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Abstract—Previous studies have shown that single-user systems
employing -element antenna arrays at both the transmitter and
the receiver can achieve a capacity proportional to , assuming
independentRayleigh fading between antenna pairs. In this paper,
we explore the capacity of dual-antenna-array systems undercor-
related fadingvia theoretical analysis and ray-tracing simulations.
We derive and compare expressions for the asymptotic growth rate
of capacity with antennas for both independent and correlated
fading cases; the latter is derived under some assumptions about
the scaling of the fading correlation structure. In both cases, the
theoretic capacity growth is linear in but the growth rate is
10–20% smaller in the presence of correlated fading. We analyze
our assumption of separable transmit/receive correlations via
simulations based on a ray-tracing propagation model. Results
show that empirical capacities converge to the limit capacity
predicted from our asymptotic theory even at moderate = 16.
We present results for both the cases when the transmitter does
and does not know the channel realization.

Index Terms—Asymptotic capacity growth, correlated fading,
multiantenna arrays, multiple-input–multiple-output (MIMO)
systems, ray tracing.

I. INTRODUCTION

I N response to the demand for higher bit rates in wireless
local-area networks (LANs), researchers have explored the

use of multiple-element arrays (MEAs) at both the transmitter
and the receiver. Signals propagating through the wireless
channel experience path loss and distortion due to multipath
fading and additive noise. These impairments, along with the
constraints of power and bandwidth, limit the system capacity.
In the past, multiple antennas have been used at the receiver to
combat multipath fading, e.g., using maximal-ratio combining
[1], or to suppress interfering signals, e.g., using optimal com-
bining [2]. Recent studies report that in single-user, point-to-
point links, using MEAs at both transmitter and receiver
increases the capacity significantly over single-antenna systems
[3], [4].
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Foschini and Gans have analyzed the information-theoretic
capacity of MEA systems in a narrow-band Rayleigh-fading en-
vironment [3]. They consider independent and identically dis-
tributed (i.i.d.) fading at different antenna elements, and assume
that the transmitter does not know the channel. Withtrans-
mitting and receiving antennas, the MEA mutual information
with equal-power allocation is reported to grow linearly with

for a given fixed average transmitter power. An MEA system
achieves almost more bits per hertz for every 3-dB increase
in signal-to-noise ratio (SNR) at high SNR, compared to the
single-antenna case, which only achieves one additional bit per
hertz for every 3-dB increase in SNR.

In practice, correlation exists between the signals transmitted
by or received at different antenna elements. Correlation can
arise if the elements are not spaced sufficiently far apart. For
example, Lee pointed out in [5] that in order to obtain a correla-
tion coefficient at adjacent elements less than, the elements
must be spaced by about 15–20 wavelengths in the broadside
case and 70 wavelengths in the inline case. The presence of a
dominant line-of-sight component can also affect the MEA ca-
pacities. It is important to understand the impact of these factors
on MEA system capacity.

The goal of this paper is to explore the capacities of single-
user MEA systems in a more realistic propagation environment,
where the fading is correlated. We consider the performance
in two scenarios: 1) the transmitter knows the channel, so that
optimal transmit power allocation (also known as water filling)
can be used; 2) the transmitter does not know the channel, so
that equal power is allocated to each of the transmit antenna
elements. In both cases, it is assumed that the receiver knows
the channel perfectly. We study the behavior of MEA capacities
through analysis and simulation.

The multiple-input–multiple-output (MIMO) fading channel
is modeled as a random matrix. The water-filling capacity

and the mutual information under equal power allocation
of a by system are random variables, being functions of the
singular values of the random. We construct a fading correla-
tion structure assuming separable transmit/receive correlations,
and derive the large system limiting distribution of the singular
values of in two cases: a) when the fades between different
antenna pairs are independent and b) when these fades are cor-
related. Using these results, we show almost-sure convergence
of the asymptotic growth rate and . In both the in-
dependent and correlated fading cases, the capacity and mutual
information grow linearly with but the growth rate is different
when the fades are correlated. In particular, we show that under
correlated fading, the growth rate of is smaller at all SNRs
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compared to the independent fading case, while the growth rate
of is smaller at high SNR but larger at low SNR.

Our hypothesized fading correlation structure is studied
carefully via simulation based on a ray-tracing propagation
model. We use the WiSE (Wireless System Engineering) [6]
software tool to model explicitly the channel response between
a transmitter and a receiver placed inside an office building.
Comparing the empirical capacity distribution with the asymp-
totic theory, reasonable agreement is found even for moderate

. Initial results can be found in [7] and [8]. We also
quantify the capacity improvements achieved by water filling
over the equal power strategy empirically at different SNR
levels.

An alternative approach to ray-tracing simulations is to use
scattering models [9], [12] to characterize the spatial fading cor-
relations. In independent work, Shiuet al.quantify the effect of
fading correlations on MEA capacity in [13] by employing such
an abstract scattering model.

The remainder of this paper is organized as follows. In Sec-
tion II, we model the channel as a MIMO system with flat fre-
quency response. Using this mathematical model, we define in-
formation-theoretic capacity and mutual information of MEA
systems in Section III, and analyze their asymptotic behavior as

in Section IV. In Section V, we present capacity esti-
mates for the simulated channels and discuss the discrepancies
between these results and the asymptotic capacities predicted
by theory. We briefly describe how WiSE is used to model the
indoor propagation environment that our numerical analysis is
based on. We also include details about placements of transmit-
ting and receiving MEAs, arrangement of antennas in an array,
and basic assumptions about the antenna elements. Conclusions
are presented in Section VI.

To simplify notations, we will focus exclusively on the case
when the number of transmit antenna is equal to the number
of receive antenna (by systems). The extension of the ana-
lytical results to the case with unequal number of transmit and
receive antennas is straightforward.

II. CHANNEL MODEL

The following notation is used throughout the paper:for
vector transpose, for transpose conjugate, for the iden-
tity matrix, for expectation, and underline for vectors. All
logarithms are with respect to base.

We consider a single-user,1 point-to-point communication
channel with transmitting and receiving antenna elements,
denoted as an -MEA system. We assume that the trans-
mitted signal occupies a bandwidth, over which the channel
frequency response is essentially constant. For this assumption
to be valid, must be much smaller than the channel coher-
ence bandwidth, which is approximately the reciprocal of the
channel delay spread.2 Since the maximum delay spread of our
channels is about 25 ns, we require thatbe much less than 40
MHz. Assuming zero excess bandwidth, this requires a symbol
rate much less than 40 Mbaud.

1
n transmitting antennas are colocated, and so are the receiving antennas.

2Here, delay spread refers to the difference in arrival times of the earliest and
latest strong rays.

For the remaining analysis and discussions, we assume that
the channel is linear and time-invariant and use the following
discrete-time equivalent model:

(1)

is an vector whose th compo-
nent represents the signal transmitted by theth antenna. Simi-
larly, the received signal and received noise are represented by

vectors, and , respectively, where and represent
the signal and noise received at theth antenna. The complex
path gain between transmitterand receiver is represented by

.
We further assume the following.

• The total average power (sum over all transmitting an-
tennas) is , regardless of .

• The noise vector is an additive white complex Gaussian
random vector, whose entries are
i.i.d. circularly symmetric complex Gaussian random vari-
ables with variance

where is the signal bandwidth.

We consider the following two cases.

1) is known only to the receiver but not the transmitter.
Power is distributed equally over all transmitting antennas
in this case.

2) is known at the transmitter and receiver, so that power
allocation can be optimized to maximize the achievable
rate over the channel.

In this work, we treat as quasi-static. is considered fixed
for the whole duration of communication, so that the capacity
is computed for each realization of without time averaging.
On the other hand, changes if the receiver is moved from one
place to the other, and we assume this will happen over a time
scale much longer than the duration of communication. The as-
sociated capacity and mutual information and for each
specific realization of can be viewed as random variables.
We are interested in studying the statistics of these random vari-
ables, in particular, the averages, and and the values at
5% channel outage, and .

III. MEA C APACITY AND MUTUAL INFORMATION

Channel capacity is defined as the highest rate at which in-
formation can be sent with arbitrarily low probability of error.
Since the channel is considered quasi-static, it is reasonable
to associate the capacity to a specific realization of, given
a fixed average total power and noise variance (see
Section II for channel model and assumptions). Throughout our
analysis, we assume that are iden-
tically distributed with the variance normalized to be. There-
fore, the average received SNR is defined as



CHUAH et al.: CAPACITY SCALING IN MIMO WIRELESS SYSTEMS UNDER CORRELATED FADING 639

When antennas are used, we denote the MEA capacity with
water filling and mutual information with equal-power alloca-
tion as and , respectively. For the case with , the
Shannon capacity is

b/s/Hz. (2)

In the high-SNR regime, each 3-dB increase ofyields a
capacity increase of 1 b/s/Hz.

A. Capacity With Water-Filling Power Allocation

In this subsection, we derive the MEA capacity assuming
the transmitter has perfect knowledge about the channel. With
this knowledge of the channel, the total transmit power can be
allocated in the most efficient way over the different transmit-
ters to achieve the highest possible bit rate. Based on the model
in Section II and definitions in [14], the MEA capacity with op-
timal power allocation is

b/s/Hz (3)

where is the covariance matrix of and must satisfy
the average power constraint

(4)

The optimal solution is

(5)

where satisfies

(6)

and the are the eigenvalues of .
The optimal solutions given in (5) and (6) are analo-

gous to the optimal power allocation calculated through the
water-filling algorithm for parallel Gaussian channels [14].
Intuitively, (5) and (6) suggest that the original MIMO channel
can be decomposed into parallel independent subchannels,
and we allocate more power to the subchannels with higher
SNR . Here, is the “water level” that marks the height
of the power that is poured into the “water vessel” formed by
the function . Each of these subchan-
nels contributes to the total capacity through . If

, we say that this subchannel provides an effective
mode of transmission and is called astrong eigenmode.

B. Mutual Information With Equal-Power Allocation

In this case, we assume that equal power is radiated from each
transmitting antenna, which is a natural thing to do when the
transmitter does not know the channel. The mutual information
of -MEAs with equal-power allocation is

b/s/Hz (7)

Applying singular-value decomposition to, we can write
(7) as

IV. A SYMPTOTIC ANALYSIS

The capacity and mutual information depend on ,
which is random in a fading environment. We analyze the
asymptotic behavior of and as for two cases:
a) when the are independent, and b) when the are
correlated. Our analysis is based on the channel model and
properties described in Sections II and III. In all cases, we
normalize for all . For clarity, let us use

and to explicitly denote the dependency on.

A. Independent Fading

We first assume that the path gains are i.i.d. for all and
. We scale up the size of the MEA by lettinggrow large. For

each , let be the empirical distribution of the eigenvalues
of , i.e., for each

the fraction of squared singular values ofless than or equal to
. Note that since the singular values are random, so is the em-

pirical distribution. An important observation is that, from the
expressions (5)–(7), both the capacity and the mutual informa-
tion under equal-power allocation depends ononly through
the empirical distribution of the eigenvalues. The asymptotic
properties of the random variables and hinge on
how the (random) empirical distribution of the singular values
behaves as . We have the following theorem (see, e.g.,
[15]).

Theorem IV.1:Define . Then almost
surely, converges in distribution to a limit , which has a
density given by

else.
(8)

Moreover, if is the largest eigenvalue of ,
then almost surely

This result says several interesting things. First, the scaling by
in the definition of means that the eigenvalues are growing

of the order of . After rescaling, the random distribution con-
verges to adeterministiclimiting distribution, i.e., for large ,
the empirical distribution of the eigenvalues looks similar for al-
most all realizations of . Moreover, the limit does not depend
on the distribution of the entries .
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The asymptotic behavior of the mutual information
follows directly from this proposition

where the convergence is almost surely. This observation was
previously made by Foschini [3]. The integral can actually be
computed in closed form, as was done in [16] in the context of
a related capacity analysis problem for randomly spread code-
division multiple-access (CDMA) systems.

(9)

We now turn to the water-filling capacity. By relabeling the
parameter as we can rewrite (5) and (6) as

where satisfies

(10)

As , the empirical distribution of converges almost
surely to a limit with density . From (10), we see that
converges to satisfying the equation

and converges almost surely to

(11)

Thus, when both the transmitter and the receiver have per-
fect knowledge of the fading channel, the capacity scales like

, where can be interpreted as the capacity of a
fading channel with fading distribution when water filling
over the fading state is performed [17]. Similarly, when only the
receiver has knowledge of the channel and the transmitter allo-
cates an equal amount of power to each transmit antenna, the
achievable mutual information scales like , where
can be interpreted as the mutual information achieved by using
constant transmit power in a fading channel with the gain dis-
tributed as . We conclude that both and scale
linearly with but the rate of growth is larger for than is for

. Moreover, if we let be the -outage capacity, i.e., such
that

then the above results implies that

for all . This is because almost-sure convergence implies
convergence in probability. This means that for large, the ca-
pacity becomes insensitive to the realization of. Similar com-
ments apply to the scaling of .

We now compare and in both the low- and
high-SNR regimes.

As a first-order approximation, at low SNR

(12)

We observe that at low SNR, depends only on the average
SNR and not on the eigenvalue distribution.

For the capacity, we calculate

(13)

where is the water-filling level. As approaches, ap-
proaches . To first order, at low SNR

and we conclude that

Hence, the water-filling strategy affords a significant perfor-
mance gain over the constant-power strategy at low SNR. The
intuition is that when there is little transmit power, it is much
more effective to expend it on the strongest eigenmode of the
system (with gain ) rather than spread the power evenly across
all modes.

Next we consider the high-SNR regime. Using the explicit
expression (9), we see that as

a result already noted in [3].
At high SNR, it is well known that the water-filling and the

constant power strategies yield almost the same performance

and hence has the same high-SNR approximation of
.

Although water filling does not always give significant ca-
pacity improvements over the equal-power strategy, the perfect
channel knowledge at the transmitter often leads to easier and
more reliable implementations of the receiver, since the receiver
can now be dealing with decoupled channels instead of having
to perform cancellation and nulling.

B. Correlated Fading

1) Correlation Model: In the previous subsection, we as-
sumed that the fades between different antenna pairs are inde-
pendent of each other. We will now consider the situation when
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the fading between antenna pairs is correlated. While the results
we obtained for the independent fading case holds forany dis-
tribution of the individual , the results we present here for
the correlated case are only for the case of a Rayleigh-fading
model. Each of the are assumed to be complex, zero-mean,
circular symmetric Gaussian random variables with variance

. The are jointly Gaussian with the following
covariance structure:

where and are by covariance matrices. This fading
model embodies three assumptions.

• The correlation between the fading from transmit antennas
and to the same receive antenna is and does not

depend on the receive antenna; describes thetransmit
correlation.

• The correlation between the fading from a transmit an-
tenna to receive antennaand to receive antenna is

and does not depend on the transmit antenna;de-
scribes thereceive correlation.

• The correlation between the fading of two distinct antenna
pairs is the product of the corresponding transmit correla-
tion and receive correlation.

The first two assumptions are usually quite accurate when an-
tenna elements are colocated in the same physical unit at the
transmitter and also at the receiver. The product-form assump-
tion is made for analytical tractability and can be thought of as a
first-order approximation of the correlation structure when the
fading from two transmit antennas to the same receive antenna
and the fading from two receive antennas to the same transmit
antenna is much more highly correlated than that between two
distinct antenna pairs. This product form assumption is studied
through simulations in Section V.

To consider the scaling of capacity and mutual information
with the number of antennas, we need to make further assump-
tions on the covariance matrices and as the system
scales. In particular, we assume that the empirical eigenvalue
distributions of and converge in distribution to some
limiting distributions and , respectively. This will be true
if

1) the correlation between the fading at two antennas de-
pends only on the relative and not absolute positions of
the antennas;

2) the antennas are arranged in some regular arrays, such
as square or linear grids, and as we scale up the number
of antennas, the relative position of adjacent antennas are
fixed; and

3) the correlation decays sufficiently fast over space.

For example, if the antennas are arranged in a linear array,
and are Toeplitz. If the power spectral densities of the

stationary processes

and

exist at all frequencies, then the limiting eigenvalue distributions
and of and exist. For a given ,

is the fraction of frequencies in the power spectral density of
with power less than or equal to. Moti-

vated by this example, we will in general define

and defined in this way is always nondecreasing from
to . One can think of and as power spectral densities ex-
cept that the frequencies are reordered such that they are always
nondecreasing functions of. In the results to be presented, the
ordering is immaterial and only the distribution of powers is rel-
evant. We also observe that

because for all .
It should be noted that the power spectral densities of some

fading correlation models may not exist at all frequencies. An
example is Jakes’ model [1], with the “U-shaped” power spec-
tral density which is bounded over only a finite interval. The
reason is that the autocorrelation function decays slowly as a
function of distance, like . The results below do not apply to
such models.

2) Analysis: The starting point of the analysis is thatcan
be factorized in the form , where the en-
tries of are i.i.d. complex circular symmetric Gaussian with
mean and variance . Hence,

For capacity analysis, we are interested in the eigenvalue dis-
tribution of , or equivalently . Now is
isotropic, i.e., and have the same distribution as
for any deterministic unitary matrix . We can factorize

and , where and are unitary and
are diagonal. The fact that is isotropic allows us to

conclude that the matrix has the same eigenvalue
distribution as . It should be noted that as ,
the eigenvalue distributions of and converge to and

, respectively.
Theorem IV.1 tells us that the distribution of the eigenvalues

of , scaled by , converges for large . It turns out
that the eigenvalue distribution of converges as
well under the same scaling. However, in this case, no explicit
expression for the limiting distribution is available. Instead, it
is given in terms of itsSteltjes’ transform[18]. The Steltjes’
transform of a distribution is defined by

for with . It can be shown by an inversion
theorem that the Steltjes’ transform uniquely specifies a distri-
bution. The following result yields a characterization of the lim-
iting eigenvalue distribution of

Theorem IV.2:Let be the empirical eigenvalue distribu-
tion of . Define . Then almost
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surely, converges in distribution to a limit , whose
Steltjes’ transform is given by

where is the unique solution to the functional fixed-
point equation

The proof of this result, which is based on random matrix
results in Girko [18], is given in Appendix II.

Using this result, it can now be shown, exactly as in the inde-
pendent fading case, that almost surely as

where

(14)

and

(15)

with satisfying

The important conclusion is that even with correlation, the ca-
pacity and mutual information still scale linearly with. How-
ever, the rate of growth is different from the independent fading
case. It should be emphasized that this conclusion is valid only
under the specific scaling assumptions we made.

The constants and depend on the limiting distribution
, which is only indirectly characterized via its Steltjes’ trans-

form in Theorem IV.2. The following result gives a more di-
rect characterization of the constant without involving the
Steltjes’ transform of .

Theorem IV.3:

and for each is the unique solution to the
fixed-point equation

(16)

For the special case of no correlation at the receiver (i.e.,
for all ), the fixed-point equation that

must satisfy is simplified to

(17)

The proof of this result exploits the fact that the mutual in-
formation can be achieved by a combination of successive
decoding and linear minimum mean-square error (MMSE) de-
modulation. A sketch of this proof can be found in Appendix III.

Does correlation always reduce capacity? Let us fix the
transmit correlation and compare the performance when
there is correlation at the receiver and when there is none. Since
the function is concave for , it
follows from Jensen’s inequality that in Theorem IV.3

for all . Hence, for a given , if and
, then . By monotonicity of

the fixed-point equation , this implies
Hence, correlation at the receiver always decreases. By the
reciprocity property (see Appendix I), it can be seen that cor-
relation at the transmit antenna always reducesfor a fixed
receive correlation .

A more general statement can be made to compare the per-
formance under two different power spectra. A nondecreasing
spectrum is defined to bemore spread outthan a nonde-
creasing if

and for every

Note that the flat spectrum corresponding to independent
fading is the least spread out according to this definition: there
is the same amount of power at all frequencies. This notion of
“spreading out” (also calledmajorization[19]) can be taken as
a measure of the strength of correlation: the more spread out
the spectrum, the stronger the correlation.

In the theory of majorization, a real-valued functionis said
to beSchur-concave(resp., Schur-convex) if is more (resp.,
less) spread out than implies that . A
basic result says that the function:

is Schur-concave (resp., Schur-convex) if the functionis con-
cave (resp., convex). Applying this result to our problem, it fol-
lows that the right-hand side of (16) is a Schur-concave function
of . It then follows that is, in fact, a Schur-concave func-
tion of , i.e., stronger correlation always decreases.

The above discussion focuses on the effect of fading corre-
lation on the mutual information . But, in fact, something
more basic is going on. It is shown in Appendix IV that the
more spread out are the power spectraand , the more
spread out is , the limiting spectrum of . The
mutual information (14), being a Schur-concave function of

, therefore, decreases with stronger correlation. However, the
water-filling capacity isnota Schur-concave function of , and
hence similar conclusions cannot be drawn.
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We now focus on the low-SNR and high-SNR regimes. At
low SNR, it follows from (12) that depends only on the av-
erage received SNR and does not depend on the eigenvalue dis-
tribution . Hence, at low SNR, fading correlation has no ef-
fect on the mutual information achieved by the equal transmit
power strategy. On the other hand, the water-filling capacity at
low SNR is approximately the average received SNR amplified
by the upper limit of the eigenvalue distribution . Since the
stronger the correlation, the more is spread out, this upper
limit increases and hence the water-filling capacity at low SNR
actually increases as the correlation becomes stronger.

At high SNR, the difference approaches and hence
both are reduced by fading. To calculate, let us make the
substitution . Taking the limit as

in (16), we see that and satisfies
the fixed-point equation

(18)

for each . The high-SNR approximation of is there-
fore,

(19)

This can be simplified further. By the reciprocity property
(see Appendix I), we know that . From this
we can conclude that

Let us set for all . From (19), we get

On the other hand,

Equating these two expressions, we get

Now

Substituting these equations into (19), we get

(20)

We observe that the first term is the high–SNR capacity for
independent fading. Hence, the second and third terms repre-
sent the capacity penalty due to correlation at the transmit and

Fig. 1. Floor plan for the first floor of an office building at Crawford Hill, NJ.
Receivers with antennas positioned in linear or square grids are placed randomly
at 1000 locations in Room A. The transmitting MEA is placed with its adjacent
sides parallel tox-axis andy-axis, respectively. The receiving MEA is placed
in a random orientation at each of the sample locations.

receive sides, respectively. The fact that they are not positive
follows directly from Jensen’s inequality.

V. SIMULATION EXPERIMENTS

A. Methodology and Assumptions

We use the WiSE ray-tracing simulator [6] to construct
random instances of channel matrix for indoor wireless
environment. WiSE allows us to specify the floor plan of a
building (e.g., location of vertical walls, ceilings, corridors,
etc.) and generate the corresponding propagation models inside
the building. As described in [6], the reflection/refraction coef-
ficients and scattering effect for different building materials are
derived from a multilayer dielectric model. For our numerical
study, we consider the indoor wireless environment of a
two-floor office building at Crawford Hill, NJ (see Fig. 1). We
place the transmitting MEA on the first floor ceiling near the
middle of the office building throughout our study. Receiving
MEAs are placed with random rotations at 1000 randomly
chosen positions in Room A, which is at intermediate distance
from the transmitter. We consider a carrier frequency of 5.2
GHz, i.e., wavelength 5.8 cm. The MEAs consist of
multiple omnidirectional antennas, arranged either in square
grids or linear arrays within horizontal planes. The separation
between antenna elementsis the same at both the transmitting
and receiving MEAs. We consider and ,
unless specified otherwise.

The power of the rays impinging on the receiving antennas
is recorded when the carrier is launched from the transmitting
MEA with power dBm. The impulse response be-
tween a specific transmitting–receiving antenna pair is modeled
as the vector sum of all the rays arriving at the receiving antenna
as

(21)

where , , and are the received power, phase angle, and
time delay of the th ray, respectively. is the total number of
rays and is the delta impulse function. With narrow-band
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assumption, we compute the frequency response at infinitesi-
mally small bandwidth centered at the carrier frequency as

(22)

is computed using (22) and , , and are obtained
from the WiSE simulation. All the elements are complex
numbers in this case.

Since varies for different receiver locations, we estimate
the channel variance by averaging over 1000 realizations of

, and over all possible antenna pairs,to . We assume that
the average received SNR, as defined in Section III, should
be high enough for low-error-rate communication. If SNR is
too low, we need very complex codes to provide enough redun-
dancy to combat the noise so that we can recover the desired
signal with low error probability at the receiver. The practical
constraints on analog-to-digital (A/D) converters that are avail-
able with current technology limit the maximum SNR that can
be exploited effectively. Thus, we consider SNRs in the 18–22
dB range. For all our simulations, we assumeto be 10 MHz,
and to be 170 dBm/Hz, giving a total noise variance
of 100.8 dBm. When we take expectation with respect to dif-
ferent realizations of , we mean taking the ensemble average
over the 1000 sample receiver locations. The capacities with and
without water filling, and , are computed for different.
The results are presented in terms of complementary cumula-
tive distribution functions (CCDFs), the averages and ,
and capacities at 5% channel outage, and .

B. Fading Correlation

As mentioned before, are correlated for finite separation
between antenna elements. For an illustration, we consider the
case of a two-antenna MEA system. 1000 realizations of the
channel matrix are generated using WiSE for different an-
tenna spacing . Using the notations in Section IV, and

are determined. The magnitude of and resemble
zero-ordered Bessel functions that decay very slowly, as shown
in Fig. 2(a). At , a strong correlation of exists
between path gains originating from different transmitters. The
correlation between path gains arriving at different receivers is

. The asymmetry is due to the different local scattering en-
vironments around the transmitter and receiver.

In Section IV, we modeled the two-dimensional correlation
function in product form. To verify the appropriateness of this
approach, we plot the product of and in Fig. 2(b), to-
gether with the correlation inferred from WiSE sim-
ulation results. Close agreement is found consistently between
these two curves over the range ofwe consider. This implies
that our assumption of separable transmit/receive correlations
in Section IV-B1 is a reasonable first approximation.

C. Capacity of MEA Systems

In this subsection, we consider square MEAs, which are more
compact than linear arrays for a given. The receiver MEA is
placed in Room A. Fig. 3 shows the CCDFs of and for

and , assuming and

Fig. 2. (a) Magnitude of correlations	 and	 (as defined in Section IV)
for antenna spacings ranging from0 to 3� . (b) Magnitude of the normalized
correlationE[H H ] compared to the magnitude of the product	 	 .

Fig. 3. The CCDFs ofC (achieved via water filling) andI (with equal
power allocation) forn = 1; 4; 9; 16; 25; and36 at � = 18 dB. MEAs are
arranged in square grids withd = 0:5� .

18 dB. Recall that and are defined as the capacity with
optimal water-filling power allocation and with equal-power al-
location, respectively. Examining Fig. 3, we see that asin-
creases, the CCDFs of both and shift to the right, indi-
cating that MEAs yield a capacity gain that increases steadily
with . We see that as increases, the horizontal gap between
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TABLE I
THE PERCENTAGEDIFFERENCE: (C � I )=I FORMEAS PLACED IN

ROOM A. HERE� = 18 dBAND d = 0:5�

and increases, i.e., water filling yields a larger gain over
equal-power allocation.

A reasonable performance indicator is the capacity that can be
supported with 5% outage. Table I presents values of and

extracted from the CCDFs shown in Fig. 3. When ,
5.9 b/s/Hz. Increasing can yield dramatic

increases in and . When 20 b/s/Hz
and 19 b/s/Hz, which are nearly three-and-a-half times
higher than for . Increasing to , we obtain
106 b/s/Hz and 95 b/s/Hz, which are, respectively about
18 and 16 times higher than for .

Table I also presents , the fractional gain
yielded by water filling over equal-power allocation. This frac-
tional gain increases from to 11.3% .

The capacity improvement of water filling over equal-power
allocation depends not only on, but on the SNR as well.
Fig. 4(a) and (b) shows the ratios and versus

for The figure assumes MEAs on square grids
with . The receiving MEA is placed in Room A. The
ratios and are substantial at low SNR,
and decrease asymptotically toward unity asincreases. When

is low, it is important to allocate the available power to the
strongest subchannels, while asincreases, there is sufficient
power to be distributed over all subchannels.

D. Asymptotic Behavior of MEA Capacities

In this section, we study the asymptotic behavior of the ca-
pacity as grows large. We focus on the high-SNR regime,
considering 22 dB. Since for high SNR, we con-
sider only the water-filling capacity here. We consider linear
MEAs for two different values of antenna spacing:
and . The transmitting MEA is placed either parallel to
the long dimension of the hallway (inline case) or perpendicular
to it (broadside case). In all cases, the receiving MEA is placed
in a random angular orientation in Room A. In this section, we
consider the average capacities obtained on simulated channels

as opposed to the 5% outage capacity considered in
the previous section.

In order to compute the asymptotic growth rate of capacity as-
suming independent fading, as derived in Section IV-A, we use
simulated channel matrices whose entries are generated
by placing individual transmitter and receiver antenna elements
at i.i.d. random locations in Room A, instead of placing them
in a linear array separated by a fixed distance (e.g., )
as in the regular case. With such an arrangement, the fades be-
tween antenna pairs are almost mutually independent. We use
these matrices to estimate the variance and the equiva-
lent SNR . We then compute the asymptotic growth rate

Fig. 4. (a) The ratio of average capacity with water filling to that with
equal-power allocationC =I at varying average received SNR�, for
n = 4; 9; and16. (b) Ratio of 5% outage capacity with water filling to that
with equal-power allocationC =I over different�, for n = 4; 9; and
16 . In both (a) and (b) MEAs at both the transmitter and the receiver are
arranged in square grids.

using (11). To compute the growth rate of capacity including
fading correlation, as derived in Section IV-B, we use simulated
channel matrices to estimate the variance of (i.e., ),

and . In this case, both the transmitting and the receiving
MEAs are linear arrays, and individual elements are placed at a
fixed spacing of either or apart. Recall that and

are eigenvalues of and , respectively. For each case,
we generate 1000 random channel matricesand estimate the
covariance matrices and as and ,
respectively. Since the asymptotic growth rategiven by (15)
is difficult to compute, we can approximate by computing
(since at high SNR) as given by (20). We can approx-
imate and in (20) with piecewise-linear curves,
and replace the integrals with summations

(23)

where ’s and ’s are eigenvalues of and , respec-
tively.
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Fig. 5. Average capacityC versusn for inline case. We consider linear
arrays with two antenna spacings:d = 0:5� andd = 5� . The transmitting
MEA is placed parallel to thex-axis. The receiving MEA is placed in a
random orientation at 1000 random locations in Room A.C is the average
capacity obtained when the transmit and receive antenna elements lie at i.i.d.
locations within their respective workspaces, i.e., they are not constrained to
regular linear arrays.nC andnC are asymptotic results for correlated and
independentH , respectively.

We first consider the inline case. Fig. 5 shows the average
capacity versus for and . For each

grows roughly linearly with , from about 5.57 b/s/Hz at
to about 79.3 b/s/Hz for and 84.0 b/s/Hz for

at . At each is larger for than
for , because the largerreduces fading correlation,
which was shown in Section IV-B to reduce capacity. In Fig. 5,
we see that the asymptotic growth rate of capacity, assuming
independent fading , significantly exceeds the observed av-
erage capacities even for . The discrepancy between

and grows with increasing . On the other hand, the
asymptotic growth rates of capacity including correlation
form better upper bounds for than for both values of .

are in better agreement with for than ,
for all values of .

To further explore the effects of fading correlation, we have
computed channel matrices in which the transmitter and
receiver antenna elements lie in i.i.d. random locations within
their respective workspaces, rather than lying in a regular linear
or square array. Thus, the elements of should be more nearly
independent than those of . We have used these to com-
pute the average capacity , which is also shown in Fig. 5.
We observe that at each is larger than , and that
is nearly as large as , the asymptotic growth rate assuming
independent fading.

Similar results are obtained for the broadside case, as shown
in Fig. 6. The average capacity is generally higher than for
the inline case for both and . Indeed, in this
case lies closer to the asymptotic value than for the
inline case. At and , 91.3% for the
broadside case, but only 82.4% for the inline case. This suggests
that there is less correlation between path gains for the broadside
configuration than for the inline configuration.

Fig. 6. Average capacityC versusn for the broadside case. We consider
linear arrays with two antenna spacings:d = 0:5� and d = 5� . The
transmitting MEA is placed parallel to they-axis. The receiving MEA is
placed in a random orientation at 1000 random locations in Room A.C is
the average capacity obtained when the transmit and receive antenna elements
lie at i.i.d. locations within their respective workspaces, i.e., they are not
constrained to regular linear arrays.nC andnC are asymptotic results for
correlated and independentH , respectively.

Our results indicate that fading correlation can significantly
reduce MEA system capacity, even for antenna element spacing
as large as . Moreover, our results show that the asymp-
totic growth rate , which considers correlation, provides a
good estimate of the observed average capacity. This tends
to validate the assumptions under which the formula forwas
derived in Section IV-B, including the correlation model for the
fades between different antenna pairs. If the assumptions in Sec-
tion IV-B hold, should converge almost surely to (see
(23)) in the limit of large and high SNR. In Figs. 7 and 8, we il-
lustrate this asymptotic behavior of by plotting the empir-
ical probability density functions (pdfs) of for
and , considering 22 dB. Fig. 7 considers
(where there is strong correlation between elements of),
while Fig. 8 considers (where there is less correla-
tion between elements of ). As increases, the pdf becomes
narrower and has a higher peak value, i.e., becomes less
random. In the limit of large , we expect the pdf of to
converge to an impulse function centered at the value. The
narrowing pdfs in Figs. 7 and 8 illustrate the almost-sure con-
vergence of to . Note that when , the pdfs are
narrower and taller than when . This indicates that
the rate of convergence is higher whenis larger, i.e., when the
correlation between elements of is lower.

VI. CONCLUSION

MEA systems offers potentially large capacity gains over
single-antenna systems. With perfect channel knowledge at the
transmitter, power can be allocated optimally over different
transmitting antennas (water filling) to achieve capacity.
The water-filling gain is most significant when there
are fewer strong eigenmodes, i.e., when the average received
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Fig. 7. Empirical pdf of the normalized capacity forn = 4; 9; and16. We
consider linear arrays with antenna elements separated by0:5� . The reference
value isC as predicted by the asymptotic theory considering correlatedH .

SNR is small. For example, when
10 dB, but at 50 dB, water-filling gain is negligible,

.
Assuming i.i.d. path gains between different antenna pairs,

theoretical analysis shows that the capacity grows linearly with
the number of antennasin the limit of large . In a more re-
alistic propagation environment, correlation does exist between
antenna pairs and affects the rate of growth ofand , al-
though it was shown that they still grow linearly with. The rate
of growth of is reduced by correlation over the entire range of
SNRs, while that for is reduced by correlation at high SNR
but is increased at low SNR. Our simulation results show that
for antenna spacing, the simulated average capacityis
only 88.5% of the predicted value based on independent fading
assumptions, for in the case of broadside with
22 dB. When the antenna spacing is increased to , the
effect of correlations on total capacity is smaller:
91.3%. The approximation based on our asymptotic results for
correlated fading forms a close upper bound for the average
capacity observed on simulated channelsat high SNR.

Fig. 8. Empirical pdf of the normalized capacity forn = 4; 9; and16. We
consider linear arrays with antenna elements separated by5� . The reference
value isC as predicted by the asymptotic theory considering correlatedH .

APPENDIX I
RECIPROCITYPROPERTY

We note here two reciprocity properties discussed in [20]
which will be useful in some of the analysis in Section IV-B.
These properties also make it very easy to extend the analytical
results to the case with unequal number of transmit and receive
antennas.

First, the (water-filling) capacity of the multiantenna channel
with transmit and receive antennas and channel matrix
is the same as that of a system withtransmit and receive
antennas and channel matrix . This is because the nonzero
singular values of and are identical. Second, the
mutual information achieved with equal transmit powerat
each antenna in a system withtransmit and receiver antennas
and channel matrix is the same as that achieved using transmit
power in a system with transmit and receive antennas and
channel matrix . This is because
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It should be noted that for the water-filling capacity, the
reciprocity is with respect to two systems with the sametotal
transmit power, whereas for the equal-power mutual informa-
tion, the reciprocity is with respect to two systems with the
same powerper transmit antenna.

APPENDIX II
PROOF OFTHEOREM IV.2

The following theorem captures the essence of [18, Corollary
10.1.2], which is the key random matrix result we need.

Theorem AII.1: Let be an random matrix with in-
dependent entries which are zero-mean and satisfy the condition

for some uniform bound . Moreover, suppose we define
for each a function : by

, satisfying

and that converges uniformly to a limiting bounded function
. Then, the limiting eigenvalue distribution of exists

and its Steltjes’ transform is given by

(24)

and satisfies the equation,

(25)

The solution of (25) exists and is unique in the class of functions
, analytical in and continuous on .

To prove Theorem IV.1, we can apply this random matrix
result to

The desired result follows by noting that, in this case,
.

APPENDIX III
PROOF OFTHEOREM IV.3

Let us define

(26)

and let be the th column of . The mutual information
has the same distribution as

This can be interpreted as the sum capacity of a vector multiple-
access channel with users and degrees of freedom at the
receiver, treating each of thetransmit antennas as a separate

user. The transmit power of theth user is , and its
vector of channel gain at the receiver is.

The sum capacity can be achieved by a combination of suc-
cessive cancellation and linear MMSE demodulation [21]: first
one user is demodulated by a linear MMSE receiver and de-
coded, treating all the other users as interference; then the signal
from that user is subtracted off and the process is repeated for
the remaining users. Moreover, the sum capacity is achieved re-
gardless of the decoding order among the users. Let us decode
then in increasing order of the transmit powers of the users, and
without loss of generality assume that the diagonal elements of

are in increasing order. Thus, we have

SIR (27)

where SIR is the signal-to-interference ratio (SIR) achieved
when demodulating the th user. From MMSE estimation
theory it can be computed that

SIR

where

if

and

if

Substituting (26), we get

SIR

where is the th column of .
We now let but keep for fixed. We wish to

compute the asymptotic limit of SIR.
The entries of are i.i.d. We can apply [22, Lemma 3.2] to

conclude that

SIR (28)

in probability. The trace term is the Steltjes’ transform of the
empirical eigenvalue distribution of eval-
uated at . The following theorem, due to Marcenko and Pastur
[23] and refined by Silverstein and Bai [15], computes the limit.

Theorem AIII.1: Let and be two by diagonal ma-
trices whose empirical distributions of the diagonal elements
converge to and , respectively, as . Let
be the Steltjes’ transform of . Then, the empirical eigen-
value distribution of converges almost surely,
and the Steltjes’ transform of the limiting distribution is
the unique solution to the functional fixed-point equation

Applying this result to the above yields
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where satisfies

Hence, combining this with (27) and (28), we get

SIR

thus establishing the desired result.

APPENDIX IV
A MAJORIZATION RESULT

In this appendix, we will explore the effect of correlation has
on the limiting eigenvalue distribution of the key random matrix

. Just as for power spectrum, we can define an
equivalent notion of a distribution being more spread out than
another.

Theorem AIV.1:A distribution is more spread out than
if they have the same expectation, and for every

The main result we want to prove is the following.

Theorem AIV.2:Let be two receiver correlation
power spectra, and be two transmitter correlation power
spectra. Let and be the limiting eigenvalue distributions
of and , respectively, where the
diagonal elements of , , , approach the spectra

, , , , respectively. If is more spread out than
and is more spread out than , then is more spread

out than .

To prove the theorem, we need the following definition,
which gives a slightly more general notion of Schur convexity
than the one presented earlier in the main body of the paper.

Definition AIV.3: Consider a map : , where
is the set of all integrable functions on . For a

function , let be the empirical distribution of
, i.e., , where is the Lebesque

measure. The map is said to be Schur-convex if for any two
functions and such that is more spread out than
implies that .

The following is a key lemma in the proof of Theorem AIV.2.

Lemma AIV.4:Suppose the map : has the
following properties.

1) For any depends on only through the empirical
distribution .

2) is convex, i.e.,

or .

Then is Schur-convex.

Proof: Fix and consider the class of functions in
that are piecewise-constant functions on the intervals

, for . The mapping
on this class can be viewed as a function ofvariables, the

values that the functions in the class can take on. Condition
1) then implies that is a symmetric function of these
variables. The Schur convexity of on this class follows from
[19, Proposition C.2, p. 67]. The Schur convexity of on

follows from an approximating argument by taking
large.

Proof of Theorem AIV.2:If is an by Hermitian ma-
trix and are its ordered eigen-
values, then it is known that for all

where the maximization is over complex matrices .
This extremal representation shows that is a convex
function of the entries of . Applying this observation to the ma-
trix , it follows that is
a convex function of the entries of , and also a convex func-
tion of the entries of . From Theorem IV.2, almost surely
the empirical eigenvalue distribution of converges
to a limiting distribution . This implies that for each fixed

where are the limiting functions of the diag-
onal elements of , respectively. The convexity ofboth
as a function of and as a function of follows from a lim-
iting argument. Moreover, the dependence ofon and is
only through their empirical distributions. Hence, from Lemma
AIV.4, it follows that is a Schur-convex function of for a
fixed , and also a Schur-convex function of for a fixed .
Hence, for a fixed , if is more spread out than , then

This holds for all , and hence is more spread out than;
similarly, for a fixed , if is more spread out than , then

is more spread out than. This proves the theorem.
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