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Abstract—We study the throughput capacity of mobile wire-
less ad hoc networks with infrastructure support. Mobility and
infrastructure support independently have been shown to be
effective ways to improve capacity, but few work has analyzed
the impact of their combination. In our work we consider
an ad hoc network with n users and k base stations. All
base stations are wired to each other with bandwidth c(n).
We adopt a general mobility model where users move with
arbitrary patterns within a bounded distance around their
home-points, and let the area of the network scales as f2(n).
We show that for different parameters, mobility can be divided
into strong, weak and trivial regimes. The per-node capacity is
Θ(1/f(n)) +Θ(min(k2c/n, k/n)) under strong mobility , and
is Θ(min(k2c/n, k/n)) in the two latter cases. We also discuss
optimal communication schemes and system parameters in
each regime. Our study provides fundamental insight on the
understanding and design of wireless ad hoc network.

Keywords-Ad hoc wireless networks; hybrid wireless net-
work; mobility; capacity; scaling law;

I. INTRODUCTION

Wireless ad hoc networks are modeled as a set of n nodes
that exchanges messages using radio transmissions. A well-
known challenge in these networks is the poor scalability
of throughput capacity, i.e., the maximal traffic rate that can
be sustained as n grows. In the ground breaking work [1]
by Gupta and Kumar, it is shown that in a static network
with arbitrary topologies, per-node capacity decreases as
Θ(1/

√
n)1 as n tends to infinity. This is the best perfor-

mance achievable even allowing for optimal scheduling,
routing and relaying of packets.

Various methods have been proposed thereafter to improve
the pessimistic result. Among them mobility perhaps is the
one that receives most attention. The capacity of mobile
ad hoc wireless networks (MANETs) was first explicitly
considered in [2], where a two-hop relay algorithm was
developed and shown to support constant per-node through-
put, if each node uniformly visits the entire network area
according to an ergodic mobility process. Garetto et al.
[3] further investigate the case that mobility is limited to
radius 1/f(n) in a network with unit size and show that the
corresponding per-node capacity is Θ(1/f(n)).

1We use the standard order notations.

Infrastructure is yet another more intuitive and straight-
forward way to improve capacity. Often referred to as
hybrid networks, capacity of these ad hoc networks with
infrastructure support is studied in [4]–[6], which show
similar result that (only with a difference of factor log n, due
to difference in models) capacity increases linearly with k,
the number of base stations, given that k grows faster than√
n. As well, Kozat and Tassiulas [7] finds that per-node

capacity of Θ(1/ log n) is achievable if users per base station
is bounded above. Agarwal and Kumar [8] extends this result
to Θ(1). Capacity results above are revisited in recent work
[9], where a L-maximum-hop resource allocation strategy is
proposed, and delay is shown to be costant.

In this paper, we further systematically study the capacity
scaling laws of a network featuring both mobility and
infrastructure. We model every user to move around a certain
home-point within a bounded distance, in a network whose
area grows with n as f2(n). The specific mobility pattern
can be arbitrary and is characterized by a general stationary
spatial distribution. We also allow the home-points to cluster.
For infrastructure, we assume there are k base stations (BSs)
wired between each other with bandwidth c(n).

Our major contributions are three folds. First, we find that
mobility can be divided into three regimes: the strong, weak
and trivial cases. We comment on the role of mobility and
infrastructure in different regimes. Secondly, we determine
the asymptotic per-node capacity of each regime. Capacity is
Θ(1/f(n)) + Θ(min{k2c/n, k/n}) in the first regime and
Θ(min{k2c/n, k/n}) in the two latter cases. Thirdly, we
propose optimal communication schemes for each regime,
such as scheduling and routing protocol, BS bandwidth and
BS placement.

Mobility and infrastructure benefit the network in differ-
ent ways and jointly influence the optimal communication
schemes. A main problem is how to handle their interaction
and optimally exploit the two features like determining when
to prefer one of them to act dominantly, and when their
cooperation can better facilitate transmission. An interesting
example is, we show that per-node capacity is the same in
the weak mobility regime and the trivial mobility regime,
but the corresponding optimal communication schemes are
different.



Our work is fundamentally different from previous works
on hybrid networks [4]–[10], which typically do not take
mobility into account and assume a infinite bandwidth
between BSs. Besides, we motivate some of the techniques
in the analysis of uniformly dense networks (defined in
Section III) from [3]. However, because our problem and
model are different, substantial efforts are needed to develop
the methodology. Moreover, for the ease of representation
and a smoother logic, we prove some of the useful results in
[3] such as the optimality of scheduling scheme and upper
bound of capacity of BS-free networks in simpler ways,
which may be of separate interest. Last but not least, our
work well unify and generalize prior capacity results on
MANETs and hybrid networks.

The paper is organized as follows. In Section II we in-
troduce our assumptions and models. Section III defines the
uniformly dense networks and discusses some preliminaries.
Capacity analysis of uniformly dense networks is carried out
in Section IV, and the non-uniformly dense cases in Section
V. Last, we conclude the paper in Section VI.

II. MODELS AND ASSUMPTIONS

A. Mobility Model

We consider a network with n mobile users (also called
mobile stations, MSs) and k = Θ(nK) base stations (BSs).

Definition 1. Network Extension O is a Torus, or a square
region with wrap-around conditions. Its length of side scales
as n according to f(n) = nα. However, for convenience,
we normalize O to be a unit Torus, therefore any quantity
representing a constant distance independent of n should be
scale down by a factor 1/f(n) correspondingly.

We note that the normalization of O is only a technical
assumption commonly adopted in previous works [1], [2].
Also, ignoring edge effect is common for avoiding tedious
technicalities [3], [11]. Such assumptions will not change
the main results of this paper.

Remark 1. In this paper we focus on the case that α ∈
[0, 1/2]. α = 0 corresponds to the dense networks [1] where
network size is constant and α = 1/2 the extended networks
[12] where average node density is constant.

We denote the location of the ith MS at time t as Xi(t),
and the position of the jth static BS as Yj . When MSs and
BSs don’t need to be distinguished, notation Zi(t), 1 ≤ i ≤
n + k is used. Operator ∥ · ∥ denotes the distance between
two points. dij = ∥Zi − Zj∥.

Definition 2. Mobility around Home-points: We assume
{Xi(t)} to be independent stationary and ergodic processes
with stationary distribution ϕi(X):

ϕi(X) = ϕ(X −Xh
i ) =

s(f(n)∥X −Xh
i ∥)∫

O s(f(n)∥X −Xh
i ∥)dX

(1)

where Xh
i is called home-point of the ith node and s(d) is

an arbitrary, non-decreasing function with finite support.

Remark 2. Home-point Xh
i is the place visited most often

by mobile station i. We let the home-points of BSs to be
their static position. s(d) characterizes the actual stationary
distribution of a node’s presence around its home-point
before size normalization. With a little integration we can
simplify (1) as:

ϕi(X) ∼ f2(n)s(f(n)∥X −Xh
i ∥) (2)

Definition 3. Clustered model characterizes the distribu-
tion of home-points. There are m(n) = Θ(nM ) clusters
with radius r(n) = Θ(n−R), independently and uniformly
distributed in O. Each of the n home-points is randomly
assigned to a cluster and then uniformly and independently
placed inside it.

Remark 3. A smaller m represents a more severe degree of
clustering and vice versa. Particularly if m = n, no clusters
are formed, i.e., all home-points are uniformly distributed.

Remark 4. We motivate our mobility model from [3], [13].
Home-points and s(d) are introduced to characterize the
restrictive and non-uniform nature which are often observed
in real mobility traces [14]. Clustered model on the other
hand can capture the preferential attachment phenomena in
the formation of real networks [15], [16]. Besides, many
classical mobility models like i.i.d. mobility [12], hybrid
random walk [11] and Brownian motion [17] preserve the
uniform distribution of nodes at all time, thereby are special
cases of our model when m = Θ(n) and f(n) = Θ(1).

To achieve better utilization, the distribution of base
stations should match the distribution of users. With this
aim, We let {Yj} be independent random variables. For a
particular BS j, we randomly choose a point Qj according
to the clustered model, and let Yj follow distribution ϕ(Y −
Qj). However, under certain condition we can relax this
requirement and employ a simpler base station placement
scheme, as will be shown in Section IV.

This work focuses on the case that M − 2R < 0 so that
clusters will not overlap2 w.h.p.3. Clusters should not shrink
as n grows so 0 ≤ R ≤ α. We assume that every cluster
should be equipped with BSs w.h.p., i.e., k = ω(m).

B. Communication Model

The BSs are wired to each other with bandwidth c(n)bps
and communication between them won’t cause interference.
We also assume every node has a constant wireless band-
width of W bps in a common channel. Since it won’t affect
our result, we normalize W to 1. We base our analysis on
the following interference model which governs direct radio
transmissions between nodes.

2The case that clusters tend to overlap is similar to the cluster-free case.
3with high probability, i.e., probability tends to 1 as n tends to infinity



Definition 4. Protocol Model [1] : all nodes use a common
transmission range RT for all their wireless communication.
A wireless transmission from node i to j is successful only if
: 1) ∥Zi(t)−Zj(t)∥ ≤ RT ; and 2) For every other node l that
is simultaneously transmitting, follows, ∥Zl(t) − Zj(t)∥ ≥
(1 + ∆)RT , where constant ∆ defines the area of guard
zone.

Definition 5. Feasible Throughput: A throughput g(n) is
said to be feasible if there is a spatial and temporal scheme
for scheduling transmissions, such that by operating the net-
work in a multi-hop fashion, buffering at intermediate nodes
when awaiting transmission and possibly utilizing the BSs,
every node can send g(n)bps to its destination, i.e., there
is a T < ∞ such that in every time interval [(i− 1)T, iT ],
every node can send Tg(n) bits to its destination.

Definition 6. Asymptotic per-node capacity λ(n) of the
network is said to be Θ(g(n)) if there exist two positive
constants c and c′ such that:{

limn→∞ Pr {λ(n) = cg(n) is feasible} = 1
limn→∞ Pr {λ(n) = c′g(n) is feasible} < 1

Similar to previous works we use the uniform permu-
tation model as traffic model. n randomly selected source-
destination pairs (s, d) exchange data at rate λ. It’s noted that
pair selection should ensure that every MS is both source
and destination. BSs only act as relays and are not involved.
We express the traffic by a n × n matrix in the form λΛ,
the elements of matrix Λ = [λsd] satisfy λsd ∈ {0, 1}.

III. PRELIMINARY IN UNIFORMLY DENSE NETWORKS

A. Uniformly Dense Networks

Definition 7. Local density of nodes at X is defined as:

ρ(X) =
n+k∑
i=1

E[1Zi∈B(X,1/
√
n)|Fn+k]

where B(X, 1/
√
n) is the disk centered at X with radius

1/
√
n, Fn+k is the Borel-field generated by {Zh

i }
n+k
i=1 , E is

expectation, and 1X is the indicator function.

Definition 8. A network is said to be uniformly dense if for
any X ∈ O, there exist two positive constants h and H ,
such that

h < ρn(X) < H w.h.p. (3)

Theorem 1. If f(n)
√

γ(n) = o(1), where γ(n) = logm
m ,

and k = O(n), then the network is uniformly dense.

Because of limited space, the proof of this theorem is
deferred to the full technical report [18].
Remark 5. Less formally, recall from the connectivity cri-
terium [19] that

√
γ(n) is the critical transmission range

for connectivity if all nodes were static. Besides, mobility
of MSs is roughly limited to radius of Θ(1/f(n)). Thereby
the condition of Theorem 1 implies that mobility is strong

Figure 1: An example for non-uniformly dense network (left)
and uniformly dense model (right)

enough to exceed the critical range (in order sense). In such
cases, we may expect mobility to help connecting nodes and
overcome the clustering nature of home-points. Otherwise,
the significance of mobility is weak and clustering may be an
obstacle to connectivity. To provide some intuition, we show
an example in Fig.1 .We will first focus on the uniformly
dense case and lay some foundation for later analysis in the
non-uniformly dense case.

The next lemma is a useful result regarding the statistics of
home-points. It’s not limited to uniformly dense network, but
we place the lemma here for it shares a similar implication
of “uniform”. The proof is available in technical report [18].

Lemma 1. Suppose that {Zh
i }

n+k
i=1 are placed on O accord-

ing to clustered model. Given a regular tessellations A of
O (or its sub-region), with cell area |A| ≥ (16 + β)γ(n),
for some β > 0, and defined with Nm(Al) and Nb(Al) the
number of home-points of MSs and BSs inside cell Al, then
uniformly over A, it holds w.h.p. :

1

4
n|Al| < Nm(Al) < 4n|Al| (4)

1

4
k|Al| < Nb(Al) < 4k|Al| (5)

B. Link Capacity

Definition 9. Link capacity between node i and j is the
maximal long term data flow between them:

µS(i, j) = E[1(i,j)∈πS(t)|Fn+k]

where πS(t) is a set of non-interfering node pairs selected
to transmit under a stationary ergodic scheduling policy S.

Definition 10. Scheduling policy S∗ enables wireless trans-
mission between node i and j when the following conditions
are satisfied:

dij(t) < RT =
cT√
n

min(dlj(t), dli(t)) > (1 + ∆)RT

for every other node l in the network (regardless of node l
activity), where cT is a constant. Moreover, the transmission
bandwidth is equally shared in two directions.



We borrow the next lemma from [3] to facilitate the
computation of link capacity. It develops the relationship
between mobility and link capacity under S∗.

Lemma 2. In uniformly dense network, under policy S∗,
for any pair of nodes (i, j) (at least one of them is MS),
and any finite constant cT > 0, the link capacity is:

µS∗
(i, j) = µ(Zh

i , Z
h
j ) = Θ

(
Pr
{
dij ≤

cT√
n
|Fij

})
where Fij is the Borel-field generated by Zh

i and Zh
j .

Corollary 1. Given the position of home-points of MS i, j
and BS k, the link capacity between them is

µ(Xh
i , X

h
j ) = Θ(f2(n)η(f(n)∥Xh

i −Xh
j ∥)/n) (6)

µ(Xh
i , Y

h
l ) = Θ(f2(n)s(f(n)∥Y h

l −Xh
i ∥)/n) (7)

where η(∥X0∥) =
∫
X∈R

s(∥X −X0∥)s(∥X∥)dX

Proof: The proof of (6) is reported in [3], we now focus
on computing µ(Xh

i , Y
h
l ):

µ(Xh
i , Y

h
l ) ∼ f2(n)

∫
Yl∈O

∫
Xi∈B(Yl,RT )

s(f(n)∥Xi −Xh
i ∥)δ(Yl − Y h

l )dXidYl

= f2(n)

∫
Xi∈B(Y h

l ,RT )

s(f(n)∥Xi −Xh
i ∥)dXi

∼ f2(n)|B(Y h
l , RT )|s(f(n)∥Y h

l −Xh
i ∥)

=
πc2T f

2(n)

n
s(f(n)∥Y h

l −Xh
i ∥) (8)

where δ(X) is the Dirac impulse.

Lemma 3. In uniformly dense network, under policy S∗,
there exists a positive constant p, such that the probability
that an arbitrary node i is scheduled to transmit (as source
or relay) at an arbitrary time instant is greater than by p.

Proof: Given an arbitrary node i, to prove the lemma
is equivalent to establish the equation:

n+k∑
j=1,j ̸=i

µ(Zh
i , Z

h
j ) = Θ(1)

It’s trivial that
∑n+k

j=1,j ̸=i µ(Z
h
i , Z

h
j ) < 1. On the other hand,

according to Lemma 2, it holds:

n+k∑
j=1,j ̸=i

µ(Zh
i , Z

h
j ) =

n+k∑
j=1,j ̸=i

Pr
{
dij ≤

cT√
n
|Fij

}
≥ Pr

{∪
j
dij ≤

cT√
n
|Fn+k

}
≥ (1− πc2T

n
)n+k → e−πcT

Combining the two sides we have the assertion.

Theorem 2. In uniformly dense networks the scheduling
policy S∗ is optimal (in order sense).

Proof: It’s proved in [20] that position-based scheduling
policy suffice to achieve capacity. Thereby our goal is to
show S∗ is optimal among this class of scheduling schemes.

First note that S∗ only permit transmission when all other
nodes are away from a guard zone, whether they are active or
not. This is a little stricter than protocol model. However, we
argue it will not reduce capacity in order sense. The reasons
are: a) it’s obvious that further allowing transmission when
the number of irrelevant nodes within guard zone is bounded
by a constant will not affect the order of link capacity, and
b) if there are ω(1) irrelevant nodes {v} inside guard zone
and we still wish to transmit, then this decision will suppress
all nodes in {v} from simultaneously transmitting. This will
not be beneficial unless all nodes in {v} are not scheduled
to transmit. However, Lemma 3 guarantees even under S∗,
such event will not happen w.h.p..

Next we should show the transmission range RT is
optimal. It’s an immediately observation from Lemma 2 that
RT = o( 1√

n
) is sub-optimal for it results in a smaller link

capacity. We now focus on the RT = ω( 1√
n
) case.

Define with S̄ a similar policy to S∗ only with a different
transmission range RT = ω( 1√

n
). The following holds:

µS̄(Zh
i , Z

h
j ) = Pr

{
dij ≤ RT ,

∩
l
Zl ∈ A∆(Zi,Zj)|Fn+k

}
where A∆(Zi,Zj) is the set {X ∈ O : min(∥X −
Xj∥, ∥X − Xi∥) > (1 + ∆)RT }. Define for short Pl =
E[1xl /∈A∆(Zi,Zj)

|Fn+k], then:

Pl >

∫
Xl∈B(Xi,(1+∆)RT )

ϕ(Xl −Xh
l )dXl

And according to (3), it follows:∑
l ̸=i,j

Pl > h(1 + ∆)2nR2
T

Note that for x > 0, it holds log(1− x) < −x, therefore:∑
l ̸=i,j

log(1− Pl) < −
∑
l ̸=i,j

Pl < −h(1 + ∆)2nR2
T

So equivalently,

Pr
{∩

Zl ∈ A∆(Zi,Zj)|Fn+k

}
=
∏
l ̸=i,j

∫
Xl∈A∆(Zi,Zj)

ϕ(Xl −Xh
l )dXl

=
∏
l ̸=i,j

E[1xl∈A∆(Zi,Zj)
|Fn+k]

≤ e−h(1+∆)2nR2
T

Other other hand, similarly to Corollary 1, it can be shown
that:

Pr {∥Xi −Xj∥ < RT |Fij} ∼ f2(n)R2
T η(f(n)dij)

Pr {∥Xi − Yj∥ < RT |Fij} ∼ f2(n)R2
T s(f(n)dij)



Due to the independence of node mobility, it follows

µS̄(Xh
i , X

h
j ) = O

(
e−nR2

T f2(n)R2
T η(f(n)dij)

)
µS̄(Xh

i , Y
h
j ) = O

(
e−nR2

T f2(n)R2
T s(f(n)dij)

)
Comparing with (6),(7), it’s obvious that µS̄ = O(µS∗

). This
finishes the proof.

Remark 6. Θ( 1√
n
) is the critical distance that a node can

find a neighbor with positive constant probability. A smaller
range will interrupt connectivity between nearest neighbors
and a larger range will result in too much interference.

Remark 7. Since S∗ is optimal, link capacity µS∗
(also

denoted as µ for short) can be later used to develop upper
bounds on network capacity.

C. Capacity of Uniformly Dense Network without Infras-
tructure

Lemma 4. In uniformly dense network with n MSs but no
BS, the per-node capacity is upper bounded as

λ(n) = O(
1

f(n)
)

Informal Proof:: Due to spatial interference, capacity
is limited to λ = O( 1√

n
) if for a generic session (a

series of transmissions from source to relays and finally to
destination), wireless transmission is used to cover a distance
of Θ(1). [11] However, there is a constant proportion of
source-destination pairs who are Θ(1) away from each other.
Therefore to achieve a better capacity than the static case
(λ = Θ(1/

√
n)), we have to exploit mobility to cover at

least a distance of Θ(1). However, by denoting constant
D = sup{d : s(d) > 0}, a single node’s movement is
limited to radius D/f(n). Therefore we will need at least
Θ(f(n)) hops to finish the delivery. By interpreting Θ(f(n))
as redundancy or using a hop-count technique such as that
in [21], it’s easy to show that capacity is upper bounded by
Θ( 1

f(n) ).

Remark 8. The above proof is easy to be made rigorous. A
different complete proof of the upper bound is also available
in [3]. But our approach is simpler.

Definition 11. Optimal Routing Scheme A [3]: The network
area O is partitioned into square tessellation A with element
area Θ(1/f2(n)). Squarelets Ai,j are indexed by (i, j)
where i is row index and j is column index. Traffic from
Ais,js to Aid,jd is first forwarded horizontally to Ais,jd

along contiguous squarelets and then vertically in the same
manner to destination. By saying forwarding to contiguous
squarelets, we mean a random node whose home-point is in
the adjacent squarelet is chosen as relay.

Lemma 5. [3] Employing the optimal routing scheme A
described above, a per-node throughput Θ( 1

f(n) ) can be
achieved.

The following theorem is the consequence of Lemma 4
and Lemma 5.

Theorem 3. In uniformly dense network with n MSs but no
BSs, the per-node capacity is Θ( 1

f(n) ).

IV. CAPACITY ANALYSIS IN UNIFORMLY DENSE
NETWORK

A. Upper Bound on Per-node Capacity

Lemma 6. Given an arbitrary simple, closed ,convex curve
L which divides O into IL and EL, per-node capacity is
upper bounded by:

λ ≤

∑
i:Zh

i ∈IL

∑
j:Zh

j ∈EL
µij∑

s:Xh
s ∈IL

∑
d:Xh

d∈EL
λsd

Proof: Given the optimality of policy S∗ and the
definition of µS , the inequity

λ
∑
s∈I

∑
d∈Ic

λsd ≤
∑
i∈I

∑
j∈Ic

µij

is evident from the viewpoint of graph cut, for any partition
(I, Ic) of the nodes.

Lemma 7. In uniformly dense network with n MSs and k
BSs, an upper bound of per-node capacity is

λ(n) ≤ O(
1

f(n)
) +O(

k2c(n)

n
)

Proof: Basically, Lemma 6 can be exploited to develop
an upper bound on capacity. However, note that in Lemma
4 an upper bound for network without BSs is already
established, therefore we can simplify our analysis to the
impact of BSs. That is, for an arbitrary L with constant
length, holds:

λ(n) ≤ O(
1

f(n)
) +

∑
i:Y h

i ∈IL

∑
j:Y h

j ∈EL
µ(Y h

i , Y h
j )∑

s:Xh
s ∈IL

∑
d:Xh

d∈EL
λsd

(9)

where by definition, µ(Y h
i , Y h

j ) = c(n) is the band-
width between BSs. Note that we have ignore the term∑

i

∑
j µ(Y

h
i , Xh

j ) in the numerator, for it’s not comparable
to
∑

i

∑
j µ(X

h
i , X

h
j ), which is singled out in O( 1

f(n) ).
Before handling (9), we first introduce some notations.

Define A as the inner tessellation of IL, whose elements
are squarelets strictly within IL, and Ā the outer tessellation
which are the union of A and the set of boundary squarelets
crossed by L. Define B, B̄ for EL similarly.

Define for short µB
L =

∑
i:Y h

i ∈IL

∑
j:Y h

j ∈EL
µ(Yi, Yj),

which is a random variable over Fn+k, then it is upper
bounded by: ∑

Ai∈Ā

∑
Bj∈B̄

c(n)Nb(Ai)Nb(Bj)



and lower bounded by:∑
Al∈A

∑
Bh∈B

c(n)Nb(Al)Nb(Bh)

To apply Lemma 1 for a bound on Nb(·), we select the
tessellations Ā,A, B̄,B in such a way that their elements
have area (16+β)γ(n). Then the following holds with high
probability:

µB
L ≤ 16k2(16 + β)2

∑
Ai∈Ā

∑
Bj∈B̄

c(n)γ2(n) (10)

µB
L ≥ 1

16
k2(16 + β)2

∑
Ai∈A

∑
Bj∈B

c(n)γ2(n) (11)

Because γ2(n) = o(1) is proportional to squarelet size,
(10) and (11) can be interpreted as upper and lower Riemann
sum with mesh size vanishing to 0 as n → ∞:

µB
L ∼ k2c(n)

∫
X∈IL

∫
Y ∈EL

dXdY ∼ k2c(n)

Since the denominator in (9) actually counts the number
of source-destination pairs crossing boundary L and equals
Θ(n) w.h.p, it’s now evident that:

λ(n) ≤ O

(
1

f(n)

)
+O

(
k2c(n)

n

)
The next lemma provides another upper bound on the

influence of BSs.

Lemma 8. In uniformly dense network with n MSs and k
BSs, an upper bound of per-node capacity is

λ(n) ≤ O(
1

f(n)
) +O(

k

n
)

Proof: Due to protocol model, a BS can at most
exchange Θ(1) traffic to MSs in unit time. Therefore the
traffic rate between MSs and global infrastructure (k BSs
in aggregation) is limited to Θ(k). However, such resource
is shared by n MSs, and its impact on per-node capacity
cannot exceed Θ( kn ). As a result, the per-node capacity is
bounded by O( 1

f(n) ) +O( kn ).

Remark 9. Lemma 7 mainly considers the global infrastruc-
ture capacity while Lemma 8 is an obvious result of limited
accessibility of resource due to competition of infrastructure
among MSs under interference model. Combining the two
we have the following:

Theorem 4. An upper bound for per-node capacity in
uniformly dense network with n MSs and k BSs is

λ(n) ≤ O

(
1

f(n)

)
+O

(
min

{
k2c(n)

n
,
k

n

})

B. Lower Bound on Per-node Capacity

Lemma 9. A traffic rate of Θ( kn ) can be sustained between
an arbitrary MS and global infrastructure.

To prove the lemma we need the following proposition,
whose proof is reported in [18].

Proposition 1. If s(x) is a non-increasing function with
finite support and X ∈ O, then∫

Y ∈O
s(f(n)∥Y −X∥)dY ∼ 1

f2(n)

Proof (Lemma 9): Given a generic MS i, define
for short µA

i as the maximal throughput at which it can
communicate with global infrastructure, then:

µA
i =

k∑
j=1

µ(Xh
i , Y

h
j )

which is again a random variable defined over Fn+k.
To determine µA

i , we define A as tessellation with element
area of (16 + β)γ(n) over O. For Al ∈ A, define d̄Al

and
dAl

as the maximal and minimal distance from Xh
i to Al,

respectively. Recall from Corollary 1 that µ is a function of
distance, we have the following bound:

inf
Yj∈Ah

{µ(Xh
i , Y

h
j )} ≥ Θ(

f2(n)

n
s(f(n)d̄Ah

))

sup
Yj∈Al

{µ(Xh
i , Y

h
j )} ≤ Θ(

f2(n)

n
s(f(n)dAl

))

Therefore,∑
Ah∈A

f2(n)

n
s(f(n)d̄Ah

)Nb(Ah) ≤ µA
i

≤
∑
Al∈A

f2(n)

n
s(f(n)dAl

)Nb(Al)

Applying Lemma 1, it holds w.h.p.:

(16 + β)kf2(n)

4n

∑
Ah∈A

s(f(n)d̄Ah
)γ(n) ≤ µA

i

≤ 4(16 + β)kf2(n)

n

∑
Al∈A

s(f(n)dAl
)γ(n)

Because a) d̄Ah
− dAh

<
√

(16 + β)γ(n), f(n)
√
γ(n) =

o(1); and b) γ(n) = o(1) is proportional to squarelet size,
the summation above can be interpreted as lower and upper
Riemann sums with mesh size vanishing to 0 as n → ∞:

µA
i ∼ kf2(n)

n

∫
Y ∈O

s(f(n)d)dY

where d = ∥Xh
i − Y ∥. Last by applying Proposition 1,

µA
i = Θ

(
k

n

)
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Figure 2: An example for optimal routing scheme B.

Definition 12. Optimal Routing Scheme B: We partition O
into regular square tessellation A with constant element area
A. A MS i whose home-point is in squarelet Al will relay
its traffic to all the BSs which also lie in Al. Then BSs in the
source squarelet will communicate with BSs in destination
squarelet (the squarelet that contains the home-point of the
destination) and exchange data for i. Last BSs in destnation
squarelet will finish the delivery to destination. (See Fig. 2
for an example.)

Theorem 5. In uniformly dense network with n MSs and k
BSs, the lower bound of per-node capacity is

λ(n) ≥ Θ

(
1

f(n)

)
+Θ

(
min

{
k2c(n)

n
,
k

n

})
Proof: Note that optimal routing scheme A can guar-

antee the throughput of Θ( 1
f(n) ), our main goal is to

show optimal routing scheme B can achieve throughput
Θ(min{k2c(n)

n , k
n}).

We now divide scheme B into three phases (source-
BSs, BSs-BSs, BSs-destination) and discuss the sustainable
throughput of each phase. Lemma 9 shows that traffic rate
1
4AµA

i ∼ k
n is feasible in phase I & III. For phase II,

the maximal traffic flowing between two squarelets via
infrastructure is bounded by nλ. It can be sustained if no
infrastructure edge connecting BS from the two squarelets
is overloaded. This is true w.h.p. if:

λn

Nb(S)Nb(D)
∼ λ

n

k2
≤ c(n)

where S and D is the source and destination squarelet,
respectively. Therefore λ ≤ Θ(k

2c(n)
n ) is feasible in this

phase. This completes the proof.
In combination with Theorem 4, the per-node capacity in

uniformly dense network is obtained:

Corollary 2. The lower bound in Theorem 5 is tight.

Remark 10. It’s now evident that the network can be
divided into two state. It’s in mobility dominant state if
λ = Θ(1/f(n)) or infrastructure dominant state if λ =

 α
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Figure 3: Graphical representation of capacity result in
uniformly dense network. We plot per-node capacity as a
function of f(n) = nα and k = Θ(nK), with µc = Θ(nφ)
as parameter. Left plot shows the bottleneck at accessing
phase and right plot shows the case that infrastructure
network itself is the limitation.

Θ(min{k2c/n, k/n}). Let’s further look into the infrastruc-
ture dominant state. Define µc = kc(n) ∼ nφ, then it is the
aggregate bandwidth between a BS and global infrastructure.
Note φ characterizes the bottleneck of capacity. If φ < 1, the
bottleneck lies within the infrastructure network, if φ ≥ 1,
the bottleneck is the accessing phase between BSs and MSs.
Therefore φ = 1 is optimal, for a larger value means a
waste of resource and a smaller value will decrease capacity.
Equivalently, it’s optimal to keep c(n) a constant. See Fig.3
for a graphical representation of the result.

The next theorem reveals a good property of uniformly
dense network.

Theorem 6. In uniformly dense network, changing the
deployment model of BSs from the original clustered model
to uniform model or regular placement will not affect per-
node capacity of the network (in order sense).

Proof: Obviously the upper bound in Theorem 4 still
holds. We only need to focus on the performance of optimal
routing scheme B. It’s evident that changing the placement
of BSs to uniform model or regular model will not affect
the sustainable throughput of phase II. For phase I & III,
one may follow the main body of the proof of Lemma 9
and finds that the only difference is a constant coefficient in
bounding Nb(Ai). Thus the lower bound is also the same as
Theorem 5. We skip the details due to space limit.

Remark 11. This theorem guarantees the optimality of
simpler BS deployment schemes such as uniform placement
or deterministic regular placement. It may also imply a
decrease in cost and increase in feasibility to deploy BSs
in complicated environment.

Remark 12. It’s interesting that the mismatch of distribution
between MSs and BSs is not deleterious. The fundamental
reason is that in uniformly dense network, Corollary 1 will



hold, ensuring µ(Xh
i , Y

h
j ) independent of BS placement.

However, it’s easy to show this is not true for the non-
uniformly dense case.

V. CAPACITY ANALYSIS IN NON-UNIFORMLY DENSE
NETWORK

We have previously mentioned (Remark 5) that mobility
is less significant in this regime. This is addressed by the
following two results, which are quite intuitive if we regard
clusters as nodes.

Lemma 10. [3] If f(n)
√
γ(n) = ω(1), without infras-

tructure support, a transmission range RT = Ω(
√
γ(n)) is

necessary to guarantee connectivity.

Corollary 3. Under the condition of Lemma 10, per-node
capacity is

λ = Θ

(
1

nRT (n)

)
= Θ

(√
m(n)

n2 logm(n)

)
Remark 13. λ = (1/nRT (n)) is strictly smaller than the per-
node capacity of uniformly dense case. The smaller m is,
the larger the gap becomes. The reason is we need to adopt a
larger transmission range to ensure connectivity, which will
cause more interference.

Recall that a smaller m represents a more sever degree of
clustering, the implication of non-uniformly dense regime is
that mobility is not strong enough to overcome clustering
effect, leading to inefficient use of spatial concurrency (see
Fig.1 for an example). However, it’s intuitive that in such
cases infrastructure can play a more important role, for BSs
can be used to link clusters together.

Now we introduce a simple lemma which is a direct
application of Chernoff bound:

Lemma 11. Define ni and ki as the number of MSs and
BSs belonging to cluster i, 1 ≤ i ≤ m. If m = o(n) and
m = o(k), then ∀ϵ > 0, uniformly over i, it holds w.h.p.:

(1− ϵ)n

m
< ni <

(1 + ϵ)n

m
(1− ϵ)k

m
< ki <

(1 + ϵ)k

m

In the non-uniformly dense networks, MSs belonging to
different clusters are separated. This motivate us to regard
clusters as subnets, so that we can extend our previous
techniques. Therefore, given a generic cluster i, we are
interested in whether the nodes inside it are “uniformly
dense” or not, according to a criterion similar to Theorem
1: recall that the radius of a cluster is r(n) ∼ n−R, we
further divide mobility in non-uniformly dense regime into
two cases. Define

√
γ̃(n) = r

√
log(n/m)

n/m , then we say

nodes are with weak mobility if f(n)
√

γ̃(n) = o(1) and
f(n)

√
γ(n) = ω(1), while trivial mobility corresponds to

the case f(n)
√
γ̃(n) = ω(log n

m ). For consistency, the
uniformly dense case is called strong mobility.

Remark 14. It may be a little misleading that we say a
node’s mobility is strong or weak. In fact the movement
of a particular node is characterized only by s(d), which is
independent of n, and has nothing to do with the definition
of strong/weak/trivial mobility. The mobility regime is an
attribute of the network, but not the nodes. Specifically, it’s
determined by the expanding speed of network size and the
clustering level of home-points.

A. Weak Mobility

We first introduce a lemma. The proof is available in [18].

Lemma 12. With a transmission range RT = r(n)
√

m(n)
n ,

nodes belonging to different clusters do not interfere with
each other, with high probability.

Theorem 7. In a network of n MSs with weak mobility and
k BSs, the per-node capacity is

λ = Θ

(
min

(
k2c

n
,
k

n

))
Proof: We now regard a single cluster as a subnet and

try to map our previous methods of analysis on it. First
the key parameters (f̃(n), ñ, k̃, m̃, r̃) should be determined.
Note that the subnet area is a disk of radius r(n)+D/f(n)
where D = sup{d : s(d) > 0} is a constant, and by
assumption f−1(n) = O(r(n)). So we renormalize the net-
work correspondingly and f̃(n) = nR. Besides, ñ = n/m
and k̃ = k/m (Lemma 11). It’s obvious that m̃ = ñ, and
therefore we don’t need to care about r̃.

Recall the definition of weak mobility, the subnet is
uniformly dense. Then Theorem 2 asserts that transmission
range RT = r

√
1/ñ = r

√
m/n is optimal if there is no

inter-cluster interference, which is ensured by Lemma 12.
Therefore by Corollary 2 the per-node capacity that can be
supported within the subnet is:

λ̃ = Θ

{
max

[
1

f̃(n)
,min

(
k̃2

ñ
c(n),

k̃

ñ

)]}

= Θ

{
max

[
1

nR
,min

(
k2

nm
c(n),

k

n

)]}
(12)

Now we return our focus to the global network and discuss
the inter-cluster traffic. Lemma 12 implies that link capacity
between clusters are zero, together with Lemma 6, λ can be
upper bounded as:

λ ≤ kk̃c(n)

ñ
=

k2c(n)

n

Combining with (12) yields:

λ = O

(
min

(
k2c(n)

n
,
k

n

))



For lower bound, we slightly modify optimal routing
scheme B such that a squarelet is replaced be a subnet.
Traffic in phase I & III, as (12) shows, is sustainable if
λ = O(k/n). Also note that w.h.p., the number of source-
destination pairs between two clusters is n2/m, and traffic
in phase II is feasible if no edge is overloaded. This happens
with high probability if:

λ n
m2

k
m

k
m

≤ c(n) ⇒ λ ≤ k2c(n)

n

This finishes the proof.

B. Trivial Mobility

Under trivial mobility, f(n)
√
γ̃(n) = ω(log n

m ). We first
show the triviality of mobility in this case, then determine
capacity with an equivalent static model.

Theorem 8. If f(n)
√
γ̃(n) = ω(log n

m ), and if strong con-
nectivity within clusters is required, then per-node capacity
of the network and the corresponding scheduling scheme is
the same as the case that all nodes are static. By strong
connectivity, we mean MSs of a cluster should be connected
without the help of infrastructure.

Proof: The connectivity criterion [19] shows that RT ≥
r
√
log(ñ)/πñ is necessary4, where ñ = n/m.

Now we take a snapshot of the network at an arbi-
trary time instant t0, and observe a successful wireless
transmission between nodes i and j. According to the
protocol model, it holds: i)∥Zi(t0) − Zj(t0)∥ ≤ RT ; and
ii) ∀l ∈ T , l ̸= i, j, ∥Zl(t0)− Zj(t0)∥ ≥ (1 +∆)RT , where
T is the set of active nodes. Our goal is to show because
these two conditions hold at t0, they hold for all t w.h.p..

Note that by mobility nodes can at most cover a disk of
D/f(n). So two nodes can move 4D/f(n) closer or farther.
Therefore, condition i) will hold for all t if the two nodes
are at most RT − 4D/f(n) away at t0. This is indeed true
w.h.p.:

Pr{∥Zi(t)− Zj(t)∥ ≤ RT |Tij}

≥ Pr
{
∥Zi(t0)− Zj(t0)∥ ≤ RT − 4D

f(n)
|Tij
}

=
π(
√

γ̃(n)− 4D
f(n) )

2

πγ̃(n)
→ πγ̃(n)

πγ̃(n)
= 1

where Tij denotes the event of ∥Zi(t0)− Zj(t0)∥ ≤ RT .
For condition ii), it is guaranteed for all t if any other

active nodes are at least (1+∆)RT +4D/f(n) away from

4Even if we relax the strong connectivity requirement, [7] shows that
RT > c4r/

√
πñ is necessary for any finite c4.

node j at t0. This is also true w.h.p.:

Pr{∩l∈T ∥Zl(t)− Zj(t)∥ ≥ (1 + ∆)RT |Ej}

≥ Pr
{
∩l∈T ∥Zl(t0)− Zj(t0)∥ ≥ (1 + ∆)RT +

4D

f(n)
|Ej
}

≥

πr2(n)− π
(
(1 + ∆)

√
γ̃(n) + 4D

f(n)

)2
πr2(n)− π

(
(1 + ∆)

√
γ̃(n)

)2


n
m

∼

1−
8D(1 + ∆)

√
γ̃(n)

f(n)

r2(n)


n
m

=

(
1− 8D(1 + ∆)m

nF (n)

) n
m

→ e−
8D(1+∆)

F (n) → 1

where Ej is the event that ∀l ∈ T , l ̸= i, j, ∥Zl(t0) −
Zj(t0) ≤ (1 + ∆)RT ∥ and F (n) = f(n)

√
γ̃(n)
log n

m
. Note

that by the definition of trivial mobility, F (n) = ω(1).
Then whether a wireless transmission is successful is

independent of t, i.e., mobility, and the theorem holds.

Definition 13. Optimal Routing & Scheduling Scheme C: In
every cluster we regularly place the BSs to divide the subnet
area into hexagon5 tessellation. Each hexagon is called a cell
with a BS at the center. We arrange cells into non-interfering
groups and schedule groups to be active sequentially. When
a cell is set active, MSs within the cell access the BS in
a TDMA manner, employing a transmission range same
as the side length of the cell. Besides, the bandwidth is
divided into two symmetric channels for uplink(MS-BS) and
downlink(BS-MS) respectively.

Theorem 9. The per-node capacity of network of n MSs
with trivial mobility and k BSs is

λ = Θ

(
min

(
k2c(n)

n
,
k

n

))
and is achieved by optimal routing & scheduling scheme C.

Proof: According to Theorem 8, we can regard all
nodes to be static. It is clear that the only challenge is to
validate traffic rate Θ(k/n) between BSs and a MS is still
feasible. Under Scheme C, this is to ensure the existence
of a grouping scheme that each cell can be scheduled to
be active for a constant fraction of time. However, this is
a simple consequence of the well-known fact about vertex
coloring of graphs of bounded degree [1].

VI. CONCLUSION

This paper introduce mobility and infrastructure, two
effective ways to increase throughput capacity, to wireless
ad hoc network and study the impact of their combination.
Our methods feature the concept of link capacity, which is

5The shape of a cell is in fact not important. We choose hexagons to
resemble realistic cases.



Table I: Capacity and Optimal Transmission Range in Different Regime

Network Regime Condition1 RT
2 Per-node Capacity

Strong Mobility without BSs f(n)
√

γ(n) = o(1) 1√
n

Θ
(

1
f(n)

)
Strong Mobility with BSs f(n)

√
γ(n) = o(1) 1√

n
Θ

(
1

f(n)

)
+Θ

(
min

(
k2c(n)

n
, k
n

))
Weak/Trivial Mobility without BSs f(n)

√
γ(n) = ω(1)

√
logm
m

Θ

(√
m

n2 logm

)
Weak Mobility with BSs f(n)

√
γ(n) = ω(1)

r
√

m
n Θ

(
min

(
k2c(n)

n
, k
n

))
and f(n)

√
γ̃(n) = o(1)

Trivial Mobility with BSs f(n)
√

γ̃(n) = ω(log n
m
) r

√
m
k

Θ
(
min

(
k2c(n)

n
, k
n

))
1γ(n) = logm

m
, γ̃(n) = r2

log(n/m)
n/m

2RT is the optimal transmission range.

convenient and efficient in forming a unified view of the
effect of mobility and infrastructure.

Mobility are classified into strong, weak and trivial cases.
We determine the per-node capacity as well as optimal
communication schemes and system parameters in each
regime. A summary of our results is presented in Table I
and compared with the cases without infrastructure support.
Our work generalizes results from previous related works on
MANETs or hybrid networks as special cases, and provides
fundamental insight on the understanding and design of
wireless ad hoc network.
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