge of all the encoding functions
thus generated.8

• Decoding: The destination “simulates” the network
to decode the messages. Suppose that message vector

is transmitted and is received
at destination . By assumption, the receiver knows the
erasure locations on all the links of the network, i.e.,

. Having all of the erasure locations and
all of the encoding functions applied at different nodes
in the network,9 the destination can compute the values
of and for all nodes and edges
for any . If there exist a unique message
vector such that the computed value of

equals the value of the received signal at
the destination, then is declared as the decoder output.
Otherwise, the decoder declares an error.

Since the computed value of for transmitted
message always matches the received signal at the des-
tination, an error occurs if and only if there is another mes-
sage vector for which

. In the next subsection we compute the proba-
bility of this event and show that for large blocks this prob-
ability can be made arbitrarily close to zero provided that
the rate vector is inside the capacity region
described in Theorems 1 and 2.

3) Probability of Error: Let be the probability of
error averaged over all possible functions . In other words, if

is the probability that , the destination’s estimate of
the transmitted message is not equal to , then is
the expected value of over all possible encoding functions
at all nodes.10 More precisely

and . Because of the symmetry of the code
construction

is transmitted (9)

where . Therefore, we will find the average
probability of error when message vector is transmitted
from the sources. Recall the notation and and

. For each ,
define the following event:

(10)

Let be the event that the erasure locations on the chan-
nels going out of node are jointly -strongly typical, i.e.,

are jointly -strongly typical

8Note that the encoding functions thus constructed satisfy a causality condi-
tion that is more strict than what is defined in Section IV. Here each transmitted
block is only a function of the immediately preceding block of received sym-
bols. In Section III, each transmitted symbol could be a function of all previous
symbols.

9We also assume that the destinations knows the topology of the network.
10Note that if P goes to zero as n grows larger, so will P of (5) for

every s 2 S .

[1, Eq. (13.107)] and define

Note that by the weak law of large numbers [1],
as , and hence, for all

for sufficiently large

Using the definition of the above events, can be written
as

(11)

Therefore, using strong typicality and the union bound on the
probability of events, we only look at network instantiations
that are ”strongly typical.” We next bound the conditional prob-
ability of given .

Corresponding to each cut in the network, represented by
-set , define the following event:

(12)

The interpretation of the above event is as follows. By definition
of , we know that the received signal at the destination is
the same for and , but . Therefore, we can par-
tition the nodes of the network into two sets: the “distinguish-
able” and the “indistinguishable” set. The “distinguishable” set
contains all nodes for which the signal received at those nodes
when is transmitted differs from the signal received when
is transmitted. All the other nodes, for which the received signals
for and are the same, are in the “indistinguishable” set.
Clearly, these two sets define a cut. Event corresponds to
the case when the “indistinguishable” set (containing ) is equal
to . Note that these events are all disjoint and also

Define

(13)

to be the subset of source nodes for which the corresponding
messages in and are different. Set is not empty
since by assumption. In what follows, we bound the
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probability of event by considering the edges in the
cut-set where . Note that is a

-set since if the destination is a source of information, it is
aware of the message it has transmitted and so .

Consider any edge . We know that the trans-
mitted signal from node is a function of
the message it wants to transmit , and the received signal at
its incoming edges . For any node in , either the
received signal or message is different for message vec-
tors and . Thus, for a randomly designed code, the trans-
mitted signal by node for message vector is independent of
the corresponding for message vector . Using this obser-
vation, we bound the probability of the event conditioned
on at the bottom of this page. Here

follows since for any events and
. Instead of looking at equalities on every edge and

every node of the network, we are looking at the nodes
having an edge from connected to them, where

.
is clear from the definition of .
follows from the definition of conditional probability.
follows from fact that averaged over all possible func-
tions , the conditional events shown in the equation
are independent for different ’s in .

Now we bound the expression given in (14), as shown at the
bottom of the page, for any node . Note that since

at node , and

are chosen independently and uniformly from . There-
fore, the probability that they are the same in at least specific
locations is at most . Looking at a fixed node

for all such that only if all the lo-
cations that and differ get erased on all these
edges. Because of the -strong typicality of the erasure locations
on edges , the number of locations at which era-
sure occurs on all the edges of interest, say , satisfies

Therefore, and cannot differ in more than

locations and the probability of this event is no more than

(15)

- -

-

(14)
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Combining this with the last equation of (14) gives11

(16)

Combining (11) and (16) together gives

(17)

where we have used the inequality in .
Also is derived by changing the order of summation, and
follows from bounding by in . Now
by assumption, the rate vector is inside the ca-
pacity region given in Theorem 2. Therefore, for any partition of
the nodes into and we have .

11Using (15) it can be easily verified that the arguments that follow will ex-
actly go through for correlated erasure events with cut-capacityC(V ), defined
as in (A3).

Therefore, the exponent in the last term of the above summation
is negative. The above result holds for any and suffi-
ciently large. By letting and , we can make the
upper bound on the probability of error arbitrarily close to zero.
Now by standard coding arguments we conclude that there ex-
ists some deterministic choice of encoding functions that has
arbitrarily small probability of error for the rates in the achiev-
able rate region .

B. Proof of Theorem 3

In this subsection, we outline the proof of Theorem 3. The
analysis is very similar to Theorem 1. The converse part is
straightforward. We know that the sources can be recovered at
all the destinations, therefore, we have the same argument as
the converse part of Theorem 1 for the sources and any of the
destinations. In particular, for any destination , we
have Therefore, any achievable rate
vector should be in the intersection of these capacity regions,
i.e.,

Hence, the converse part is done.
In order to prove the achievability of the above rates, we can

use random coding argument of Section VI-A2. Note that av-
eraged over all the codebooks and functions, the probability
of error for each destination goes to zero. Therefore, using the
union bound on probability of events, the probability of having
an error in at least one destination (averaged over all the func-
tions and codebooks) goes to zero. Using standard arguments,
there exists some deterministic choice of codebooks and func-
tions for which the probability of error in the network become
arbitrarily small and that shows the achievability of the rates in

of Theorem 3 for the multiple destination case.

VII. LINEAR ENCODING

In Section VI-A2, we showed the achievability of the capacity
region as defined in Theorem 2 by using general random coding
functions at different nodes of the network. In this section, we
restrict our attention to linear encoding schemes. The advantage
of using a linear encoding scheme is that the decoding process
becomes much easier. In this case, the equivalent transfer func-
tion of the network from any source to any destination, having
the erasure locations at that destination, is linear. Hence, de-
coding at the destination is simply forming and solving a linear
system of equations.

In this section, we show that linear encoders achieve capacity.
Let us first define the linear block coding scheme with block
length of :

Recall that is the message set for
information source . We assume that different messages
are equiprobable and independent of each other. For any

, let be the length- binary expansion of .
The encoding operation is as follows.
Each node transmits linear combinations of the non-

erased symbols received from its incoming edges and the binary
representation of the message it wants to transmit across the net-
work. More precisely, node generates a random binary matrix
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of size where is the in-degree of
node and is the rate of the codebook used at node (in
the case where is not a source of information ). Each
element of is drawn i.i.d. Bernoulli . For a given se-
quence , let be a sequence derived by replacing every with

. Note that and have the same length.12 If node receives
on its incoming edges and wants to transmit mes-

sage then it sends out . (Since the
input–output relation at each node is linear, setting the erased
symbols equal to zero is the same as finding linear combina-
tions of only the nonerased bits.) Each destination knows all
the matrices and also the erasure locations on all the links
across the network. Since each received and transmitted symbol
at any node is a linear combination of the elements of vector

. Therefore, each destination receives
a collection of linear combinations of elements of . Using

and , destination node can construct the matrix
that corresponds to the linear input–output relation of the net-
work. We denote this matrix by , giving

Note that matrix is a function of different nodes’ encoding
matrices and .

Now, upon receiving , the destina-
tion node looks (solves) for the message vector

such that . If there is a unique
with this property, node declares it as the transmitted message
vector, otherwise, it declares an error. Note that the actual trans-
mitted message vector, say , always satisfies the above
property. Therefore, an error occurs only if there is another mes-
sage vector such that .

A. Achievability Result for Linear Encoding

Looking at the achievablity proof and probability of error
analysis for general random coding in Sections VI-A2 and
VI-A3, it can be easily verified that the linear case requires
the same error events (10). Since the erasure vector is
available at the destination, there is no difference between
and and we can determine one from the other. By expanding
the conditional error event given for different cuts
in the network, all of the relations up to step of (14) go
through for the linear case. In fact, the relations up to step
only require independence of encoding functions for different
nodes of the network, which holds for the linear case. Now we
look at the following probability in (14):

(18)

12The corresponding mapping from alphabet GF (q) [ feg to GF (q) again
replaces e with 0. This variation is useful for packet erasure networks.

As in the general random coding argument, for a fixed we
have for all such that ,
only if and differ only in locations where an
erasure occurs on all the edges of the interest. Because of strong
typicality, the number of these location is at most

Therefore, and should be the same in at least

locations. This means that

should be zero in at least

specific locations. Also note that since
is a nonzero vector. From the above argu-

ment we have

be in at least specific locations

(19)

where

and follows from the following Lemma and its Corollary.
Proof of this lemma is provided in Appendix B.

Lemma 1: Let be a nonzero vector of size from
some finite field GF . Suppose that is a random matrix of
size with i.i.d. components distributed uniformly over
GF . Then the coordinates of are i.i.d. uniform
random variables over GF .

Corollary 2: The probability that is zero in
specific coordinates equals .

Now note that by replacing in (18) and (14) with its bound
from (19) we get the same bound as (16) for random linear
codes. Therefore, linear operations are sufficient for achieving
the capacity.

VIII. DISCUSSION

A. Packet Size and Cycles

This paper treats binary erasure networks. However, as men-
tioned earlier, the results presented in this paper hold for any
packet length (or more generally for any input alphabet size).
The theorems stated in this paper give the maximum achievable
rate per packet. Therefore, if one is interested in the maximum
achievable rate per bit, assuming that the size of each packet is
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bits (resp., the alphabet size is ) across the network, the ca-
pacity will be (resp., ) times the capacity as stated in
the theorems.

This paper assumes that the graph representation of the wire-
less erasure network is acyclic. However, the upper bound de-
rived in Appendix A does not rely on this assumption. By an
approach similar to [3], [5], [18 (Sec. 11.5.2)], it can be shown
that the upper bound is still achievable and therefore the capacity
theorems holds. We do not get into this problem in detail here.

B. Side Information at Destination Nodes

The results stated so far are based on perfect knowledge of
the erasure locations for each link of the network to be available
at destination nodes.

Erasure channels are usually used in modeling networks for
which there exists a mechanism by which the receiver (destina-
tion) can be informed of a packet dropping. Usually, this side
information is provided by using sequencing numbers in the
packet header to detect lost packets. However, if we do not pro-
vide the destination with this side information, even for the sim-
plest case of point-to-point communication, the capacity is not
known. In this case, the communication system is usually mod-
eled by the deletion channel. This channel has been studied by
some researchers and lower and upper bounds on its capacity
are found in [19]–[21].

Looking back at our network, for each block there are
transmissions of packets across the network. Therefore, the era-
sure locations on the links of the network can be represented
by bits. These should be provided to the destination
through some mechanism. One approach is to use part of each
packet as a header to transmit this information.

If the size of each packet is bits, then based on our result
we are able to send bits across the network in a block
of length , where is the minimum cut-capacity of the net-
work. If the size of the packet, , is large compared to the size
of the network, or if the network is small, i.e., is small, the
amount of side information required is negligible compared to
the amount of information sent across the network. We should
remark that if one is trying to map a real network to our model,
the packet length and the probability of erasure are closely re-
lated, and there will be some tradeoff between them.

A number of techniques can be used to reduce the required
overhead for providing side information at the destination(s).
For instance, consider a wireless erasure network, with one des-
tination . Let denote the minimum cut-capacity for this node.
Based on Theorem 1, this is the maximum achievable rate at .
Now consider to be the subset of nodes for which the min-
imum cut-capacity is greater than . If we decode the mes-
sages completely and then re-encode them using random code-
books, we can still achieve the capacity at destination . How-
ever, doing this may reduce the amount of overhead required
at the destination. As an example, let us look at a line network
(Fig. 5) from this point of view. The source node is the leftmost
node and the destination is the rightmost node. The minimum
cut-capacity for the destination is less than or equal to the min-
imum cut-capacity for every other node. Therefore, the inter-
mediate nodes can decode without degrading the performance at
the destination . Further, this approach decreases the amount of

Fig. 5. A wireless erasure line network.

overhead required. In fact, for this special case, by decoding at
every node, no side information from previous links is required
at the destination. Another technique is scheduling among the
nodes to minimize the average header size needed for sending
across the required side information. In this scheduling, for any
link in the network, we determine the nodes that should include
the erasure locations on that link as a header in their transmitted
packets.

Remark: A closer look at the achievability proof of Sec-
tion VI-A2 reveals that all that the destination nodes need to
know is the mapping from the source nodes to their incoming
signals for every instantiation of the network. (In other words,
for every instantiation of the network, the destinations should
be able to unambiguously compute their output for any given
input to the network.) Any mechanism that provides destination
nodes with the knowledge of this mapping will work. Providing
the erasure locations for each link of the network is one pos-
sible mechanism. In the subsequent work of [16], another kind
of side information is considered for the linear encoding sce-
nario. There the side information is the global encoding vectors,
which also allow for the input output mapping to be determined.

C. Achievable Rates Without Side Information

In this subsection, we look at the achievable rate for
single-source/single-destination wireless erasure networks
under a number of coding schemes when the side information
is not available at the destination.

1) “Forward” and “Decode” Scheme: In this scheme, we
analyze the performance of wireless erasure networks when lim-
ited operations are allowed at each node. Consider a codebook

of rate and block size . This codebook is available at all
the nodes and is used for encoding the information message.
The source node uses this codebook to “encode” the informa-
tion. We assume that all the other nodes are allowed to perform
one of the following operations.

• Forward: A node operating at this mode forward received
strings unchanged.13

• Decode and Re-encode: In this case, the node first
decodes the message transmitted from the source node
based on what it has received and the codebook . Then
it sends out the codeword corresponding to that message
in across its outgoing links. In this way, each relay node
acts as a “source” of information for other nodes in the
network. The need for successful decoding at interme-
diate nodes may reduce the rate of the codebook used.

13In this scheme, we consider a modified erasure channel between any two
nodes, in which the nodes can forward the erasure symbol without error. In other
words, although similar to previous sections the nodes are not allowed to per-
form coding on the erasure symbol, they can inform their local neighbors of
erasure of packets.
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The main observation is that since the source message is in-
tended to be decoded only at destination nodes, decoding at
one relay node may be suboptimal. In fact, as is observed in
[22]–[24], the distinguishing features of wireless media imply
that decoding at every relay node and operating below the ca-
pacity of each link in the network can result in severe degra-
dation in the achievable rate in the network. For instance, for
the erasure wireless networks considered in this paper, the max-
imum rate when all the nodes are decoding the source message
using codebook is given by the minimum capacity of the links
in the network, i.e.,

(20)

where subscript refers to the all-decoding case.
In the “Forward” and “Decode” scheme, instead of requiring

that all the nodes decode the source message, we allow for an-
other operation: “forward”ing. The objective is to find the op-
timal operation at every node so as to maximize the achievable
rate, i.e., the rate of the codebook, in this network. In [22], we
have proposed an efficient algorithm that finds the optimal rate
for this scheme. In this paper, we use to refer to the op-
timal rate using the “Forward” and “Decode” scheme.

2) Block Markov Superposition Coding: Cover and El
Gamal [10] developed a coding strategy for general single-relay
channels based on block Markov coding and random parti-
tioning. This strategy is generalized and used in a multiple-relay
setup in [11], [12].

Let be a permutation on that fixes the source and des-
tination nodes. This permutation determines the order in which
the nodes decode and encode the information. Using this coding
strategy, it is shown in [11] that we can achieve

where subscript is used to refer to block Markov coding
and

We should remark that one can choose any distribution on
in the preceding result. Applying this

result to our case, we show in Appendix C that the maximum
rate is achieved when the ’s are independent and uniformly
distributed. Also, a maximizing permutation of the nodes is one
that keeps the partial ordering of the nodes.14 The maximum
achievable rate in this case is

(21)

The above formula suggests that the achievable rate in block
Markov scheme is constrained by the minimum of the sum-ca-
pacities of incoming edges to any node in the network. This con-
straint is less severe than the all decoding case in (20). Here, in-
stead of requiring all the links to be error free, we only require
that the relay nodes be able to decode the information. However,
the achievable rate is still constrained by the capability of each

14Since the network is acyclic, we can number the nodes such that if there is
a path from node i to j, then the number assigned to node i is less than node j.
This defines a partial ordering on the nodes of the graph.

Fig. 6. A simple network.

relay node to decode the information. The example that follows
demonstrates that block Markov coding is not always efficient
in our network.

There are other strategies such as compress forward and also
partial decoding at the relay nodes that can be implemented in
the network [10, Theorem 6], [25], [12]. Finding the achievable
rates for these schemes explicitly and in terms of parameters
of the network is usually intractable since the expressions for
these schemes are not simple and involve a number of auxiliary
random variables. In the rest of this section, we compare the
performance of these schemes for a very simple but interesting
erasure broadcast network. The capacity of this simple network
is not known to our knowledge.

3) A Simple Example: The network under study here has a
graph representation shown in Fig. 6. It has two relay nodes and
one destination. We assume that the relay nodes are identical, in
the sense that their connections to the source (resp., destination)
have the same probability of erasure equal to (resp., ). The
capacityofthenetworkgivensideinformationat thedestinationis

Using the “Forward” and “Decode” strategy, the maximum
achievable rate is given by [22]

Using (21), the block Markov coding scheme achieves rates up
to

Another strategy that can be used is for the relay nodes to encode
and compress their received signals, , with rate and send it
to the destination node reliably. Since the received signals at the
relay nodes are correlated, the Slepian–Wolf encoding scheme
can be used [26]. However, this scheme works only if the capacity
of the channel between relay node and the destination is larger
than . Combining this with the Slepian–Wolf rate region [26],
we should have

If the above conditions are satisfied, the destination will have
access to both observations and , and therefore, we can
achieve a rate of in the network.

Now suppose that the distribution on the input signal, , is
given by vector . It can be verified that

and
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Fig. 7. Performance of different schemes for four scenarios.

By choosing the probability distribution appropriately we can
achieve

where and the subscript is used to refer
to the Slepian–Wolf coding scheme. Note that this scheme does
not work if the quality of the channels from the relay nodes to
the destinations is low, i.e., if is large. In this case, the second
term in the above formula becomes zero and therefore
equals zero.

We have plotted the performance of the above-mentioned
strategies for four different scenarios in Fig. 7. In Fig. 7(a), we
plot the performance for . For small values of

, the Slepian–Wolf strategy achieves capacity. Unfortunately,
this approach performs poorly for large values of since the

quality of the channel between relay nodes and the destination is
not good enough to pass the compressed data reliably. Fig. 7(b)
shows the results for . This choice corresponds to the
case when the quality of the channels from the relay nodes to
the destination is better than the source-to-relay connections.
Note that the performance of the block Markov scheme is not
good because of the rate constraint introduced by decoding at
the relay nodes. The Slepian–Wolf scheme works for a larger
range of compared to the network considered in Fig. 7(a).
This is because the channels between the source and the desti-
nation are better than in the former case. In Fig. 7(c), we look
at one extreme case when is zero, giving a perfect channel
between the relays and the destination. As the figure shows,
the “Forward” and “Decode” scheme achieves the capacity
in this cases. The rate of the Slepian–Wolf scheme decreases
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for intermediate values of but as we increase again this
scheme achieves capacity. This happens because for values of
around , the entropy of the received signals at the relay nodes
increases. Therefore, the minimum required rate for reliable
transmission also increases. However, as we increase the value
of the required rate decreases and the compressed signals
can pass across without error. Hence, we achieve capacity. In
Fig. 7(d), we look at the case when the quality of channels
between the source and relays is better than of those between
the relays and destination. For this, we have chosen . In
this plot, block Markov coding outperforms other schemes and
achieves capacity for large values of .

There are other strategies that can be used that are not
analyzed in this paper. For instance, the authors of [10] propose
a compression-based scheme for general relay channels. The
approach is generalized to a multiple-relay setup in [12], [25].
This scheme is based on the Wyner–Ziv compression technique
with side information at the receiver [27]. One expects this
scheme to be more efficient than the Slepian–Wolf scheme
proposed here. However, finding an explicit formula for the
achievable rate requires a seemingly intractable optimization
over a number of auxiliary random variables. Designing efficient
and analytically tractable coding schemes based on these ideas
deserves further investigation and can be a subject of further
research.

IX. CONCLUSION AND FURTHER WORK

We have obtained the capacity for a class of wireless erasure
networks with broadcast and no interference at reception. We
have generalized some of the capacity results that hold for
wireline networks [3], [5] to these networks. Furthermore, we
have shown that linear encoding suffices to achieve the optimal
performance. We see from the proof that it is not necessary to
perform channel coding and network coding separately from
each other. In fact, in [22], [23] we show that decoding at the
relay nodes and operating below the capacities of each link can
actually significantly reduce the achievable rate. Therefore,
unlike the wireline scenario where each link is made error free
by channel coding and network coding is then employed on top
of that, our scheme only requires a single encoding function.
Only the destination has to decode the received signal.

Many problems related to wireless networks remain open.
Generalizing the results in this paper for other network problems
is one possible extension of this work. As a first step, in broadcast
problems over wireless erasure networks are considered. For
these problems it can be shown that unlike wireline networks,
the capacity region is not given by min-cut bounds. It is
shown in [28] that the capacity region of multiple-input erasure
broadcast channels is given by time sharing between users
at different inputs. This result gives tighter outer bounds on
the capacity region of broadcast problems in erasure wireless
networks.

It will also be interesting to see if similar results can be
obtained for other types of networks, such as erasure wireless
networks in which interference is incorporated in the recep-
tion model, networks involving channels other than erasure
channels, etc.

APPENDIX

A. Proof of Converse

We have to show that any sequence of

codes with satisfies the bounds given in Theorem 2
(and Theorem 1). Let be a random
vector drawn i.i.dt yo. from a uniform distribution over the set of
message indices . Let be the random vector describing the
erasure locations, i.e., .
Consider an -cut given by -set . We have (A1) and (A2)
at the bottom of the following page, where

follows from Fano’s inequality since message can
be decoded at node from and the erasure locations

across the network.
follows from the properties of the block code defined in
Section IV and data processing inequality. The causality
of the block code and also the deterministic structure of
the relaying functions can be used to inductively show
that forms a
Markov chain for any cut. Applying the data processing
inequality gives inequality .
follows since messages and erasure locations are inde-
pendent from each other.
follows since the output of every channel is a determin-
istic function of the erasure locations and the trans-
mitted messages . Therefore the
second conditional entropy is zero.
follows from the fact that conditioning reduces the en-
tropy.
follows from the fact that conditioning reduces the en-
tropy and for any col-
lection of random variables.
follows from the fact that
is a deterministic function of

follows since

follows from the capacity of the memoryless erasure
channel. Here the transmitter transmits and the
receiver has access to . The
receiver experiences an erasure only if all channels

simultaneously suffer an erasure.
Therefore, the equivalent channel’s erasure probability
is
follows since in the case of independent erasure
events is equal to

Remark 3: As we observe from (A1), the upper bound is in
terms of the mutual information between the input and outputs
of every broadcast system (i.e., a node and its outgoing edges) in
the network. We should also mention that the same kind of upper
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bound of (A1) holds for more general networks (not necessarily
erasure) that have interference-free and broadcast property.

Remark 4: From (A2), we see that in the case of correlated
erasure events, i.e., when s are dependent (however, still data
independent), we can find an upper bound for the maximum
achievable rate for each cut. Furthermore, as mentioned in foot-
note 11, it can be verified that the probability of error analysis
of Section VI-A3 is valid for the correlated erasure events with
the following definition of the cut-capacity:

(A3)
Therefore, the capacity results of this paper go through for the
correlated erasure events as well.

B. Proof of Lemma 1

First note that if and are independent uniform random
variables over GF it can be easily verified that is also
uniformly distributed over GF . By a simple induction it is
straightforward that sum of any number of independent uniform
random variables is uniformly distributed. By assumption dif-

ferent rows of are independent from each other. Also, each
element of is a linear combination of elements of one spe-
cific row. Therefore, different elements of are independent
from each other. Now we show that elements of are uniformly
distributed. Without loss of generality look at first element, i.e.,

Note that for nonzero ’s, the are independent uni-
formly distributed random variables. Hence, is a sum of a
number of independent uniform random variables over GF
and based on the above discussion is uniformly distributed.

Remark: Using Bayes rule, we can easily check that if is
a nonzero uniform random vector over GF and it is indepen-
dent of , then is a uniform random vector.

C. Achievable Rates for Block Markov Scheme

As mentioned earlier the achievable rate using block Markov
coding is given by

(A1)

(A2)
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where the maximization is over the joint distribution of the
and , permutations of the nodes that keep

source and destination fixed. Now for any mutual information
term in the preceding equation we have

(C1)

where

• follow from the fact the network is memoryless,
therefore, given ’s are independent
from each other and also output of other nodes.

• follows from the fact that the capacity of an erasure
channel with probability of erasure is .

Using (C1), we have

Now we can easily verify that by choosing ’s independent
and uniformly distributed and by considering a permutation that
is faithful to partial ordering of the nodes we can achieve the
right-hand side of the above equation.
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