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Abstract—We study the two-user Gaussian multiple-input

multiple-output (MIMO) broadcast channel with common and
confidential messages. In this channel, the transmitter sends a

common message to both users, and a confidential message to

each user which needs to be kept perfectly secret from the other
user. We obtain the entire capacity region of this channel. We also

explore the connections between the capacity region we obtain for

the Gaussian MIMO broadcast channel with common and con-
fidential messages and the capacity region of its nonconfidential

counterpart, i.e., the Gaussian MIMO broadcast channel with

common and private messages, which is not known completely.

Index Terms—Gaussian multiple-input multiple-output
(MIMO) broadcast channel, secrecy capacity region.

I. INTRODUCTION

W E consider the two-user Gaussian multiple-input mul-

tiple-output (MIMO) broadcast channel, where each

link between the transmitter and each user is modelled by

a linear additive Gaussian channel. We study the two-user

Gaussian MIMO broadcast channel for the following scenario:

The transmitter sends a common message to both users, and

a confidential message to each user which needs to be kept

perfectly secret from the other user. In other words, in this

channel model, there are three messages , , , where

denotes the common message sent to both users, de-

notes the first user’s confidential message that needs to be kept

hidden from the second user, and denotes the second user’s

confidential message that needs to be kept hidden from the first

user. We call the corresponding channel model the Gaussian

MIMO broadcast channel with common and confidential mes-

sages (see Fig. 1).

The Gaussian MIMO broadcast channel with common and

confidential messages subsumes several other channel models

as special cases. These special cases can be obtained from

our channel model by disabling some of the messages ,

, . The first such channel model is the Gaussian MIMO

wiretap channel, where the transmitter has only one confidential
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Fig. 1. GaussianMIMObroadcast channel with common and confidential mes-
sages.

message for one (legitimate) user, which is kept perfectly secret

from the other user (eavesdropper). This channel model can be

obtained from our channel model by setting .

The secrecy capacity of the Gaussian MIMO wiretap channel

is obtained in [1] and [2] for the general case, and in [3] for

the 2-2-1 case. The second such channel model is the Gaussian

MIMO wiretap channel with common message [4], in which

the transmitter sends a common message to both the legitimate

user and the eavesdropper, and a confidential message to the

legitimate user that is kept perfectly secret from the eaves-

dropper. This channel model can be obtained from our channel

model by setting . The capacity region of the Gaussian

MIMO wiretap channel with common message is obtained

in [4]. The third such channel model is the Gaussian MIMO

broadcast channel with confidential messages [5], where the

transmitter sends a confidential message to each user which is

kept perfectly secret from the other user. This channel model

can be obtained from our channel model by setting .

The capacity region of the Gaussian MIMO broadcast channel

with confidential messages is established in [5].

Here, we obtain the capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages.1

In particular, we show that a variant of the secret dirty-paper

coding (S-DPC) scheme proposed in [5] is capacity-achieving.

Since the S-DPC scheme proposed in [5] is for the transmission

of only two confidential messages, it is modified here to incor-

porate the transmission of a common message as well. Similar

to [5], we also notice an invariance property of this achievable

scheme with respect to the encoding order used in the S-DPC

scheme. In other words, two achievable rate regions arising

from two possible encoding orders used in the S-DPC scheme

are identical, and equal to the capacity region. We provide the

1The same result is obtained independently and concurrently in [6] and [7].
The conference version [6] and the conference version of this paper [8] ap-
peared concurrently at the IEEE ISIT 2010 as well as at [arXiv: 1001.2806]
and [arXiv:1001:3297].

0018-9448/$31.00 © 2012 IEEE



5670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

proof of this statement as well as the converse proof for the ca-

pacity region by using the channel enhancement technique [9]

and an extremal inequality [10].

We also explore the connections between our channel model

and its nonconfidential counterpart, i.e., the (two-user) Gaussian

MIMO broadcast channel with common and private messages.

In the Gaussian MIMO broadcast channel with common and

private messages, the transmitter again sends a common mes-

sage to both users, and a private message to each user, for

which there is no secrecy constraint now, i.e., private message

of each user does not need to be kept secret from the other user.

Thus, the channel model we study here can be viewed as a

constrained version of the Gaussian MIMO broadcast channel

with common and private messages, where the constraint

comes through forcing the private messages to be confidential.

We note that although there are partial results for the Gaussian

MIMO broadcast channel with common and private messages

[11], [12], its capacity region is not known completely. How-

ever, here, we are able to obtain the entire capacity region for a

constrained version of the Gaussian MIMO broadcast channel

with common and private messages. We provide an intuitive

explanation of this at-first-sight surprising point as well as the

invariance property of the achievable rate region with respect

to the encoding orders that can be used in the S-DPC scheme,

by using a result from [12]. In particular, we use the following

result from [12]: For a given common message rate, the private

message sum rate capacity of the Gaussian MIMO broadcast

channel with common and private messages is achieved by the

dirty-paper coding (DPC) scheme in [13], and any one of the

two possible encoding orders that can be used in DPC gives the

private message sum rate capacity. Using this result, we show

that there is a one-to-one correspondence between the points

on the boundary of the achievable rate region of the Gaussian

MIMO broadcast channel with common and confidential mes-

sages that are obtained by using a specific encoding order in

the S-DPC scheme, and those points which are private message

sum rate capacity-achieving for the Gaussian MIMO broadcast

channel with common and private messages. This correspon-

dence intuitively explains why the achievable rate regions

arising from the use of different encoding orders in S-DPC

are the same, and also why we can obtain the entire capacity

region of the Gaussian MIMO broadcast channel with common

and confidential messages although the capacity region of its

nonconfidential counterpart is not known completely.

II. CHANNEL MODEL AND MAIN RESULT

We study the two-user Gaussian MIMO broadcast channel

(see Fig. 1) which is defined by

(1)

(2)

where the channel input is a vector, is the channel

gain matrix of size , the channel output of the user

is a vector, and the Gaussian random vector is of

size with a covariance matrix which is assumed to be

strictly positive definite, i.e., . We consider a covariance

constraint on the channel input as follows:

(3)

where .

We study the following scenario for the Gaussian MIMO

broadcast channel: There are three independent messages

with rates , respectively, where

is the common message that needs to be delivered to both users,

is the confidential message of the first user which needs to

be kept perfectly secret from the second user, and similarly,

is the confidential message of the second user which needs to

be kept perfectly secret from the first user. The secrecy of the

confidential messages is measured by the normalized mutual

information rates [14], [15], i.e, we require

(4)

as , where denotes the number of channel uses. The

closure of all achievable rate triples is defined to

be the capacity region, and will be denoted by . We next

define the following shorthand notations:

(5)

(6)

(7)

using which, our main result can be stated as follows.

Theorem 1: The capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages

is given by

(8)

where is given by the union of rate triples

satisfying

(9)

(10)

(11)

for some positive semidefinite matrices , such that

, and can be obtained from

by swapping the subscripts 1 and 2.

Theorem 1 states that the common message, for which a co-

variance matrix is allotted, should be encoded

by using a standard Gaussian codebook, and the confidential

messages, for which covariance matrices , are allotted,

need to be encoded by using the S-DPC scheme proposed in
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[5]. S-DPC is a modified version of DPC [16] to meet the se-

crecy requirements. The receivers first decode the commonmes-

sage by treating the confidential messages as noise, and then

each receiver decodes the confidential message intended to it-

self. Depending on the encoding order used in S-DPC, one of

the users gets a clean link for the transmission of its confiden-

tial message, where there is no interference originating from the

other user’s confidential message. Although one might expect

that the two achievable regions arising from two possible en-

coding orders that can be used in S-DPC could be different, i.e.,

, and taking a convex closure of

these two regions would yield a larger achievable rate region,

Theorem 1 states that , i.e., the

achievable rate region is invariant with respect to the encoding

order used in S-DPC. This invariance property of S-DPC was

first noticed in [5] for the case where there was no commonmes-

sage to be transmitted.

We acknowledge [6] and [7], where the authors obtain

Theorem 1 (capacity region of the Gaussian MIMO broadcast

channel with common and confidential messages) indepen-

dently and concurrently. Their proof is identical to the one we

present here.

A. Aligned Channel

We define a subclass of Gaussian MIMO broadcast channels

called the aligned Gaussian MIMO broadcast channel, which

can be obtained from (1)–(2) by setting , i.e.,

(12)

(13)

To distinguish the notation used for the aligned GaussianMIMO

broadcast channel from the one used for the general model in

(1)–(2), we denote the capacity region of the aligned channel

by , the rate expressions in (5)–(7) for the special

case by , ,

, and the regions , for

the special case by ,

.

In this paper, we first prove Theorem 1 for the aligned

Gaussian MIMO broadcast channel. Then, we establish the

capacity region for the general channel model in (1)–(2) by

following the analysis in [9, Sec. V.B] and [17, Sec. 7.1] in

conjunction with the capacity result we obtain for the aligned

channel.

B. Capacity Region Under a Power Constraint

We note that the covariance constraint on the channel input

in (3) is a rather general constraint that subsumes the power

constraint

(14)

as a special case, see Lemma 1 and [9, Corollary 1]. Therefore,

using Theorem 1, the capacity region arising from the average

power constraint in (14), , can be found as follows.

Corollary 1: The capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages sub-

ject to a power constraint , , is given by

(15)

where is given by the union of rate triples

satisfying

(16)

(17)

(18)

for some positive semidefinite matrices , , such that

, and are de-

fined as

(19)

Moreover, can be obtained from by

swapping the subscripts 1 and 2.

III. PROOF OF THEOREM 1 FOR THE ALIGNED CASE

A. Achievability

Here, we prove the achievability of the regions

and . To this end, we

consider the two-user discrete memoryless channel for the

scenario where a common message is delivered to both users,

and each user gets a confidential message which needs be kept

perfectly secret from the other user. For this scenario, we have

the following achievable rate region [18].

Lemma 1 [18, Theorem 1]: The rate triples sat-

isfying
(20)

(21)

(22)

for some such that 2

are achievable.

We now use Lemma 1 to show the achievability of the

region . We first introduce three independent

Gaussian random vectors , , with covariance matrices

, , , respectively. Using these Gaussian

random vectors, we set the auxiliary random variables in

Lemma 1 as follows:

(23)

(24)

(25)

where is the precoding matrix for the

second user to suppress the interference originating from

[16]. Furthermore, we set the channel input as follows:

(26)

2In [18], the necessaryMarkov chain that needs to sat-
isfy is given by . However, their achievable
rate region is valid for the looser Markov chain
as well, which we use here.
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Using the definitions in (23)–(26) for the common message rate

given in Lemma 1, we get

(27)

Next, we compute the confidential message rates. To this end,

we note the following identity:

(28)

which is due to [16, Th. 1]. Now, we compute the second user’s

confidential message rate as follows:

(29)

(30)

(31)

(32)

where (31) is due to (28). Next, we compute the first user’s con-

fidential message rate as follows:

(33)

(34)

(35)

(36)

(37)

(38)

where (36) is due to (28). Hence, we show the achievability of

the region . Due to the symmetry, achievability

of follows.

B. Converse

Since the capacity region is convex due to time-

sharing, it can be characterized by the tangent planes to it, i.e.,

by the solution of

(39)

for We already have

(40)

due to achievability of and ,

where is given by

(41)

and is the convex hull operator. Here, we show that

(42)

(43)

to provide the converse proof. We first characterize the

boundary of by studying the following opti-

mization problem:

(44)

which can be written as

(45)

Let , be the maximizer of (45). The necessary

Karush–Kuhn–Tucker (KKT) conditions that , need to

satisfy are given in the following lemma, whose proof is given

in Appendix I.

Lemma 2: , need to satisfy

(46)

(47)

for some positive semidefinite matrices , such

that

(48)

(49)

(50)

and for some such that it satisfies and

(51)

We now use channel enhancement [9] to define a new noise

covariance matrix as follows:

(52)

This new noise covariancematrix has useful properties which

are listed in the following lemma.

Lemma 3: We have the following facts:

1) ;

2) , ;
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3)

;

4) ;

5)

.

The proof of Lemma 3 is given in Appendix II. We now con-

struct an enhanced channel using the new covariance matrix

as follows:

(53)

(54)

(55)

(56)

where is a Gaussian random vector with a covariance ma-

trix . In the enhanced channel defined by (53)–(56), the en-

hanced first and second users have the same observation, i.e.,

. From now on, we denote the observations

of the enhanced first and second users by a single random vector

. We now consider the following scenario for the enhanced

channel in (53)–(56): There are three independent messages

with rates , respectively, where the

common message is directed to all users, i.e., the users with

observations , , , ; is the confidential message

of the enhanced first user, i.e., the one with observation ,

which needs to be kept perfectly secret from the second user,

i.e., the one with observation ; and is the confidential

message of the enhanced second user, i.e., the one with obser-

vation , which needs to be kept perfectly secret from the first

user, i.e., the one with observation . Here also, we measure

the secrecy of the confidential messages by normalized equivo-

cation rates, i.e., we require

(57)

(58)

We define the capacity region of the enhanced channel in

(53)–(56) arising from this scenario as the convex closure of all

achievable rate pairs and denote it by .

We note that the process of obtaining a new enhanced channel

from the original one by means of channel enhancement can be

visualized as shown in Figs. 2 and 3. First, we provide an alter-

native view of the original channel model as depicted in Fig. 2.

In this alternative view, each user is split into two identical users

where one of them (user 11 for the first user and user 22 for the

second user) gets a confidential message, and the other one (user

10 for the first user and user 20 for the second user) gets the

common message and eavesdrops the other confidential mes-

sage. Second, we enhance the users who are getting the con-

fidential messages, i.e., user 11 and user 22, to improve their

observations as shown in Fig. 3. This idea of splitting users

and then enhancing them is also used in [4]. Since in the en-

hanced channel, the receivers to which only the common mes-

sage is sent are identical to the receivers in the original channel

in (12)–(13), and the receivers to which confidential messages

are sent have better observations with respect to the receivers in

Fig. 2. Alternative view of the Gaussian MIMO broadcast channel with
common and confidential messages.

Fig. 3. New Gaussian MIMO broadcast channel obtained by channel enhance-
ment.

the original channel in (12)–(13), we have . We

next introduce an outer bound on in the following lemma.

Lemma 4: The capacity region of the enhanced channel

in (53)–(56), , is contained in the union of rate triples

satisfying

(59)

(60)

(61)

for some such that

(62)

and .

The proof of this lemma is given in Appendix III. We also

introduce the following extremal inequality from [10]:

Lemma 5 [10, Corollary 4]: Let be an arbitrarily cor-

related random vector, where has a covariance constraint

and . Let , , be Gaussian

random vectors with covariance matrices , , , respec-

tively. They are independent of . Furthermore, , ,

satisfy . Assume that there exists a co-

variance matrix such that and

(63)
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where and is positive semidefi-

nite matrix such that . Then, for any ,

we have

(64)

We now use this lemma. For that purpose, we note that using

the second statement of Lemma 3 in (46) yields

(65)

using which in conjunction with Lemma 5, we get

(66)

which will be used subsequently.

We are now ready to complete the converse proof as follows:

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

where (67) comes from the fact that , the set

denotes the set of feasible random vectors , i.e.,

(76)

(68) is due to Lemma 4, (69) results from the fact that

, (71) is due to the maximum entropy theorem, (72)

comes from (66), (74) results from

(77)

and (75) will be shown next. We first note the following:

(78)

(79)

(80)

where (79) is due to the fourth statement of Lemma 3 and (80)

comes from the third statement of Lemma 3. We next note the

following identity:

(81)

(82)

(83)

where (82) is due to the third statement of Lemma 3, and (83)

comes from the fourth statement of Lemma 3. Identities in (80)

and (83) give (75).
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Thus, in the view of (75), we have shown that

(84)

Similarly, we can show the following:

(85)

completing the converse proof.

IV. PROOF OF THEOREM 1 FOR THE GENERAL CASE

We now prove Theorem 1 for the general channel model in

(1)–(2). Achievability of Theorem 1 for the general channel

model in (1)–(2) can be shown as we did for the aligned case

in the previous section. In particular, the only difference of the

achievability proof for the general channel model in (1)–(2)

from the achievability proof for the aligned case will be the se-

lection of the precoding matrix , which needs to be chosen

as in this general case.

Thus, in the rest of this section, we consider the converse proof.

For that purpose, we follow the analysis in [9, Sec. V.B] and

[17, Sec. 7.1] in conjunction with the capacity result obtained

for the aligned case in the previous section. To this end, we

first note that, following the approaches in [9, Sec. V.B] and

[17, Sec. 7.1], it can be shown that a new channel can be con-

structed from any channel described by (1)–(2), such that the

new channel has the same capacity region as the original one,

and in the new channel, both receivers have the same number

of antennas as the transmitter, i.e., . Thus, without

loss of generality, we assume that . We next apply

singular-value decomposition to the channel gain matrices ,

as follows:

(86)

where , are orthogonal matrices, and is a diag-

onal matrix. We now define a new Gaussian MIMO broadcast

channel as follows:
(87)

(88)

where is defined as

(89)

for some . We denote the capacity region of the channel

defined in (87)–(88) by , and achievable rate regions for

this channel by , . Since , are

invertible, the capacity region of the channel in (87)–(88) is

equal to the capacity region of the following aligned channel:

(90)

(91)

Thus, using the capacity result for the aligned case, which was

proved in the previous section, we get

(92)

We next show the following inclusion:

(93)

To this end, assume that is achievable in

the channel given by (1)–(2), i.e., .

To prove the inclusion in (93), we need to show that

. To this end, we note the

following Markov chains:

(94)

which imply that if the message triple with rates

is transmitted with a vanishingly small probability

of error in the original channel given by (1)–(2), they will be

transmitted with a vanishingly small probability of error in the

channel given by (87)–(88) as well. In other words, each re-

ceiver in the channel given by (87)–(88) will decode the mes-

sages intended to itself. However, we still need to check the se-

crecy requirements on the confidential messages , . We

first check the secrecy of the first user’s confidential message as

follows:

(95)

where we used the fact that since , we have

(96)

We now bound the term on the right hand-side of as follows

(95):

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)
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where (98) is due to theMarkov chain in (94), (100) comes from

the fact that conditioning cannot increase entropy, (101) is due

to the fact that the channel is memoryless, (102) results from

the Markov chain in (94), and (104) can be shown by using the

worst additive noise lemma in [19] and [20]. Before showing the

steps in (105) and (106), we note that the following function:

(107)

is concave and monotonically increasing in positive semidefi-

nite matrices (see [21, Lemma 4]). Thus, (105) follows from

Jensen’s inequality by noting the concavity of the function in

(107) and (106) comes from the monotonicity of the function in

(107) and the covariance constraint on the channel input. Hence,

using (106) in (95), we have

(108)

where the right-hand side vanishes as , i.e.,

(109)

due to the continuity of in positive semidefinite matrices

and . Thus, we have shown that if a confi-

dential message with rate can be transmitted in perfect

secrecy in the original channel given by (1)–(2), we have

(110)

Similarly, if a confidential message with rate can be

transmitted in perfect secrecy in the original channel given by

(1)–(2), we have

(111)

These two conditions in (110) and (111) enable us to conclude

that if , we also have

. Thus, we have shown that

(112)

where we have

(113)

(114)

due to the continuity of the rate expressions in

and in . Since and are

achievable in the channel defined by (1)–(2), we have

(115)

in the view of (112)–(114), completing the proof.

V. CONNECTIONS TO THE GAUSSIAN MIMO BROADCAST

CHANNELWITH COMMON AND PRIVATEMESSAGES

Here, we provide intuitive explanations for the two facts that

Theorem 1 reveals: 1) the achievable rate region does not de-

pend on the encoding order used in S-DPC, i.e.,

; and 2) the capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages can

be completely characterized, although the capacity region of the

its nonconfidential counterpart, i.e., the Gaussian MIMO broad-

cast channel with common and private messages, is not known

completely.

In the Gaussian MIMO broadcast channel with common

and private messages, there are again three messages , ,

with rates , , , respectively, such that is again

sent to both users, (respectively, ) is again directed to

only the first (respectively, second) user, however, there are

no secrecy constraints on , . The capacity region of the

Gaussian MIMO broadcast channel with common and private

messages will be denoted by . The achievable rate re-

gion for the Gaussian MIMO broadcast channel with common

and private messages that can be obtained by using DPC will

be denoted by (depending on

the encoding order), where is given by the rate

triples satisfying

(116)

(117)

(118)

for some positive semidefinite matrices

, such that , and

are defined as

(119)

(120)

(121)

Moreover, can be obtained from

by swapping the subscripts 2 and 1.We now state a result of [12]

on the capacity region of the GaussianMIMO broadcast channel

with common and private messages: For a given common mes-

sage rate , the private message sum rate capacity, i.e.,

, is achieved by both and . This result can

also be stated as follows:

(122)

(123)

for . This result is crucial to understand the

aforementioned two points suggested by Theorem 1, which will

be explained next using (122)–(123).
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In the proof of Theorem 1, first, we characterize the boundary

of by finding the properties of the covariance ma-

trices that achieve the boundary of , see Lemma 2.

According to Lemma 2, the boundary of can be

achieved by using the covariance matrices satisfying

(124)

(125)

On the other hand, using these covariance matrices, we can also

achieve the boundary points of , which are ac-

tually on the boundary of the capacity region as well,

and are the private message sum rate capacity points for a given

common message rate. To see this point, we define

and Thus, the

conditions in (124)–(125) can be written as

(126)

(127)

which are the necessary conditions that the following problem

needs to satisfy

(128)

On the other hand, due to (122)–(123), we know that the solution

of (128) gives us the private message sum rate capacity for a

given common message rate, i.e., the points that achieve the

maximum in (128) are on the boundary of the capacity region

. Furthermore, the maximum value in (128) can also be

achieved by using the other possible encoding order, i.e.,

(129)

Thus, this discussion reveals that there is a one-to-one cor-

respondence between any rate triple on the boundary of

and the private message sum rate capacity points

on . Hence, the boundary of , similarly

, can be constructed by considering the private

message sum rate capacity points on . This connection

between the private message sum rate capacity points and the

boundaries of , intuitively explains

the two facts suggested by Theorem 1: 1) the achievable rate re-

gion for the Gaussian MIMO broadcast channel with common

and confidential messages is invariant with respect to the

encoding order, i.e., because the

boundaries of these two regions correspond to those points on

the DPC region for the Gaussian MIMO broadcast channel with

common and private messages, for which encoding order does

not matter either; and 2) we can obtain the entire capacity region

of the Gaussian MIMO broadcast channel with common and

confidential messages, although the capacity region of its non-

confidential counterpart is not known completely. The reason is

that the boundary of the capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages

comes from those points on the boundary of the DPC region

of its nonconfidential counterpart, which are known to be tight,

i.e., which are known to be on the boundary of the capacity

region of the Gaussian MIMO broadcast channel with common

and private messages.

VI. CONCLUSION

We study the Gaussian MIMO broadcast channel with

common and confidential messages, and obtain the entire

capacity region. We show that a variant of the S-DPC scheme

proposed in [5] is capacity-achieving. We provide the converse

proof by using channel enhancement [9] and an extremal

inequality from [10]. We also uncover the connections between

the Gaussian MIMO broadcast channel with common and

confidential messages and its nonconfidential counterpart, i.e.,

the Gaussian MIMO broadcast channel with common and

private messages, to provide further insight into capacity result

we obtained.

APPENDIX I

PROOF OF LEMMA 2

Since the program in (45) is not necessarily convex, the KKT

conditions are necessary but not sufficient. We first rewrite the

program in (45) as follows:

(130)

where we introduce an additional variable . Thus, the optimiza-

tion in (130) is over three variables , , . The Lagrangian

of (130) is given by

(131)

where , , are positive semidefinite matrices and

. Let be the maximizer for

(130). The necessary KKT conditions that they need to satisfy

are given as follows:

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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The first KKT condition in (132) implies .We define

and consequently . The second KKT

condition in (133) implies

(139)

Adding to both sides yields

(46). Subtracting (133) from (134) yields (47). Since

and for ,

(135)–(137) imply (48)–(50). Furthermore, (138) states the

conditions if , ,

if , , and if

, is arbitrary, i.e., .

APPENDIX II

PROOF OF LEMMA 3

We first note the following identities:

(140)

(141)

where (140) is the definition of the new noise covariance matrix

in (52) and (141) comes from plugging (52) in (47). Using the

fact that for , , if , then in

(140)–(141) yields the second statement of the lemma.

Now, we prove the first statement of the lemma as follows:

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

where (142) is due to (140), and (144) and (147) follow from

(49).

We next show the third statement of the lemma as follows:

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

where (150) is due to (141), (152) and (156) come from (48).

We now show the fourth statement of the lemma as follows:

(158)

(159)

(160)

(161)

where (159) comes from (140), and (160) is due to (49).

We finally show the last, i.e., fifth, statement of the lemma as

follows:

(162)

(163)

(164)

(165)

where (163) comes from the second statement of this lemma,

and (164) is due to (48).
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APPENDIX III

PROOF OF LEMMA 4

We prove this lemma for a discrete memoryless broadcast

channel with a transition probability which

satisfies and

(166)

Consequently, Lemma 4 can be concluded from the proof for

this discrete memoryless broadcast channel. We note that if

is achievable, we need to have , such that

both and vanish as , and

(167)

(168)

(169)

(170)

where (167)–(168) are due to Fano’s lemma, and (169)–(170)

comes from the perfect secrecy conditions in (58). We define

the following auxiliary random variables:

(171)

which satisfy the following Markov chains for all :

(172)

since the channel is memoryless, and degraded, i.e., satisfies the

Markov chain in (166).

We first bound the common message rate as follows:

(173)

(174)

(175)

(176)

(177)

(178)

where (177) comes from the Markov chain

(179)

which is a consequence of the fact that the channel is degraded,

i.e., satisfies the Markov chain in (166). Similarly, we can get

(180)

We next bound the confidential message rate of the enhanced

first user, i.e., , as follows:

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

where (185) comes from the Markov chain

(193)

which is a consequence of the fact that the channel is degraded,

i.e., satisfies the Markov chain in (166), (187) comes from the

Markov chain

(194)

which is due to the fact that the channel is memoryless, (189)

comes from the fact that conditioning cannot increase entropy,

(190) results from the Markov chain in (194), and (192) stems

from the Markov chain in (172). Similarly, we can get the fol-

lowing bound on the confidential message rate of the enhanced

second user :

(195)

The bounds in (178), (180), (192) and (195) can be single-

letterized yielding the following bounds:

(196)

(197)

(198)

from which, Lemma 4 can be concluded.
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