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Abstract—The dramatic linear increase in ergodic capacity
with the number of antennas promised by multiple-input mul-
tiple-output (MIMO) wireless communication systems is based on
idealized channel models representing a rich scattering environ-
ment. Is such scaling sustainable in realistic scattering scenarios?
Existing physical models, although realistic, are intractable for
addressing this problem analytically due to their complicated
nonlinear dependence on propagation path parameters, such
as the angles of arrival and delays. In this paper, we leverage a
recently introduced virtual representation of physical models that
is essentially a Fourier series representation of wide-band MIMO
channels in terms of fixed virtual angles and delays. Motivated
by physical considerations, we propose a -connected model for
correlated channels defined by a virtual spatial channel matrix
consisting of nonvanishing diagonals with independent and
identically distributed (i.i.d.) Gaussian entries. The parameter

provides a meaningful and tractable measure of the richness
of scattering. We derive general bounds for the coherent ergodic
capacity and investigate capacity scaling with the number of
antennas and bandwidth. In the large antenna regime, we show
that linear capacity scaling is possible if scales linearly with
the number of antennas. This, in turn, is possible if the number of
resolvable paths grows quadratically with the number of antennas.
The capacity saturates for linear growth in the number of paths
(fixed ). The ergodic capacity does not depend on frequency
selectivity of the channel in the wide-band case. Increasing
bandwidth tightens the bounds and hastens the convergence of
scaling behavior. For large bandwidth, the capacity scales linearly
with the signal-to-noise ratio (SNR) as well. We also provide an
explicit characterization of the wide-band slope recently proposed
by Verdú. Numerical results are presented to illustrate the key
theoretical results.

Index Terms—Beamforming, empirical eigenvalue distribution,
ergodic capacity, Fourier series, frequency selectivity, ray tracing,
scattering, spectral efficiency.

I. INTRODUCTION

THE use of multiple-element antenna arrays has emerged

as a promising technology for dramatically increasing

the spectral efficiency of wireless communication systems.

Initial studies have indicated linear increase in the capacity of
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narrow-band multiple-input multiple-output (MIMO) systems

with the number of antennas (see [1], [2]). However, these

studies are based on an idealized channel model, representing

a rich scattering environment, that assumes independent and

identically distributed (i.i.d.) Gaussian entries for the channel

matrix. Such idealized channels seldom, if ever, occur in

practice, particularly with practically feasible antenna spacings.

Several experimental and analytical studies have shown that

the capacity of realistic MIMO channels can be significantly

less than that of i.i.d. models (see [3]–[6]).

Idealized statistical models, such as those used in [1], [2],

represent one extreme in existing modeling approaches. On the

other extreme are detailed physical (ray-tracing) models that de-

scribe the channel via signal propagation over multiple paths,

each path associated with an angle of departure (AoD), an angle

of arrival (AoA), a delay and a path gain (see, e.g., [7]–[9],

[4], [10]). While quite accurate, such models depend on phys-

ical AoAs, AoDs, and delays in a nonlinear fashion making it

rather difficult to incorporate them in system design or analyt-

ical calculations. Indeed, most capacity studies based on phys-

ical models have relied on numerical simulation for capacity as-

sessment (see, e.g., [4], [7], [8]).

The goal of this paper is to investigate capacity scaling in real-

istic correlated MIMO channels. We consider both narrow-band

and wide-band channels and explore scaling behavior of ergodic

capacity as a function of both the number of antennas and band-

width in a Rayleigh-fading environment. There are three main

objectives of our work: 1) to provide a characterization of phys-

ical MIMO channel models that is analytically tractable, 2) to

obtain rigorous mathematical results that characterize capacity

scaling behavior, and 3) to relate the scaling results to the phys-

ical characteristics of realistic MIMO channels. Our focus is on

systems that use uniform linear arrays (ULAs) of antennas at

both the transmitter and receiver. We assume that the channel is

unknown at the transmitter but perfectly known at the receiver.

The workhorse of our analysis is a recently introduced vir-

tual representation of narrow-band [6] and wide-band MIMO

channels [11], [12] that provides an intuitive and tractable char-

acterization of realistic physical models and yields useful in-

sights into the effects of scattering characteristics on channel ca-

pacity. The virtual representation is based on the simple but fun-

damental observation that detailed channel modeling without re-

gard to signal space characteristics is unnecessary from a com-

munication-theoretic viewpoint—an effective channel represen-

tation that captures the interaction between the physical channel

and the finite-dimensional space–time signal space is all that

is needed. In wide-band MIMO channels, the signal space is
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characterized by the number of antennas (for a given an-

tenna spacing) and bandwidth . The virtual representation is

a Fourier series for the channel frequency response matrix that

corresponds to sampling the angle-delay space at fixed virtual

AoAs, AoDs, and delays. In particular, it induces a virtual par-

titioning of propagation paths in angle-delay space that exposes

their contribution to channel capacity, and plays a key role in

relating the scaling results to physical scattering characteristics.

Our capacity scaling analysis is based on a -connected

model for the narrow-band virtual matrix that consists of

nonvanishing diagonals with i.i.d. Gaussian entries. The

-connected model is motivated by physical considera-

tions—it represents a scattering environment in which each

virtual transmit angle couples with virtual receive angles and

vice versa. We call the channel connectivity as it provides a

meaningful and tractable measure of the richness of scattering.

For example, corresponds to a loosely connected

(highly correlated) channel, whereas represents a rich

scattering environment. In effect, the -connected model pro-

vides a mathematical construct that greatly facilitates capacity

analysis of correlated channels, analogous to the role of i.i.d.

channel matrix in the idealized model.

To our knowledge, the most recent work addressing the issue

of capacity scaling in correlated channels is [13]. The channel

model used in [13] is a generalization of the i.i.d. model and still

predicts linear capacity growth with the number of antennas, al-

beit with a smaller slope compared to i.i.d. channels. In Section

VII, we interpret the channel model in [13] in the context of our

framework. In particular, the results in this paper make a direct

connection with physical models and precisely identify the sit-

uations in which capacity scaling can or cannot occur.

Summary of Results: We investigate capacity scaling in

both the low-power and large antenna ( ) regimes for both

narrow-band and wide-band channels. Most of our analysis

is based on general lower and upper bounds on the ergodic

capacity of the -connected model. First, consider the

narrow-band case. In the low-power regime, we show that

scales precisely as where denotes the capacity and

the total transmit power. The analysis in the large antenna

regime is greatly facilitated by a fortuitous connection between

the -connected model and some earlier work of Grenander

and Silverstein [14] on the limiting empirical eigenvalue

distribution of a class of random matrices. We show that for

large , exhibits linear growth with if grows linearly

with as well. This, in turn, implies that linear capacity

growth is sustainable in physical channels if the number of

resolvable paths grows quadratically with . For fixed ,

which corresponds to linear growth in the number of paths, the

capacity saturates. For a finite number of paths, there is no gain

in increasing beyond the number of paths.

In the wide-band case, we show that frequency selectivity

does not affect ergodic capacity, which is consistent with known

results in the single-antenna case [15]. In fact, wide-band ca-

pacity is solely governed by spatial channel characteristics via

appropriate scaling with . The most conspicuous effect of

increasing bandwidth is that it tightens the capacity bounds

and hastens the convergence of scaling behavior. In particular,

for a large bandwidth, we get linear capacity growth with

transmit power as well. We also investigate spectral efficiency

of wide-band MIMO channels and provide explicit character-

izations of the minimum energy per bit (required for reliable

communication) and the wide-band slope recently proposed by

Verdú [16].

The rest of this paper is organized as follows. In the next sec-

tion, we present a general physical model for wide-band MIMO

channels, review the virtual representation and its relation to the

physical model. We also discuss channel statistics and virtual

path partitioning to motivate the -connected channel model. In

Section III, we formally define the -connected model and ob-

tain lower and upper bounds for its capacity. Section IV presents

our capacity scaling results for narrow-band MIMO channels.

Section V contains a parallel set of results for wide-band chan-

nels. Section VI investigates spectral efficiency issues. In Sec-

tion VII, we provide a physical interpretation of the scaling re-

sults and also provide illustrative numerical results. Section VIII

closes the paper with concluding remarks. Several of the proofs

are relegated to the Appendixes.

II. WIDE-BAND MIMO CHANNEL MODELING

In this section, we review the virtual representation for both

narrow-band [6] and wide-band MIMO channels [11], [12] that

plays a key role in connecting the scaling results in this paper

to the structure of physical MIMO channels. We focus on the

aspects of the virtual representation that are particularly relevant

to this paper. The reader is referred to [6], [11], [12] for details.

Throughout this paper, we consider MIMO systems with ULAs

of antennas at both the transmitter and receiver and assume

that far-field conditions apply.

A. A General Physical Model for Wide-Band MIMO Channels

We are interested in representing the MIMO channel over a

two-sided bandwidth . In the absence of noise, the transmitted

and received signals are related as

(1)

(2)

where is the -dimensional transmitted signal in time,

is the -dimensional received signal in time, and and

are Fourier transforms of and , respectively

(3)

The matrix represents the impulse response

matrix and is the corresponding frequency response

matrix (the Fourier transform of ) coupling the

transmitter and receiver elements. We will primarily work

with and we index the entries of as :

.1

1The subscript “c” denotes the actual channel matrix, as opposed to the virtual
channel matrix.
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(a)

(b)

Fig. 1. A schematic illustrating physical modeling versus virtual represen-

tation in the spatial dimension. (a) Physical Modeling: Each scattering path is
associated with a fading gain (� ) and a unique pair of transmit and receive
angles (� , � ). (b) Virtual Representation of the scattering environment
depicted in (a). The virtual angles are fixed a priori and their spacing defines
the spatial resolution. The channel is characterized by the virtual coefficients
fH (q; p) = h g that couple the N virtual transmit angles f' g with
the N virtual receive angles f' g.

Let and denote the antenna spacings at the transmitter

and receiver, respectively. The channel matrix for ULAs can be

described via the array steering and response vectors

(4)

where is related to the AoA/AoD variable (measured with

respect to the horizontal axis—see Fig. 1) as

, is the wavelength of propagation, and is the

normalized antenna spacing. We will primarily work with the

spatial variable . We restrict ourselves to critical spacing:

. In this case, there is a one-to-one mapping

between and . The effect of

larger antenna spacing on capacity and diversity is discussed in

detail in [6].

The channel matrix can be generally modeled as

(5)

which corresponds to signal propagation along paths,

where and represent the AoDs and AoAs, re-

spectively, the delays, and the corresponding com-

plex path gains. The physical model is illustrated in Fig. 1(a).

A narrow-band MIMO system corresponds to in which

case (5) reduces to

(6)

Define

(7)

Then and represent the

angular spreads seen by the receiver and transmitter, respec-

tively. The delay spread is denoted by

(8)

Without loss of generality, we assume so that

.

A continuous version of (5), corresponding to a continuum of

propagation paths, is insightful in relating the channel matrix to

the scattering environment

(9)

where denotes the angle-delay spreading func-

tion that characterizes the scattering environment. For the dis-

crete model (5), it reduces to

(10)

where denotes the Dirac delta function. For the

narrow-band case, (9) reduces to

(11)

(12)

where the second equality in (12) corresponds to the discrete

model (6).

B. A Virtual Representation for Wide-Band MIMO Channels

In (5), each propagation path is associated with an arbitrary

AoD, AoA, and delay distributed within the angular and delay

spreads. The virtual representation replaces the physical paths

with virtual ones corresponding to fixed AoDs, AoAs, and de-

lays that are determined by the spatial and temporal resolution of

the array. The notion of virtual angles is illustrated in Fig. 1(b).

Without loss of generality, assume that is odd and define

.
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Definition 1—Virtual Channel Representation: The virtual

channel representation is defined by the Fourier series expan-

sion [6], [11], [12]

(13)

corresponding to fixed virtual AoDs, AoAs, and delays

(14)

The virtual (Fourier series) channel coefficients

characterize the virtual representation and can be computed

from as

(15)

Combining (15) and (9) we get

(16)

where the second equality corresponds to the discrete model and

(17)

(18)

Note that and get peaky around the origin with

increasing and . Thus, (16) states that the virtual channel

coefficients are samples of a smoothed version of the delay-

angle spreading function, and that the smoothing kernel gets

narrower with increasing and .

The spacing between the transmit/receive virtual angles in

(14) represents the spatial resolution of the array:

. Similarly, the spacing between the virtual delays

corresponds to the temporal resolution: . For

sufficiently large and , most of the channel power is

carried by a subset of the coefficients. The size of this subset of

dominant is determined by the angular and delay

spreads [6], [11], [12]

(19)

(20)

(21)

In the narrow-band case, virtual representation reduces to

(22)

(23)

where and are discrete Fourier transform (DFT)

(unitary) matrices. The elements of the narrow-band virtual ma-

trix are related to the discrete physical model as

(24)

We note that the virtual representation is a unitary transforma-

tion of the actual channel matrix and, thus, all capacity-related

issues can be equivalently investigated in the virtual domain.

C. Virtual Path Partitioning

The virtual representation induces a partitioning of paths that

is very insightful in relating physical scattering characteristics

to channel statistics.

Definition 2—Virtual Path Partitioning: Define the fol-

lowing subsets of propagation paths:

(25)

(26)

(27)

corresponding to the spatial and delay resolutions. The above

sets form a partition

(28)

(29)

With the path partitioning, the virtual coefficients in (16) and

(24) can be approximated as

(30)

where and .

Thus, in the narrow-band case, the paths are distributed in the

virtual representation according to the spatial resolution. In the

wide-band case, this distribution is further refined by the delay

resolution.

D. Statistics of Wide-Band Correlated MIMO Channels

In this paper, we are interested in modeling the channel over

time scales over which the locations of scatterers, and hence
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, , and , do not change significantly relative

to the transmitter and receiver. This is equivalent to considering

time scales over which the channel statistics do not change ap-

preciably. However, the channel realizations do vary over such

time scales due to the phase variations in path gains.

We make the following (Rayleigh fading) assumption on

physical scattering.

Assumption 1—Independent Physical Scattering: The phys-

ical channel parameters , , and are fixed

over the time scales of interest. The path gains are inde-

pendent zero-mean complex circular Gaussian random variables

with variances

(31)

where denotes the Kronecker delta function.

Under the above assumption, the elements of are

jointly complex circular Gaussian, and, consequently, so are the

virtual coefficients . Assumption 1 implies uncor-

related statistics for the spreading function in (10) [6], [11]

(32)

(33)

The nonnegative function in (32) is called the

angle-delay scattering function (or angle-delay power profile)

and reflects the distribution of channel power in the

space; it is given by (33) for the discrete model.

An important property of the virtual representation is that

are approximately uncorrelated (and, hence, ap-

proximately independent) under Assumption 1 [6], [11], [12]

(34)

(35)

(36)

and (using (4), (5), (13))

(37)

(38)

Equations (38) and (34) state that the elements of form

a three-dimensional stationary random field and the virtual co-

efficients are samples of a smoothed version of its

underlying spectral representation and are hence approximately

uncorrelated. The scattering function can be in-

terpreted as the power spectral density2 associated with ,

and the dominant virtual coefficients

approximately characterize the independent degrees of freedom

in wide-band MIMO channels.

The following observation will be useful in wide-band ca-

pacity results.

Proposition 1: At any given frequency , the spatial statistics

of are independent of .

Proof: The proof directly follows from (38) by substi-

tuting .

Thus, the spatial statistics of are determined by the

statistics of the narrow-band matrix (or, equiva-

lently, ). The total channel power is distributed as

[11], [12]

(39)

E. -Diagonal Virtual Model for Narrow-Band MIMO

Channels

We now motivate a simple model—the -diagonal virtual

model—for correlated narrow-band MIMO channels that plays

a key role in the scaling results. As we will see, the ergodic ca-

pacity of wide-band MIMO channels depends only on spatial

statistics of the narrow-band virtual matrix . Spectral statistics

only contribute to diversity and hence affect the outage capacity

[11], [12].

Consider a single scattering cluster with maximum an-

gular spreads at the transmitter and receiver:

. One source of correlation is limited angular

spreads. However, the effective angular spread (in the do-

main) can be maximized (and the channel decorrelated) in such

cases by increasing the antenna spacing [6]. For maximum

angular spreads, the nature of coupling between the scatterers

within the cluster determines the channel correlation. On one

extreme is “diagonal scattering” ( diagonal), in which each

virtual transmit angle couples with only a single corresponding

virtual receive angle. This corresponds to a scattering environ-

ment consisting of a single line of scatterers (see [6, Fig. 7(a)]).

In this case, is nonzero only for and the channel

exhibits significant correlation since only out of degrees

of freedom are excited. On the other extreme is “maximally

rich scattering” (all elements of nonzero) in which each

virtual transmit angle couples with all virtual receive angles,

2The angular spreads represent the bandwidths associated with the stationary
field in the spatial dimensions.



LIU et al.: CAPACITY SCALING AND SPECTRAL EFFICIENCY IN WIDE-BAND CORRELATED MIMO CHANNELS 2509

(a)

(b)

Fig. 2. A schematic illustrating the d-diagonal and circulant d-diagonal
models for the virtual spatial matrix. N = 9 and d = 2 and each small
square represents a spatial resolution bin of size �� = �� = 1=N . (a)
d-diagonal model consisting of d nonvanishing diagonals above and below the
main diagonal. Notice the truncation near the corners. (b) Circulant d-diagonal
model. The truncated parts in (a) are wrapped around (aliased) and included
in the matrix as the dark grey circles.

and vice versa. This corresponds to multiple lines of scatterers

(see [6, Fig. 7(b)]) and the channel will exhibit minimal cor-

relation since all are nonzero. In particular,

corresponds to the i.i.d. model. Thus, we can capture a rich

class of scattering environments, depicting varying levels of

correlation, by imposing the following -diagonal structure on

:

for (40)

nonzero for

otherwise

(41)

where represents the number of nonvanishing

diagonals above and below the main diagonal (see Fig. 2(a)).

Diagonal scattering corresponds to and maximally rich

scattering corresponds to .

The scaling results presented in subsequent sections are based

on a -connected model which corresponds to the following

circulant definition of -diagonal model:

for (42)

nonzero for ,

where

otherwise.

(43)

The circulant modification is made for a technical reason—to

make the number of nonvanishing elements in each column and

each row to be the same—and does not affect the essential con-

clusions of our results. It can be shown that the circulant struc-

ture in (43) actually occurs in systems which employ larger than

antenna spacing due to notion of spatial aliasing [6].3 The

difference between -diagonal and circulant -diagonal models

is illustrated in Fig. 2. For the -diagonal model in Fig. 2(a),

notice the truncation near the corners of the matrix. In the cir-

culant -diagonal model in Fig. 2(b), the truncated parts in Fig.

2(a) are wrapped around (aliased) and included in the matrix as

depicted by the dark grey circles.4

We assumed to be odd in the above discussion. We will

relax this assumption in the following sections. Furthermore,

in the -connected model introduced in Section III, corre-

sponds to the total number of diagonals; for odd

and for even.

1) Alternative Interpretations for the -Connected Model:

Let denote the joint density of path angles; the

angular spreads correspond to supports of the marginal den-

sities. Consider maximum angular spreads:

. The path angles can be thought

of as drawn independently according to . The -con-

nected model corresponds to the following structure on the con-

ditional density of given :

nonzero if

otherwise

(44)

where . Thus, even though the marginals

and span the entire angular spreads, the conditional den-

sity exhibits a limited spread; .

Note that is a normalized version of power spectral

density

and may be estimated in practice from measurements (see, e.g.,

[4]). Finally, since the sampling resolution is ,

in (44).

3For larger than �=2 antenna spacing, the principal � range ([�1=2; 1=2])
maps into a subset of the physical angle � range ([��=2; �=2]) (e.g., the black
dots in Fig. 2(b)). However, due to the periodicity of steering and response vec-
tors in �, scatterers outside the limited � range wrap into the principal � range
(the grey dots in Fig. 2(b)). This is the notion of spatial aliasing.

4Note that only two light-grey colored truncated parts are included in the cir-
culant d-diagonal matrix. In general, all four truncated parts may be aliased to
yield the dark-grey parts. This would result in the dark-grey parts having twice
as much power as the black parts. However, such a situation is less likely in
practice and is not critical to the essence of our scaling results. Thus, this tech-
nical point is ignored in the definition of the D-connected model.
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Fig. 3. Plot of N =N as a function of N for p = 0:99.

2) Number of Paths Needed to Populate a -Connected

Channel: For given and , a natural question (that will

be useful later) is: how many propagation paths are needed to

populate a -connected channel? The relation (30) states that

we need at least as many paths as the number of nonvanishing

entries, (see Fig. 2(b)), in the -connected model.

This applies to resolvable paths that lie in distinct virtual spatial

bins of size , as depicted in Fig. 2.

However, since the path angles are randomly distributed, more

than paths will be needed to ensure with high probability

that there is at least one path in each spatial bin. Assume that

are uniformly distributed over the

region in (44). Then, each path can land, with equal probability,

in any of the spatial bins and it can be shown that the

probability that the -connected model is fully populated

satisfies

(45)

Fig. 3 plots the values of as a function of for

. Even though , it is

evident that is bounded by a constant on the order

of for values of of interest. Thus, we conclude that

the number of paths needed to populate a -connected channel

with high probability satisfies

(46)

III. -CONNECTED CHANNEL MODEL AND CAPACITY BOUNDS

In the following, we focus on narrow-band systems and im-

pose a spatial structure on correlated MIMO channels via the

virtual representation. The channel equation at any time instant

can be written equivalently in the virtual domain as

(47)

where , , and are the -dimensional transmitted signal

vector, receive signal vector, and complex Gaussian noise

vector, respectively. The noise vector is assumed to be white

in space as well as over time. We assume that is zero-mean

complex Gaussian with unit variance entries. The entries of

the narrow-band virtual matrix are uncorrelated

zero-mean complex Gaussian random variables whose variance

may vary depending on the physical environment. In particular,

many entries may be zero if the scattering is not rich enough to

couple all the transmit and receive dimensions.

A concise way to describe such a pattern in is via the notion

of the Hadamard product. Let and be

matrices. The entries of the Hadamard product (written

as ) are given by

(48)

Let where is the variance of the th entry in

. The virtual channel matrix can then be expressed as

(49)
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where consists of i.i.d. standard complex Gaussian random

variables. Therefore, one can describe channel structure by

specifying , which we call the channel pattern mask. We

assume that the nonvanishing elements of have identical

variance.

Definition 3: A -connected channel with dimension ,

, is an MIMO channel whose channel

pattern mask is given by

if

where
if is odd

if is even

otherwise.
(50)

Note that the pattern mask matrix of -connected channels

is a circulant matrix with equal number of nonzero (unit)

entries in each row and each column. The parameter is called

the channel connectivity. It models the degree of coupling be-

tween transmit–receive antenna pairs. When , the antenna

array is loosely coupled (strongly correlated), while

represents a densely coupled rich scattering environment (com-

pletely uncorrelated). Fig. 4 illustrates a -connected channel of

dimension . Its channel pattern mask is given by

Proposition 2: Let be the channel matrix of a -con-

nected channel of dimension . Then

(51)

Proof: It trivially follows from the definition of -con-

nected channels.

The channel connectivity has a significant effect on the

statistics of . The special case of -connected channel when

precisely gives rise to the commonly used i.i.d. channel

model. As pointed out in [2], [17], in this case is isotrop-

ically distributed, that is, and have the same distribu-

tion for any unitary matrix . The exploitation of the isotropic

property of i.i.d. has been the key to many elegant results

regarding capacity and coding for i.i.d. channels (see, e.g., [2],

[17]). However, if , is no longer isotropically dis-

tributed. In other words, isotropic property of is rather a rarity

in correlated channels, such as -connected channels. However,

a weaker form of channel statistics turns out to be preserved as

scales. The following lemma connects the statistics of -con-

nected channels to a (scaled) doubly stochastic matrix (DSM),

which plays a role analogous to that of the isotropic distribution

in i.i.d. channels.

Lemma 1—Scaled Doubly Stochastic Matrix: Let repre-

sent a -connected channel. For an arbitrary unitary matrix ,

Fig. 4. A schematic illustrating D-connected channels. The dimension is 5
and the connectivity is 3. Observe each transmit dimension is coupled with three
receive dimensions and vice versa.

denote and . Then, is a scaled

doubly stochastic matrix with scale , that is,

(52)

(53)

Proof: Since is a unitary matrix, (52) holds by noticing

(54)

The verification of (53) requires the circular property of the

-connected channel. For given

(55)

where is the th entry in and is the set of column

indexes of corresponding to nonzero entries in the th row

of the channel pattern mask matrix. Note that the -connected

channel structure implies that every row index of the th column

of is covered exactly times, and hence the above sum is

equal to , which proves the lemma.

Assuming perfect knowledge of at the receiver, the ergodic

capacity of an Gaussian MIMO channel is given by [2]

(nats/s) (56)

where the maximization is over a set of positive semidefinite

Hermitian matrices satisfying the power constraint ,

and the expectation is with respect to random channel matrix .

In the following, the base is implicitly assumed for unless

specified otherwise.

An obstacle in analyzing capacity of realistic MIMO channels

is the optimal input distribution in (56). Except for diagonal

channels , i.i.d. channels , and a few other

correlated cases [18]–[20], the optimal is unknown, which

limits the strength of capacity results for these channels. The
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doubly stochastic structure in Lemma 1 greatly facilitates ca-

pacity analysis of -connected channels. The following upper

bound plays a vital role in our capacity analysis of -connected

channels. Although it can be alternatively proved by exploiting

the DSM property (Lemma 1) as in Appendix I, we present a

simpler proof.5

Lemma 2—General Upper Bound: The capacity of a -con-

nected channel of dimension is upper-bounded by

(57)

where is the total transmit power.

Proof: The key is the fact that

for an positive semidefinite matrix , which is a dis-

guised form of geometric mean arithmetic mean. The lemma

is proved by the following chain of inequalities:

(58)

We next give two lower bounds for capacity of -connected

channels. The first (Lemma 3) follows from a quick observa-

tion that channel capacity is lower-bounded by the mutual in-

formation corresponding to the uniform power input distribu-

tion, that is, in (56). The key to the second

(Lemma 4) is to construct a suboptimal channel from the orig-

inal MIMO channel and then to evaluate the capacity of the

suboptimal channel, thus obtaining a looser but more tractable

lower bound.

Lemma 3—Uniform Power Lower Bound: Given total

transmit power , the capacity of a -connected channel of

dimension is lower-bounded by

(59)

where is the total transmit power.

Lemma 4—Rayleigh Subchannel Lower Bound: Given total

transmit power , the capacity of a -connected channel of

dimension is lower-bounded by

(60)

where is a unit variance chi-square random variable with two

degrees of freedom.

Proof: See Appendix II.

5Thanks to the input of an anonymous reviewer.

IV. CAPACITY SCALING IN NARROW-BAND CHANNELS

A. Finite Connectivity

We first study capacity saturation and scaling behavior when

the channel connectivity is finite.

1) Large-Dimensional Asymptotics:

Theorem 1—Capacity Saturation: Channel capacity of an

MIMO channel with fixed connectivity at a given

transmit power is asymptotically bounded between and

as approaches infinity.6

Proof: We write to emphasize capacity as a func-

tion of array dimension. The upper bound is an immediate corol-

lary of the general upper bound lemma (Lemma 2) since

as (61)

In view of Lemma 4, channel capacity is lower-bounded by

(62)

where is a unit variance chi-square random variable with two

degrees of freedom. Note

pointwise

Since

by and , the dominated

convergence theorem (DCT) [21] implies that

(63)

Therefore,

(64)

which completes the proof.

2) Low-Power Regime: We write to emphasize ca-

pacity as a function of transmit power .

Theorem 2—Capacity Scaling: For fixed and

, the capacity of a -connected channel scales like

as becomes small. More precisely

(65)

Moreover, any Gaussian input satisfying achieves

capacity asymptotically in the low-power regime. In particular,

uniform power distribution, i.e., is asymptotically op-

timal.

6A series fx g is said to be asymptotically bounded between A and B iff
A � lim inf x � lim sup x � B.
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Proof: Again, an application of the general upper bound

reads

(66)

For the other direction, denote by for the un-

ordered eigenvalues of , where is the input power

distribution satisfying the power constraint . The unordered

eigenvalues are obtained by random permutation of all eigen-

values of . Note that all unordered eigenvalues have

the same marginal distribution. It follows from

and that . Let denote the

mutual information corresponding to power . Similar to the

proof of Theorem 1, the DCT can justify passing the limit in the

following:

(67)

B. Infinite Connectivity

A particularly interesting scenario is when the scattering en-

vironment is rich enough to sustain a growth in channel connec-

tivity with antenna dimension. We study the asymptotic (large

) capacity scaling behavior in such infinite connectivity envi-

ronments.

1) Empirical Spectral Distribution of Large-Dimensional

Random Matrices: The essential mathematical tool we will be

using in studying the infinite connectivity case is the so-called

spectral analysis of random matrices. Interested readers are

referred to [22] for an excellent review on this subject. In

the following, we make a brief introduction and clarify some

common misconceptions in applying the random matrix theory.

Definition 4: Let be an Hermitian matrix and de-

note by its eigenvalues. The empirical spectral

distribution (ESD) of is defined by

(68)

where denotes the number of elements in the set indicated.

Note that itself is a random variable as it depends on out-

comes of random matrix . A common practice is to regard

simply as the distribution of eigenvalues of . In most applica-

tions, the quantities in interest, such as channel capacity, can be

expressed as

(69)

where the expectation is with respect to random matrix of

dimension . For some type of random matrices, their ESDs

tend to converge in a certain sense as the dimension gets large.

A prevailing practice in engineering is to treat as conver-

gent. However, the next theorem demonstrates the crucial differ-

ence between ESD and distribution of eigenvalues, which sets a

rigorous ground for our channel capacity investigation.

Theorem 3: Let be as in (69). Assume the set of non-

negative functions is equicontinuous [23], that is, if

for every , there is a neighborhood of such that

for all and all . Suppose that

converges to pointwise and that the ESDs converge

pointwise as to a deterministic almost surely,

written as a.s. Then

(70)

Proof: See Appendix III

2) Large Dimension Asymptotics: Consider a series of -

connected channels with increasing dimension . We

study its capacity behavior when channel connectivity grows

properly with . More precisely

and (71)

where we write to emphasize the dependency of connec-

tivity on dimension and is called the growth ratio of connec-

tivity.

A similar model has been considered in [14] when partially

connected neural networks exhibit limiting ESD (LESD). Al-

though the random network in [14] consists of -valued

random variables, its adaptation to our case is essentially

straightforward. We state the following theorem and relegate

its proof to Appendix IV.

Theorem 4—Grenander and Silverstein’77: Assume

as . Let be the ESD of .

Then, converges pointwise in probability to

for

for

for

(72)

where

(73)

is the so-called Marčenko–Pastur law.

The ESDs of random -connected channel matrices are

shown in Fig. 5. As seen from the figure, the ESDs for

are quite close to the limiting Marčenko–Pastur law.

With the aid of the above results, we come to the main the-

orem of this section.

Theorem 5—Normalized Capacity Scaling: For fixed trans-

mit power , if the channel connectivity grows properly with

dimension , that is, (71) is satisfied, then the capacity per di-

mension is asymptotically bounded as

(74)

where is the Marčenko–Pastur law given in (72) and is

the growth ratio.

Proof: Applying Jensen’s inequality and carrying out in-

tegration, one can verify, indeed, that
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Fig. 5. The empirical spectral distributions of randomD-connected channel matrices. The growth ratio is 
 = 0:5. The Marčenko–Pastur law is also plotted.

The upper bound in (74) is again obtained from Lemma 2 by

noting that

We resort to Theorem 3 for the lower bound. The key is to eval-

uate the mutual information for uniform power input. One has

(75)

where ’s are the unordered eigenvalues of and

is the corresponding ESD. For

(76)

for some . Since

(77)

and, hence, are equicontinuous. Also, for

each

In Theorem 4, the convergence of ESD is only in probability.

However, there exists a subsequence such that the

corresponding ESD converges almost surely [21]. For the inves-

tigation on capacity of a large antenna array, this seems to pose

no serious constraint. So, we neglect this difficulty here.7 Then,

it follows from Theorem 3 that

(78)

Thus, the proof is complete.

Fig. 6 shows plots of normalized capacity (upper and lower

bounds) as a function of for . The asymptotic limits

of the bounds are also plotted. It can be seen that the “capacity”

corresponding to the uniform power distribution (lower bound)

seems to converge exactly to the lower limit calculated from the

Marčenko–Pastur law. We would like to leave it as a conjecture

although we have shown a weaker result in Theorem 5.

V. CAPACITY SCALING IN WIDE-BAND MIMO CHANNELS

In this section, we discuss the ergodic capacity of the wide-

band MIMO channel characterized by the transfer function

matrix in the virtual spatial domain. Assuming perfect

knowledge of at the receiver, the ergodic capacity of the

wide-band channel is given by

(79)

7It seems from [22] that the convergence is almost surely.
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Fig. 6. Normalized narrow-band capacity C(N)=N as a function of N in an infinite connectivity channel. The growth ratio 
 = 0:5 and P = 20 dB.

where the maximization is over a family of input Gaussian co-

variance matrices that satisfy the

total power constraint

(80)

The above definition of wide-band ergodic capacity is consistent

with that obtained in [24] for single-antenna frequency selective

additive white Gaussian noise (AWGN) channels.

Since the integrand in (79) in nonnegative, finding the optimal

family is equivalent to finding the optimal at each

. Furthermore, at any , the optimal only depends on the

spatial statistics of . From Proposition 1, we know that the

spatial statistics of are independent of . Thus, the same

is optimal for all and the expression (79) for wide-band

ergodic capacity reduces to

(81)

where denotes the narrow-band MIMO channel

matrix and . Since the wide-band ergodic ca-

pacity does not depend on channel correlation over frequency,

we immediately have the following result.

Theorem 6: Frequency selectivity does not affect the ergodic

capacity of wide-band MIMO channels.

Thus, whether we have a small or large delay spread does

not affect the ergodic capacity, just as in the single-antenna case

[15]. Note that some recent results suggested otherwise [25].

However, a correct interpretation of the results in [25] is consis-

tent with Theorem 6.8 Recent experimental measurements sup-

port the conclusions of Theorem 6 as well.

Remark 1: Note that (81) is identical to the expression for

narrow-band capacity (56) except for the linear capacity scaling

due to bandwidth and the replacement of by . With

the above connection between narrow-band and wide-band

capacity, most of the narrow-band results directly carry over.

In particular, the -connected model for the narrow-band

MIMO channel can be used in the wide-band case as well since

the ergodic capacity is governed by spatial statistics of the

narrow-band matrix . Thus, in all the following results, we

assume a -connected spatial structure for .

Theorem 7—General Wide-Band Capacity Bounds: For any

fixed and , the wide-band ergodic capacity can be bounded

as

(82)

Proof: The result directly follows from Lemmas 2 and 3.

From Lemma 4, we also have the following looser but more

tractable lower bound for :

(83)

8The numerical results in [25] show an increase in ergodic capacity with in-
creased delay spread. However, under the modeling assumptions in [25], an in-
crease in delay spread is associated with a corresponding increase in angular
spread. Thus, the increase in capacity is actually due to the increase in angular
spread, which is a well-understood effect (see, e.g., [6]). If the delay spread is
changed, while keeping the angular spread constant, there is no change in er-
godic capacity [11], [12], as in Theorem 6.
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Note that both the lower and upper bounds above increase

with .

A. Finite Connectivity Channels

Theorem 1 holds true for the wide-band channel as well.

Theorem 8—Asymptotic Wide-Band Capacity for Finitely

Connected Channels: Channel capacity of an

wide-band MIMO channel with fixed connectivity at a given

transmit power is asymptotically bounded between and

as approaches infinity.

Theorem 2 for the low-power regime also carries over un-

changed.

Theorem 9—Wide-Band Capacity Scaling in the Low-Power

Regime: For fixed , , and , the capacity of

a -connected wide-band channel scales like as becomes

small. More precisely

(84)

Moreover, any Gaussian input which satisfies the power

constraint achieves capacity asymptotically in the low-power

regime. In particular, is asymptotically optimal.

B. Infinite Connectivity Channels

The capacity scaling result (Theorem 5) for infinitely con-

nected narrow-band channels also carries over, except for ap-

propriate bandwidth scaling.

Theorem 10—Normalized Wide-Band Capacity Scaling: For

fixed transmit power and bandwidth , if the spatial channel

connectivity grows properly with dimension , that is, (71) is

satisfied, then the wide-band capacity per spatial dimension is

asymptotically bounded as

(85)

where is the Marčenko–Pastur law given in (72) and is

the growth ratio.

C. Infinite Bandwidth Channels

It can be shown that as increases, both the lower and upper

bounds in Theorem 7 converge to the same limit. The proof is

similar to the more direct proof provided below.

Theorem 11—Infinite Bandwidth Capacity: For any given

and transmit power , the infinite bandwidth capacity of a

-connected MIMO channel is equal to

(86)

Consequently, any Gaussian input satisfying the power con-

straint achieves capacity.

Proof: It follows from (81) that

(87)

Now we have

(88)

where are the eigenvalues of . By DCT we have

(89)

where the last equality follows from Proposition 2. Combining

(87) and (89) completes the proof.

If scales linearly with then the infinite bandwidth

capacity also scales linearly with . Moreover, in the infinite

bandwidth case, the capacity also scales linearly with the

transmit power or the signal-to-noise ratio (SNR). The most

conspicuous effect of large bandwidth is that capacity ap-

proaches the upper bound in the finite connectivity case and the

upper and lower bounds converge in the infinite connectivity

case.

Fig. 7 shows the upper and lower bounds for as a

function of for and . We note that both bounds

increase with and are converging to as pre-

dicted by Theorem 11. We have also plotted the large bounds

for for comparison. It is worth noting that the plots for

large are nearly identical to those for , demonstrating

the relatively fast convergence with .

VI. SPECTRAL EFFICIENCY IN WIDE-BAND MIMO CHANNELS

The tradeoff of spectral efficiency versus energy per infor-

mation bit is the key measure of channel capacity in wide-band

MIMO channels. Following [16], we investigate such a funda-

mental tradeoff for correlated MIMO channel via the virtual

channel representation. Our results reveal an intrinsic link

between channel structure and characteristics of the band-

width–power tradeoff. We shall begin with an exposition that is

tailored to our setup. Readers should consult the original work

[16] for an elaborated treatment of spectral efficiency in the

wide-band regime.

The wide-band additive white Gaussian noise (AWGN)

channel is perhaps the best example to illustrate the tradeoff of

spectral efficiency and energy per information bit. The capacity

of wide-band AWGN with bandwidth (Hz) is given by

(90)

where noise is assumed to have unit variance and is the total

transmit power. Denote by the energy per dimension

(J/s/Hz). Normalized by total bandwidth, the spectral efficiency

or capacity per dimension (b/s/Hz) is

(91)
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Fig. 7. Normalized wide-band capacity C (N)=N as a function of bandwidth. N = 6, D = 3, P = 20 dB. The large N limits correspond to 
 =
D(N)=N = 0:5.

Since the energy required to support bits is per dimension,

the energy per information bit (J/b) is simply given by

(92)

As the bandwidth approaches infinity or, equivalently, as

the energy per dimension approaches , spectral efficiency

converges to . However, the infinite bandwidth capacity is pos-

itive and

1.59 dB (93)

which is the minimum energy per information bit required for

reliable communication [16].

Generally, let be the Shannon capacity per dimension

where is the energy per dimension. The spectral efficiency

versus energy per information bit ( – ) tradeoff is a curve pa-

rameterized by the energy per dimension (see [16, eqs.

(15) and (16)]) as

(b/s/Hz) (94)

(dB-J/b) (95)

The region of – curve near is of great interest for

wide-band applications. As approaches zero, converges to

the minimum energy per information bit required for

reliable communications. Although spectral efficiency dimin-

ishes as bandwidth increases, its decay near , that is, the

slope of – at , is a key measure in assessing system

capacity in the wide-band regime. The explicit parameterization

of the tradeoff curve with respect to is quite convenient to com-

pute and .

Theorem 12—See [16]: Assume and exist on a

neighborhood of .9 Then

(96)

(97)

Proof: We provide a proof based on (94) and (95). Apply

L’Hospital’s rule to get (96) as

Note that

(98)

Now applying L’Hospital’s rule repeatedly on (94) and (95), one

has

which is (97).

9Note that the units of C(s) are in bits per dimension (as opposed to nats per
dimension) which results in a constant offset compared with the corresponding
formula in [16].
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We next characterize the fundamental – tradeoff in

wide-band MIMO channels. We shall adopt the practice of

normalizing capacity by antenna dimensions as in [16], that is,

the capacity unit is b/s/Hz/antenna, and correspondingly the

energy per dimension is given by

(99)

where is the total transmit power, is the antenna dimension,

and is the bandwidth. Since it is hard to find the optimal input

distribution in general, we use the capacity bounds.

Theorem 13—Minimum Energy Per Information Bit: Given

a wide-band -connected channel of dimension , then

dB (100)

Proof: It follows from Theorem 7 that

(101)

where is an unordered eigenvalue of with .

Trivially

Similar to the proof of Theorem 2, the DCT can justify the fol-

lowing:

Then, (100) results from taking on both sides of

The wide-band slope concerns local behavior of –

tradeoff for small values of energy per dimension . To facil-

itate exposition, we normalize the input (Gaussian) distribution.

Definition 5—Normalized Input Distributions: Let be the

set of all semipositive-definite Hermitian matrices corre-

sponding to the covariance matrices of -dimensional complex

Gaussian input distributions. Given any , write

(102)

where , that is, write any as a product of a scalar and

a normalized positive-definite Hermitian matrix whose trace is

fixed at . Denote by the set of such matrices . Note that

any has a fixed trace equal to .

Using the notion of normalized input distributions, we can

write the the power constraint as

(103)

where is the total transmit power. Then, the channel capacity

formula can be rewritten as

(104)

where the maximization is over all normalized input distribu-

tions and is the unordered eigenvalue of . Therefore,

the optimal – tradeoff curve is given by (94) and (95) with

(105)

The proof of Theorem 13 shows that uniform power distribu-

tion, that is, , asymptotically achieves and is thus

first-order optimal in the wide-band regime in the terminology

of [16]. Actually, the result can be strengthened, following a

similar argument as in Theorem 2, so that any normalized is

first-order optimal. However, different signaling schemes may

result in different wide-band slopes . The task of finding the

maximal is complicated by the maximization in (105). Little

is known about the optimal for general -connected chan-

nels. Furthermore, it is possible that the optimal may depend

on as well. However, we have the following result whose proof

relies on Lemma 1.

Theorem 14—Maximal Wide-Band Slope: Suppose that the

normalized input distribution is kept unchanged as energy per

dimension scales. Then, uniform input distribution, that is,

, gives the maximal wide-band slope for a given wide-band

-connected channel of dimension and its corresponding

slope is

(b/s/Hz/dB/antenna)

1 b/s/Hz/3 dB/antenna (106)

which is independent of connectivity of the channel.

Proof: See Appendix V.

Remark 2: It is consistent to see that connectivity has no ef-

fect on the maximal wide-band slope. If , the -con-

nected channel is essentially a parallel of Rayleigh-fading chan-

nels. Its slope is given via [16, Theorem 13] by setting

, which is 1 b/s/Hz/3-dB/antenna. If , the same

theorem, specialized by , says that the maximal

slope is again 1 b/s/Hz/3 dB/antenna.

Fig. 8 illustrates the tradeoff between spectral efficiency and

energy per information bit in the wide-band regime for -con-

nected channels. The – curves for different normalized

input distributions are plotted. The channel dimension is

and the connectivity is in the simulation. As evident from

the figure, all tradeoff curves approach the same as
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Fig. 8. Spectral efficiency as a function of energy per information bit in the wide-band regime for a 5-connected channel of dimension 10.

determined by Theorem 13, but the uniform distribution gives

the best slope as in Theorem 14.

VII. PHYSICAL INTERPRETATION OF SCALING RESULTS

In this section, we provide a physical interpretation of the

scaling results, particularly in terms of the number and spatial

distribution of propagation paths. The most important scaling

results are due to Theorems 1 and 5. For infinite connectivity,

with a nonvanishing growth ratio , capacity scales

linearly with for large with the slope between the bounds

derived in the Theorem 5. For large , and thus

connectivity must also scale linearly with to sustain linear

capacity growth. Since corresponds to a fully populated

i.i.d. channel, the bounds in Theorem 5 show that the only ef-

fect of is to reduce the effective asymptotic received SNR

(slope of capacity growth). This is consistent with the interpre-

tation that reflects the fraction of virtual receive

angle that couple with each virtual transmit angle and vice versa.

However, for fixed connectivity , the capacity saturates to a

value between and because scattering is not rich enough

for to scale with .

Recall from (46) that we need on the order of

resolvable paths to populate a -con-

nected channel with high probability. Thus, the number of paths

must scale as (quadratically) with to support

linear growth in capacity (and connectivity). On the other hand,

the number of paths must scale as (linearly)

with to support a finite connectivity ( ) and nonvanishing

but finite asymptotic capacity. In addition to the growth in

the number of resolvable paths, the spatial distribution of the

paths is also critical from a scaling viewpoint. To see this, it

is instructive to interpret the scaling results in terms channel

power per dimension . Under the assumption that

the power per path is constant , the total channel

power is given by

and from Proposition 2, for a -connected

channel, where is the power in each nonvanishing virtual

coefficient ( in the analysis). Then, we have

(107)

and the bounds in Theorem 5 show that for large the capacity

is given by

SNR

(108)

where reflects the number of parallel channels and

SNR is the received SNR per parallel

channel (dimension). For an infinite connectivity channel,

increases linearly with (from (107)) and SNR

remains constant, leading to linear capacity scaling (from

(108)). On the other hand, for fixed connectivity ,

remains constant and SNR , leading to

capacity saturation.

The preceding discussion leads to a general and intuitive

interpretation of the number and spatial distribution of paths

required for capacity scaling. For an -dimensional channel,

resolvable paths, uniformly distributed in the diag-

onal spatial bins of (see Fig. 2), are sufficient to create

parallel channels. In order to keep SNR constant, we need
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Fig. 9. Narrow-band capacity scaling versus the number of antennas for a channel simulated via the physical model. Three different physical scenarios are shown:
fixed number of paths (N = 20), linear growth in the number of paths (N = 3N ; finite connectivity D = 3), and quadratic growth in the number of
paths (N = 0:30 � N ; infinite connectivity 
 = 0:3).

additional resolvable paths per parallel channel (diag-

onal element of ) to couple each virtual receive (transmit)

angle with transmit (receive) angles, so that

also increases linearly with . Thus, paths

are needed overall and they should be distributed in a physical

scattering environment with a nonvanishing conditional an-

gular spread (associated with each transmit or receive angle)

to yield . The scattering environment in (44)

(corresponding to a -connected model) with

and

would suffice . However, a more realistic scattering

environment with nonuniform but nonvanishing conditional

angular spreads ,

would also suffice. A finite connectivity

channel essentially corresponds to a “diagonal” scattering en-

vironment with a vanishing conditional angular spread (

in (44)); it can be populated with paths to yield linear

scaling in the number of parallel channels, but no matter how

many paths populate it, it cannot sustain a constant SNR

since does not scale.10 For a given fixed number of paths

(fixed ), we expect the capacity to increase linearly

with up to , saturate to a maximum around

, and then go to zero if we increase beyond

10This is related to the fact that M(� ; � ) is concentrated on a one-dimen-
sional curve in diagonal scattering.

that. Thus, represents the optimal number of

antennas—distributing power over more antennas is inefficient.

Figs. 9 and 10 illustrate narrow-band capacity scaling with

in a channel simulated via the physical model (6). Three dif-

ferent scattering environments are simulated: i) fixed number

of propagation paths ( ), ii) linear growth in the

number of paths depicting finite connec-

tivity, and iii) quadratic growth in the number of paths

depicting infinite connectivity. The SNR is

20 dB and the power per path in all cases.

The channel was simulated according to a uniform conditional

angular density of the form (44) with ; the paths

angles were uniformly distributed over the support of the scat-

tering function:

Channel capacity was approximated with the mutual informa-

tion for uniform input power distribution which corresponds to

the lower bounds on capacity. As evident from Fig. 9, capacity

is converging to zero for environment i), is exhibiting satura-

tion for environment ii), and is showing linear growth for envi-

ronment iii). Note that the lower bound in Theorem 1 for ii) is

144 b/s/Hz. Fig. 10 plots the ratio for the three envi-

ronments. As expected, the growth ratio is converging to zero

for both i) and ii), whereas it is stabilizing to a value near 4

b/s/Hz/antenna for iii). Furthermore, the capacity growth rate

in iii) closely agrees with the lower bound in (5) which yields

a value of about for . It is also worth noting that

the growth rate has stabilized to its asymptotic value around

corresponding to paths.
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Fig. 10. Plots of C(N)=N as a function of N for a channel simulated via the physical model. Three different scenarios are shown: fixed number of paths
(N = 20), linear growth in the number of paths (N = 3N ; finite connectivity D = 3), and quadratic growth in the number of paths (N = 0:30N ;
infinite connectivity 
 = 0:3).

We now briefly relate our results to the scaling results re-

ported by Chuah et al. in [13]. The channel model assumed in

[13] is one of the product type, that is,

(109)

where has i.i.d. zero-mean complex circular Gaussian entries

with variance . The matrices and represent the spatial

correlation at the receiver and the transmitter, respectively, and

are assumed to possess a Toeplitz structure consistent with the

stationary spatial statistics for ULAs identified in Section II-D.

It is well known that Toeplitz matrices are diagonalized by DFT

matrices asymptotically [26]. Thus, for large

and (110)

where and are diagonal matrices consisting of the non-

negative eigenvalues of and . Substituting (110) in (109)

we get

(111)

where is also an i.i.d. matrix since and

are unitary. Comparing (11) with (22), we can identify

(112)

as the narrow-band virtual channel matrix corresponding to the

model (109) used in [13]. However, the above matrix is a spe-

cial case of the class of virtual matrices which consists of all

matrices with independent Guassian entries with arbitrary vari-

ances. Furthermore, unlike the -connected channel model, the

conditional and marginal angular spreads/bandwidths are al-

ways the same in product correlation models, as evident from

(112). As we argued above, the ratio of conditional-to-marginal

angular spreads is a key determinant of whether linear capacity

scaling is possible or not. The product models will always pre-

dict linear scaling, as in [13].

VIII. CONCLUSION

We have investigated capacity scaling and spectral efficiency

in wide-band correlated MIMO channels using the virtual

(Fourier) channel representation that provides an analytical

framework for relating characteristics of physical (ray tracing)

models to channel statistics and capacity. In particular, for

ULAs, the virtual channel coefficients sample the physical

scattering environment, are approximately uncorrelated re-

gardless of the correlation exhibited by the physical channel,

and characterize the degrees of freedom in correlated channels

(which are fewer than i.i.d. channels). The key construct behind

our analysis is a -connected model for the virtual channel

matrix that was motivated via physical considerations and

provides a meaningful and tractable measure of the richness

of scattering. Our scaling results show that linear capacity

growth with the number of antennas is possible if the

number of resolvable paths grows quadratically with

to sustain a rich scattering environment. For linear growth

in , the capacity eventually saturates. For a finite but

large , we expect the following approximate behavior:

i) linear growth for , ii) saturation between

, and decay to zero for .

We showed that frequency selectivity does not affect the er-

godic capacity of wide-band channels. Thus, the wide-band ca-

pacity is essentially governed by the spatial structure of the

narrow-band MIMO channel. In particular, the infinite band-

width capacity scales linearly with transmit power. We studied
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the spectral efficiency of wide-band -connected MIMO chan-

nels and provided explicit characterizations of the minimum en-

ergy per bit and the wide-band slope.

We emphasize that the -connected channel is a model for

correlated channels based on two assumptions: i) spatial scat-

tering function has a banded support (see (44)), and ii) uniform

spatial power distribution.11 However, it encompasses many ex-

isting models, including the product correlation model that has

been used in several analytical studies. Furthermore, as argued

in Section VII, it captures the essence of scaling in more gen-

eral (and more realistic) scattering environments in which the

richness of coupling between transmit and receive spatial di-

mensions scales appropriately with . Currently, we are inves-

tigating scaling behavior under less stringent assumptions on the

spatial scattering function.

In closing, we believe that the simple and intuitively ap-

pealing interpretation of physical scattering afforded by the

virtual representation can be fruitfully exploited in many other

aspects, including space–time code design [27], [28], channel

estimation [29], and channel simulation.

APPENDIX I

ALTERNATIVE PROOF OF LEMMA 2

Proof: Starting with arbitrary , the eigen-decomposition of

is given by

(113)

where is a unitary matrix and is a diagonal matrix with

nonnegative diagonal entries. Denoting , one

has

(114)

where the last step follows from Hadamard’s inequality [30] and

is the th diagonal entry in . Then it follows from Jensen’s

inequality that

(115)

where . Then is a scaled doubly

stochastic matrix with scale by Lemma 1. The general upper

bound then follows from the following nonlinear programming:

(116)

11We have recently begun experimental studies in collaboration with Prof.
Ernst Bonek of FTW, Vienna, for experimental validation of the model.

Fig. 11. A schematic illustrating Rayleigh subchannel construction from
a four-dimensional 3-connected channel. x ’s and y ’s are input and
output signals, respectively. The arrow indicates actual signals involved in
construction. A two-dimensional subsystem is denoted by a dotted frame in the
figure.

It is easy to see that the objective function is concave and the

constraint domain is convex. The Lagrangian of the program is

given by

(117)

Setting partial derivatives to zero we get

(118)

Observe is a solution to (118). It is

also easy to check that this solution together with associated

satisfies the Kuhn–Tucker condition [31], and thus achieves the

maximum which turns out to be .

APPENDIX II

PROOF OF LEMMA 4

Proof: We illustrate the idea by an example shown in Fig. 11

where and . If the information is only transmitted

at the second and third transmit antenna, the received signal at

the first and second receive antenna can be written as

(119)

Note that the effective two-dimensional MIMO channel

matrix is a lower triangular matrix with entries in the main

diagonal being complex Gaussian distributed. Similar to

BLAST-type processing [32], [33], successive decoding and

interference cancellation can be used to construct two parallel

Rayleigh-fading subchannels. More specifically, the first

subchannel corresponding to the first received antenna has the

following channel equation:
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Assuming that the signal has been correctly decoded (assuming

capacity-achieving codes are used), its interference toward the

second receive antenna can be removed as

which gives rise to the second Rayleigh-fading channel asso-

ciated with the second receive antenna. Note that this method

of constructing one-dimensional subchannels has been used in

many works to analyze system capacity (see, e.g., [1]).

Generally, consider an -dimensional -connected channel.

Without loss of generality, one can assume to be an odd in-

teger. A transmit antenna with index is allowed to transmit if

Hence, the number of effective transmit antennas is

After collecting signals from the th receive antenna with

, the effective system has a lower triangular

channel matrix with dimension . Similar to the

successive decoding and interference cancellation method

elaborated above, a total of parallel Rayleigh sub-

channels can be formed by successive interference cancellation.

The processing begins with the decoding of information sent by

the th transmit antenna at the first receive antenna.

The corresponding first Rayleigh subchannel is given by

Assuming perfect decoding, the interference of the th

transmit antenna toward the next transmit antenna can be sub-

tracted as

which gives rise to the second Rayleigh subchannel. This proce-

dure continues until the last receive antenna has been

processed. Therefore, the mutual information of the

parallel Rayleigh subchannels is

which provides the desired lower bound for channel capacity.

APPENDIX III

PROOF OF THEOREM 3

W need some results from real analysis and probability

theory.

Lemma 5—Fatou’s Lemma, See [23]: If then

(120)

Definition 6—Weak Convergence of Distributions: A

sequence of distribution functions is said to converge

weakly to a limit (written ) if for all

that are continuity points of .

Theorem 15—(See [21]): If , then there are

random variables , , with distribution so that

a.s.

Proposition 3: Let be equicontinuous and

pointwise. If then

(121)

Proof: By Theorem 15, there exist random variables

and in some probability space , with distribution

and , respectively, and It is fairly straightforward

to see that

(122)

at all for which by virtue of the equicontinuity

of . Then

(123)

where we have used Fatou’s lemma in passing inside the

integral.

We now give a proof of Theorem 3.

Proof: Denote by the probability space of

random ESD . Let

converges to

By hypothesis, . For all , it is obvious that

and, hence, by Proposition 3

(124)

Now we apply Fatou’s lemma to get

(125)

which completes the proof.

APPENDIX IV

PROOF OF THEOREM 4

Proof: We adapt Grenander and Silverstein’s proof. Please

refer to the original work [14] for notations. In our case,

and , that is, no random connectivity and, hence,

in our notation. We examine the LESD of .

Reference [14, eq. (2, 2)] becomes

(126)

The proof would be the same if one could show [14, Lemma

1] holds for the complex case. The key is to break the sum in

(126) into two parts: one part contributes in the limit and the
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other does not. Since all the moments of a complex Gaussian

random variable are finite, the noncontributing terms diminish.

Hence, only terms that exactly pair up ’s are relevant, which

is the content of Lemma 1. A similar argument can be used to

show . Therefore, the desired conclu-

sion holds.

APPENDIX V

PROOF OF THEOREM 14

Proof: Since is fixed during scaling, the capacity (mu-

tual information) per dimension is given by

(127)

where is an unordered eigenvalue of . The DCT can

justify the interchange of expectation and derivatives to give

(128)

(129)

Applying Theorem 12,

(130)

which is [16, Theorem 13] specialized to our case. Our task is

to evaluate for a -connected channel .

Let be the eigen-decomposition of and let

. One has

(131)

Then

(132)

where we have used the scaled doubly stochastic matrix prop-

erty of (Lemma 1) and the fact that

(133)

Let . We shall compute

(134)

where is the th entry of . The matrix looks like

...
. . .

... (135)

where generally

(136)

Note that is a quadratic polynomial of .

We take the first row , for example, to illustrate the

computation for the coefficients of this polynomial.

First, consider the terms like for . The coeffi-

cient of the term due to the first row in is

(137)

By , different rows of are uncorrelated since entries

of are uncorrelated. Thus, if , one has

Moreover, since the entries of , and, thus, , are from a proper

complex Gaussian joint distribution, the Gaussian moment-fac-

toring theorem (GMFT) [34] implies that

Therefore,

(138)

where Lemma 1 is used in the last step.

Next, consider the terms like for . The

coefficient due to the first row in is

(139)

Use GMFT to break the sum into two parts as

(140)
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Let and be the th and th column vectors of , respec-

tively. The first sum in (140) vanishes because

(141)

where we have used Proposition 2 and for .

Since different rows of are uncorrelated, the second term in

(140) reduces to . Therefore,

(142)

Combining (138) and (142), the polynomial due to the first row

is

(143)

Similar calculation can be done for other rows. Adding all the

polynomials, one has

(144)

where we again used Lemma 1.

Since is constant, it follows

from (130) that maximizing is equivalent to minimizing

, which is (144) over the constraint set

(145)

Similar to the alternative proof in Lemma 2 (Appendix I), the

scaled doubly stochastic property of critically estab-

lishes that the uniform power distribution, that is,

, achieves the minimum and the corresponding min-

imum value is

(146)

Therefore, the maximal slope is

(147)
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