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Abstract

This paper investigates a channel model describing optical communication
based on intensity modulation. It is assumed that the main distortion is caused
by additive Gaussian noise, however, with a noise variance depending on the
current signal strength. Both the high-power and low-power asymptotic capac-
ities under simultaneously both a peak-power and an average-power constraint
are derived. The high-power results are based on a new firm (nonasymptotic)
lower bound and a new asymptotic upper bound. The upper bound relies on
the dual expression for channel capacity and the notion of capacity-achieving
input distributions that escape to infinity. The lower bound is based on a new
lower bound on the differential entropy of the channel output in terms of the
differential entropy of the channel input. The low-power results make use of a
theorem by Prelov and van der Meulen.

Index Terms — Channel capacity, direct detection, Gaussian noise, high signal-
to-noise ratio (SNR), low signal-to-noise ratio (SNR), optical communication.

1 Introduction

In optical communication, systems often implement some form of intensity modu-
lation, where the input signal modulates the optical intensity of the emitted light,
i.e., it is proportional to the light intensity and is therefore nonnegative. The re-
ceiver usually consists of a photo-detector that measures the optical intensity of the
incoming light and produces an output signal which is proportional to the detected
intensity, corrupted by noise.

In the free-space optical intensity channel [1] [2] it is assumed that the corrupting
noise is additive white Gaussian distributed and independent of the signal. This
assumption is reasonable if the ambient light is strong or if the receiver suffers from
intensive thermal noise. However, particularly at high power, this model neglects a
fundamental issue of optical communication: the noise depends on the signal itself
due to the random nature of photon emission in the laser diode.
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A more accurate (but for analysis also more difficult) model is the Poisson chan-
nel [1] [2]. There the channel output is modeled as a discrete Poisson random
variable with a rate that depends on the current input. This model reflects the
physical nature of the transmitted signal consisting of many photons. The noisiness
of the received signal is caused by two main effects. Firstly, the exact number of
arriving photons at the receiver during a given time interval is implicitly random
and is modeled by the mentioned Poisson distribution with a rate proportional to
the input signal. Secondly, the signal is impaired by background radiation (called
dark current) that is modeled by an additional constant rate added to the rate of
the Poisson distribution.

Not surprisingly, the behavior of channel capacity of these two channels differ
significantly: at high signal-to-noise ratios (SNR) the free-space optical intensity
channel has a capacity that grows logarithmically with the available power [3]–
[8], while the capacity of the Poisson channel only grows logarithmically with the
square root of the power [9]–[11] [4]. At low SNR, the capacity of the free-space
optical intensity channel grows quadratically in the peak-power [8], while the Poisson
channel exhibits a linear or stronger growth in the average-power, depending on the
exact assumptions about peak power and dark current [12]. Note that for both
models the exact capacity is in general not known.1

In this paper we will consider a channel model that is in-between the free-space
optical intensity channel and the Poisson channel: we keep the less involved as-
sumption of additive white Gaussian noise, but we make the variance of the noise
dependent on the current input signal to better reflect the physical properties of
optical communication. So basically, we consider an “improved” free-space optical
intensity channel. We will analyze the capacity of this improved model and ask
the question whether it behaves more like its sibling model (the free-space optical
intensity channel) or like the Poisson channel.

The conditional probability density function (PDF) of this input-dependent
Gaussian noise channel is given by

W (y|x) = 1
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) , y ∈ R, x ≥ 0. (1)

Alternatively, we can describe the channel model by writing the channel output Y
as

Y = x+
√
xZ1 + Z0 (2)

where x ≥ 0 denotes the channel input, Z0 ∼ NR

(
0, σ2

)
is a zero-mean, variance-σ2

Gaussian random variable describing the independent noise, and Z1 ∼ NR(0, 1) is a
zero-mean, unit-variance Gaussian random variable describing the dependent noise,
Z0 ⊥⊥ Z1. Note that without loss of generality we assume the input to be scaled such
that Z1 can be normalized to be of unit-variance.

We simultaneously consider two types of input constraints: a peak-power con-
straint is accounted for by the peak-input constraint

Pr[X > A] = 0 (3)

1Interestingly, for the more general form of the Poisson channel that uses continuous-time signals
and that is not restricted to a fixed pulse-amplitude modulation, the capacity is known exactly [13]–
[19].
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and an average-power constraint by

E[X] ≤ E . (4)

Note that since the input is proportional to the light intensity, the power constraints
apply to the input directly and not to the square of its magnitude (as is usually the
case for electrical transmission models). Moreover, we once more emphasize that for
the same reason the input must be nonnegative:

x ≥ 0. (5)

We use 0 < α ≤ 1 to denote the average-to-peak-power ratio

α ,
E
A
. (6)

The case α = 1 corresponds to the absence of an average-power constraint, whereas
α ≪ 1 corresponds to a very weak peak-power constraint.

In this paper we investigate the channel capacity of this channel model. We will
present lower bounds on capacity that are based on a new result that proves that
the differential entropy of the output of our channel model is always larger than the
differential entropy of the channel’s input (see Section 4.2 for more details). We will
also introduce an asymptotic upper bound on channel capacity, where “asymptotic”
means that the bound is valid when the available peak and average power tend to
infinity with their ratio held fixed. The upper and lower bounds asymptotically
coincide, thus yielding the exact asymptotic behavior of channel capacity.

The derivation of the upper bounds is based on a technique introduced in [20]
using a dual expression of mutual information. We will not state it in its full gener-
ality but adapted to the form needed in this paper. For more details and for a proof
we refer to [20, Sec. V] [4, Ch. 2].

Proposition 1. Consider a channel2 W (·|·) with input alphabet X = R
+
0 and output

alphabet Y = R. Then for an arbitrary distribution R(·) over Y, the channel capacity
is upper-bounded by

C ≤ EQ∗
[
D
(
W (·|X)

∥
∥R(·)

)]
. (7)

Here, D(·‖·) stands for the relative entropy [21, Ch. 2], and Q∗(·) denotes the
capacity-achieving input distribution.

The challenge of using (7) lies in a clever choice of the arbitrary law R(·) that
will lead to a good upper bound. Moreover, note that the bound (7) still contains
an expectation over the (unknown) capacity-achieving input distribution Q∗(·). To
handle this expectation we will need to resort to the concept of input distributions
that escape to infinity as introduced in [20] [22]. This concept will be briefly reviewed
in Section 5.2.

The low-power results are based on a theorem by Prelov and van der Meulen
[23] (see Section 6).

The remainder of this paper is structured as follows. After some brief remarks
about our notation, we summarize our main results in Sections 2 and 3: Section 2

2There are certain measurability assumptions on the channel that we omit for simplicity. See
[20, Sec. V] [4, Ch. 2].
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contains the bounds on capacity that are valid at high SNR, and Section 3 describes
the low-SNR results. The derivations are then given in Section 4 (high-power lower
bounds), Section 5 (asymptotic high-power upper bounds), and Section 6 (low-power
results). The first two derivation sections both contain a subsection with mathemat-
ical preliminaries. In particular, in Section 4.2 we prove that the differential entropy
of the channel output h(Y ) is lower-bounded by the differential entropy of its input
h(X), and in Section 5.2 we review the concept of input distributions that escape to
infinity. We will conclude in Section 7.

For random quantities we use uppercase letters and for their realizations lower-
case letters. Scalars are typically denoted using Greek letters or lowercase Roman
letters. A few exceptions are the following symbols: C stands for capacity, E and
A are the average and peak power, respectively, D(·‖·) denotes the relative entropy
between two probability measures, and I(·; ·) stands for the mutual information.
Moreover, the capitals Q, W , and R denote PDFs:

• Q(·) denotes a generic PDF on the channel input;

• for any input x ∈ X , W (·|x) represents a PDF on the channel output when
the channel input is x;

• R(·) denotes a generic PDF on the channel output.

The expression I(Q,W ) stands for the mutual information between input X and
output Y of a channel with transition probability measure W (·|·) when the input
has distribution Q(·), i.e., I(Q,W ) , I(X;Y ). The starred version Q∗(·) is used to
represent a capacity-achieving input distribution.

By NR

(
µ, σ2

)
we denote a real Gaussian distribution with mean µ and variance

σ2. We write Z1 ⊥⊥ Z2 to express that the random variables Z1 and Z2 are statistically
independent. All rates specified in this paper are in nats per channel use, and all
logarithms are natural logarithms.

Finally, we give the following definitions.

Definition 2. Let f : R+
0 → R be a function that tends to zero as its argument tends

to infinity, i.e., for any ǫ > 0 there exists a constant z0 such that for all z > z0

|f(z)| < ǫ. (8)

Then we write3

f(z) = oz(1). (9)

Definition 3. The Q-function is defined as

Q (ξ) ,

∫ ∞

ξ

1√
2π

e−
t2

2 dt, ∀ ξ ∈ R. (10)

It describes the partial integration of the zero-mean, unit-variance Gaussian PDF.
Note that the Q-function is closely related to the error function erf (·):

erf (ξ) ,
2√
π

∫ ξ

0
e−t2 dt, ∀ ξ ∈ R (11)

= 1− 2Q
(√

2ξ
)

. (12)

3Note that by this notation we want to imply that oz(1) does not depend on any other noncon-
stant variable apart from z.
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2 High-Power Results

We present upper and lower bounds on the capacity of channel (1). While the
lower bounds are valid for all values of the power,4 the upper bounds are valid
asymptotically only, i.e., only in the limit when the average power and the peak
power tend to infinity with their ratio kept fixed. It will turn out that in this limit
the lower and upper bounds coincide, i.e., asymptotically we can specify the capacity
precisely.

We distinguish between three cases: in the first case we have both an average-
and a peak-power constraint where we restrict the average-to-peak-power ratio (6)
to be 0 < α < 1

3 . In the second case we have 1
3 ≤ α ≤ 1, which includes the situation

with only a peak-power constraint α = 1. And finally, in the third case we look at
the situation with only an average-power constraint.

We begin with the first case.

Theorem 4. The channel capacity C(A, E) of a channel with conditional PDF (1)
and under the input constraints (3) and (4), where the ratio α = E

A
lies in

(
0, 13
)
, is

bounded as follows:

C(A, E) ≥ 1

2
logA − 1

2
log 2πe− (1− α)µ− log

(
1

2
− αµ

)

− eµ
(
1

2
− αµ

)(

2

√

σ2

A
arctan

(√

A

σ2

)

+ log

(

1 +
σ2

A

))

+
1

2
log

(

1 +
2

E

)

+
√

E(2 + E)− E − 1; (13)

C(A, αA) ≤ 1

2
logA − 1

2
log 2πe− (1− α)µ− log

(
1

2
− αµ

)

+ oA(1). (14)

Here µ ∈
(
0, 1

2α

)
is the solution to

1

2µ
− e−µ

√
µ
√
πerf

(√
µ
) = α. (15)

Note that the function µ 7→ 1
2µ − e−µ

√
µ
√
πerf(

√
µ)

is monotonically decreasing in [0,∞)

and tends to 1
3 for µ ↓ 0 and to 0 for µ ↑ ∞. Hence, a solution always exists and is

unique.
The term oA(1) tends to zero as the average-power and the peak-power tend to

infinity with their ratio held fixed at α, 0 < α < 1
3 .

The asymptotic expansion of the channel capacity is

lim
A↑∞

{

C(A, αA)− 1

2
logA

}

= −1

2
log 2πe− (1− α)µ− log

(
1

2
− αµ

)

,

0 < α <
1

3
(16)

where µ is defined as above to be the solution to (15).

4Note, however, that while these bounds are valid for any value of the SNR, they are only useful
at high SNR.
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In the second case α ≥ 1
3 , we have the following bounds.

Theorem 5. The channel capacity C(A, E) of a channel with conditional PDF (1)
and under the input constraints (3) and (4), where the ratio α = E

A
lies in

[
1
3 , 1
]
, is

bounded as follows:

C(A, E) ≥ 1

2
logA − 1

2
log

πe

2
−
√

σ2

A
arctan

(√

A

σ2

)

− 1

2
log

(

1 +
σ2

A

)

+
1

2
log

(

1 +
6

A

)

+

√

A

3

(

2 +
A

3

)

− A

3
− 1; (17)

C(A, αA) ≤ 1

2
logA − 1

2
log

πe

2
+ oA(1). (18)

Here the term oA(1) tends to zero as the average-power and the peak-power tend to
infinity with their ratio held fixed at α, 1

3 ≤ α ≤ 1.
The asymptotic expansion of the channel capacity is

lim
A↑∞

{

C(A, αA)− 1

2
logA

}

= −1

2
log

πe

2
,

1

3
≤ α ≤ 1. (19)

The bounds of Theorems 4 and 5 are depicted in Figure 1 for different values of
α.

Remark 6. For α ↑ 1
3 the solution µ to (15) tends to zero. If in (14) and (13) µ

is chosen to be zero and α to be 1
3 , then (14) and (13) coincide with (18) and (17),

respectively.

Remark 7. Note that in Theorem 5 both the lower and the upper bound do not
depend on α, i.e., they are invariant to changes of the average-power constraint. This
means that at least asymptotically the average-power constraint becomes inactive
for α ∈

[
1
3 , 1
]
.

Finally, for the case with only an average-power constraint the results are as
follows.

Theorem 8. The channel capacity C(E) of a channel with conditional PDF (1)
and under the average-power constraint (4) is bounded as follows:

C(E) ≥ 1

2
log E −

√

πσ2

2E +
1

2
log

(

1 +
2

E

)

+
√

E(2 + E)− E − 1; (20)

C(E) ≤ 1

2
log E + oE(1). (21)

Here the term oE(1) tends to zero as E ↑ ∞.
The asymptotic expansion for the channel capacity is

lim
E↑∞

{

C(E)− 1

2
log E

}

= 0. (22)

The bounds of Theorem 8 are shown in Figure 2 for various values of σ2.
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asymptotic upper bound (18), α≥1/3

lower bound (17), α≥1/3

asymptotic upper bound (14), α=0.2

lower bound (13), α=0.2

asymptotic upper bound (14), α=0.1

lower bound (13), α=0.1

asymptotic upper bound (14), α=0.02

lower bound (13), α=0.02

Figure 1: This plot depicts the firm lower bounds (13) and (17) (valid for all values
of A) and the asymptotic upper bounds (14) and (18) (valid only in the limit when
A ↑ ∞) on the capacity of the channel model (1) under an average- and a peak-
power constraint with average-to-peak-power ratio α. For α ≥ 1

3 (including the case
of only a peak-power constraint α = 1) the bounds do not depend on α. The upper
bounds do not depend on the noise variance σ2; for the lower bounds it is assumed
σ2 = 2. The horizontal axis is measured in dB where A [dB] = 10 log10 A.

Remark 9. If we keep E fixed and let A ↑ ∞, we get α ↓ 0. For α ≪ 1 the solution
µ to (15) tends to 1

2α ≫ 1 which makes sure that (14) tends to (21). To see this
note that for µ ≫ 1 we can approximate erf

(√
µ
)
≈ 1. Then we get from (15) that

1

2
− αµ ≈

√
µ

π
e−µ. (23)

Using this together with

1

2
logA =

1

2
log E − 1

2
logα (24)

≈ 1

2
log E +

1

2
log 2µ (25)

we get from (14)

1

2
logA − 1

2
log 2πe− µ+ αµ

︸︷︷︸

≈ 1
2

− log

(
1

2
− αµ

)

≈ 1

2
log E +

1

2
log 2µ− 1

2
log 2πe− µ+

1

2
− log

√
µ

π
e−µ (26)
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asymptotic upper bound (21)

lower bound (20), σ2 = 1

lower bound (20), σ2 = 2

lower bound (20), σ2 = 10

lower bound (20), σ2 = 100

Figure 2: This plot depicts the firm lower bound (20) (valid for all values of E)
and the asymptotic upper bound (21) (valid only in the limit when E ↑ ∞) on
the capacity of the channel model (1) with average-power constraint (4). The lower
bound is shown for various different choices of the noise variance σ2. The asymptotic
upper bound does not depend on σ2. The horizontal axis is measured in dB where
E [dB] = 10 log10 E .

=
1

2
log E . (27)

Similarly, (13) converges to (20) which can be seen by additionally noting that

eµ
(
1

2
− αµ

)

︸ ︷︷ ︸

≈
√

µ
π
e−µ

(

2

√

σ2

A
arctan

(√

A

σ2

)

︸ ︷︷ ︸

≈π
2

+ log

(

1 +
σ2

A

)

︸ ︷︷ ︸

≈σ2

A

)

≈
√

µ

π

(

2

√

ασ2

E · π
2
+

ασ2

E
︸︷︷︸

≪
√

ασ2

E

)

(28)

≈
√

µαπσ2

E ≈
√

πσ2

2E . (29)
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3 Low-Power Results

For low SNR, we only give the asymptotic behavior of capacity in the limit of a
vanishing peak power. We distinguish two cases: the case where we have both a
peak- and average-power constraint and the case where the average-power constraint
is inactive.

Theorem 10. For A ↓ 0, the asymptotic low-power channel capacity C(A, αA) of
a channel with conditional PDF (1) and under the input constraints (3) and (4),
where the ratio α = E

A
lies in

(
0, 12
)
, satisfies

lim
A↓0

C(A, αA)

A
2 = α(1− α)

1 + 2σ2

4σ4
. (30)

In the case where the ratio α = E
A

lies in
[
1
2 , 1
]
, or if only a peak-power con-

straint A is imposed (which corresponds to α = 1), the asymptotic low-power channel
capacity satisfies

lim
A↓0

C(A, αA)

A
2 =

1 + 2σ2

16σ4
. (31)

We notice that the threshold between the case with both a peak- and an average-
power constraint and the case where the average-power constraint is inactive is at
α = 1

2 , and—contrary to the high-power regime—not at α = 1
3 .

4 Derivation of the High-Power Lower Bounds

4.1 Overview

The key ideas of the derivation of the lower bounds are as follows. We drop the
optimization in the definition of capacity and simply choose one particular Q(·):

C = sup
Q(·)

I(Q,W ) ≥ I(Q,W )
∣
∣
for a specific Q(·). (32)

This leads to a natural lower bound on capacity.
We would like to choose a distribution Q(·) that is reasonably close to the

capacity-achieving input distribution in order to get a tight lower bound. How-
ever, we might have the difficulty that for such a Q(·) the evaluation of I(Q,W ) is
intractable. Note that even for relatively “simple” distributions Q(·) the distribution
of the corresponding channel output Y may be difficult to compute, let alone h(Y ).

To avoid this problem we lower-bound h(Y ) in terms of h(X), i.e., we “transfer”
the problem of computing (or bounding) h(Y ) to the input-side of the channel, where
it is much easier to choose an appropriate distribution that leads to a tight lower
bound.

4.2 Mathematical Preliminaries

The channel model (1) has a useful property relating the differential entropy of the
input with the differential entropy of the output: h(Y ) can be lower-bounded in
terms of h(X). This is shown in the following proposition.
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Proposition 11. Let Y be the output of a channel defined by (1) with an input
x ≥ 0. Assume some distribution Q(·) on X having a finite positive mean EQ[X] = E.
Then

h(Y ) ≥ h(X) + flow(E) > h(X) (33)

where flow(·) is a monotonically decreasing positive function with

lim
E↑∞

flow(E) = 0 (34)

given by

flow(E) ,
1

2
log

(

1 +
2

E

)

− E − 1 +
√

E(2 + E), E ≥ 0. (35)

Proof. See Appendix A.

4.3 Proof of the Lower Bound (13)

Using (32) and Proposition 11 we get

C ≥ I(Q,W )
∣
∣
any specified Q(·) (36)

= h(Y )− h(Y |X) (37)

≥ h(X) + flow(E)− h(Y |X) (38)

= h(X) + flow(E)−
1

2
E
[
log 2πe(σ2 +X)

]
(39)

= h(X) + flow(E)−
1

2
log 2πe− 1

2
E[logX]− 1

2
E

[

log

(

1 +
σ2

X

)]

. (40)

We choose an input distribution Q(·) that maximizes the entropy h(X) under the
given power constraints (3) and (4) and under the additional constraint that E[logX]
is constant [21, Ch. 12]:

Q(x) ,







√
µ√

Aπx erf(
√
µ)

· e− µ
A
x 0 ≤ x ≤ A

0 otherwise.
(41)

The parameter µ is chosen to satisfy the average-power constraint with equality:

E[X] =
A

2µ
− Ae−µ

√
µ
√
πerf

(√
µ
)

!
= αA (42)

i.e., µ is the solution to (15).
Then we have

h(X) =
1

2
log

A

µ
+ log

√
πerf (

√
µ) + αµ+

1

2
E[logX] (43)
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and

E

[

log

(

1 +
σ2

X

)]

=

∫ A

0
log

(

1 +
σ2

x

)

·
√
µ√

Aπx · erf
(√

µ
) e−

µ
A
x

︸ ︷︷ ︸

≤1

dx (44)

≤
∫ A

0
log

(

1 +
σ2

x

)

·
√
µ√

Aπx · erf
(√

µ
) dx (45)

=

2π
√

σ2

A

√
µ+ 2

√
µ log

(

1 + σ2

A

)

− 4
√

σ2

A

√
µ arctan

(√
σ2

A

)

√
π · erf

(√
µ
) (46)

=

4
√
µ
√

σ2

A
arctan

(√
A

σ2

)

+ 2
√
µ log

(

1 + σ2

A

)

√
π · erf

(√
µ
) (47)

where we have used that

arctan

(
1

ξ

)

=
π

2
− arctan(ξ), ξ ∈ R. (48)

Using (47) and (43) in (40) completes our proof.

4.4 Proof of the Lower Bounds (17) and (20)

As noted in Remarks 6 and 9, (17) and (20) turn out to be the limiting cases of (13)
for α ↑ 1

3 and α ↓ 0, respectively. This is because we choose the input distributions
as the corresponding limiting distributions of (41):

Q(x) ,

{
1√
4Ax

0 ≤ x ≤ A

0 otherwise
(49)

and

Q(x) ,

{
1√

2πExe
− x

2E x ≥ 0

0 otherwise
(50)

respectively.
For (49) we get

E[X] =
A

3
(51)

h(X) = logA − 1 + log 2 (52)

E
[
log(σ2 +X)

]
= log(A + σ2)− 2 + 2

√

σ2

A
arctan

(√

A

σ2

)

(53)

which, when plugged into (39), yields (17).
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For (50) we get

h(X) = log E − γ

2
+

1

2
log πe (54)

E[logX] = log E − γ − log 2 (55)

E

[

log

(

1 +
σ2

X

)]

=

∫ ∞

0

1√
2πEx

e−
x
2E

︸ ︷︷ ︸

≤1

log

(

1 +
σ2

x

)

dx (56)

≤
∫ ∞

0

1√
2πEx

log

(

1 +
σ2

x

)

dx (57)

=

√

2πσ2

E (58)

which, when plugged into (40), yields (20).

5 Derivation of the High-Power Upper Bounds

5.1 Overview

We rely on Proposition 1 to derive the upper bounds on capacity, i.e.,

C ≤ EQ∗
[
D
(
W (·|X)

∥
∥R(·)

)]
. (59)

Hence, there are two main parts in the derivation: firstly, we need to specify a
certain distribution R(·) and try to evaluate the relative entropy in (59). Secondly,
we have the difficulty to compute an expectation over the capacity-achieving input
distribution Q∗(·), which of course is unknown. To solve this problem we resort to
the concept of input distributions that escape to infinity as introduced in [20] and
further refined in [22]. This concept tells that under Q∗(·) the probability of any set
of finite-power input symbols tends to zero as the power is loosened to infinity. This
will allow us to prove that

EQ∗ [oX(1)] = oA(1). (60)

for integrable ox(1). The price we pay for using this concept is that our results are
only valid asymptotically as A tends to infinity.

5.2 Mathematical Preliminaries

Recall the following definition of a capacity-cost function with an average- and a
peak-power constraint.

Definition 12. Given a channel W (·|·) over the input alphabet X and the output
alphabet Y and given some nonnegative cost function g : X → R

+
0 , we define the

capacity-cost function C :
(
[infx∈X g(x),∞)

)2 → R
+
0 by

C(A, E) , sup
Q(·)

I(Q,W ), A, E ≥ inf
x∈X

g(x) (61)

where the supremum is over all input distributions Q(·) that satisfy

Q
(
{x ∈ X : g(x) > A}

)
= 0 (62)

and
EQ[g(X)] ≤ E . (63)
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Note that all following results also hold in the case of only an average-power
constraint, without limitation on the peak power. For brevity we will mostly omit
the explicit statements for this case.

The following lemma shows that capacity-achieving input distributions do exist
for the channel under consideration.

Lemma 13. Consider the channel (1) with the cost function g(x) = x, i.e., the
constraints (3) and (4). Then there exists a unique input distribution Q∗

A,E(·) that
achieves the supremum in the definition of the capacity-cost function as given in
(61). Similarly, for the situation with only an average-power constraint, a unique
capacity-achieving input distribution Q∗

E(·) exists.

Proof. See [5].

We now will briefly review the notion of input distributions that escape to infinity.
This notion is important because we can show that for most channels of interest, the
capacity-achieving input distribution must escape to infinity. In fact, not only the
capacity-achieving input distributions escape to infinity: every input distribution
that achieves a mutual information with the same asymptotic growth in the cost as
the capacity must escape to infinity.

The statements in this section are valid in general, i.e., they are not restricted
to the channel model under study. We will only assume that the input and output
alphabets X and Y of some channel are separable metric spaces, and that for any
set B ⊂ Y the mapping x 7→ W (B|x) from X to [0, 1] is Borel measurable. We then
consider a general cost function g : X → [0,∞) which is assumed measurable.5

Definition 14. Fixing α ∈ (0, 1] as ratio of available average to peak cost

α ,
E
A

(64)

we say that a family of input distributions

{QA,E(·)}A≥infx
g(x)
α

,E=αA
(65)

on X parametrized by A and E escapes to infinity if for any fixed A0 > 0

lim
A↑∞

QA,αA

(
{x ∈ X : g(x) ≤ A0}

)
= 0. (66)

Based on this definition, in [22] a general theorem was presented demonstrating
that if the ratio of mutual information to channel capacity is to approach one, then
the input distribution must escape to infinity.

Proposition 15. Let the capacity-cost function C(·, ·) of a channel W (·|·) be finite
but unbounded. Let Casy(·) be a function that captures the asymptotic behavior of
the capacity-cost function C(A, αA) in the sense that

lim
A↑∞

C(A, αA)

Casy(A)
= 1. (67)

5For an intuitive understanding of the following definition and some of its consequences, it is
best to focus on the example of the channel model (1) where the channel inputs are nonnegative
real numbers and where the cost function g(·) is g(x) = x, ∀x ≥ 0.

Stefan M. Moser, corrected version, October 8, 2010, submitted 13



Assume that Casy(·) satisfies the growth condition

lim
A↑∞






sup

µ∈(0,µ0]

µCasy

(
A
µ

)

Casy(A)






< 1, ∀ 0 < µ0 < 1. (68)

Let {QA,αA(·)}A≥0 be a family of input distributions satisfying the cost constraints
(62) and (63) such that

lim
A↑∞

I(QA,αA,W )

Casy(A)
= 1. (69)

Then {QA,αA(·)}A≥0 escapes to infinity.

Proof. See [22, Sec. VII.C.3].

Corollary 16. Fix the average-to-peak-power ratio α. Then the capacity-achieving
input distribution {Q∗

A,αA
(·)}A≥0 of the channel model (1) with peak- and average-

power constraints (3) and (4) escapes to infinity. Similarly, for the situation with
only an average-power constraint (4), {Q∗

E(·)}E≥0 escapes to infinity.

Proof. To prove this statement, we will show that the function

Casy(A) =
1

2
logA (70)

satisfies both conditions (67) and (68) of Proposition 15. The latter already has
been shown in [22, Remark 9] and is therefore omitted. The former condition is
more tricky. The difficulty lies in the fact that we need to derive the asymptotic
behavior of the capacity at this early stage of the proof, even though precisely this
asymptotic behavior is our main result of this paper. Note, however, that for the
proof of this corollary it is sufficient to find the first term in the asymptotic expansion
of capacity.

Our proof relies heavily on the lower bounds derived in Section 4 and on Propo-
sition 1. The details are deferred to Appendix B.

The fact that Q∗(·) escapes to infinity will be used in this paper mainly in the
following way.

Claim 17. Let {QA,αA(·)}A≥0 be a family of input distributions that escapes to
infinity, and let f : R+

0 → R be as in Definition 2, i.e.,

f(x) = ox(1). (71)

Assume that f is bounded. Then

lim
A↑∞

EQA,αA
[f(X)] = 0. (72)

Proof. Let ǫ > 0 be arbitrary. Choose A1 such that for all A > A1

∣
∣f
(
A
)∣
∣ <

ǫ

2
. (73)
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Recall that because {QA,αA(·)}A≥0 escapes to infinity and because f is bounded, we
have

lim
A↑∞

∫ A1

0
|f(x)|QA,αA(x) dx = 0. (74)

Hence, there exists an A2 such that for A > A2 we have

∫ A1

0
|f(x)|QA,αA(x) dx <

ǫ

2
. (75)

Therefore, for A > A0 , max{A1,A2} we have

∣
∣
∣EQA,αA

[f(X)]
∣
∣
∣ ≤ EQA,αA

[|f(X)|] (76)

=

∫ ∞

0
|f(x)|QA,αA(x) dx (77)

=

∫ A1

0
|f(x)|QA,αA(x) dx+

∫ ∞

A1

|f(x)|QA,αA(x) dx (78)

<
ǫ

2
+

∫ ∞

A1

ǫ

2
QA,αA(x) dx (79)

≤ ǫ

2
+

ǫ

2
= ǫ. (80)

Here the first inequality follows from Jensen’s inequality and the convexity of | · |;
(79) follows from (73) and (75); and in the last inequality we take ǫ/2 out of the
integration and upper-bound the integral by 1.

Hence, EQA,αA
[oX(1)] = oA(1).

5.3 Proof of the Upper Bound (14)

The derivation of (14) is based on (7) with the following choice of an output distri-
bution R(·):

R(y) =







2p√
2π
e−

y2

2 y < 0
(1−2p)

√
µ√

A(1+δ)y
√
πerf(

√
µ)
e
− yµ

A(1+δ) 0 ≤ y ≤ A(1 + δ)

p√
2πQ(A(1+δ))

e−
y2

2 y > A(1 + δ)

(81)

where µ, δ > 0 and 0 < p < 1 are arbitrary. Note that

√
µ

√

A(1 + δ)y
√
πerf

(√
µ
)e

− yµ
A(1+δ) (82)

is a PDF on [0,A(1 + δ)] that maximizes differential entropy under an average-
power constraint and under the constraint that E[log Y ] is constant.6 The choice of
Gaussian “tails” for y < 0 and y > A(1 + δ) is motivated by simplicity. It will turn
out that asymptotically they have no influence on the result.

6Compare with (41).
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With this choice we get

D
(
W (·|x)

∥
∥R(·)

)
= −1

2
log 2πe(σ2 + x)−

∫ 0

−∞
log

(
2p√
2π

e−
y2

2

)

W (y|x) dy
︸ ︷︷ ︸

c1(x)

−
∫ A(1+δ)

0
log

(

(1− 2p)
√
µ

√

A(1 + δ)y
√
πerf

(√
µ
)e

− yµ
A(1+δ)

)

W (y|x) dy
︸ ︷︷ ︸

c2(x)

−
∫ ∞

A(1+δ)
log

(
p√

2πQ (A(1 + δ))
e−

y2

2

)

W (y|x) dy
︸ ︷︷ ︸

c3(x)

. (83)

We evaluate each term separately:

c1(x) = Q
(

x√
σ2 + x

)

log

√
2π

2p
+

σ2 + x+ x2

2
Q
(

x√
σ2 + x

)

− x

2

√

σ2 + x

2π
e
− x2

2(σ2+x) (84)

= ox(1). (85)

Similarly,

c3(x) = Q
(

A(1 + δ)− x√
σ2 + x

)

log
Q (A(1 + δ))

√
2π

p

+

(
A(1 + δ) + x

)√
σ2 + x

2
√
2π

e
− (A(1+δ)−x)2

2(σ2+x)

+
σ2 + x+ x2

2
Q
(

A(1 + δ)− x√
σ2 + x

)

(86)

≤
√

σ2 + A

2πδ2A
2 e

− δ2A
2

2(σ2+A)

∣
∣
∣
∣
∣
log

Q (A(1 + δ))
√
2π

p

∣
∣
∣
∣
∣

+
(2A + Aδ)

√
σ2 + A

2
√
2π

e
− A

2δ2

2(σ2+A)

+
σ2 + A + A

2

2

√

σ2 + A

2πδ2A
2 e

− δ2A
2

2(σ2+A) (87)

= oA(1) (88)

where the inequality follows because 0 ≤ x ≤ A and because the Q-function as
defined in (10) satisfies

1√
2πz2

e−
z2

2

(

1− 1

z2

)

< Q (z) <
1√
2πz2

e−
z2

2 (89)

such that

Q
(

A(1 + δ)− x√
σ2 + x

)

<

√

σ2 + x

2π(A + δA − x)2
e
− (A+δA−x)2

2(σ2+x) (90)

≤
√

σ2 + A

2πδ2A
2 e

− δ2A
2

2(σ2+A) . (91)
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Finally, for A ≥ µ
πerf2(

√
µ)
,

c2(x) =

(

1−Q
(

x√
σ2 + x

)

−Q
(

A(1 + δ)− x√
σ2 + x

))

︸ ︷︷ ︸

≤1

·
(

1

2
logA + log

√
1 + δ

√
πerf

(√
µ
)

(1− 2p)
√
µ

)

︸ ︷︷ ︸

≥0 for A≥ µ

πerf2(
√
µ)

+
1

2

∫ A(1+δ)

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

+
µ
√
σ2 + x

A(1 + δ)
√
2π

(

e
− x2

2(σ2+x) −e
− (A(1+δ)−x)2

2(σ2+x)

︸ ︷︷ ︸

≤0

)

+
xµ

A(1 + δ)

(

1−Q
(

A(1 + δ)− x√
σ2 + x

)

−Q
(

x√
σ2 + x

))

︸ ︷︷ ︸

≤1

(92)

≤ 1

2
logA + log

√
1 + δ

√
πerf

(√
µ
)

(1− 2p)
√
µ

+
1

2

∫ A(1+δ)

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

+
1

A
· µ

√
σ2 + x

(1 + δ)
√
2π

e
− x2

2(σ2+x) +
xµ

A(1 + δ)
. (93)

Next, we assume x ≥ 1 and derive (using the substitution ỹ ,
y−x
x ):

∫ A(1+δ)

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x≥1

=

(

1−Q
(

x√
σ2 + x

)

−Q
(

A(1 + δ)− x√
σ2 + x

))

︸ ︷︷ ︸

≤1

log x
︸︷︷︸

≥0

+
x

√

2π(σ2 + x)

∫ A(1+δ)−x
x

−1
log(1 + ỹ)
︸ ︷︷ ︸

≤ỹ

e
− x2ỹ2

2(σ2+x) dỹ (94)

≤ log x+
x

√

2π(σ2 + x)

∫ A(1+δ)−x
x

−1
ỹe

− x2ỹ2

2(σ2+x) dỹ (95)

= log x+

√

σ2 + x

2πx2

(

e
− x2

2(σ2+x) − e
− (A(1+δ)−x)2

2(σ2+x)
︸ ︷︷ ︸

≥0

)

(96)

≤ log x+

√

σ2 + x

2πx2
· e−

x2

2(σ2+x) . (97)

For x < 1 we bound log y ≤ y and get

∫ A(1+δ)

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x<1

≤
∫ A(1+δ)

0

y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy (98)
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=

√

σ2 + x

2π

(

e
− x2

2(σ2+x) − e
− (A(1+δ)−x)2

2(σ2+x)
︸ ︷︷ ︸

≥0

)

+ x

(

1−Q
(

x√
σ2 + x

)

−Q
(

A(1 + δ)− x√
σ2 + x

)

︸ ︷︷ ︸

≥0

)

(99)

≤
√

σ2 + x

2π
e
− x2

2(σ2+x) + x

(

1−Q
(

x√
σ2 + x

))

. (100)

Hence, because (100) is bounded and from (97) we have

∫ A(1+δ)

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy = log x+ ox(1). (101)

Plugging this into (93) yields

c2(x) ≤
1

2
logA + log

√
1 + δ

√
πerf

(√
µ
)

(1− 2p)
√
µ

+
1

2
log x+

xµ

A(1 + δ)
+ ox(1) +

1

A
· ox(1).
(102)

Using all these results together with (83) and (7), we get

C ≤ EQ∗
[
D
(
W (·|x)

∥
∥R(·)

)]
(103)

≤ EQ∗

[

− 1

2
log 2πe(σ2 +X) + oX(1) +

1

2
logA + log

√
1 + δ

√
πerf

(√
µ
)

(1− 2p)
√
µ

+
1

2
logX +

Xµ

A(1 + δ)
+ oX(1) +

1

A
· oX(1) + oA(1)

]

(104)

= −1

2
log 2πe+ EQ∗

[

−1

2
log

(

1 +
σ2

X

)

︸ ︷︷ ︸

oX(1)

]

+
1

2
logA +

1

2
log(1 + δ)− 1

2
log µ

+ log
√
πerf (

√
µ)− log(1− 2p) +

EQ∗ [X]µ

A(1 + δ)
+ EQ∗ [oX(1)] +

1

A
· EQ∗ [oX(1)]

+ oA(1) (105)

≤ 1

2
logA − 1

2
log 2πe+

1

2
log(1 + δ)− 1

2
log µ+ log

√
πerf (

√
µ)

− log(1− 2p) +
αµ

1 + δ
+ EQ∗ [oX(1)] +

1

A
· EQ∗ [oX(1)] + oA(1). (106)

Finally, we use7 Claim 17 and choose µ to be the solution to (15). The result now
follows since p and δ are arbitrary.

5.4 Proof of the Upper Bounds (18) and (21)

As noted in Remarks 6 and 9, (18) and (21) can be seen as limiting cases of (14) for
α ↑ 1

3 and α ↓ 0, respectively. They are derived analogously to (14).
For (18) we make the same choice (81), but with

µ ,
1

A
. (107)

7Note that all ox(1) functions are integrable and bounded.
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Note that in order to avoid any dependence on α, we also upper-bound any occur-
rence of EQ∗ [X] by A instead of αA. Note that from (107) we have

log

√
πerf

(√
µ
)

√
µ

= log 2 + oA(1) (108)

and hence, continuing from (104), we get

C ≤ EQ∗

[

− 1

2
log 2πe(σ2 +X) +

1

2
logA + log

√
1 + δ

√
πerf

(√
µ
)

(1− 2p)
√
µ

+
1

2
logX +

Xµ

A(1 + δ)
+ oX(1) + oA(1)

]

(109)

=
1

2
logA − 1

2
log 2πe+

1

2
log(1 + δ) + log 2− log(1− 2p)

+ EQ∗

[

−1

2
log

(

1 +
σ2

X

)

︸ ︷︷ ︸

oX(1)

]

+
EQ∗ [X]

A
2(1 + δ)

+ EQ∗ [oX(1)] + oA(1) (110)

≤ 1

2
logA − 1

2
log

πe

2
+

1

2
log(1 + δ)− log(1− 2p) +

1

A(1 + δ)
︸ ︷︷ ︸

oA(1)

+ EQ∗ [oX(1)] + oA(1) (111)

where in the last step we bounded EQ∗ [X] ≤ A. The result (18) now follows from
(60) and because p and δ are arbitrary.

For (21) we choose

R(y) =







2p√
2π
e−

y2

2 y < 0
1−p√
2πEye

− y
2E y ≥ 0

(112)

where 0 < p < 1 is a free parameter. Then we get

D
(
W (·|x)

∥
∥R(·)

)
= −1

2
log 2πe(σ2 + x)−

∫ 0

−∞
log

(
2p√
2π

e−
y2

2

)

W (y|x) dy
︸ ︷︷ ︸

c1(x)

−
∫ ∞

0
log

(
1− p√
2πEy e

− y
2E

)

W (y|x) dy
︸ ︷︷ ︸

c′2(x)

. (113)

From (85) we know that c1(x) = ox(1). For c
′
2(x) we get

c′2(x) =

(

1−Q
(

x√
σ2 + x

))

log

√
2πE

1− p
+

1

2E

√

σ2 + x

2π
e
− x2

2(σ2+x)

+
x

2E

(

1−Q
(

x√
σ2 + x

))

+
1

2

∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy (114)

≤
(

1−Q
(

x√
σ2 + x

))

log

√
2πE

1− p
+

1

2E

√

σ2 + x

2π
e
− x2

2(σ2+x)

+
x

2E

(

1−Q
(

x√
σ2 + x

))

+
1

2

(

1−Q
(

x√
σ2 + x

))

log x
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+
1

2

√

σ2 + x

2πx2
e
− x2

2(σ2+x) (115)

≤ log

√
2πE

1− p
+

1

2

√

σ2 + x

2π
e
− x2

2(σ2+x) +
x

2E +
1

2
log x

− 1

2
Q
(

x√
σ2 + x

)

log x+
1

2

√

σ2 + x

2πx2
e
− x2

2(σ2+x) (116)

= log

√
2πE

1− p
+

x

2E +
1

2
log x+ ox(1) (117)

where the first inequality follows in an equivalent way as shown in (94)–(96), and

the second inequality holds for large enough E such that log
√
2πE
1−p > 0 and E > 1.

We continue with (113) and take the expectation over Q∗:

C ≤ EQ∗
[
D
(
W (·|X)

∥
∥R(·)

)]
(118)

≤ EQ∗

[

− 1

2
log 2πe(σ2 +X) + log

√
2πE

1− p
+

X

2E +
1

2
logX + oX(1)

]

(119)

= EQ∗

[

1

2
log E − 1

2
− log(1− p) +

X

2E − 1

2
log

(

1 +
σ2

X

)

︸ ︷︷ ︸

oX(1)

+ oX(1)

]

(120)

=
1

2
log E − 1

2
− log(1− p) +

E
2E + EQ∗ [oX(1)] . (121)

Analogously to (60) we have EQ∗ [oX(1)] = oE(1). The result now follows since p is
arbitrary.

6 Derivation of the Low-Power Behavior

For scenarios where the peak-power constraint tends to 0, a result by Prelov and
van der Meulen [23] can be used to obtain the exact asymptotic low-power capacity.
The following theorem is included as a special case in [23, Theorem 2].

Theorem 18 ([23]). Consider a channel that for all sufficiently small inputs x pro-
duces an output that is Gaussian distributed with mean mx and variance σ2

x that can
depend on x. Then, for sufficiently small A and |X| ≤ A, the mutual information
between the channel’s input X and output Y satisfies

I(X;Y ) =
1

2
J(0)Var(X) + o(A2), (122)

where o(A2) denotes a term that tends to 0 faster than A
2 ↓ 0, and where J(0)

denotes the Fisher information of the channel at 0:

J(x) ,

∫

Y

(
d
dxW (y|x)

)2

W (y|x) dy. (123)

It is quite obvious that the optical intensity channel with input-dependent Gaus-
sian noise satisfies the assumption in the theorem. Thus, we can use it to derive
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the asymptotic low-power capacity under both peak- and average-power constraints
(30) and under a peak-power constraint only (31).

We briefly sketch the derivation of Theorem 10. For the channel law (1) we have

J(x) =
1 + 2σ2 + 2x

2(σ2 + x)2
(124)

such that

J(0) =
1 + 2σ2

2σ4
. (125)

Moreover, it is not difficult to see that

max
Q s.t.

(3) and (4)
are satisfied

Var(X) =

{

E(A − E) = α(1− α)A2 if E < A
2 ,

A
2

4 if E ≥ A
2 .

(126)

The theorem is now established by combining (125) and (126) with (122) and the
definition of channel capacity.

7 Conclusions

New (firm) lower bounds and new (asymptotic) upper bounds on the capacity of the
optical intensity channel with input-dependent Gaussian noise subject to a peak-
power constraint and an average-power constraint were derived. The gap between
the lower bounds and the upper bounds tends to zero asymptotically as the peak
power and average power tend to infinity with their ratio held fixed. The bounds
thus yield the asymptotic expansion of channel capacity in this regime.

The derivation of the lower bounds relies on a new result that relates the dif-
ferential entropy of the channel’s input to the differential entropy of its output (see
Proposition 11).

For the asymptotic upper bounds we relied on two concepts introduced in [20] and
[22]. Firstly, a technique of using duality-based upper bounds on mutual information
in order to upper-bound capacity (see Proposition 1), and secondly the notion of
input distributions that escape to infinity (see Section 5.2) that allows us to compute
asymptotic expectations over the unknown capacity-achieving input distribution.

The capacity of the optical intensity channel with input-dependent Gaussian
noise has also be established for the asymptotic low-SNR situation where the peak-
and average-power tend to zero with their ratio held constant.

It is interesting to compare these results with the results of the free-space op-
tical intensity channel [8] and the Poisson channel [11] [12]. As mentioned above,
the former model is very similar to the given channel (1) because in both channels
the noise is modeled to be additive and Gaussian distributed. The free-space opti-
cal intensity channel, however, neglects a fundamental property of optical intensity
communication: the noise is implicitly dependent on the current input signal.

At low power this disregard does not have a large impact on the behavior of
capacity. The asymptotic capacities (30) and (31) are very similar to the low-power
asymptotic capacities of the free-space optical intensity channel [8], especially for
large values of σ2. The two models also share the same threshold α = 1

2 between
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the case with both peak- and average-power constraints being active and the case
where the average-power constraint is inactive.

At high power, however, the input-dependent part of the noise becomes domi-
nant. This can be seen very clearly by the fact that in [8] the capacity grows like
logA for large A, whereas here we have an asymptotic growth of only 1

2 logA. More-
over, for the free-space optical intensity channel the range of the average-to-peak
power ratio α with no impact on the asymptotic high-SNR capacity is

1

2
≤ α ≤ 1 (127)

while here at high power we have

1

3
≤ α ≤ 1. (128)

However, note that while the former result holds true for all values of A and E , in
the current paper we have only been able to prove that for A ↑ ∞ the threshold is
1
3 , and for A ↓ 0 it is 1

2 . For any finite value of A the threshold is expected to be
somewhere in between, varying with A and σ2.

On the other hand, it is very interesting to observe that the asymptotic high-
power results given in this paper turn out to be identical to the asymptotic capacity
of the Poisson channel given in [11], i.e., not only the prelog factor 1

2 is the same,
but also the second term in the high-SNR expansion of capacity!

Intuitively, this correspondence can be understood by realizing that for large
values of λ, the cumulative distribution function of a Poisson random variable with
mean λ approximates the cumulative distribution function of a Gaussian random
variable with mean λ and variance λ. We prove this statement in Appendix C. If we
in addition recall that the capacity-achieving input distribution escapes to infinity
(see Corollary 16), we hence see that the channel model (1) asymptotically for large
SNR converges with the Poisson channel.

Thus, we conclude that whereas the capacity of the optical intensity channel
with input-dependent Gaussian noise at high power behaves like the capacity of
the discrete-time Poisson channel, at low power it behaves like the capacity of the
free-space optical intensity channel.

A A Proof of Proposition 11

Conditional on X = x, Y can be written as Y = Y0+Y1, where Y0 ∼ NR

(
0, σ2

)
and

Y1 ∼ NR(x, x), Y0 ⊥⊥ Y1. By the fact that conditioning reduces entropy we therefore
have

h(Y ) = h(Y0 + Y1) ≥ h(Y0 + Y1 |Y0) = h(Y1 |Y0) = h(Y1). (129)

Hence, we can restrict ourselves to the case where σ2 = 0.
The proof of (33) is based on the data processing inequality for relative entropies

[24, Ch. 1, Lemma 3.11(ii)].
According to the assumptions of this proposition we have a distribution Q(·) on

the input X with EQ[X] = E . Let QE(·) be an exponential probability distribution
of mean E

QE(x) ,
1

E e
− x

E , x ≥ 0. (130)
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If QE(·) is used as input distribution to our channel, then the according output
distribution is

(QEW )(y) =
1

√

E(E + 2)
exp

(√
E y −

√
E + 2 |y|√
E

)

, y ∈ R. (131)

By the data processing theorem we now obtain:

D
(
Q
∥
∥QE

)
≥ D

(
(QW )

∥
∥(QEW )

)
(132)

where (QW )(·) denotes the corresponding output distribution of our channel when
an input of law Q(·) is used. The first inequality in (33) in the proposition’s state-
ment now follows by evaluating the left-hand side of (132):

D
(
Q
∥
∥QE

)
= −hQ(X)− EQ

[

log
1

E e
−X

E

]

(133)

= −hQ(X) + log E + 1 (134)

(where hQ(X) is computed based on the law Q(·)) and by evaluating the right-hand
side of (132):

D
(
(QW )

∥
∥(QEW )

)

= −h(QW )(Y )− E(QW )

[

log

(

1
√

E(E + 2)
· exp

(√
EY −

√
E + 2|Y |√
E

))]

(135)

= −h(QW )(Y ) +
1

2
log E +

1

2
log(E + 2)− E +

√

E + 2

E E(QW )[|Y |] (136)

≥ −h(QW )(Y ) +
1

2
log E +

1

2
log(E + 2)− E +

√

E(2 + E). (137)

Here we have used Jensen’s inequality with the convex function | · | to get

E(QW )[|Y |] ≥
∣
∣E(QW )[Y ]

∣
∣ = E . (138)

The proof of the monotonicity and positivity of flow(·) is straightforward and
therefore omitted.

B A Proof of Corollary 16

To prove the claim of this lemma we rely on Proposition 15, i.e., we need to derive
a function Casy(·) that satisfies (67) and (68).

From the lower bounds in Theorems 4, 5 and 8 (which are proven in Section 4)
we know that

lim
A↑∞

C(A, αA)
1
2 logA

≥ 1, (139)

and

lim
E↑∞

C(E)
1
2 log E

≥ 1, (140)

respectively.
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We next derive upper bounds on the channel capacity. Note that

C(A, αA) ≤ Cpeak(A) ≤ Cavg(A) (141)

where Cpeak(·) and Cavg(·) denote the capacity under an peak-power and average-
power constraint, respectively. Hence, it will be sufficient to show an upper bound
for the average-power constraint only case.

Our derivation is based on Proposition 1 with the following choice of an output
distribution:

R(y) ,







1√
2π
e−

y2

2 y < 0
1√
8πEye

− y
2E y ≥ 0.

(142)

We get

D
(
W (·|x)

∥
∥R(·)

)
= −1

2
log 2πe(σ2 + x)−

∫ 0

−∞
log

e−y2/2

√
2π

W (y|x) dy
︸ ︷︷ ︸

c′1(x)

−
∫ ∞

0
log

(
1√
8πEy e

− y
2E

)

W (y|x) dy
︸ ︷︷ ︸

c′2(x)

. (143)

From (83) and (84) with p = 1
2 we know that

c′1(x) = Q
(

x√
σ2 + x

)

log
√
2π +

σ2 + x+ x2

2
Q
(

x√
σ2 + x

)

− x

2

√

σ2 + x

2π
e
− x2

2(σ2+x) (144)

≤ 1

4
e
− x2

2(σ2+x)

(

2 log
√
2π + σ2 + x+ x2 − 2x

√

σ2 + x

2π

)

(145)

where in the last step we used the bound

Q (ξ) ≤ 1

2
e−

ξ2

2 , ξ ≥ 0. (146)

Note that (145) is bounded, i.e., there exists some finite constant k1 ∈ R (indepen-
dent of x and E) such that

c′1(x) ≤ k1, ∀x ≥ 0. (147)

For c′2(x) we bound as follows:

c′2(x) =

(

1−Q
(

x√
σ2 + x

))

︸ ︷︷ ︸

≤1

log
√
8πE +

1

2E

√

σ2 + x

2π
e
− x2

2(σ2+x)

︸ ︷︷ ︸

≤k2

+
x

2E

(

1−Q
(

x√
σ2 + x

))

︸ ︷︷ ︸

≤1

+
1

2

∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy (148)
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≤ max

{
1

2
log 8πE , 0

}

+
k2
2E +

x

2E

+ I{x ≥ 1} · 1
2

∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x≥1

+ I{x < 1} · 1
2

∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x<1

. (149)

Here k2 ∈ R is another finite constant independent of x and E , and I{·} denotes the
indicator function

I{statement} =

{

1 if statement is true

0 otherwise.
(150)

Analogously to (97) we next have
∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x≥1

≤ log x+
1

x
︸︷︷︸

≤1

·
√

σ2 + x

2π
e
− x2

2(σ2+x)

︸ ︷︷ ︸

≤k2

(151)

≤ log x+ k2 (152)

and analogously to (100) we get
∫ ∞

0

log y
√

2π(σ2 + x)
e
− (y−x)2

2(σ2+x) dy

∣
∣
∣
∣
∣
x<1

≤
√

σ2 + x

2π
e
− x2

2(σ2+x)

︸ ︷︷ ︸

≤k2

+ x
︸︷︷︸

≤1

(

1−Q
(

x√
σ2 + x

))

︸ ︷︷ ︸

≤1

(153)

≤ k2 + 1. (154)

Plugging all this into (143) finally yields

D
(
W (·|x)

∥
∥R(·)

)

≤ −1

2
log 2πe− 1

2
log(σ2 + x) + k1 +max

{
1

2
log 8πE , 0

}

+
k2
2E +

x

2E
+ I{x ≥ 1} · 1

2

(
log x+ k2

)
+ I{x < 1} · 1

2
(k2 + 1) (155)

= max

{
1

2
log 4E ,−1

2
log 2π

}

− 1

2
− I{x ≥ 1} · 1

2
log(σ2 + x)
︸ ︷︷ ︸

≥log x

− I{x < 1} · 1
2
log(σ2 + x)
︸ ︷︷ ︸

≥log σ2

+ k1 +
k2
2E +

x

2E

+ I{x ≥ 1} · 1
2
log x+ I{x ≥ 1}

︸ ︷︷ ︸

≤1

·k2
2

+ I{x < 1}
︸ ︷︷ ︸

≤1

·k2 + 1

2
(156)

≤ max

{
1

2
log 4E ,−1

2
log 2π

}

− 1

2
− I{x < 1} · 1

2
log σ2 + k1 +

k2
2E

+
x

2E +
k2
2

+
k2 + 1

2
(157)

≤ max

{
1

2
log 4E ,−1

2
log 2π

}

−min

{

0,
1

2
log σ2

}

+ k1 +
k2
2E +

x

2E + k2. (158)

Stefan M. Moser, corrected version, October 8, 2010, submitted 25



Hence, we get

C(E) ≤ EQ∗

[

D
(
W̃ (·|X)

∥
∥R(·)

)]

(159)

≤ max

{
1

2
log 4E ,−1

2
log 2π

}

−min

{

0,
1

2
log σ2

}

+ k1 +
k2
2E +

E
2E + k2 (160)

and therefore

lim
E↑∞

C(E)
1
2 log E

≤ 1. (161)

Hence, we have shown that Casy(ζ) , 1
2 log ζ satisfies the conditions of Proposi-

tion 15. This proves our claim.

C The Poisson Distribution Approximates the Gaus-

sian Distribution

In this appendix we will show that for large values of λ, a Poisson distribution of
mean λ will approximate a Gaussian distribution of mean λ and variance λ.

Note that strictly speaking we have to compare the cumulative distribution func-
tions (CDF) as a Poisson random variable is discrete, while a Gaussian random
variable is continuous. To simplify the proof, however, we will use a trick to cre-
ate a “continuous Poisson random variable”. Let T ∼ Po(λ) be a Poisson random
variable with mean λ, and let U ∼ U([0, 1)) be a random variable that is uniformly
distributed on the interval [0, 1) and that is independent of T . We now define the
“continuous Poisson random variable” Tc as

Tc , T + U. (162)

Obviously, Tc is a continuous random variable with PDF

fTc(t) =

{

e−λ λ⌊t⌋
⌊t⌋! t ≥ 0,

0 otherwise.
(163)

But also note that from Tc one can always retrieve the value of the Poisson random
variable T by simply applying the flooring operation:

T = ⌊Tc⌋. (164)

To prove our claim of T approximating a Gaussian random variable for large λ,
we will now show that

S ,
Tc − λ√

λ
(165)

will converge to a zero-mean, unit-variance Gaussian random variable if λ tends to
infinity. Note that once λ gets very large, the influence of U will vanish, i.e., S will
tend to T−λ√

λ
.

Concretely, we will now show that the relative entropy between the PDF of S,
fS(·), and the PDF of a zero-mean, unit-variance Gaussian random variable G, fG(·),

Stefan M. Moser, corrected version, October 8, 2010, submitted 26



tends to zero as λ ↑ ∞:

D(fS‖fG) = E

[

log
fS(S)

fG(S)

]

(166)

= E



log
fS

(
Tc−λ√

λ

)

fG

(
Tc−λ√

λ

)



 (167)

=
1

2
log λ− λ+ E[⌊Tc⌋] log λ+

1

2
log 2π − E[log(⌊Tc⌋!)] +

1

2λ
E
[
(Tc − λ)2

]

(168)

=
1

2
log 2πλ − λ+ λ log λ− E[log(T !)]

︸ ︷︷ ︸

=−H(T )

+
1

2
+

1

6λ
(169)

=
1

2
log 2πeλ−H(T ) +

1

6λ
, (170)

where H(T ) denotes the entropy of T . From [11, Lemma 19] we know that

lim
λ↑∞

{

H(T )− 1

2
log 2πeλ

}

≥ 0. (171)

Hence, noting that relative entropy is nonnegative, we see that

0 ≤ lim
λ↑∞

D(fS‖fG) ≤ lim
λ↑∞

1

6λ
= 0. (172)

The claim now follows because the relative entropy is equal to zero if, and only if,
its two arguments are identical.
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