

Report

Reference

Capacity Planning Under Uncertain Demand in Telecommunications
Networks

LISSER, A., et al.

Abstract

This paper deals with the sizing of telecommunications networks offering private line service
to a few clients. The clients ask for some transfer capacity between some pair of nodes, but
their demand is uncertain. In case of high demand and insufficient capacity, some clients may
be denied the transfer; the telecommunications company pays a penalty cost for that. The
network has a fixed topology. In planning the network capacity, the company wants to balance
the investment cost with the total expected penalty cost. The planning situation is modeled as
a stochastic programming problem. The scenarios are built under the assumption that the
clients have independent demands. The solution method is based on Benders decomposition
coupled with the analytic center solution method. We solve some large size problem
instances. For one problem instance, we perform sensitivity analysis and draw the trade-of
cost curve vs. the unitary penalty cost. Finally, we run the algorithm on a parallel computing
platform.

LISSER, A., et al. Capacity Planning Under Uncertain Demand in Telecommunications
Networks. 1999

Available at:
http://archive-ouverte.unige.ch/unige:5871

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:5871

Capacity Planning Under Uncertain

Demand in Telecommunications Networks ∗

A. Lisser†, A. Ouorou‡, J.-Ph. Vial‡ and J. Gondzio§

October 8, 1999

Abstract

This paper deals with the sizing of telecommunications networks offering private
line services to a few clients. The clients ask for some transfer capacity between some
pair of nodes, but their demand is uncertain. In case of high demand and insufficient
capacity, some clients may be denied the transfer; the telecommunications company
pays a penalty cost for that.

The network has a fixed topology. In planning the network capacity, the company
wants to balance the investment cost with the total expected penalty cost. The
planning situation is modeled as a stochastic programming problem. The scenarios
are built under the assumption that the clients have independent demands. The
solution method is based on Benders decomposition coupled with the analytic center
cutting plane method. We solve some large size problem instances. For one problem
instance, we perform sensitivity analysis and draw the trade-off cost curve vs. the
unitary penalty cost. Finally, we run the algorithm on a parallel computing platform.

Key words: Telecommunication network design, stochastic programming, decomposition,

network flows.

∗Research funded by CNET-France Telecom
†France Telecom, CNET, 38-40 rue de Général Leclerc, F-92131 Issy-les-Moulineaux, France.
‡Logilab, HEC, Section of Management Studies, University of Geneva, 102 Bd Carl-Vogt, CH-1211

Geneva 4, Switzerland.
§Department of Mathematics & Statistics, The University of Edinburgh, Mayfield Road, Edinburgh

EH9 3JZ, United Kingdom.

1

1 Introduction

The investment for link capacities in network design is a basic problem in the telecommu-

nications industry. In the present paper, we consider its important variant in which the

demands are uncertain. This variant is relevant to virtual networks aiming to serve few

important clients whose demands are liable to vary from one period of time to the next

one.

Demands consist of bandwidth requests between some origin-destination nodes in trans-

port network. A request is successful if the requested bandwidth is allocated to it. The

allocation remains in force until a disconnection request is received. Since bandwidth re-

quests vary from one period to another, the telecommunications company must routinely

face the problem of allocating bandwidths to the clients and determining the routing of

the messages. In the event of specially high demands, the existing network capacity may

not suffice to meet all demands. The company must decide which customers will not be

served; in case of failure to meet some demand, the company would pay a penalty cost.

The obvious strategy to decrease the risk of failures and the amount of unserved demand

consists in installing extra link capacity. The main issue in this paper is to find a reasonable

tradeoff between the capacity investment cost and the expected cost of unserved demands.

Since the company may influence demands by offering different kind of contracts with

different service qualities and different penalty costs, there is much fuzziness in the choice

of a satisfactory capacity investment. There is a need for a decision support system to

analyze various options and find where capacity is most needed and by which amount.

The present study emphasis on the arbitrage between investment for capacity and costs of

not serving the demand.

The problem is naturally formulated as a two stage stochastic programming problem

with recourse. The first stage deals with investment for link capacities. The second stage,

or recourse problem, concerns the bandwidth allocation and the associated routing. The

recourse problem is typically a multicommodity flow, a problem well studied in the lit-

erature [3, 15, 6, 9]. Assuming that the cost of unserved demand is linear, the optimal

value of the recourse problem becomes a convex function of the right-hand side of its ca-

pacity constraints. However, it is well-known that this function is piecewise linear, thus

nondifferentiable. If we assume linear capacity expansion costs —a reasonable working

2

assumption in the planning phase in search for arbitrages— we obtain that the total cost,

the investment cost plus the expected failure cost, is convex. The problem involves a few

variables only, but it is clearly nondifferentiable.

The literature abounds with methods for solving nondifferentiable problems. In the

present study, we use the Analytic Center Cutting Plane Method, in short accpm, in-

troduced in [11], with its specialized implementation for stochastic programming [4]. The

method is related to the classic Benders decomposition method, but it differs from it in the

following way. Instead of solving to optimality the current relaxed master problem, accpm

computes an approximate analytic center of the current localization set, a polyhedral set

made of all cuts previously generated. This approach has a desirable stabilization effect

and prevents the occasionally slow and unpredictable behavior of Benders decomposition.

accpm has been used with success in large-scale convex optimization [12, 4, 16, 17]. It is

robust and efficient, making it possible to use it on a production basis.

Our study is similar to an earlier study of Sen et al. [20]. In their work, the authors deal

with network design subject to capacity budget constraint and the objective of minimizing

the expected number of unserved demands. We aim at cost optimal capacity assignment in

order to minimize the expectation of rejection penalty costs. Some interesting discussions

on uncertainty can be found in [22, 23] in the framework of distributed communications

networks.

The paper is organized as follows. The capacity planning problem with random demand

is formulated in section 2. The solution method is presented in section 3. In section 4

we discuss practical implementation issues. Section 5 presents computational results and

reports on a parallel implementation of our decomposition scheme. We give our conclusion

in the last section.

2 Mathematical Model

In this section, we present a mathematical model for the capacity planning under uncer-

tainty problem. We first state the notation used throughout the paper.

Consider G = (V, E) a non-oriented connected graph that represents a network with m

nodes and n links. We denote by b ≥ 0 a vector in R
n whose components correspond to

the (possibly zero) capacities that already equip the links. Let xmin
j ≥ 0 and xmax

j ≥ 0 be

3

respectively the lower and upper capacity bounds available for link j, and cj the unit cost

for capacity investment on the link.

Let K denote the index set of customers. The bandwidth requirements of a customer

k ∈ K are represented by a multicommodity defined by a set Qk of single commodity flows

between origin-destination pair (Oi, Di), i ∈ Qk. The demands are considered fractionable,

hence for each i ∈ Qk, let us consider Pk(i) a set of (elementary) paths that can be used

between Oi and Di, i ∈ Qk. Define Pj as the set of paths using link j and for each path p,

let yp be the flow through p.

The capacity planning problem may be formulated as a two stage problem. The first

stage deals with the choice of link expansion capacities. In the second stage, the link

capacity vector b + x is given and we seek for the most efficient utilization of the network

capacity. The overall objective is to minimize the sum of the investment cost and the

expected rejection costs. We assume that uncertainty in the bandwidth requests can be

modeled by random variables with known probability distributions. Let X = {x | xmin
j ≤

xj ≤ xmax
j , j ∈ E} be the set determined by the range capacity constraints. The problem

is mathematically formulated as:

min c⊤x + E [D(x, d̃)]

s.t. x ∈ X
(1)

In the above formulation, d̃ is a multidimensional random variable associated with

the customers demands provided by the network in a study period T ; E [.] denotes the

expectation function and D is a random variable representing the total cost of rejection

penalties. D is the optimal value of the recourse problem:

D(x, d) = min
∑

k∈K

πk(
∑

i∈Qk

ski)

s.t.
∑

p∈Pj

yp ≤ bj + xj, j ∈ E,

∑

p∈Pk(i)

yp + ski = dki, k ∈ K, i ∈ Qk,

yp ≥ 0, for each p,

ski ≥ 0, k ∈ K, i ∈ Qk.

(2)

4

The objective function of the above problem involves coefficients representing a customer

unit rejection penalty cost πk, k ∈ K for not satisfying the customer’s demand. The

outcome of the demand between an OD pair i of a customer k, is denoted by dki, then the

demand vector d belongs to
∏

k∈K

R
|Qk| (d is a possible realization of the random variable d̃).

The first set of constraints are the capacity constraints; they express that the capacities

assigned to the links cannot be exceeded (note that the additional capacity vector x is

assumed given at this stage). The slack variable sik represents the part of demand i of

customer k that cannot be satisfied.

The second-stage problem (2) is a linear multicommodity flow problem: it has received

considerable attention in the literature, see for instance [3, 15, 6].

Within the context of our current model, it may be desirable to consider routing costs

using for instance the Kleinrock average delay function. However this function, which

depends both on the total link flow and capacity, is not jointly convex in its arguments,

making the problem extremely difficult from the theoretical and practical point of view.

As pointed out in [19], convexity assumption is fundamental if one wants to solve very

large stochastic programming problems. The method we develop and implement is general

enough to handle convex routing costs provided fast algorithms for convex multicommodity

flow subproblems are used, see [18] for a survey.

One of the main difficulties in stochastic programming lies in the evaluation of random

functions and their expectations. Approximation techniques are used for practical solutions

[14, 5]. Too many additional factors concur in the final design of a telecommunications

network, especially those pertaining to technologies. Due to the fast innovation in telecom-

munication technologies, it is difficult to make valid costs and capacities predictions. The

purpose of our model is rather to contribute to the learning process of the decision-makers,

in displaying solutions which achieve good hedging against the uncertain demand.

Assume that the random demand variable is discrete, attaining only a finite number

of values dt with probability pt > 0, t = 1, . . . , T (total number of outcomes), where
T
∑

t=1

pt = 1. Then, the capacity planning problem (1) becomes

min c⊤x +
T
∑

t=1

ptD(x, dt)

s.t. x ∈ X.

(3)

5

Concerning the data, the basic assumption is that, the capacity expansion costs cj,

the initial link capacity bj and the link capacity bounds xmin
j and xmax

j , are well-known.

Though πk may be given any value, in our test problems we use the same value

πk = κ max
j∈E

cj (4)

for all the customers.

The major random factor driving uncertainty is customers demand and their proba-

bility distributions. We model the uncertainty as follows. We assume that the clients are

independent. A scenario is the outcome of C independent random trials, where C is total

number of customers. For simplicity, we assume that every customer chooses his demand

from the set of N possible demands. Therefore there are NC scenarios, and each sce-

nario specifies the demand configuration of each customer. To remain tractable, the model

allows only a few demand configuration per customer. This assumption, and the indepen-

dence one, are not restrictive in the context of our study. Recall that we are interested in

arbitrages that will serve as guidelines for later implementation decisions.

3 Using the Analytic Center Cutting Plane Method

Since the function D(., dt) is piecewise linear convex, the problem (1) appears to be a non-

smooth optimization problem. Thus it can be tackled with the Analytic Center Cutting

Plane Method introduced by Goffin, Haurie and Vial [11]. The basic idea of cutting plane

methods is to construct a sequence {xl} of approximations to the solution of (3) as follows.

Known pieces of the functions D(., dt) are used to compute the current solution xl at which

subproblems (2) provide new information that allows to redefine the epigraph of D(., dt)

and to compute the next iterate xl+1. For some capacity link expansion vector xl, the dual

formulation SP (xl) of the second stage problem, is given by

max (b + xl)⊤ut + d⊤
t vt

s.t. vtki
+

∑

j∈p

utj ≤ 0, k ∈ K, i ∈ Qk, p ∈ Pk(i),

vtki
≤ πk, k ∈ K, i ∈ Qk

ut ≤ 0

(5)

6

From linear programming duality, we have

∑

k∈K

πk(
∑

i∈Qk

sl
tki) = (ul

t)
⊤(b + xl) + (vl

t)
⊤dt , αl

t

where sl
t and (ul

t, v
l
t) are respectively the primal and dual optimal solutions. Note that the

constraints in (5) are independent of x. Therefore, for a general x and its corresponding

optimal vector (ut(x), vt(x)), we have

D(x, dt) = (ut(x))⊤(b + x) + (vt(x))⊤dt ≥ (ul
t)

⊤(b + x) + (vl
t)

⊤dt

since (ul
t, v

l
t) is feasible for SP (x). We then obtain the optimality cut which is a linear

support of D(., dt) at xl:

θt ≥ (ul
t)

⊤(b + x) + (vl
t)

⊤dt = αl
t + (ul

t)
⊤(x − xl)

The subproblem (2) is always feasible and X is defined by simple bound constraints: we do

not have to generate feasibility cuts. Let {xl}L
l=1 be a sequence of points generated at some

step. The cuts constructed at those points are used to define the relaxed master problem

of (1):
min c⊤x + p⊤θ

s.t. θt ≥ αl
t + (ul

t)
⊤(x − xl), l = 1, . . . , L, t = 1, . . . , T

x ∈ X

(6)

where p and θ are the T -vectors with coordinates pt and θt respectively. We have an

equivalent relaxed master problem

min c⊤x + θ̃

s.t. θ̃ ≥ γl + χ⊤
l (x − xl), l = 1, . . . , L,

x ∈ X,

(7)

where γl =
T
∑

t=1

ptα
l
t and χl =

T
∑

t=1

ptu
l
t. This means constructing cuts for the expectation

function by averaging with the weights pt the cuts for D(., dt). As observed in [12], averaging

the subgradients of all subproblems induces a loss of information and considerably slows

down the algorithm. It is much preferable to introduce one cut (supporting hyperplane)

for each recourse function. The way to proceed is to introduce epigraph variables θi, one

7

per subproblem (scenario), and express the objective as the sum
∑

i piθi. For the sake of

a simpler presentation, we describe the aggregate version of the problem. For more details

on the implementation of the disaggregate version, we refer to [12].

Let us rewrite the linear program (6) in a more compact form

min c⊤x + p⊤θ

s.t. θ ≥ αl + U l(x − xl), l = 1, . . . , L,

x ∈ X.

(8)

The relaxed linear program (8) provides a lower bound z on the optimal solution of problem

(1) while

z̄ = min
l=1,...,L

{

c⊤xl + p⊤θl
}

provides an upper bound. At step l, the accuracy of the approximation to the optimal

solution is given by the gap ∆ = z̄ − z.

For a given upper bound z̄, the set

LOC z̄ =
{

(x, θ) : x ∈ X, z̄ ≥ c⊤x + p⊤θ, θ ≥ αl + U l(x − xl), l = 1, . . . , L
}

is called a localization set. It is the best outer approximation of the optimal set of (1).

On the contrary of Kelley method, the solution proposed to the subproblems is not the

minimizer of the relaxation, but the analytic center of the localization set. The analytic

center is defined as the unique solution of the problem

min φ(x, θ) , ln(z − c⊤x − p⊤θ) +
L
∑

l=1

T
∑

t=1

ln(θt − αl
t − (ul

t)
⊤(x − xl))

s.t. (x, θ) ∈ LOC z̄.

(9)

In other words, the analytic center is a point that maximizes the product of slacks in the

localization set. It can also be viewed as a compromise between the proposals from the

various subproblems and has a desirable stability property.

We are now ready to give the conceptual description of accpm. The method requires

the solutions of the subproblems and adds cutting planes to the relaxed master problem.

The main steps of its single iteration are the following:

8

One iteration of ACCPM

1. Compute the analytic center of LOC z̄ and an associated lower bound z̃.

2. Solve the subproblems (5) for each scenario t = 1 . . . , T , generate optimality cuts

and an upper bound ˜̄z.

3. Update the bounds z := max {z, z̃} , z̄ := min {z̄, ˜̄z}

4. Update the upper bound in the localization set and add the new cuts.

The method can be interpreted as a coordination scheme between the process we call

oracle which solves the subproblems to provide the cuts and the upper bound, and the

generator that updates the localization set, computes the analytic center and a new lower

bound. The above steps are performed until a point is found such that ∆ = (z̄−z)/(1+|z̄|)

falls below a given tolerance.

4 Implementation

As far as computations are concerned, the implementation mainly consists in putting to-

gether two main pieces of software: a query point generator and an LP solver to handle

the subproblems.

4.1 Interface and problem generator

The capacity investment problem is generated from a relatively small set of parameters.

The network data are the nodes, the arcs, the installed capacities and the expansion costs.

The customer data concerns the list of O-D pairs per customer and the various demand

configurations. Each demand configuration must be given a probability. Finally, there is

a penalty cost per unit of unserved demand.

A scenario is a set of configurations, one per customer. The generator constructs the

list of scenarios first, and then computes the related probabilities based on the assump-

tion of independence among customers. The generator produces the subproblem matrix

coefficients and provides all relevant information (number of subproblems, bounds on the

investment for capacities, etc.) for the query point generator.

9

The interface links the query point generator and the subproblem solver, making it easy

for the user to perform parametric analyses, e.g., on the penalty costs. The interface and

the problem generator are both written in C++.

4.2 The query point generator

The query point generator is accpm, a general purpose code for convex nondifferentiable

optimization [13]. The code is written in C++ and uses some Cholesky decomposition

routines written in FORTRAN. This library has been compiled in Visual C++ under

Windows NT environment. The implementation uses the standard settings of accpm.

The code uses a priori box constraints on the variable x. There is no tuning for the user,

though the relative precision parameter can be changed.

4.3 The linear multicommodity flow subproblems

In section 2 we described the multicommodity flow problem via the path-flow formulation.

This is common practice in telecommunications environment, where path restrictions, on

the length or on the number of arcs traversed, are often present. The path flow formulation

is also relevant when the problem instance is huge and decomposition is the chosen solution

method.

This is not the case for our problems of interest: the networks we consider here are

small and bear no restriction on the paths. Since a decomposition approach is not appro-

priate, we resort to the alternative formulation based on flows on the arcs. This generates

small to medium size LP’s that are efficiently solved by commercial software, e.g., cplex.

However, there may be many subproblems and each subproblem must be solved repeatedly.

Therefore, great care must be taken in formulating those problems.

Let us revisit the formulation of section 2. Denote A the incidence matrix of the network

G. To represent failure to serve demand di, i ∈ Qk, we define the incidence vector γi ∈ R
m,

with (γi)u = 1, if u = Oi, (γi)u = −1, if u = Di, and 0 otherwise. The arc-flow vector

associated with the i-th demand is fi ∈ R
m, i ∈ Qk, and si ≤ di denotes the portion of

unserved demand di. The flow (fi)(u,v) on arc (u, v) ∈ E may be positive or negative, but

it induces a load |(fi)(u,v)| on the arc. To remain within a linear programming framework,

we decompose the flow into a positive and negative part: fi = f+
i − f−

i , and have thus

|fi| = f+
i + f−

i .

10

Subproblem 2 is now formulated as

D(x, d) = min
∑

k∈K

πk(
∑

i∈Qk

si)

s.t.
∑

k∈K

∑

i∈Qk

(f+
i + f−

i) ≤ b + x,

A(f+
i − f−

i) + γisi = γidi, ∀i ∈ Qk and ∀k ∈ K,

f+
i ≥ 0, f−

i ≥ 0, 0 ≤ si ≤ di ∀i ∈ Qk and ∀k ∈ K.

(10)

The unserved demand is treated as a flow on a virtual arc directly linking the source to

the sink. This virtual arc has capacity di, but this value may be replaced by an arbitrary

large one, since a feasible flow with si > di is dominated by the feasible solution with zero

flow and si = di. The latter has a lower cost and a zero load on the arcs.

The above formulation involves Q =
∑

k∈K

|Qk| blocks of flow constraints, each one of

them associated with a customer and a pair of origin-destination nodes. We show now

that it is possible to achieve a more compact formulation by aggregating all flows of O-D

pairs sharing the same origin. We shall refer to it as the single-origin-multiple-destination

formulation (somd), in contrast with the single-origin-single-destination (sosd) formula-

tion given in (10) [9].

Let us first give the explicit formulation of somd. To this end, we introduce the sets

S(u) = {i | i ∈ Qk, k ∈ K, such that Oi = u} ,

one set for each u ∈ V . S(u) collects all demands having origin in u ∈ V . We now define

the matrices Γu = {γi}i∈S(u), the vector δu = {di}i∈S(u) and the variables σu = {si}i∈S(u)

and φu = φ+
u − φ−

u ∈ R
|E|. The variables φ are the aggregate flows of all commodities

sharing the same origin u. The somd formulation is

D(x, d) = min
∑

u∈V

(

∑

k∈K, i∈Qk : i∈S(u)

πksi

)

s.t.
∑

u∈V

(φ+
u + φ−

u) ≤ b + x,

A(φ+
u − φ−

u) + Γuσu = Γuδu, ∀u ∈ V,

φ+
u ≥ 0, φ−

u ≥ 0, 0 ≤ σu ≤ δu ∀u ∈ V.

(11)

11

Note that it would be possible to aggregate flows according to a common destination

yielding a mosd formulation. This choice is arbitrary, though it leads to different models.

However, we have the folklore theorem:

Proposition 1 The sosd and somd formulations are equivalent.

Proof. Any feasible solution of the sosd formulation can be transformed into a feasible

solution of the somd formulation by aggregating all flows emanating from a same origin.

The costs are unchanged.

To prove the converse statement we first show that any optimal solution to the somd

formulation can be retrieved by solving several independent simple flow problems, exactly

one such problem per block (common origin) in the somd formulation. Let φ̄ be a globally

optimal solution. The load vector induced by the flows in block u is βu = φ̄+
u −φ̄−

u . Consider

the subproblem
min

∑

k∈K, i∈Qk : i∈S(u)

πksi

A(φ+
u − φ−

u) + Γuσu = Γuδu, ∀u ∈ V,

φ+
u + φ−

u ≤ βu,

φ+
u ≥ 0, φ−

u ≥ 0, 0 ≤ σu ≤ δu.

(12)

In this simple problem one cannot have simultaneously a direct flow (φ+
u)(i,j) > 0 and

an opposed flow (φ−
u)(i,j) > 0 on any given arc (i, j) ∈ E. Therefore, the joint capacity

constraint can be replaced by (φ+
u)(i,j) ≤ βu and (φ−

u)(i,j) ≤ βu. We have thus a simple

minimum cost flow problem on a capacitated network; clearly, the optimal value of this

problem must be equal to the contribution of the optimal solution φ̄ in block u of the global

formulation.

It is well-known that an optimal solution of a simple flow problem can be described in

terms of flows on a set of directed paths from the source to the various sinks. By repeating

the procedure on all blocks we obtain a decomposition that can be interpreted as a feasible

solution to the sosd problem. The latter must be optimal to sosd, since any feasible

solution of sosd is feasible to somd and φ̄ is optimal for somd.

Some nodes may not be the origin of any demand, the total number of blocks in the

somd formulation (11) is then at most m, presumably a much smaller number than Q.

12

Our test problems involve relatively few O-D pairs per client. So the size reduction factor

is only a factor 2 or 3. Yet, it makes it worth using the somd formulation.

Again, failures are as special flows on virtual arcs from the source to the sinks, with

bounded capacities. Let us show on an example that those constraints are necessary in

somd contrary to sosd. Consider the simple network of Figure 1 with four nodes and

three links. The O-D pairs are (1, 3) and (1, 4) with demands d13 = 2 and d14 = 1. In

the somd formulation node 1 is a supply node with total supply 3 and nodes 3 and 4 are

demand nodes with demands 2 and 1. Arc (1, 2) has capacity one, and the failure costs

at nodes 3 and 4 are 1 and 0 respectively. An optimal solution of the minimum cost flow

problem with unbounded failures is given by the flows f12 = 1, f23 = 2 and f24 = −1 and

the failures s3 = 0 and s4 = 2. This solution implies a direct transfer of flow from 4 to 3:

it is not feasible to the original problem.

[∞]

[∞]

[1]
3

1

2

✲

✲

✲

4

3

21
P

P
P

P
PPq

✏
✏

✏
✏

✏✏✶

✲

✚✙
✛✘
✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

Figure 1: Academic 4 nodes-3 links network.

5 Computational Experiments

A code has been developed on the basis of section 3 to evaluate the capacity planning model.

We use cplex 6.0 library routines for the purpose of solving the subproblems, setting

the parameters of cplex to their default values, but we turned the option ‘network’ on.

accpm allocates memory as needed: it is limited by the memory capacities of the machine

at hand. First we use a PC with 400MHz and 384MB RAM running under Windows NT

operating system and run a sequential implementation of our decomposition scheme. Next,

we address a basic issue of a parallel implementation on a cluster of 5 Pentium processors

with 300MHz and 384MB RAM running under Linux 5.1. Note that the PC’s in the cluster

are not as fast as the one used for the sequential implementation.

13

The subproblems have an important feature: they differ only in their right-hand sides.

Therefore, they need not be loaded for each scenario separately. Only one linear subproblem

needs to be in cplex memory, and we use the option change right-hand side to move from

one scenario to the next. This situation is particularly favorable and makes it possible to

handle the largest problems on a single PC.

Recall that at each iteration a lower and an upper bound are available. Iterations

end when the relative difference between the best upper and lower bounds falls below

a given tolerance. For all the numerical results that follow in this section, we set the

stopping relative accuracy tolerance to 10−6. The CPU time reported is always in seconds.

In practice, lower tolerances might suffice to display a capacity investment able to meet

satisfactorily the variety of scenarios.

5.1 Test Problems

We use a total of 16 test problems whose characteristics are given in Table 1 page 15 using

four networks we wish to expand at least cost. These networks have respectively 12 nodes

- 25 links, 26 nodes - 30 links, 26 nodes - 53 links and 19 nodes - 34 links. The numbers

of Table 1 hide the large size of the capacity planning test problems. We give in Table 2

page 15 the corresponding dimensions1 of the LP equivalent problems.

5.2 Algorithmic performance

To evaluate the performance of the method, we report the computing times (in the oracle

and in total), and the number of outer iterations of the decomposition method. We give

results for the sequential implementation on the PC 400 Mhz, and discuss the parallel

implementation.

5.2.1 Ability to Handle Problem Size

We run accpm on all the test problems with κ = 10. Recall that κ is defined in (4)

as a ratio between penalty and investment cost. Table 3, collects the results on these

test problems. There are different factors that determine the problem size, the number of

nodes and links of the network, the number of customers and the number of their different

1We consider somd formulation of the linear multicommodity flow problem (2).

14

Network # of # of demands total # of # of outcomes # of
Test problem

nodes # links customers (C) per customer demands per customer (N) scenarios

1 12 25 5 5 25 3 35

2 12 25 6 5 30 3 36

3 12 25 7 5 35 3 37

4 26 30 7 5 35 3 37

5 26 30 7 6 42 3 37

6 26 30 7 7 49 3 37

7 26 53 8 5 40 2 28

8 26 53 9 5 45 2 29

9 26 53 10 5 50 2 210

10 19 34 8 5 40 2 28

11 19 34 8 6 48 2 28

12 19 34 8 7 56 2 28

13 19 34 8 8 64 2 28

14 19 34 8 10 80 2 28

15 19 34 10 5 50 2 210

16 19 34 7 10 70 3 37

Table 1: Characteristics of Test Problems

First stage Number of Subproblem Deterministic Equivalent LP
Test problem

decision variables subproblems Columns Rows Columns Rows

1 25 243 625 169 151900 41067
2 25 729 630 169 459295 123201
3 25 2187 635 169 1388745 369603

4 30 2187 1355 602 2963415 1316574
5 30 2187 1422 628 3109944 1373436
6 30 2187 1549 680 3387693 1487160

7 53 256 1948 521 498741 133376
8 53 512 1953 521 999989 266752
9 53 1024 1958 521 2005045 533504

10 34 256 1264 376 323618 70656
11 34 256 1340 395 343074 101120
12 34 256 1348 395 345122 101120
13 34 256 1356 395 347170 101120
14 34 256 1372 395 351266 101120
15 34 1024 1342 395 1374242 404480
16 34 2187 1362 395 2978728 863865

Table 2: Dimensions of Test Problems

15

configurations and finally the number of OD pairs. For instance, test problems 10-16 differ

only with the number of OD pairs per customer. The number of scenarios is kept fixed.

Each of the test problems 11-16 is built from the preceding by adding some OD pairs to

each customer.

Some general observations can be made. First, the algorithm shows ability to solve large

instances of the capacity planning problems in a relative small number of oracle calls. This

number seems to be practically independent on the number of scenarios. Next, much of the

time is consumed in the solutions of the subproblems, the time spent in computing analytic

centers is relatively small. As mentioned before, the subproblems differ only in their right-

hand sides. It is thus possible to let the problem data in the core memory, allowing

an important saving in running time. Additional savings of computation time could be

achieved through warm start. Presumably this could happen if consecutive scenarios are

not too far from one another. We did observe a great discrepancy in the simplex iteration

counts in cplex, from one scenario to the next, and from one oracle call to the next.

However it does not seem possible to order scenarios in a favorable way, because it is not

clear that there exists a quantified criterion of proximity between scenarios that would

ensure efficient warm start. Our results correspond to a scenario order produced by our

scenario generator.

5.2.2 Parallel Implementation

We address the parallel treatment of the subproblems using a cluster of five PC with

300MHz and 384MB of RAM and running under Linux 5.1. The parallel communication

uses MPI [21]. As much of the CPU time is spent in solving the subproblems, only the

subproblems are solved in parallel. We allocated one processor to the computation of the

analytic center. The communication between the processors includes sending this query

point to the other processors, and sending cuts from every processor to the one that handles

the computation of the analytic center.

We solve the 16 test problems on 1 to 5 processors of the cluster machine. We report

the results on Table 4. Clearly, the speed-ups are rather satisfactory. This nice behavior

is a consequence of three favorable factors: a very small amount of time spent in com-

puting analytic centers relative to the total time devoted in solving the subproblems, a

16

CPU Time Capacity # of oracle # of
Test Problem

Oracle Total cost calls cuts
Objective

1 96.46 97.29 1896.51 10 1119 2720.06
2 341.74 354.82 2435.90 11 4542 3273.45
3 1093.78 1163.65 3475.56 11 14006 4538.70

4 3072.63 3155.87 5791.80 16 25693 8902.14
5 3654.90 3746.30 8027.90 17 27469 11277.19
6 4392.66 4518.33 9382.55 17 30371 13320.43

7 780.07 784.58 11877.00 13 2049 14803.58
8 1772.18 1789.97 15194.57 14 4794 18234.90
9 4054.07 4116.45 17129.21 15 9285 20096.62

10 415.06 418.16 8448.90 13 1704 11291.07
11 470.41 474.29 12364.99 13 1609 15699.22
12 654.91 662.70 16097.46 16 2186 20545.79
13 670.92 679.08 20737.40 15 2203 26370.64
14 976.01 984.20 22951.70 14 2343 40795.42
15 2031.06 2065.63 13033.68 14 8464 16461.68
16 6218.43 6384.57 18904.22 14 22514 26842.07

Table 3: ACCPM on the test problems

limited amount of inter processor communication, and a good load balancing between the

processors. The latter follows from the strong similarity between subproblems across the

scenarios, making it likely that the solution time is roughly proportional to the number of

subproblems. The simple strategy of splitting the subproblems in even numbers between

the processors suffices to achieve a good load balance.

5.3 Impact of the stochastic programming approach

Here, we analyze the tradeoff between investment and failure costs as recommended by

the stochastic programming approach. We also discuss on a simple example the nature of

the stochastic programming solution, and show that it might be hard to predict it from a

more traditional deterministic approach.

5.3.1 Investment vs Penalty Cost

First, we analyze the tradeoff between penalty costs π and capacity expansion cost. Figure

2 displays the different costs versus δ obtained with test problem 1 and Table 5, page 19,

shows the detailed results for this test problem for different values of δ. As expected the

total cost curve displays a concave shape. The investment cost and the failure cost have a

17

CPU Time
Test Problem

1 processor 5 processors
Speed up

1 130.08 39.34 3.31
2 388.33 110.66 3.51
3 1500.75 484.35 3.10

4 3897.86 1066.24 3.66
5 4322.29 1161.16 3.72
6 5188.03 1396.48 3.71

7 1059.90 286.22 3.70
8 2414.04 621.19 3.89
9 5020.08 1295.41 3.88

10 500.47 163.67 3.06
11 615.45 199.79 3.08
12 743.12 235.47 3.16
13 888.90 236.76 3.75
14 1234.36 324.99 3.80
15 2527.50 651.80 3.88
16 7996.66 2189.95 3.66

Table 4: Speed up on the parallel machine

less predictable shape, though it is clear that the failure cost should be zero at the extreme

of the unit penalty cost range. Actually, the zero value holds for values larger than the

maximum marginal cost of investment: a unit failure can always be met by an additional

investment on an appropriate path from an origin-destination pair exhibiting unserved

demand. (A bound for this marginal value is the sum of the unit investment costs on all

arcs, because it allows the routing of at least one unit of flow from any O-D pair.) The

above property does not hold if the invested capacities are bounded above, and if putting

the capacities at their maximum value is not enough to meet the demand in a worse case

scenario. This is precisely the case in our example, where the penalty cost is not zero at

the end of the range.

18

Capacity Expected rejection Total # of oracle # of
κ CPU Time

cost penalty cost cost calls cuts

0.5 10.90 0.0 296.60 296.60 1 243
1.0 10.90 0.0 593.19 593.19 1 243
1.5 55.26 44.80 841.07 885.87 5 627
2.0 67.52 145.69 1005.40 1151.09 6 898
2.5 77.87 277.20 1110.38 1387.58 7 969
3.0 76.40 424.26 1171.92 1596.18 7 1013
3.5 89.30 655.77 1120.28 1776.05 8 1158
4.0 86.79 933.13 987.17 1920.30 8 1286
4.5 85.90 1171.86 854.28 2026.14 8 1286
5 93.65 1219.43 899.62 2119.05 9 1168
10 97.29 1896.51 824.55 2720.06 10 1119
15 93.13 2419.26 596.31 3015.57 10 1077
20 100.15 2665.93 507.13 3173.06 10 1128
25 97.90 2850.38 425.83 3276.21 11 1047

Table 5: Effect of Penalty Rejection Cost

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Penalty Cost

Capacity Cost

Total Cost

Figure 2: Tradeoff Between Capacity and Penalty Costs.

19

5.3.2 Stochastic programming versus deterministic approach

To illustrate the impact of a stochastic programming approach, we replaced the stochastic

demand with a deterministic one. We considered two cases. We chose first the average

demand d̄ for each origin-destination pair. Then we used

d = d̄ + 0.5(dmax − d̄),

where dmax is the maximum demand over all demand configurations for the given-origin

destination pair. We then solve the deterministic problem with a single scenario with

demand configuration d. To evaluate the expected penalty cost associated with the rec-

ommended investment, we use the stochastic programming approach with fixed capacity

investment. The results are displayed on Figure 3.

 1

 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

deterministic case 1:
d = d̄

 1

 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

Stochastic programming

 1

 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

deterministic case 2:
d = d̄ + 0.5(dmax − d̄)

Costs Deterministic 1 Stochastic prg. Deterministic 2
Investment 705 1896 2839
Expected penalty 3188 823 920
Total 3892 2720 3251

Figure 3: Stochastic vs. deterministic approach.

As expected, the figures reveal that the stochastic programming approach achieves the

least total cost. It also appears that the investment cost in the stochastic programming

solution takes an intermediary value between the two deterministic solutions. However, it is

not possible to infer from the two deterministic solutions the structure of the stochastic one.

To visualize this fact, the thickness of the links on Figure 3, page 20, is made proportional

to the recommended capacity.

20

6 Conclusion

We have developed a model for network capacity planning problem under uncertainty.

Uncertainty is treated in the framework of stochastic programming and the resulting non-

differentiable problem is solved using the Analytic Center Cutting Plane Method.

Our preliminary computational experiments showed the ability of ACCPM to solve

large instances of the problem on a PC with 400MHz and 384MB of RAM. Given the

enormous size of the model, an interesting issue is using a parallelized version of accpm

and make the model a closer match to the real world situations we are trying to describe.

This is possible with less investment as we showed using a cluster of 5 PC’s with 300MHz

processors and 384MB of RAM.

Telecom markets have recently become so competitive that telecommunications compa-

nies advertise performance guaranties for their customers such as survivability (to ensure

that the network has enough capacity to perform rerouting in case of link or node fail-

ure). Further work could be directed to the extension of the model presented here to meet

survivability constraints.

References

[1] R.V. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows : Theory, Algorithms and Applica-
tions, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] D. Alevras, M. Grötschel, R. Wessäly, ”Capacity and survivability models for telecommu-
nication networks”, in Proceedings of EURO/INFORMS Meeting, Barcelona, pp. 187-199,
1997.

[3] A. Assad, Multicommodity network flows-a survey, Networks 8, pp. 37-91, 1978.

[4] O. Bahn, O. du Merle, J.-L. Goffin, J.-Ph. Vial, ”A cutting plane method from analytic
centers for stochastic programming”, Mathematical Programming, 69, pp. 45-73, 1995.

[5] J.R. Birge, F.V. Louveaux, Introduction to stochastic programming, Springer, 1998.

[6] P. Chardaire, A. Lisser, “Simplex and interior point specialized algorithms for solving non-
oriented multicommodity flow problems”, Operation Research, submitted.

[7] G. Dahl, M. Stoer, ”A cutting plane algorithm for multicommodity survivable network design
problems”, INFORMS J. on Computing, vol. 10, no 3, pp. 1-11, 1998.

[8] M.A.H. Dempster, E.A. Medova, R.T. Thompson, ”A stochastic programming approach to
network planning”, ITC V. Ramaswami and P.E. Wirth Editors, pp. 329-339, 1997.

21

[9] J.M. Farvolden, W.B. Powell, I.J. Lustig, ”A primal partitioning solution for the arc-chain
formulation of a multicommodity network flow problem”, Operation Research, vol 41, 4, pp.
669-693, 1993.

[10] E. Fragnière, J. Gondzio, J.-Ph. Vial, ”Building and solving large-scale stochastic programs
on an affordable distributed computing system”, Technical report 98.11, Logilab/HEC, Uni-
versity of Geneva, June 1998.

[11] J.-L. Goffin, A. Haurie, J.-Ph. Vial, ”Decomposition and nondifferentiable optimization with
the projective algorithm”, Management Science, 38(2), pp. 284-302, 1992.

[12] J.-L. Goffin, J. Gondzio, R. Sarkissian, J.-Ph. Vial, ”Solving nonlinear multicommodity flow
problems by the analytic center cutting plane method”, Mathematical Programming 76 pp.
131-154, 1997.

[13] J. Gondzio, O. du Merle, R. R. Sarkissian, J.-Ph. Vial, ”ACCPM - A library for convex
optimization based on an analytic center cutting plane method”, EJOR, 94, pp. 206-211,
1996.

[14] P. Kall, A. Ruszczyński, K. Frauendorfer, ”Approximation techniques in stochastic pro-
gramming”, in Y. Ermoliev and R. J.-B. Wets eds. Numerical techniques for Stochastic
Optimization, Springer Series in Computational Mathematics 10, pp. 33-64, 1988.

[15] J.F. Kennington, ”A survey of linear cost multicommodity network flows”, Oper. Res., 2(26),
pp. 209-236, 1978.

[16] A. Lisser, R. Sarkissian, J.-Ph. Vial, ”Optimal joint synthesis of base and spare telecommu-
nication networks”, Technical report, Logilab/HEC, University of Geneva, November 1995.

[17] A. Lisser, R. Sarkissian, J.-Ph. Vial, ”Mid-range planning of survivable telecommunications
networks: Joint optimal synthesis of base and spare network capacities”, Technical report,
Logilab/HEC, University of Geneva, July 1998.

[18] A. Ouorou, P. Mahey, J.-Ph. Vial, “A survey of algorithms for convex multicommodity flow
problems”, Management Science, To appear.

[19] A. Ruszczyński, ”Decomposition methods in stochastic programming”, Mathematical Pro-
gramming 79, pp. 333-353, 1997.

[20] S. Sen, R.D. Doverspike, S. Cosares, ”Network planning with random demand”, Telecom-
munication Systems 3, pp. 11-30, 1994.

[21] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI: The complete
reference, The MIT Press.

[22] A. Tomasgard, J.A. Audestad, S. Dye, L. Stougie, M.H. Van Der Vlerk, S.W. Wallace,
”Modelling aspects of distributed processing in telecommunication networks”, Annals of
Operations Research, To appear.

22

[23] A. Tomasgard, S. Dye, S.W. Wallace, J.A. Audestad, L. Stougie, M.H. Van Der Vlerk,
”Stochastic optimization models for distributed communications networks”, Technical re-
port, Norwegian University of Science and Technology, 7034 Trondheim, 1997.

23

