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Capacity Theorems for Quantum Multiple-Access
Channels: Classical-Quantum and Quantum-Quantum

Capacity Regions
Jon Yard, Member, IEEE, Patrick Hayden, Member, IEEE, and Igor Devetak

Abstract—In this paper, we consider quantum channels with
two senders and one receiver. For an arbitrary such channel, we
give multiletter characterizations of two different two-dimensional
capacity regions. The first region comprises the rates at which it
is possible for one sender to send classical information, while the
other sends quantum information. The second region consists of
the rates at which each sender can send quantum information.
For each region, we give an example of a channel for which
the corresponding region has a single-letter description. One
of our examples relies on a new result proved here, perhaps of
independent interest, stating that the coherent information over
any degradable channel is concave in the input density operator.
We conclude with connections to other work and a discussion on
generalizations where each user simultaneously sends classical
and quantum information.

Index Terms—Multiple-access channels, quantum capacity,
quantum information.

I. INTRODUCTION

ACLASSICAL multiple-access channel with two senders
and one receiver is described by a probability transition

matrix . For the situation in which each sender wishes
to send independent information, Ahlswede [1] and Liao [2]
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showed that the capacity region admits a single-letter char-
acterization, given by the convex hull of the closure of the set of
rate pairs satisfying

for some . Further analysis by Cover, El Gamal,
and Salehi [3] gives single-letter characterizations of a set
of correlated sources that can be reliably transmitted over a
multiple-access channel, generalizing the above, as well as
Slepian–Wolf source coding and cooperative multiple-access
channel capacity. They also give a multiletter expression for
the capacity region, showing that an independent identically
distributed (i.i.d.) source can be reliably transmitted if
and only if

for some and , where refers to the se-
quence of symbols . A similar convention has been
used for sequences of jointly distributed random variables, as

. Such a characterization is of limited prac-
tical use, however, as it does not apparently lead to a finite com-
putation for deciding if a source can be transmitted.

In quantum Shannon theory, various capacities of a single
quantum channel are not currently known to be computable in
general. For instance, the best known formula for the capacity
of an arbitrary quantum channel for transmitting quantum in-
formation does not generally result in a single-letter optimiza-
tion problem [4]. Furthermore, a general single-letter expres-
sion for the classical capacity of a general quantum channel is
only known when the encoder is restricted to preparing product
states.

Winter [5] has shown that the capacity region of a multiple-
access channel with classical inputs and a quantum output for
the transmission of independent classical messages admits a
single-letter characterization, which is identical in form to that
of . Results on the classical capacity region of quantum binary
adder channels are contained in [6] and [7]. In what follows, we
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will examine the capacity region of an arbitrary quantum mul-
tiple-access channel with quantum inputs and a quantum output,
used in two distinct ways for the transmission of uncorrelated
information from each terminal. Our first result describes the
capacity region for the case in which one user sends quantum
information, and the other classical. The second result charac-
terizes the capacity region for the scenario in which each user
wishes to send only quantum information.

This paper is organized as follows. Section II contains the
relevant background material necessary to state and prove our
main results. This includes mention of the notational conven-
tions we will use throughout this paper, definitions of the dis-
tance measures for states we will use, as well as definitions
of the information quantities that will characterize our rate re-
gions. We also introduce two of the three equivalent informa-
tion processing tasks that will be considered in this paper, en-
tanglement transmission and entanglement generation. The con-
straints on successful transmission in these two scenarios is
analogous to the average error criterion in classical informa-
tion theory. Section III contains statements of Theorems 1 and
2, the main results of this paper. We collect various relation-
ships between our distance measures, a number of lemmas, and
statements of existing coding propositions in Section IV, which
also contains the proofs of Theorems 1 and 2. In Section V, we
will introduce a third information processing scenario, strong
subspace transmission, whose success criterion is analogous to
a maximal error constraint in classical information theory. All
three scenarios will be proved equivalent in that section as well.

While the characterizations of the capacity regions given in
Theorems 1 and 2 involve an infinite sequence of optimizations
over many instances of the channel, Section VI provides ex-
amples of channels for which only a single optimization over
one instance is required. These channels are related to a class
of single-user channels whose quantum capacities have known
single-letter descriptions—the so-called degradable channels
[29]. We review these in Section VI-A, where we also prove a
new concavity result for these channels. The additive examples
for the classical-quantum (cq) capacity appear in Section VI-B,
while those for the quantum-quantum (qq) capacity are in
Section VI-C. We reflect on and relate our results to others
in Section VII. Finally, the Appendix contains proofs of the
convexity of our capacity regions (Appendix IX-A), and of the
sufficiency of the bound on the cardinality of the set of classical
message states for cq protocols (part B of the Appendix).

II. BACKGROUND

We assume a basic understanding of the rudiments of
quantum information theory—a good reference is [8]. Here,
we review the notational conventions used in this paper. A
typical quantum system will be labeled . Its Hilbert space
will be . The dimension of will be abbreviated as

. For convenience, the label will often be
shorthand for some collection of operators on when the
context makes this apparent. For example, a density matrix

on the system is a nonnegative operator on of unit
trace. We will often abbreviate this by writing to remind
the reader of the system to which the state refers. A channel

is a linear map that is

completely positive and trace preserving. Two systems and
may be combined with a tensor product, resulting in the

system , where . Given a multipartite
state such as , we abbreviate its partial traces by omitting
superscripts, e.g., . Where convenient, we
occasionally refer to the global state (the one defined on the
largest number of subsystems) by omitting all superscripts; i.e.,

in this case. The system has a Hilbert space
, and the various operator algebras described

by will be appropriate subsets of . We will freely
identify , where is any other system, in order to
simplify long expressions. This procedure will always result in
a unique completely positive map, since every channel in this
paper will be completely positive. The maximally mixed state
on a Hilbert space will always be written as ,
and we reserve the symbol for bipartite states that are
maximally entangled. An exception to this convention will be
made when, given a density matrix , we write for a
purification of . When we write the density matrix of a pure
state , we will freely make the abbreviation . A
measurement on a quantum system in the state is modeled by
a positive operator-valued measure (POVM) consisting of a set

of nonnegative definite matrices satisfying
yielding probabilities .

We will use the following conventions for distance measures
between states. If and are density matrices, we will write

for (the squared version of) the fidelity [9]. It is not hard to check
that is symmetric. For two pure states, this reduces to

while for a pure state and a mixed state

In this last case, we may interpret the fidelity as the success
probability for a measurement that tests for the presence of the
pure state , when a physical system with density matrix is
presented. Indeed, for a POVM

measure prepared

The trace norm of an operator is defined as the
sum of its singular values, and can be expressed as

This gives rise to another useful distance measure on states, the
trace distance, defined as the trace norm of the difference be-
tween the states. It can be written explicitly as

and carries a normalization which assigns a distance of to
states with orthogonal support.

In order to introduce the information quantities that will
be used to characterize our capacity regions, we first intro-
duce the concept of a cq density matrix or state. Let be
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an -valued random variable distributed according to ,
where is a finite set. We can define a Hilbert space
with a fixed orthonormal basis . This sets up an
identification between the elements of
and that particular basis. By this correspondence, the prob-
ability distribution can be mapped to a density matrix

, which is diagonal in the basis
. Further, to every subset corresponds a

projection matrix , which commutes
with . This way, we can express concepts from classical
probability theory in the language of quantum probability,
such as the equivalence . From the
early development of quantum mechanics, noncommutativity
has been seen to be the hallmark of quantum behavior. It is to
be expected that classical probability, embedded in quantum
theory’s framework, is described entirely with commuting
matrices.

Consider now a collection of density matrices , in-
dexed by the finite set . If those states occur according to
the probability distribution , we may speak of an ensemble

of quantum states. In order to treat classical and
quantum probabilities in the same framework, a joint density
matrix can be constructed

This is known as a cq state, and describes the classical and
quantum aspects of the ensemble on the extended Hilbert space

[10]. The semiclassical nature of the ensemble is
reflected in the embedding of a direct sum of Hilbert spaces

into . This should be compared with the
purely classical case, where a direct sum of one-dimensional
vector spaces was embedded into . Just as our clas-
sical density matrix was diagonal in a basis corresponding
to elements of , the cq density matrix is block diagonal,
where the diagonal block corresponding to contains the non-
normalized density matrix . The classical state is re-
covered as a partial trace of , while the average quantum
state is . We will further speak of cqq
states, which consist of two quantum parts and one classical.
When even more systems are involved, we will defer to the ter-
minology cq to mean that some subsystems are classical, while
some are quantum. Such states are not only of interest in their
own right; information quantities evaluated on cq states play an
important role in characterizing what is possible in quantum in-
formation theory. Now, let be some cqq state, in block-di-
agonal form

We write

for the von Neumann entropy of the density matrix associated
with . is defined analogously. We will omit sub-

scripts when the state under consideration is apparent. The mu-
tual information, or Holevo quantity [11], is defined as

Depending on the context, the coherent information [12] will be
expressed in one of two ways. For a fixed joint state on , we
write

Otherwise, if we are given a density matrix and a channel
, which give rise to a joint state ,

where is any purification of , we will often use the
notation

It can be shown that this latter expression is independent of the
particular purification that is chosen for .

Despite their distinct forms, the mutual and coherent informa-
tions do share a common feature. For a fixed input state, each
is a convex function of the channel. We further remark that the
quantity can be considered as a conditional, or ex-
pected, coherent information, as

A particular departure of this quantity from its classical analog,
the conditional mutual information , is that the latter
is only equal to when and are independent,
while the former always allows either interpretation, provided
the conditioning variable is classical.

Conditional coherent information arises in another context;
suppose that is a quantum instrument [13],
meaning that acts as

The completely positive maps are the components of the
instrument. While they are generally trace reducing, their sum

is always trace preserving. It is not difficult to
show that

where the latter quantity is computed with respect to the state

For us, a quantum multiple-access channel is a channel
with two inputs and one output. We will assume

that the inputs and are under the control of Alice and
Bob, respectively, and that the output is maintained by
Charlie. We will present three different quantum information
processing scenarios which, as we will see, lead to equivalent
cq and qq capacity regions.
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A. Classical-Quantum (cq) Protocols

These protocols will be relevant to Theorem 1. Using a
large number of instances of , Alice tries to send classical
information to Charlie at rate , while Bob simultaneously
attempts to convey quantum information at rate . Alice’s
communication consists of sending Charlie one of classical
messages. To this end, we allow her to prepare arbitrary pure
states at her input to the channel. It is assumed
that neither Alice nor Bob shares any additional resources with
Charlie or among themselves, such as entanglement or noise-
less quantum channels. We consider three different information
processing tasks which Bob can perform, introduced in order
of apparently increasing strength. The first two, entanglement
generation and entanglement transmission, are outlined below,
as each plays an essential role in the proof of our main re-
sult. The third, strong subspace transmission, is described in
Section V-A. While not essential for the understanding of our
main results, we include it in this paper because the compos-
ability properties implied by its more stringent constraints on
successful communication make it particularly attractive as
a building block for creating more intricate protocols from
simpler ones. That each of these aforementioned scenarios can
justifiably be considered as “sending quantum information” to
Charlie will be proved in Sections V-B and V-C, where we will
show that each gives rise to the same collection of achievable
rates.

I–Entanglement Generation: With the goal of eventually
sharing near-maximal entanglement with Charlie, Bob begins
by preparing a bipartite pure state , entangled between
a physical system located in his laboratory, and the part
of the inputs of . Charlie’s postprocessing procedure will
be modeled by a quantum instrument. While the outer bound
provided by our converse theorem will apply to any decoding
modeled by an instrument, our achievability proof will require
a less general approach, consisting of the following steps.

In order to ascertain Alice’s message , Charlie first per-
forms some measurement on whose statistics are given by
a POVM . We let the result of that measurement
be denoted , his declaration of the message sent by Alice.
Based on the result of that measurement, he will perform one
of decoding operations . These two steps
can be mathematically combined to define a quantum instru-
ment with (trace-reducing) components

The instrument acts as

and induces the trace-preserving map , acting ac-
cording to

We again remark that this is the most general decoding pro-
cedure required of Charlie. Any situation in which he were to

iterate the above steps by measuring, manipulating, measuring
again, and so on, is equivalent to a single instance of the
above protocol. will be called
a cq entanglement generation code for the
channel if

(1)

where

(2)
We will say that is an achievable cq rate pair

for entanglement generation if there exists a sequence of
cq entanglement generation codes with

. The capacity region is defined to be the
closure of the collection of all achievable cq rate pairs for
entanglement generation.

II–Entanglement Transmission: In this scenario, rather than
generating entanglement with Charlie, Bob will act to transmit
preexisting entanglement to him. We assume that Bob is pre-
sented with the part of the maximally entangled state .
It is assumed that he has complete control over , while he has
no access to . He will perform a physical operation in order to
transfer the quantum information embodied in his system to
the inputs of the channel, modeled by an encoding opera-
tion . The goal of this encoding will be to make it
possible for Charlie, via postprocessing of the information em-
bodied in the system , to hold the part of a state which
is close to that which would have resulted if Bob had sent his
system through a perfect quantum channel id: . Here,
we imagine that and denote two distinct physical systems
with the same number of quantum degrees of freedom. The role
of the identity channel is to set up a unitary correspondence, or
isomorphism, between the degrees of freedom of in Bob’s
laboratory and those of in Charlie’s. We will often tacitly as-
sume that such an identity map has been specified ahead of time
in order to judge how successful an imperfect quantum transmis-
sion has been. This convention will be taken for granted many
times throughout this paper, wherein specification of an arbi-
trary state will immediately imply specification of the
state . Decoding is the same as it is
for scenario I.

will be called a cq en-
tanglement transmission code for the channel if

(3)

where

(4)

Achievable rate pairs and the capacity region are de-
fined analogous to those for scenario I.

Scenario III will be introduced in Section V, where it will also
be shown that all three scenarios gives rise to the same set of
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achievable rates. For this reason, we will henceforth only speak
of a single capacity region

B. Quantum-Quantum (qq) Protocols

The subject of Theorem 2, these protocols concern the case in
which Alice and Bob each wish to send only quantum informa-
tion to Charlie at rates and , respectively. As in the cq case,
we will initially describe two different senses in which such a
task can be considered. Again, Section V will introduce a third
scenario, which will be shown to be equivalent to the following
two.

I–Entanglement Generation: For encoding, Alice and Bob,
respectively, prepare the states and , entan-
gled with the and parts of the inputs of . Their
goal is to do this in such a way so that Charlie, after applying
a suitable decoding operation , can hold the

part of a state which is close to . Formally,
is a qq entanglement

generation code for the channel if

(5)

As before, is an achievable qq rate pair for entanglement
generation if there is a sequence of qq entan-
glement generation codes with . The capacity region

is the closure of the collection of all such achievable
rates.

II–Entanglement Transmission: Alice and Bob each, re-
spectively, have control over the and parts of the separate
maximally entangled states , while neither
has access to or . Alice transfers the correlations in her
system to the parts of the inputs of with an encoding
operation . Bob acts similarly with .
Their goal is to preserve the respective correlations, so that
Charlie can apply a decoding operation , in order
to end up holding the part of a state which is close to

. Formally, is a qq
entanglement transmission code for the channel if

(6)

where

Achievable qq rate pairs for entanglement generation and the
capacity region are defined as in the previous scenario.
As in the cq case, we defer to Section V, the introduction of
scenario III, as well as the proof that

III. MAIN RESULTS

Our first theorem gives a characterization of as a reg-
ularized union of rectangles.

Theorem 1: Given a quantum multiple-access channel
, its cq capacity region is given by the

closure of

where equals the pairs of nonnnegative rates
satisfying

for some pure state ensemble and a bipartite
pure state giving rise to

(7)

It is sufficient to consider when
computing .

The next theorem offers a characterization of as a reg-
ularized union of pentagons.

Theorem 2: Given a quantum multiple-access channel
, its qq capacity region is given by the

closure of

where equals the pairs of nonnegative rates
satisfying

for some bipartite pure states and giving rise
to

(8)

We remark here that there does not appear to be any obstacle
preventing application of the methods used in this paper to prove
many-sender generalizations of the above theorems. For sim-
plicity, we have focused on the situations with two senders. In
the Appendix, we prove that the multiletter nature of the regions
of Theorems 1 and 2 implies that they do not require convexi-
fication. This is in contrast to the general single-letter result in
the classical case for which it is indeed necessary. The charac-
terizations given in each of the above theorems do not appar-
ently lead to a finite computation for determining the capacity
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Fig. 1. CQ (erasure channel) with d = 2.

regions, as neither admits a single-letter characterization in gen-
eral. However, we prove in Section VI-B (Theorem 3) that for a
class of quantum multiple-access channels, one has that is
equal to the convex hull of . As a concrete application of
this theorem, consider a channel with ,

, and . This channel first measures
in the computational basis. If the outcome is , Charlie re-
ceives Bob’s input without error, while if the outcome is ,
Bob’s input is replaced by some fixed pure state. In addition,
Charlie always knows whether an error has occurred. We show
there that the cq region of this channel is equal to the set of all
pairs of nonnegative cq rates with outer boundary given
by the parameterized curve

.

This region is pictured in Fig. 1 for .
In Section VI-C, we define a family of “collective phase flip

channels” which, with probability , flip the phases of both input
qubits. We show there that the qq capacity region of such a
channel is given by a single pentagon of nonnegative qq rates

satisfying

The characterizations given in Theorems 1 and 2 are not the
only possible ways to describe the corresponding regions. It is
possible to prove coding theorems and converses for regular-
izations of distinct single-letter regions for each of and

. Although the characterizations given above are the best
which we are aware of, we refer the reader to Section VII for
further discussion regarding other characterizations.

IV. PROOFS OF THEOREMS 1 AND 2

We first collect some relevant results that will be used in what
follows, starting with some relationships between our distance

measures. If and are density matrices defined on the same
Hilbert space, set

and

Then, the following inequalities hold (see, e.g., [8]):

(9)

(10)

From these inequalities, we can derive the following more useful
relationships:

(11)

(12)

which are valid for . Uhlmann [9] has given the
following characterization of fidelity:

where the first maximization is over all purifications of each
state, and the second maximization holds for any fixed purifi-
cation of . This characterization is useful in two different
ways. First, for any two states, it guarantees the existence of pu-
rifications of those states whose squared inner product equals
the fidelity. Second, one can derive from that characterization
the following monotonicity property [14] associated with an ar-
bitrary trace-preserving channel :

(13)

An analogous property is shared by the trace distance [15]

(14)

which holds even if is trace reducing. A simple proof for
the trace-preserving case can be found in [8]. These inequal-
ities reflect the fact that completely positive maps are contrac-
tive and cannot improve the distinguishability of quantum states;
the closer states are to each other, the harder it is to tell them
apart. We will often refer to either of these two properties as
just “monotonicity,” as the particular one to be used will always
be clear from the context. Another useful property will be the
multiplicativity of fidelities under tensor products

(15)

Since the trace distance is a norm, it satisfies the triangle in-
equality. The fidelity is not a norm, but it is possible to derive
the following analog by applying (9) and (10) to the triangle in-
equality for the trace distance:

(16)

It will be possible to obtain a sharper triangle-like inequality as
a consequence of the following lemma, which states that if a
measurement succeeds with high probability on a state, it will
also do so on a state that is close to that state in trace distance.
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Lemma 1: Suppose , where and are den-
sity matrices, and . Then, .

Proof :

where the last equality follows from a characterization of trace
distance given in [8].

Since when is a pure state, a corollary of
Lemma 1 is that

a fact we will refer to as the “special triangle inequality.”
The following lemma can be thought of either as a type of

transitivity property inherent to any bipartite state with a com-
ponent near a pure state, or as a partial converse to the mono-
tonicity of fidelity.

Lemma 2: For finite-dimensional Hilbert spaces and ,
let a pure state and two density matrices and be
given. Then

Proof: We begin by defining the subnormalized density
matrix via the equation

(17)

so that is the upper-left block of when the basis
for is chosen so that . Notice that

. The normalized state
satisfies

(18)

Omitting superscripts for clarity, we write

(19)

The first line is the definition of fidelity and the third follows
from (17). The last equality relies on the fact that the fidelity, as
we have defined it, is linear in either of its two inputs, while the
inequality follows from (10).

Noting that , we define another positive operator
, which satisfies and can be

interpreted as the sum of the rest of the diagonal blocks of .
The trace distance in the last line above can be bounded via
double application of the triangle inequality as

(20)

where the second line follows from (18). Combining (19) with
(20), we obtain

as required.

The following continuity lemma from [16] shows that if two
bipartite states are close to each other, the difference between
their associated coherent informations is small.

Lemma 3 (Continuity of Coherent Information): Let and
be two states of a finite-dimensional bipartite system

satisfying . Then

where is the binary entropy function.

Next is Winter’s “gentle measurement” lemma [17], which
implies that a measurement which is likely to be successful in
identifying a state tends not to significantly disturb that state.

Lemma 4 (Gentle Measurement): Let be a finite-dimen-
sional Hilbert space. If is a density matrix and

is nonnegative with spectrum bounded above by , then

implies

Our coding theorems for multiple-access channels will make
use of existing coding theorems for single-user channels. Given
a channel , we say that the pair of channels ,
where and , comprise a
entanglement transmission code for the channel if, for the

maximally entangled state , we have

A random entanglement transmission code consists
of an collection of deterministic entanglement trans-
mission codes , where the are probabilities cor-
responding to a source of shared common randomness available
to both sender and receiver. We will often omit the subscript
once the randomness of the code has been clarified, and it will be
understood that and constitute a pair of correlated random
maps.
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Associated to a random code is its expected, or average code
density operator , which is the expectation, over the
shared randomness, of the image of the maximally mixed state
on . Our reason for using random quantum codes will be to
ensure that, on average, the input to is at least close to an

-fold product state.
The proof of the existence of quantum codes achieving the co-

herent information bound is attributed to Lloyd [18], Shor [19],
and Devetak [20]. The following quantum coding proposition
for single-user channels is proved in [20] and concerns the ex-
istence of random entanglement transmission codes whose av-
erage code density matrix can be made arbitrarily close to a
product state.

Proposition 1: Given is a channel , a density
matrix , and a number . For every

, there is sufficiently large so that there is a
random entanglement transmission code for with
an isometric encoder whose average code density operator

satisfies

Furthermore, given any particular isometric extension
of , it is possible to choose isometric

extensions of the deterministic decoders so
that

(21)

for some fixed pure state .

Next, we state an average error version of the Holevo–Schu-
macher–Westmoreland (HSW) theorem for cq codes with code-
words chosen i.i.d. according to a product distribution [21], [22].

Proposition 2 (HSW Theorem): Given is a cq state

and a number . For every , there is
sufficiently large so that if codewords are
chosen i.i.d. according to , corresponding
to input preparations

there exists a decoding POVM on , depending on the
random choice of codebook , which correctly identifies the
index with average probability of error less than , in the sense
that

(22)

Due to the symmetry of the distribution of under codeword
permutations, it is clear that the expectations of each term in the
above sum are equal. In other words

(23)

so we will later, without loss of generality, make the assumption
that Alice sends codeword during our analysis (see [23]
for a detailed discussion in the classical case).

A. Proof of Theorem 1 (Converse)

We prove in Section V that any rate pair that is achievable
for entanglement transmission is also achievable for entangle-
ment generation. For this reason, we use the latter scenario to
prove the converse part of Theorem 1. It should be noted that
the reverse implication, namely, that entanglement generation
implies entanglement transmission, follows from the fact the
outer bound to be proved next coincides with the inner bound
obtained by the coding theorem below.

Suppose there exists a sequence of entan-
glement generation codes with . Fixing a blocklength ,
let , , and comprise the
corresponding cq entanglement generation code. The state in-
duced by the encoding is

After applying the decoding instrument, the state is

We upper bound the classical rate of the code as follows:

The first inequality follows from Fano’s inequality (see, e.g.,
[23]), while in the second, we use the Holevo bound [11] and
define . The quantum rate of the code is upper
bounded as

In the above, the inequalities are consequences of the data pro-
cessing inequality [12], the fact that conditioning cannot in-
crease entropy (and thus cannot decrease coherent information)
[8], a combination of Lemma 3 and (11), and the definition

. The second justification can be considered as
an alternative statement of the well-known strong subadditivity
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inequality [24], of which a recent simple proof can be found in
[25]. Setting , we have thus proven that

whenever is an achievable cq rate pair for entanglement
generation, where . It follows that for any achievable
rate pair and any , we have

Since is closed by definition, this completes the proof.

B. Proof of Theorem 1 (Achievability)

Our method of proof for the coding theorem will work as
follows. We will employ random HSW codes and random en-
tanglement transmission codes to ensure that the average state
at the input of is close to a product state. Each sender
will utilize a code designed for the product channel induced
by the other’s random input, whereby existing coding theorems
for product channels will be invoked. The quantum code used
will be one that achieves the capacity of a modified channel, in
which the classical input is copied, without error, to the output
of the channel. As the random HSW codes will exactly induce
a product state input, the existence of these quantum codes will
follow directly from Proposition 1.

The random HSW codes will be those which exist for
product channels. As random entanglement transmission codes
exist with average code density matrix arbitrarily close to a
product state, this will ensure that the resulting output states are
distinguishable with high probability. Furthermore, obtaining
the classical information will be shown to cause but a small
disturbance in the overall joint quantum state of the system.
As we will show, it is possible to mimic the channel for which
the quantum code is designed by placing the identities of the
estimated classical message states into registers appended to
the outputs of each channel in the product.

The decoder for the modified channel will then be shown to
define a quantum instrument which satisfies the success condi-
tion for a cq entanglement transmission code, on average. This
feature will then be used to infer the existence of a particular,
deterministic code which meets the same requirement.

Fix a pure state ensemble and a bipartite pure
state , which give rise to the cqq state

having the form of (7). Define the states

We will demonstrate the achievability of the corner point
by showing that for every , if

there exists a cq entanglement transmission
code for the channel , provided that is sufficiently large and
that . The rest of the region will follow by timesharing.

For encoding, Alice chooses sequences , i.i.d. ac-
cording to the product distribution . As
each sequence corresponds to a preparation of channel inputs

the expected average density operator associated with Alice’s
input to the channel is precisely

Define a new channel (which is also an instru-
ment) by

This can be interpreted as a channel that reveals the identity
of Alice’s input state to Charlie, with the added assumption
that Alice chooses her inputs at random. Alternatively, one can
view this as a channel with state information available to the
receiver, where nature is randomly choosing the “state” at
Alice’s input. Observe that . By
Proposition 1, there exists a random entanglement
transmission code for the channel , where

and , such that the average code

density operator satisfies

When Alice sends the message , the resulting joint
Bob–Charlie state is

where is the maximally entangled state which Bob is
required to transmit. We will show that Charlie can distinguish
the states because they are close to a related set of states.
By Proposition 2, for the channel given by

which would result if Bob’s average code density operator
were exactly equal to , there exists a decoding POVM

on that would identify Alice’s index with
expected average probability of error less than , in the sense
that

where



3100 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

By the symmetry of the random code construction, we utilize
(23) to write this as

Note that

It follows from monotonicity of trace distance that

which, together with Lemma 1, implies that

This allows us to bound the expected probability of correctly
decoding Alice’s message as

(24)

In order to decode, Charlie begins by performing the mea-
surement on . He declares Alice’s message to
be if measurement result is obtained. Charlie will
then attempt to simulate the channel by associating a sep-
arate classical register to each channel in the
product, preparing the states , for . Addi-
tionally, he stores the result of the measurement in the system

, his declaration of the message intended by Alice. This pro-
cedure results in the global state

where we define the subnormalized states

If Charlie were able to perfectly reconstruct Alice’s classical
message, the global state would instead be

When averaged over Alice’s random choice of HSW code, the
reduced state is precisely equal to the state that would
arise via the action of the modified channel . This is because

(25)

where we have written the state that results when Alice prepares
as

However, our choice of a good HSW code ensures that he can
almost perfectly reconstruct Alice’s message. A consequence of

this will be that the two states and are almost
the same, as we will now demonstrate.

In what follows, we will need to explicitly keep track of the
randomness in our codes by means of extra subscripts that are
to be interpreted as indexing the corresponding deterministic
states, which occur with the probabilities and . Rewriting
(24) as

it is clear that we may write

for positive numbers chosen to satisfy

By the gentle measurement lemma

and thus, by the concavity of the square root function

Along with (24) and monotonicity with respect to , this
estimate allows us to express

(26)

provided that . Since the entanglement fidelity is linear in

, which is itself linear in , it follows that

The special triangle inequality can now be used to lower bound
the right-hand side of this expression by
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Using our earlier observation from (25) and the definition of a
entanglement transmission code, we can bound the

first term as

An estimate on the second term is obtained via

where first three lines are by convexity, monotonicity, and con-
vexity once again of the trace norm. The last inequality follows
from (26). Putting these together gives

(27)

At last, observe that the final decoded state (which still
depends on both sources of randomness and ) is equal to

This implicitly defines the desired decoding instrument
. The expectation of (3) can now be bounded as

The third line above is by Lemma 2, the first estimate in the
fourth line follows from (24), and the second estimate is by (27),
together with (11). We may now conclude that there are partic-
ular values of the randomness indices and such that the same
bound is satisfied for a deterministic code. We have thus proven
that comprises a
entanglement transmission code. This concludes the coding the-
orem.

C. Proof of Theorem 2 (Converse)

Suppose that is an achievable qq rate pair for entangle-
ment generation. By definition, this means that there must exist
a sequence of entanglement generation codes
with . Fixing a blocklength , let

and comprise the corresponding encodings and
decodings. Define

to be the result of sending the respective and parts
of and through the channel . Further
defining

as the corresponding state after decoding, the entanglement fi-
delity of the code is given by

(28)

where and are the maximally entangled target
states. The sum rate can be bounded as

The first step is by the data processing inequality. The second
step uses Lemma 3 and (11), along with monotonicity applied
to (28). The last step has defined and
holds because the binary entropy is upper bounded by .
We can bound Alice’s rate by writing

The first three steps above are by data processing [12]. The re-
maining steps hold for the same reasons as in the previous chain
of inequalities. Similarly, Bob’s rate also must satisfy

Since implies , this means that for every ,
any achievable qq rate pair must satisfy

Since is closed by definition, this completes the proof.

Remark: Strictly speaking, the pair of nonnegative
rates needs to be contained in some pentagon
whose corner points and

are located in the upper right
quadrant of , where is some state of the form (8). For
large enough , the induced states in the above proof
fulfill this role. To see this, note that an artifact of the steps that
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upper bound Alice’s rate is that
and . Since , the right-hand sides
are eventually positive whenever . The similar steps that
bound Bob’s rate complete the argument.

D. Proof of Theorem 2 (Achievability)

Fix bipartite pure states and that give rise
to the state

and define

Letting be arbitrary, we will show that there exists a
qq entanglement transmission code where

and

provided that . Note that the rates in Theorem 2 will be
implied by taking the channel to be , with defined
similarly.

We first choose an isometric extension of
. Define the ideal channel , which would effec-

tively be seen by Alice were Bob’s average code density oper-
ator exactly equal to as

We now use to define a particular isometric extension
of , where , as

Observe that Bob’s fake input is treated as part of the envi-
ronment of Alice’s ideal induced channel. We then further de-
fine the channel by

In contrast to the interpretation of , this may be viewed as
the channel that would be seen by Bob if Alice were to input the

part of the purification of to her input of the
channel and then send the system to Charlie via a noiseless
quantum channel. A pictorial depiction of the maps and
is given in Fig. 2. As in the proof of Theorem 1, Charlie will first
decode Alice’s information, after which he will attempt to simu-
late the channel , allowing a higher transmission rate for Bob
than if Alice’s information was treated as noise. Since quantum
information cannot be copied, showing that this is indeed pos-
sible will require different techniques than were utilized in the
previous coding theorem. Although ensembles of random codes
will be used in this proof, we introduce the technique of coherent
coding, in which we pretend that the common randomness is pu-
rified. The main advantage of this approach will be that working
with states in the enlarged Hilbert space allows monotonicity to
be easily exploited in order to provide the estimates we require.
Additionally, before we derandomize at the end of the proof, it
will ultimately be only Bob who is using a random code. Alice

Fig. 2. Structure of N (left) and N (right).

will be able to use any deterministic code from her random en-
semble, as Charlie will implement a decoding procedure that
produces a global state which is close to that which would have
been created had Alice coded with the coherent randomness. To
show this, we will first analyze the state that would result if both
senders used their full ensembles of codes. Then, we show that
if Alice uses any code from her ensemble, Charlie can create the
proper global state himself, allowing him to effectively simulate

and ultimately decode both states at the desired rates. The
overall structure of the decoder we will construct is illustrated
in Fig. 3.

By Proposition 1, for large enough , there exists a
random entanglement transmission code for the
channel , where

There similarly exists a random entanglement trans-
mission code for , with

Proposition 1 further guarantees that these codes can be chosen
so that their respective average code density operators

and

satisfy

(29)

and also that there exist isometric extensions
implementing the from Alice’s random code, which satisfy

(30)

for every random code index and the same fixed state .
Let the code common randomness between Alice and Charlie

be held between the systems and , represented by the
state

defining a similar state for the Bob–Charlie common
randomness. For convenience, we define a purification
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Fig. 3. Structure of decoding D.

of , defining a similar purification of
. Let us define the controlled encoding isometries

and as

and

Abbreviating and , the states
that would arise if Alice and Bob each encoded coherently are

Because and are, respectively, purifi-
cations of and , together with (29), Uhlmann’s the-
orem tells us that there exist unitaries and

such that

(31)

Further, define a corresponding controlled isometric decoder
for Alice’s code as

Let us now imagine that each of Alice and Bob encodes using
the coherent common randomness, resulting in a global pure
state on . If Charlie
then applies the full controlled decoder from Alice’s code, the
resulting global pure state would be

For each , let us define an isometry as

which we use to define the pure states

These definitions allow us to express

Further writing , we have

In the above, the first inequality is by the triangle inequality, the
fact that fidelity is isometrically invariant, while for the second
inequality, we have used (31) for the first term and rewritten the
second. The last bound is from (30). Observe that we are still
free to specify the global phases of the outputs of the , fur-
ther implying that for each . Con-
sequently

so that essentially, the subsystems , and of
are mutually decoupled.

As mentioned earlier, it will be sufficient for Alice to use
any deterministic code from the random ensemble to encode.
Without loss of generality, we assume that Alice chooses to use
the first code ( ) in her ensemble. Bob, on the other hand,
will need to use randomness to ensure that Alice’s effective
channel is close to a product channel. The state on that
results from these encodings is .

We will now describe a procedure by which Charlie first de-
codes Alice’s information, then produces a state that is close to

, making it look like Alice had in fact utilized the coherent
coding procedure. This will allow Charlie to apply local uni-
taries to effectively simulate the channel for which Bob’s
random code was designed, enabling him to decode Bob’s infor-
mation as well. These steps will constitute Charlie’s decoding

, which depends on the Bob–Charlie
common randomness. The existence of a deterministic decoder
will then be inferred.

Charlie first applies the isometric decoder , placing all

systems into the state . He then removes his local
system (it is important that he keep in a safe place, as
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it represents the decoder output for Alice’s quantum informa-
tion) and replaces it with the corresponding parts of the locally
prepared pure state . Charlie also locally prepares the
state . The resulting state

satisfies

(32)

whenever . The first inequality combines Lemma 2
and the triangle inequality. The first two estimates in the second
inequality are from applying (11) and monotonicity with respect
to and to the previous two estimates. The last es-
timate in that line is from monotonicity with respect to the map

applied to the previous estimate. Next, Charlie will
apply

to , in order to simulate the channel . Note that this oper-
ation only acts on Charlie’s local systems, as pictured in Fig. 3.
To see that this will work, define

as and observe that by monotonicity
with respect to and (31), the states on

satisfy

We may now use the triangle inequality and monotonicity with
respect to to combine our last two estimates, yielding

(33)

whenever . We have thus far shown that Charlie’s
decoding procedure succeeds in simulating the channel ,
while simultaneously recovering Alice’s quantum information.
Charlie now uses the controlled decoder

defined as

to decode Bob’s quantum information. This entire procedure has
defined our decoder

which gives rise to a global state representing the final
output state of the protocol, averaged over Bob’s common ran-
domness. This state satisfies

because of monotonicity with respect to applied to
the bound (32). By using the triangle inequality, the fact that
(21) is satisfied for each , and monotonicity of the estimate
(33) with respect to , the global state can further be seen
to obey

as long as . Along with (11), a final application of
Lemma 2 combines the above two bounds to give

provided that . Since this estimate represents an av-
erage over Bob’s common randomness, there must exist a par-
ticular value of the common randomness so that the corre-
sponding deterministic code is at least as good as the random
one, thus concluding the coding theorem.
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V. STRONG SUBSPACE TRANSMISSION AND SCENARIO

EQUIVALENCES

A. Scenario III—Strong Subspace Transmission

The criteria of scenarios I and II, both in the cq and qq cases,
are directly analogous to the requirement in classical informa-
tion theory that the average probability of error, averaged over
all codewords, be small. Here, we introduce a situation analo-
gous to the stronger classical condition that the maximal proba-
bility of error be small, or that the probability of error for each
pair of codewords be small. There are examples of classical mul-
tiple-access channels for which, when each encoder is a deter-
ministic function from the set of the messages to the set of input
symbols, the maximal error capacity region is strictly smaller
than the average error region [26]. However, it is known that if
stochastic encoders are allowed (see [27, Problem 3.2.4]), the
maximal and average error capacity regions are equal.

It is well known that randomization is not necessary for such
an equivalence to hold for single-user channels, as Markov’s in-
equality implies that a fraction of the codewords with the worst
probability of error can be purged, while incurring a negligible
loss of rate. The obstacle to utilizing such an approach for clas-
sical multiple-access channels, and hence for quantum ones as
well, is that there is no guarantee that a large enough subset of
bad pairs of codewords decomposes as the product of subsets of
each sender’s codewords.

As mentioned in Section II, a particularly attractive feature of
the following two scenarios is their composability; when com-
bined with other protocols satisfying analogous criteria, the joint
protocol will satisfy similar properties.

III—Classical-Quantum Scenario: Strong subspace trans-
mission can be considered a more ambitious version of
entanglement transmission, whereby rather than requiring Bob
to transmit half of a maximally entangled state , it is
instead required that he faithfully transmit the part, presented
to him, of any bipartite pure state , where can be
any finite number. The reader should note that this constitutes
a generalization of the usual subspace transmission [28], as
whenever , this amounts to requiring that

be transmitted faithfully. We further demand that the
maximal error probability for the classical messages be small.

As with entanglement transmission, Alice will send clas-
sical information at rate by preparing one of pure states

. As previously discussed, our more restrictive
information transmission constraints can only be met by al-
lowing Alice to employ a stochastic encoding. We assume that
Alice begins by generating some randomness, modeled by the
random variable . To send message , she prepares the
state , where is a random
encoding function, depending on the randomness in .

Bob will apply an encoding , and Charlie will
employ a decoding instrument . These will be
constructed by adding an additional layer of processing on top
of the entanglement transmission codes that were proved to exist
in the previous section. The success probability for the protocol,

conditioned on being sent and being presented, can be
expressed as

We will say that is a
cq strong subspace transmission code for the channel if, for
every and every

(34)

The rate pair is an achievable cq rate pair for strong sub-
space transmission if there is a sequence of cq
random strong subspace transmission codes with , and
the capacity region is closure of the collection of all
such achievable rates.

III–Quantum-Quantum Scenario: This scenario is the ob-
vious combination of the relevant concepts from the previous
scenario and the qq entanglement transmission scenario. Alice
and Bob are, respectively, presented with the and parts of
some pure bipartite states and . As before, we
place no restriction on and , other than that they are fi-
nite. They employ their respective encodings and , while
Charlie decodes with . As in the above cq case, the structure
of these maps will be more complicated than in the previous two
scenarios. is then a qq strong sub-
space transmission code if

(35)

for every pair of pure bipartite states and .
Achievable rates and the capacity region are defined
as in the cq case.

B. Entanglement Transmission Implies Entanglement
Generation

1) Proof That : Suppose there exists a
cq entanglement transmission code consisting

of classical message states , an encoding map
, and a decoding instrument . Write

any pure state decomposition of the encoded state

Then, the success condition (3) for a cq entanglement transmis-
sion code can be rewritten as
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so that there is a particular value of for which

Hence, comprises an

cq entanglement generation code.

2) Proof That : Suppose there exists a
entanglement transmission code

that transmits the maximally entangled states .
As in the cq case, the encoded states can be decomposed as

and

The reliability condition (6) can then be rewritten as

which implies the existence of a particular pair of values
of such that

Hence, comprises a

qq entanglement generation code.

C. Entanglement Transmission Implies Strong Subspace
Transmission

1) Proof That : Suppose there exists a
entanglement transmission codes with

classical message states , quantum encoding
, and decoding instrument with

trace-reducing components .
We will initially prove the equivalence by constructing a code

that requires two independent sources of shared common ran-
domness and . is assumed to be available to Alice and
to Charlie, while is available to Bob and to Charlie. Then, we
will argue that it is possible to eliminate the dependence on the
shared randomness, by using the channel to send a negligibly
small “random seed,” which can be recycled to construct a code
that asymptotically achieves the same performance as the ran-
domized one.

We begin by demonstrating how shared common randomness
between Alice and Charlie allows Alice to send any message
with low probability of error. Setting , let the random
variable be uniformly distributed on the set . To
send message , Alice computes modulo

. She then prepares the state for transmission through
the channel. Bob encodes the part of with , and
each sends appropriately through the channel. Charlie decodes
as usual with the instrument . Denoting the classical output as

, his declaration of Alice’s message is then
modulo . Defining the trace-reducing maps by

and the trace-reducing average map as

we can rewrite the success criterion (3) for entanglement trans-
mission as

which, together with (11), implies that for the identity map id:

(36)

The above randomization of the classical part of the protocol
can be mathematically expressed by replacing the with

. As tracing over the common randomness is equiva-
lent to computing the expectation with respect to , we see that

, or rather

It is thus clear that the maximal error criterion for the random-
ized protocol is equal to the average criterion for the original
one.

We continue by randomizing the quantum part of the clas-
sically randomized protocol. Setting , let

be the collection of Weyl unitaries, or generalized
Pauli operators, on the -dimensional input space. Observe
that for any , acting with a uniformly random choice of Weyl
unitary has a completely randomizing effect, in the sense that

Let the random variable be uniformly distributed on
. It will be convenient to define the common ran-

domness state

where the system is in the possession of Bob, while
is possessed by Charlie. Define now the controlled unitaries

and by

and
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Suppose Bob is given the part of an arbitrary pure state
, where , and Alice sends the classical message

. For encoding, Bob will apply to the combined
system , where we abbreviate . Charlie
decodes with . If were equal to the perfect quantum
channel id: , this procedure would result in the state

Note that the common randomness is still available for reuse.
Abbreviating , and also

, we write

(37)

(38)

Observe that is an extension of the maximally mixed state
and can be seen to arise by storing in the result of a von

Neumann measurement along the basis on the
part of the pure state

Since

it follows that is maximally entangled between
and ; so there exists an isometry such that

This implies that there is a quantum operation sat-

isfying . Define the trace-reducing
map , which represents the coded channel with
common randomness accounted for, by

Recalling our denotation of the noiseless quantum channel id:
, as well as our convention that id acts as the identity on

any system that is not , we now bound

where the first line is by (9) and the second by monotonicity
with respect to . The third follows from unitary invariance
of the trace. The second to last inequality is a consequence of
monotonicity with respect to , while the last is by (36). Note

that by monotonicity, this implies that any density matrix
satisfies

(39)

We have thus shown that if Alice and Charlie have access to
a common randomness source of rate , while Bob and Charlie
can access one of rate , the conditions for strong subspace
transmission can be satisfied. Next we will illustrate that by
modifying our protocol, it is possible to reduce the amount of
shared randomness required. Using the previous blocklength-
construction, we will concatenate such codes, where each
utilizes the same shared randomness, to construct a new code
with blocklength . For an arbitrary , define the com-
muting operations , where is acting on
the th tensor factor of . Setting , we then
recursively define the density operators

Note that

Identifying the with the , it follows from (39) that

Therefore, we can use the triangle inequality to estimate

By choosing , it is clear that we have reduced Alice’s
and Bob’s shared randomness rates, respectively, to and

, while the error on the -blocked protocol is now .
Next, we argue that by using two more blocks of length , it
is possible to simulate the shared randomness by having Alice
send random bits using the first block, while Bob locally
prepares two copies of , written , and
transmits the parts over the channel using both blocks.
Charlie decodes each block separately, obtaining a random vari-

able and the and parts of the postdecoded states

and . Bob and Charlie then measure their respective parts

of in some previously agreed upon orthogonal
bases to obtain a simulation of the perfect shared random-
ness state which, by monotonicity and telescoping, satisfies

Writing for the joint probability distribution of any
pair of random variables , we also have that
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By monotonicity of trace distance and the triangle inequality,
using the noisy common randomness state increases the es-
timate for each block by . For identical reasons, the same
increase is incurred by using the noisy common randomness

. Thus, accounting for both sources of noisy common
randomness, the estimate (39) is changed to , provided that

. The noisy common randomness thus increases the bound
on the error of the -blocked protocol to , while costing
each of Alice and Bob a negligible rate overhead of in
order to seed the protocol.

The above protocol can be considered as defining an
encoding map and decoding instru-
ment . Thus, the protocol takes a

cq entanglement transmission code and con-
structs a strong subspace transmission

code with cq rate pair , where

, and . Now, if the rates
are achievable cq rates for entanglement transmission, there
must exist a sequence of entanglement
transmission codes with . Since this means that
increases to unity, we have shown that for any , every
rate pair is an achievable cq rate pair for strong
subspace transmission. Since the capacity regions for each
scenario are defined as the closure of the achievable rates, this
completes the proof.

2) Proof That : We will employ similar tech-
niques as were used in the previous proof to obtain this implica-
tion. Suppose there exists a qq entanglement
transmission code , with ,

, and . Setting and
, define the common randomness states

and

These states will be used as partial inputs to the controlled uni-
taries

where, as before, we have utilized the Weyl unitaries
and , which, respectively, completely randomize any
states on -dimensional and -dimensional spaces. Suppose
Alice and Bob are, respectively, presented with the and
parts of the arbitrary pure states and . Defining
the channel by

and defining the map by

the overall joint state of the randomized protocol is given by

. Abbreviating

and defining the pure states

we write

By similar arguments as in the cq case, there exists a map
so that

Again, for the same reasons as in the cq case, we have

The rest of the proof is nearly identical to that from the previous
section and is thus omitted.

D. Strong Subspace Transmission Implies Entanglement
Transmission

1) Proof That : Given a strong subspace trans-
mission code, if Alice uses any deterministic value for her lo-
cally generated randomness , the average classical error will
be equal to the expected maximal classical error of the random-
ized code. Since the ability to transmit any state includes the
maximally entangled case, this completes the claim.

2) Proof That : This implication is immediate.
As any states can be transmitted, this certainly includes the case
of a pair of maximally entangled states.

VI. SINGLE-LETTER EXAMPLES

Due to the regularized form of our Theorems 1 and 2, the
possibility of actually computing the capacity regions seems out
of reach for the time being. Here, we give some examples of
channels whose capacity region does in fact admit a single-letter
characterization, in the sense that no regularization is necessary.
We begin by reviewing a class of single-user channels for which



YARD et al.: CAPACITY THEOREMS FOR QUANTUM MULTIPLE-ACCESS CHANNELS 3109

a single-letter formula for the quantum capacity is known. We
also prove that the coherent information over these channels is
concave in the input density operator.

A. Degradable Quantum Channels

Recall that given a channel , one may define a
complementary channel as , where

is any isometric extension of . The channel is then said
to be degradable [29] if there exists a channel which
degrades to , in the sense that . It was shown
there that if and are degradable, then so is ,
while

(40)

By induction, this implies that a single-letter description
of the quantum capacity of any degradable channel is

. We remark that an analogous property of
mutual information over classical channels is responsible for
Shannon’s famous single-letter expression for the capacity.
Another useful feature of degradable channels that parallels the
classical case is the following.

Lemma 5: If is degradable, then is a concave
function of .

Proof: Fixing density matrices and , we write
, where

satisfy . Defining states
and , where isometrically
extends the associated degrading map , we write

Here, we used the fact that preserves entropies and the form
of strong subadditivity which states that conditioning cannot in-
crease entropy. This proves the claim.

A particularly simple subclass of degradable channels con-
sists of the generalized dephasing channels [29]. These are chan-
nels with and an isometric extension

given by

where the and are orthonormal bases and the
are arbitrary. Equivalently, these are precisely those channels
whose Kraus matrices can be simultaneously diagonalized.
These channels act on density matrices as

Because their action on operators is diagonalized in the basis
, they have also been called diagonal or Hadamard di-

agonal channels. A useful fact regarding generalized dephasing
channels is that is achieved on a , which is di-
agonal in the dephasing basis .

B. A Class of Channels for Which

Here, we define a class of channels for which
admits a single-letter description.

Theorem 3: Let and . Suppose that
has the orthonormal basis and define a corresponding
basis for . If is any collection of
degradable quantum channels, then the channel defined by lin-
early extending

(41)

to all states satisfies .
Proof: For any given , fix an arbitrary ensemble

and an arbitrary state . These give rise
to the global state

where

and . Because

it suffices for Alice to signal with the pure states with
probabilities . For each

, we write for the partial trace of the restriction of
to th system acting on some fixed system , and fix

purifications of these states. Recursively, using (40),
we may now write

where
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Similarly, concavity of entropy implies that

We may, therefore, conclude that every cq rate pair
is contained in the convex hull of . This

concludes the proof.

As a concrete application of this theorem, consider the era-
sure multiple-access channel described in Section III. Up to a
local isometry on , this is equivalent to one of the form (41)
where is an identity qubit channel and is a 50% era-
sure channel . Here, is a state
orthogonal to the support of . The convex hull of for
this channel can be readily evaluated by either using the main
result of [30], or by otherwise noting that for whatever prepara-
tion probabilities used by Alice, the coherent information from
Bob to Charlie is maximized by a maximally mixed input. This
follows because that channel is always degradable, so by con-
vexity and symmetry, its coherent information is maximized ac-
cordingly. The region is given in Section III and plotted there in
Fig. 1 for .

C. Single-Letter Description of for a Phase Flip Channel

While the description of the capacity region in Theorem
2 generally requires taking a many-letter limit, we give here an
example of a channel for which that descrip-
tion can be single-letterized. The channel takes as input two
qubits, one from Alice and the other from Bob. With probability

, the channel causes each qubit to undergo a phase flip, by ro-
tating the state of each by 180 about its -axis on the Bloch
sphere, before it is received by the receiver Charlie. The action
of on an input density operator is

where is the Pauli phase flip matrix. We will demonstrate that
is equal to the collection of all pairs of nonnegative rates

, which satisfy

Proof: We first observe that for any input state of the form
(8), is upper bounded by the quantum capacity of

when both senders may act together. Since is a general-
ized dephasing channel, its quantum capacity can be calculated
by a single-letter optimization of the coherent information over
input density operators that are diagonal in the dephasing basis
which, incidentally, is just the computational basis. A short cal-
culation reveals that it suffices to check inputs of the form

when computing the quantum capacity of . Furthermore,
since is also degradable, Lemma 5 implies that is
concave as a function of . Since ,

one then concludes by symmetry that the maximum is achieved
for , in which case is maximally mixed, yielding

Note that this maximizing input is a product state, since
. Define the Bell states

As purifies the maximally mixed state , let us write the
global state

Identifying in the obvious way, we reexpress

One readily calculates , , and
. Combining these gives the

relevant coherent informations

Finally, because any state arising from must satisfy

the individual rate bounds are saturated and the claim follows.

VII. DISCUSSION

There have been a number of results analyzing multiter-
minal coding problems in quantum Shannon theory. For an
i.i.d. cq source , Devetak and Winter [31] have proved a
Slepian–Wolf-like coding theorem achieving the cq rate pair

for classical data compression with quantum
side information. Such codes extract classical side information
from to aid in compressing . The extraction of side
information is done in such a way as to cause a negligible
disturbance to . Our Theorem 1 is somewhat of this flavor.
There, the quantum state of is measured to extract Alice’s
classical message which, in turn, is used as side information
for decoding Bob’s quantum information. Analogous results to
ours were obtained by Winter in his analysis of a multiple-ac-
cess channel with classical inputs and a quantum output,
whereby the classical decoded message of one sender can be
used as side information to increase the classical capacity of
another sender. After a preprint of this manuscript was made
available, analogous results have been found for the entan-
glement-assisted capacity regions of quantum multiple-access
channels [32].

We further mention the obvious connection between our
coding theorems and the subject of channel codes with side in-
formation available to the receiver. A more difficult problem is
that of determining classical and quantum capacities when side
information is available at the encoder, constituting quantum
generalizations of results obtained by Gelfand and Pinsker [33]
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for classical channels with side information. Some time after
this preprint became available, the corresponding problems
for data compression were solved in a “fully quantum” setting
for cases where either the sender or receiver has quantum
side information (the so-called fully quantum reverse Shannon
and fully quantum Slepian–Wolf theorems) [34], [35] and
more recently were generalized to the case where both parties
have quantum side information, resulting in the so-called state
redistribution protocol [36], [37].

In an earlier draft of this paper, we characterized as the
closure of a regularized union of rectangles

This solution had been conjectured on the basis of a duality
between classical Slepian–Wolf distributed source coding and
classical multiple-access channels [27], [23], as well as on a pur-
ported no-go theorem for distributed data compression of the
so-called irreducible pure state ensembles that appeared in an
early version of [38]. After the earlier preprint was made avail-
able, Winter announced [39] recent progress with Oppenheim
and Horodecki [40] on the quantum Slepian–Wolf problem, of-
fering a characterization identical in functional form to the clas-
sical one, while also supplying an interpretation of negative rates
and apparently evading the no-go theorem. Motivated by the
earlier mentioned duality, he informed us that the qq capacity
region could also be characterized in direct analogy to the clas-
sical case. Subsequently, we found that we could modify our
previous coding theorem to achieve the new region, provided
that the rates are nonnegative. After those events unfolded, the
authors of [38] found an error in the proof of their no-go the-
orem, leading to a revised version consistent with the newer de-
velopments. Our earlier characterization of , while cor-
rect, is contained in the rate region of Theorem 2 for any finite

, frequently strictly so. The newer theorem, therefore, gives a
more accurate approximation to the rate region for finite . In
fact, for any state arising from the channel that does not satu-
rate the strong subadditivity inequality [41], the corresponding
pentagon and rectangle regions are distinct. Another beneficial
feature of this characterization is that it is possible to show that
the maximum sum rate bound is ad-
ditive, where the maximization is over all states of the form (8),
for any degradable channel.

The same technique used to prove the new characterization of
implies a new cq coding theorem, and thus a new char-

acterization of . By techniques nearly identical to those
employed in the coding theorem for Theorem 2, it is possible to
achieve the cq rate pair

corresponding to Bob’s quantum information being used as
side information for decoding Alice’s classical message. This
is accomplished by having Charlie isometrically decode Bob’s
quantum information, then coherently decode to produce an
effective channel so that Alice can transmit

classically at a higher rate. The new characterization is then a
regularized union of pentagons, consisting of pairs of nonnega-
tive rates satisfying

Surprisingly, it is thus possible to characterize each of
and in terms of pentagons, in analogy to the original
classical result. This situation makes apparent the dangers
of being satisfied with regularized expressions for capacity
regions. Without being able to prove single-letterization steps
in the converses, it is hard to differentiate which characteriza-
tion is the “right” one. While it is intuitively satisfying to see
analogous formulas appear in both the classical and quantum
theories, the regularized nature of the quantum results blurs
the similarity. Indeed, the problems with single-letterization
for single-user channels appear to be amplified when analyzing
quantum networks (see, e.g., [42]). Perhaps this indicates that
the necessity of understanding the capacities of single-user
channels at a level beyond regularized optimizations is even
more pressing than previously thought. We should mention
that for the channels analyzed in Section VI-B, the newer
description of is not an issue, as the new corner point
is contained in the old rectangle for any state arising from any
number of parallel instances of the erasure channel. On the
other hand, we demonstrate in [43] that for the collective phase
flip channel, both characterizations single-letterize, yielding a
cq region, which is identical in form to that obtained for
in Section VI-C, replacing the quantum rate with a classical
one.

Consider the full simultaneous cq region for two
senders, where each sends classical and quantum information
at the same time. A formal operational definition of is
found in [43] and [44]. This region can be characterized in a
way that generalizes Theorems 1 and 2 as the regularization of
the region , defined as the vectors of nonnegative rates

satisfying

for some state on of the form

arising from the action of on the and parts of some pure
state ensembles and . Briefly,
achievability of this region is obtained as follows. Using tech-
niques introduced in [29], each sender “shapes” their quantum
information into HSW codewords. Decoding is accomplished
by first decoding all of the classical information, then using that
information as side information for a quantum decoder. The
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main result of [29], the regularized optimization of the cq re-
sult from [5] over pairs of input ensembles, and our Theorems
1 and 2 follow as corollaries of the corresponding capacity the-
orem. Indeed, the six two-dimensional “shadows” of the above
region, obtained by setting pairs of rates equal to zero, repro-
duce those aforementioned results. This characterization, how-
ever, only utilizes the rectangle description of . It is in-
deed possible to write a more accurate regularized description
of , which generalizes the pentagon characterizations of

and , although we will not pursue that at this time.

APPENDIX

A. Proof of Convexity of and

Let be a quantum multiple-access channel.
We will prove that is convex, as the proof for is iden-
tical.

Proof: Let and be positive integers, and fix any
two states of the form (8), , and . Then,

, where for

We will now show that for any rational ,
. We first write , for integers

satisfying . Setting
, and , define the composite systems

and , as well as the density matrix
, which is also of the form (8). Additivity

of coherent information across product states and some simple
algebra gives

An identical calculation shows that

As was defined as the topological closure of rate pairs
corresponding to states which appropriately arise from the
channel, the result follows because the set of previously con-
sidered ’s comprises a dense subset of the unit interval.

B. Proof of Cardinality Bound on

Begin by fixing a finite set , a labeled collection of pure
states , and a pure bipartite state . For each

, these define the states and .
Assume for now that . Define a mapping

, via

where we identify with its dimensional parameteri-
zation. By linearity, this extends to a map from probability mass
functions on to , where

Our use of the subscript should be clear from the context. The
use of Caratheodory’s theorem for bounding the support sizes
of auxilliary random variables in information theory (see [27])
is well known. Perhaps less familiar is the observation [45],
[46] that a better bound can often be obtained by use of a re-
lated theorem by Fenchel and Eggleston [47], which states that
if is the union of at most connected subsets, and if is
contained in the convex hull of , then is also contained in the
convex hull of at most points in . As the map is linear, it
maps the simplex of distributions on into a single connected
subset of . Thus, for any distribution , there is an-
other distribution , which puts positive probability on at
most states, while satisfying . If it is in-
stead the case that , this bound can be reduced to

by replacing the first components of the map with a
parameterization of , as specification of a density matrix on

is enough to completely describe the resulting state on . It
is, therefore, sufficient to consider
in computing .
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