CAPEUS: AN ARCHITECTURE
FOR CONTEXT-AWARE SELECTION
AND EXECUTION OF SERVICES

Michael Samulowitz, Florian Michahelles, Claudia Linnhoff-Popien
University of Munich, Dept. of CS, Oettingenstr. 67, D-80538 Munich, Germany

Abstract This paper introduces a comprehensive framework that allows mobile users to
access a variety of services provided by their current environment (e.g. print
services). Novel to our approach is that selection and execution of services takes
into account the user’s current context. Instead of being harassed by useless
activities as service browsing or configurationissues, environmental services get
seamlessly aligned to the user’s present task. Thus, the challenge is to develop a
new service framework that fulfils these demands.

The paper proposes a document-based approach; so called Context-Aware
Packets (CAPs) contain context constraints and data for describing an entire ser-
vice request. The core framework, Context-Aware Packets Enabling Ubiquitous
Services (CAPEUS), reverts to CAPs for realising context-aware selection and
execution of services.

Keywords: Mobile Computing, Context-Awareness, Context Representation, Task-Driven

1. INTRODUCTION

Future environments will host a vast number of mobile and wireless devices,
besides to general-purpose computers. These smart spaces [1] offer a vari-
ety of services to their visitors, which may include intelligent home or office
services. Multi-service environments involve a number of research challenges
for mobile computing scenarios. One challenge is how to discover services
when a user moves into a new environment. This problem may be tackled
by service discovery protocols, like JINI [2], IETF SLP [3], or SDP [4]; the
user may access a local service access point, which returns available service
interfaces. Another challenge is how to describe service interfaces; because
a new discovered service interface can only be selected and used if it can be
understood. This leads to abstract interfaces [5], first work on this issue can
be found in [6]. A third challenge, considering multi-service environments, is

http://dx.doi.org/10.1007/978-0-306-47005-9_29

24 CONTEXT AWARE APPLICATIONS

context-aware service provision. In particular, the system selects and executes
services in regards to the user’s task in mind.

It is the third feature that has been least addressed by previous research
projects. If for example a user’s present task requires printing a document,
then it should simply be printed. Of course this action should take into account
her current context, here primarily the location. The printer should reside in
her near neighbourhood, preferably in the same room, not in another building.
Or, she is on the move, the system predicts her route and when passing the
whereabout of her printout she gets the directions via a head-mounted display.

The paper presents a novel architecture for context-aware service provision
in ubiquitous computing environments. We propose that just offering services
to a user is not enough. Services should be aligned to a user’s task; the user
shouldn’t be harassed with selecting the right service for the task at hand.
Anymore, execution details should not be visible to the user.

The following issues were crucial to our architecture:

® service invocation mechanisms thatregard arbitrary contextual constraints,
e.g. location or time,

@ a sophisticated representation scheme for representing contextual infor-
mation, in particular constraints,

= reduce user’s required interaction

In developing the architecture, we implemented and deployed some context-
aware applications. Thereby we were able to proof our concept in practical
use. Apart from satisfying the main design goals our architecture revealed
three distinguishing features. Firstly, it is applicable to many context-aware
scenarios, which outlines its general-purpose character. Secondly, it detaches
context handling from service matters. By this separation of concerns services
can be added without affecting context processing. Respectively, context han-
dling may be manipulated without affecting underlying services. Thus, our
design contributes to a simplified management. Finally, our work contributed
to anew understanding of context. We do not only consider context information
for deducing the current situation of an entity [8], but also context constraints.
Here, context constraints are utilised to govern service selection and execution
processes. Anyway, the concept of context constraints may be applied to many
other problem areas.

2. DESIGNING A CONTEXT-AWARE SERVICE
ARCHITECTURE

A user’s device should act as a portal to its surrounding computing environ-
ment; it is an access point to the service and data space [5]. In our approach we

CAPEUS: An Architecture for Context-Aware Selection... 25

refine this idea: The device acts as a mediator for expressing service needs to
the environment; service needs result from the user’s current context (or task).
Our work mainly focuses on representing and interpreting the user’s service
needs.

As a solution for communicating service needs we endeavoured a uniform
document format: Context-Aware Packets (CAPs). CAPs allow expressing ser-
vice needs on a high abstraction level without knowing specifics about services
available in the environment. CAPs are created by the user’s device and put
in the network; inside the network the CAP gets evaluated. The evaluation a
CAP results in selection and execution of services fitting to the specified service
needs. Service needs are expressed by context constraints, which describe the
situation and circumstances under which the user intends to use a service.

ROOM A v h e = SR g —_. ROOM B
m——— = ~
SAN | CAP SAN
é CAP
~
=
.
w Client Device Beamer Locétion Printer Black- Internet
Sensor board Gateway |

Figure 1. Testbed setup: Service Access Nodes control the services and sensors for a room.
The user’s device emits a CAP document via wireless link to the SAN in the room she stays.
Then, system looks for a proper service and executes it.

Figure 1 depicts CAP evaluation from a networking perspective: A user in-
jects a CAP to a local service access node (SAN). A SAN acts as a service
proxy controlling the services available in its domain. For our testbed a domain
always corresponds to a room and its hosted services (e.g. digital blackboard).
The SAN evaluates the CAP; evaluation considers two phases: selection and
execution. In the selection phase, the SAN checks whether the CAP is related
to a service in its domain (room), or not. If not, the CAP is routed to a SAN
meeting the needs; routing choices are governed by the CAP’s embedded con-
text constraints. In the second phase, a selected service is to be executed. Here,
context constraints control the execution of a selected service.

In order to govern choices based on context constraints it is mandatory to de-
termine the actual context, e.g. where is a user, or what services are available in
the current environment. To find out, the SNA may read out sensor signals (e.g.
location sensor) or check a service repository for available service interfaces.

26 CONTEXT AWARE APPLICATIONS

Comprising, the architecture — using CAPs — controls the selection and exe-
cution of services based on context constraints, which reflect the user’s service
needs. The selection process initiated by CAP chooses a fitting service and its
location (in which room); the execution process may bind services to context
triggers, which control temporal issues.

2.1. The Concept of Context-Aware Packets (CAPs)

Technically, a CAP constitutes a kind of remote procedure call (RPC) [11]
based on a document-based approach as XML-RPC [12]. CAPs feature some
differences from the classical RPC concept: the receiver of the call is determined
afteritisissued. Specialised network nodes, SANs, route the CAP to its receiver
based on its embedded context constraints. Another difference relates to the
execution, calls in respect of CAP may be deferred, or even be autonomously
repeated. Further on, CAP processing may require user interaction. Interactive
CAPs (see section 2.4) ask the user to confirm the execution of a pre-selected
service. Or in the case of problems the user may be notified. And finally, CAPs
may be nested, see 2.3 for details. Provision of these non-RPC features requires
a novel representation scheme, which is described in the following.

Context Constraints

Scripting

Data

Figure 2. Context-Aware Packet (CAP)

As Figure 2 depicts a CAP document is organised into three parts: context
constraints, scripting, and data. Context constraints play a major role inside
CAP; as already mentioned they are used to mediate a user’s service needs.
The context constraints’ semantics and representation will be explained in the
subsequent section.

The data section provides data to be processed by the selected service. The
data format is not restricted to one specific format, it relates to the service in
mind. Hence, a beamer service might expect PowerPoint formatted data, and
an Internet photo album might expect JPG. Data may be directly embedded
in the document or referenced, e.g. by HTTP link. Referenced data allows
implying dynamic data when executing a service, e.g. always display a user’s
day schedule when she enters the office.

The scripting section allows representing simple scripts executed on a se-
lected service in order to embrace more complex semantics, which cannot be

CAPEUS: An Architecture for Context-Aware Selection... 27

captured by context constraints or data section. In our current prototype im-
plementation we did not make any use of the scripting feature. Scripting was
added for completeness, so future applications of CAPs will not require any
modification to the CAP format.

2.2. Context Constraints

This section outlines the semantics and representation of context constraints.
Inspired by control theory [13], context constraints can be interpreted as a set
point. The actual value is referred as a context configuration. A context con-
figuration reflects the actual context of a set of entities; the value of a context
configuration results from sensor measurements. In order to control service se-
lection and execution processes, the system compares the context constraints to
the context configuration. If the actual context configuration meets the context
constraints, the CAP’s data is applied on a specific service. In this moment
the actual situation (deferred by the context configuration) exactly matches the
requirements expressed by the context constraints.

If the context configuration does not meet the context constraints, the system
may wait for the required situation to occur. Or it detects that the exposed
context constraints cannot be fulfilled at all, e.g. the CAP relates to a service
in another environment (room), hence the CAP has to be re-routed.

Context constraints are phrased using the following primtives: abstract en-
tities, relations, and events. The primitives are described in the following
paragraphs.

Abstract Entities

Abstract entities are categorised into three types: Actors, Abstract devices,
Items.

Any user interacting with the system is an actor. Abstract devices represent
devices, which offer services to their environment. These can be all kinds
of devices from an abstract perspective, which means not related to concrete
devices (e.g. printer luther in room D2). Finally, items denote passive elements.
In contrast to abstract devices they do not offer services but are equipped with
sensors, such that the item’s state can be retrieved and used for denoting context
triggers.

Printer
Attributes
Colour = "yes"”
Paper-size = “A4"”
Duplex = “yes”
Technology = “laser”
Interface

Figure 3. Printer Entity.

28 CONTEXT AWARE APPLICATIONS

Entities are described by attributes. During the evaluation of context con-
straints, these attributes are used for mapping abstract entities to concrete units,
which serve the requirements expressed by the entities’ associated attributes.
For example, specifying a colour laser-printer as an abstract device and “ap-
plying” it to an office returns an address to a suiting printer, if there is one.
Chapter 3 shows how this functionality was implemented by inter-operating
with a service discovery protocol. Figure 3 shows a sample entity, which uses
common technical attributes. The concept of CAP does not restrict attributes
to any types, but it has to be considered that the attributes are still applicable.
Each CAP may relate to multiple entities.

Relations

Generally, a relation describes the dependencies of entities from each other
in a spatial or temporary manner; a relation exists of a set of entities. One
sample relation, inRoom, describes spatial information, such that the members
of this relation have to be in the same room. Thus, starting with entities as
atomic units, relations allow gluing those together for modelling dependencies.
Relations constrain the selection of a desired service. Referring to the laser-
printer example of the previous paragraph, an inRoom relation containing the
printer entity and a user entity constraints printer selection to the same room as
the user stays.

Events

Generally, events indicate actions or occurrences detected by a program.
Usually, events can be user actions, such as clicking the mouse, or pressing akey.
A system can subscribe to certain events and can respond to their occurrence.

An event, in the context of CAP, describes a trigger, which either activates
(positive trigger) or aborts (negative trigger) the execution of a CAP initiated
service call. Events report actions and occurrences detected by sensors, which
are modelled by item entities.

Event conditions are represented by logical condition-expressions, which can
be either ground or combined by logical operators (AND, OR). Figure 4 shows
a condition in the CAP’s XML format. Our representation scheme adopts to
the trigger concept for policy-based management described in [15].

<AND>
<condition subject = "day" object = "monday" type = "="/>
<condition subject = "user_location" object = "at_work" type =" ="/>
</AND>
Figure 4. “Triggering a reminder if the user gets to work on Monday”

Regarding semantics, the event concept steps out the service selection, it
rather allows to condition execution of a selected service.

CAPEUS: An Architecture for Context-Aware Selection... 29

2.3. Composing Services

The latter sections outlined the structure of a single CAP; this section explains
how multiple CAPs may be composed by nesting. In particular, this is useful
for re-transferring CAPs in case of error, or for tunnelling through converters.

w Client Device PS Printer

Figure 5. Tunneling a Print-Job

Converter

CAPs are nested, by putting one CAP into the data part of another one. Multi-
ple nesting is also feasible. This recursive structure allows expressing cascaded
use of multiple services. For example, a user wants to print a document in PDF
format, but the printer in the current environment only accepts Postscript for-
mat. Instead of signalling the user that the demanded service request cannot be
fulfilled, the system autonomously sends the document to a conversion service.
There it is converted to the wanted format (Postscript) and is send back to the
printer where the job is finally done.

For implementing this scenario (see Figure 5), the receiving service access
node (SAN) wraps the incoming CAP, the outer CAP is directed to a conversion
service. The SAN in the domain of the conversion service processes the nested
CAP considering the context constraints of the outer CAP and data of the inner
CAP. Hence, the data gets converted. Finally, the SAN removes the outer CAP
and updates the data of the original CAP; the resulting CAP gets evaluated as
usual.

30 CONTEXT AWARE APPLICATIONS

24. Example: A CAP for local Printing

This section briefly discusses an example and explains vital CAP elements
not covered by the previous sections. Figure 6 depicts a sample CAP document
for printing a document locally (in the same room as the user stays). The begin
of the document indicates the sender, the receiver and names the wanted action:

<CAP name="printing_locally" from="Florian"
put_to="Printer"
duration="one-shot" interactive="no">

Due to the fact that a CAP document may include a number of abstract entity
descriptions the “put_to”-directive is used for labelling the service entity. The
CAP’s embedded data is applied to this service entity, here it is the printer entity.
Duration signals if the CAP is only executed once or multiple times; one-shot
denotes single execution, applying multi-shot a CAP is activated repeatedly.

p— N e <Entity type="Person" name="Florian">
<CAP n_am_e: p.ﬂntmg__loc?lly from="Florian <attrib lextype="date">02.02.2001 13:45</attrib>
put_to="Printer" duration="one-shot"> <attrib lextype="role">guest</attrib>

<ContextC> </Entity>

<Entity type="abstractDevice" name="Printer">
<attrib lextype="colors">greyscale</attrib>
<attrib lextype="papersize">a4</attrib>

<Relation name="inRoom">
<arg>Florian</arg>
<arg=Printer</arg>
<interface> IS
<put name="lpr"> </ContextC>
<param lextype="Ipr_filter">no</param>

<param lextype="MIMEtype"> <Data type="application/postscript'>

stream/postscript <|[CDATA[%!PS-Adobe-2.0
</param> I
</Data>
</put>
<finterface>

<Scripting>future use</Scripting>

</Entity> </CAP>

Figure 6. Example CAP

The interactive directive is a toggle for the CAP interaction facility. If the
CAP is interactive, service execution has to be confirmed by the user. As can be
seen in Figure 6 entities are optionally attributed by an interface section, which
firstly describes if the entity is a data sink or source, and secondly it denotes
the entities supported data types for exchange.

A data sink is indicated by a put interface, a data source is indicated by a
get interface. As outlined in the previous section, a single service entity may

CAPEUS: An Architecture for Context-Aware Selection... 31

provide both interface types, put and get. In case of the conversion service data
is first written and consequently converted data is read back.

The relation element embraces entities belonging to a specific relation, here
inRoom.

The complete XML DTD can be seen in [16].

2.5. CAP Life-Cycle

As outlined in Section 2.2 processing of CAPs and their associated services
is controlled by context constraints. For managing and tracking the control
process of multiple CAPs floating the system, each CAP always adopts to a
discrete state. Figure 7 shows a CAP’s main processing states and possible
transitions. During its lifetime a CAP may traverse five different states: Find,
Wait, Ready, Talk To and Terminated.

Find the location of the wanted service.
Wait for a matching context configuration.
Ready for processing.

Talk To the selected service

Terminated

Figure 7. CAP Life-Cycle

Find is the initial state the CAP is to be routed. When the CAP reached its
final destination it adopts to wait, the system waits for a situation that matches
the CAP’s embedded context constraints. If there are no outstanding obstacles
regarding service execution the CAP switches to Ready. Talk To relates to
actual service execution. And ultimately, CAP processing is terminated, after
execution or abortion has been performed.

3. IMPLEMENTATION

This chapter details the architecture of CAPEUS and its constituting com-
ponents. Further on it describes technical features of our implementation.
3.1. CAPEUS Architecture

The overall architecture, CAPEUS (Context-Aware Packets Enabling Ubig-
uitous Services), is depicted by Figure 8. The left side of the picture relates to
components running on the user’s device. In brief, the CAP Organiser produces

32 CONTEXT AWARE APPLICATIONS

CAPs on demand of user applications; the user model [17] provides personal
preferences for service use.

User Model

| “(.::A.F.’-C-)rga;ﬂser | *
I . I T I . I route

' User Aphlicaiiéns -

3. Service Discovery

Figure 8. CAPEUS Architecture Design

The right side relates to components running on the service access node
(SAN), which was the focus of our work: CAP Router, CAP Matcher, CAP
Execution, Event Monitor, and SLP. The function of the SAN’s components is
described in the following sub-sections.

3.1.1 CAP Router. If a SAN receives a CAP via its network interface
it is directed to the CAP router. The router component has mainly two tasks:

1 managing logical connections,
2 forwarding CAPs to other SANs based on symbolic attributes;
3 passing the CAP to the CAP Matcher.

We assume that network connections do only exist a short period of time, as
featured by emerging networking standards, which offer ad-hoc peer-to-peer
connectivity, e.g. Bluetooth [18]. Typically, a user’s device establishes a wire-
less connection to its local SAN; then the CAP is transferred, and subsequently
the network connection is closed.

But in some cases CAP execution may require interaction with the user, for
signalling error, or successful service execution. Or in the case of interactive
CAPs the user is asked if he really wants a service to be executed (when all
context-constraints are evaluated valid). Hence, the router manages address
data of the CAP sender, so it is possible to connect to her later. If a CAP is
completely processed the user’s associated data is deleted.

CAPEUS: An Architecture for Context-Aware Selection... 33

The second task relates to forwarding CAPs based on symbolic attributes,
e.g. “Room D2, Building 107, “where the user is”, or “to a proximate room”.
For implementing this functionality we endeavoured a hierarchy of routers as
depicted in Figure 9.

I Building [

=2

’Haom]

Figure 9. Hierarchy of CAP Routers

For routing a CAP to its destined environment (here room), the CAP is first
routed to a floor level router. If context constrains do not allow processing the
CAP in aroom in this floor, the CAP is routed to the next higher level (building).
Hence, the search domain is widened to the complete building. Obviously, this
approach does not scale well, but it was sufficient for demonstrating the concept.
Particularly, it was easy to express vicinity, e.g. room in the same floor.

Besides, a more sophisticated solution for routing messages based on at-
tributes can be found in [19]; or a hierarchical lookup system for locating
mobile objects is described in [20].

Finally, the router passes the CAP to the CAP Matcher. From the router’s
perspective, the matcher checks if the service is related to the current environ-
ment, and if it can be executed there. Otherwise, the CAP is send back to the
router with additional addressing attributes.

3.1.2 CAP Matcher. Briefly, the CAP matcher compares the context
constraints with the actual measured context configuration. If the context con-
figuration matches the context constraints then the CAP’s data is passed to the
CAP Executor, which finally executes the service. Otherwise, the matcher cal-
culates the divergence; in our context the divergence denotes what the matcher
prevents from selecting or executing a specific service. For instance, if the
matcher compares the CAP’s context constraints to the actual context config-
uration and finds out that the CAP is related to another service domain, then
the resulting divergence refers to location. Hence, the matcher may induce
re-routing of the CAP. Altogether, the divergence is used to control the actions
of the matcher in accordance to context constraints.

The resulting divergence may relate to location, user interaction, wrong
interface, trigger, equal, or general error. Table 1 lists possible differences
and associated actions. Location is sub-divided into two categories: vicinity

34 CONTEXTAWARE APPLICATIONS

and other location. Vicinity instructs the router to send the CAP to proximate
domains for possible execution. Other location the CAP is related to another
domain and has to be routed there.

Table 1.
Divergence Component/Action
. Vicinity Router: try proximate domains
S Other location Router: route to specified address
. Router: indicate state, user confirmation (inter-
User Interaction active CAPs)
Trigger Event Monitor: wait for matching situation

Matcher: convert data, nested CAP

(see Section 2.3)

Equal Executor: apply data on selected service
Router: Error message to user,

Matcher: abort processing

Wrong Interface

General Error

In the following it is outlined how the matcher parses CAP documents: firstly
the matcher evaluates the relations for selecting a suiting service. The matcher
applies the CAP’s embedded triggers for governing the execution of the previ-
ously selected service.

Evaluating Relations

The matcher represents nested relations as tree, nodes represents relations
and leaves represent abstract entities. Figure 10 shows a simple example, it is
used to select the cheapest printer in the same room as the user. As already,
mentioned the inRoom relation requires entities to reside in the same room. The
min(X) relation selects among multiple entities the one with minimum value for
attribute X.

(;m_n;r\' -".;’-t;rson A
|._ Enity | ',_ Entity |

Figure 10. The cheapest printer in the same room as the user stays.

The relation tree is evaluated bottom-up; hence the matcher first evaluates the
min relation and thereafter the inRoom relation. Figure 11 depicts the matching
algorithm for relations. When applying the algorithm the set of possible candi-
dates (service entities) gets stepwise reduced. Lastly, a set of suitable service
entities remains; one of them is selected randomly.

CAPEUS: An Architecture for Context-Aware Selection... 35

For service discovery the system compiles a request based on the attributes of
the abstract entity; in turn the service discovery returns all service entities which
match the attributes. Sometimes it may be necessary to convert the attributes
to a format compatible to the chosen service discovery protocol. Hence, we
implemented a transducer component, which converts an attribute schema to a
schema in question.

1 Enter next relation (bottom-up).

2 Execute service discovery for all abstract entities of the relation.
3 Evaluate relevant entity attributes by applying the relation.

4 Discard service discovery results, which do not fulfil the relation.
5 Continue with 1 until complete tree is processed.

Figure 11. Matching Algorithm for Relations

We deployed service location protocol SLP [3] for service discovery, for sup-
porting other service discovery systems, like UPnP [22], JINI [2], or Salutation
[23], we applied the strategy pattern [24]. Hence, the transducer component
can be exchanged without affecting other components.

Evaluating Events

After evaluating the relations, the desired service is selected. In contrast,
Events control the execution of this service.

For each event defined in the CAP the matcher spawns an individual Event
monitor. An Event Monitor senses the environment for the event in question. If
the event occurs the matcher is notified. As described in Chapter 2, events may
be combined by logical operators. Special care has to be taken for evaluating
conjunctive operators (“AND”), because the system has to decide whether two
events are considered to be coeval or not. Hence, two events are considered
coeval if they occur in a time period shorter than a defined threshold. For most
applications a threshold less than a second seemed to be reasonable.

If all events evaluated true the event monitors get killed. Consequently, the
matcher hands the CAP’s data and the address of the selected service to the
CAP Executor, which ultimately executes the selected service.

313 CAP Executor. The CAP Executor embodies the interface from
CAPEUS to extern services. It is supplied with one single service location,
which was determined by the Matcher. Further on, it accesses the CAP’s
embedded data. Services that do notcomply to the executors expected streaming
interface may be wrapped; as in CyberDesk [25] we could apply observable
APIs [26]. In future projects, the executor will also process the scripting part,
for facilitating more complex semantics.

36 CONTEXT AWARE APPLICATIONS

3.2 Prototype

The CAPEUS prototype was implemented in JAVA [27] and is based on
the principles discussed in the latter chapter. The objective is that the proto-
type will be suitable to implement and also validates the main concepts de-
scribed above. In addition, to the features discussed and implemented within
this project CAPEUS is meant to be used and refined in various future projects.
CAPEUS was implemented and tested in conjunction with the DWAREF project
[28] on augmented reality [29]. The DWARF prototype provided several fea-
tures, which could be used for demonstrating CAPEUS in practical use. On the
other hand CAPEUS supplemented DWARF by adding spontaneous use of en-
vironmental services, whereby selection and execution of services is governed
by pre-defined context constraints. In the current implementation DWARF of-
fers besides of WaveLan [30] and Bluetooth [18] connectivity also location
sensing. Up to now the system provides GPS for outdoor environments. It is
planned to use RF tags for indoor environments.

We implemented a few context-aware applications for demonstrating our
architecture in practice, two of them are briefly described in the subsequent
paragraphs.

Context-Aware Notes

In analogy to the stick-e framework [31] this application mimics the post-it
metaphor. If the user takes a note, it is tagged by the current available context
information, particularly the location. If the user comes back to this place in
future, her handheld' will display the note. The application also allows creating
public notes, visible for anybody.

We implemented this application just by creating a repository of multi-shot
CAPs. Each reflecting a user’s note, the CAP’s context constraints reflect
the note’s related context information. For personal notes the service access
node (SAN) runs on the handheld. Anytime a note’s related context occurs the
associated CAP triggers a display service on the handheld.

For public notes the CAP is transferred to the location’s responsible SAN.
In this case the note is displayed to any user entering the location.

Task Aligned Local Service Use

We implemented an application for local service use, considering the user’s
task, here document viewing. In particular it is a document viewer running
on a laptop computer. To any document, the viewer offers service options
related to the currently displayed document type. For instance, viewing a text
document the system offers the following service options: print, blackboard,
and note. Each service option is related to a specific CAP: print issues a local

'For the prototype we used laptops with WaveLan connectivity.

CAPEUS: An Architecture for Context-Aware Selection... 37

print job as described see Section 2.4. Blackboard is similar to print it displays
the document on a local digital blackboard. And finally note reverts to the
context-aware note service described in the previous section.

In case of the print and blackboard service the viewer creates associated
CAPs just by filling up the data part; the context constraints reflect pre-defined
preferences of the user. The note is handled as described in the previous para-
graph.

Due to the fact that the system pre-selects service options related to a spe-
cific document type, and transparently handles all interaction regarding remote
service use (context-aware selection and execution), the system significantly re-
duces required attention by the user. Additionally, this technique allows saving
display estate by simplifying the menu structure, what is crucial to handheld
computing.

4. RELATED WORK & FUTURE DIRECTIONS

Work on service provision for mobile users as [34] or [35] are mainly based on
the idea of service adapters. Using service adapters remote services appear local
to applications running on the mobile device; service adapters mainly handle
intermitted network connections and pass method calls to a remote service.
Additionally, the mobile device can detect the service peers in its proximity, as
featured by Bluetooth [18].

These approaches are similar to our architecture in the way that they enable
the use of environmental services to a mobile user. But in contrast to CAPEUS,
service use is restricted to services in coverage of the wireless network. Thereby,
the spatial structure of environments is not reflected. Further on, CAPEUS
enhances plain service use by supporting selection and execution processes
taking in account arbitrary context information, not only location. Service
invocations are modelled by documents, so it is not required to implement an
individual service adapter for a specific service.

Our work profited from the Stick-e framework [33], which introduced the
concept of virtual post-it notes; the implied context trigger mechanism influ-
enced our design. The representation of service interfaces was inspired by the
work of Hodes and Katz, see [5].

And finally, our work was fostered by work done on context-awareness
[7,21,10,31].

Future work will focus on the following issues: Firstly, we will continue
research on automatic creation of CAPs considering a user model, which reflects
the user’s preferences. Secondly, we will add support for other interface types.
For the moment CAPEUS only handles streaming interfaces. Thirdly, scripting
is to be supported in future versions of CAPEUS. Finally, we will consider
security in order to protect the user’s privacy.

38 CONTEXTAWARE APPLICATIONS

References
[

—_

] G. Abowd, J.P.G. Strebenz. Final Report on the Inter-Agency Workshop on Research Issues
for Smart Environments. IEEE Personal Communications, October 2000.

[2] Jini(TM), 1998. http://java.sun.com/products/jini.
[3] C. Perkins. Service Location Protocol White Paper, May 1997.

[4] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An Architecture for a Secure
Service Discovery Service. In Proceedings of MobiCom 99, Seattle, WA, August 1999.

[5] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussmann, D. Zukowski. Challenges: An
Application Model for Pervasive Computing. In Proceedings of MobiCom 2000, Boston
August 2000

[6] T. Hodes and R. Katz. A Document-based Framework for Internet Application Control. In
2nd USENIX Symposium on Internet Technologies and Systems, October, 1999.

[7] G. Nelson. Context-Aware and Location Systems. PhD thesis, University of Cambridge,
Computer Laboratory, Cambridge, UK, January 1998.

[8] Anind Dey and G.D. Abowd. Towards a Better Understanding of Context and Contex-
Awareness. Technical report, GeorgiaTech, 1998.

[9] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In CHI’99, Pittsburgh, PA, US, 1999.

[10] Christos Efstratiou. Developing a Context-aware Electronic Tourist Guide: Some Issues and
Experiences. Technical report, Department of Computing, Lancaster University, Lancaster,
LA14YR,U.K.,2000.

[11] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol Specification Version 2,
June 1988. RFC 1057.

[12] UserLand Software, Inc. XML-RPC. http://www.xmlrpc.com/
[13] Brogan, W.L., Modern Control Theory, (Prentice Hall, NJ, 1991).

P. Pin-Shan Chen. The Entity-Relationship Model-Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9,1976.

[14] Morris Sloman and Emil Lupu. Policy Specications for Programmable Networks. In First
International Working conference on Active Networks
(IWAN’99), Berlin, June 1999.

[15] F. Michahelles. Designing an Architecture for Context-Aware Service Selection and Exe-
cution. Diploma Thesis. University of Munich, 2001.

[16] Michael Samulowitz. Designing a Hierarchy of User Models for Context-Aware Applica-
tions. Workshop on Situated Interaction in Ubiquitous Computing. CHI 2000, The Hague,
April 2000.

[17] The Bluetooth SIG. WWW. http://www.bluetooth.com/v2/document.
[18] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The De-

sign and Implementation of an Intentional Naming System. In Proceedings of the ACM
Symposium on Operating Systems Principles, Charleston, SC, 1999.

[19] James Weatherall and Andy Hopper. Predator: A Distributed Location Service and Example
Applications, 1999. In proceedings of Cooperative Buildings 1999, Springer-Verlag Lecture
Notes in Computer Science.

CAPEUS: An Architecture for Context-Aware Selection... 39

[20] S. Fels, S. Sumi, T. Etani, N. Simonet, K. Kobayashi, and K. Mase K. Progress of C-MAP:
A context-aware mobile assistant. In Proceeding of AAAI 1998 Spring Symposium on
Intelligent Environments, March 1998.

[21] Universal Plug and Play Device Architecture. www.upnp.org

[22] Salutation, 2001. http://www.salutation.org.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[24] A. Dey, G. Abowd, M. Pinkerton, and A. Wood. CyberDesk: A Framework for Providing
Self-Integrating Ubiquitous Software Services. Proc. ACM UIST’97, 1997

[25] A. Wood. CAMEO: Supporting Observable APIs. Position Paper for the WW W5 Program-
ming the Web Workshop, April 1996.

[26] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison-
Wesley, Reading, Mass., 2 edition, June 2000.

[27] P.J. Brown. The Stick-e Document: a Framework for Creating Context-aware Applications.
In Proceedings of EP’96, Palo Alto, published in EP, January 1996.

[28] Martin Bauer, Asa MacWilliams, Florian Michahelles, Christian Sandor, Stefan Rib, Mar-
tin Wagner, Bernhard Zaun, Christoph Vilsmeier, Thomas Reicher, Bernd Briigge, and Gu-
drun Klinker. DWARF: System Design Document. Internal Report. Technical University
Munich.

[29] Ronald T. Azuma. A Survey of Augmented Reality. August 1997.
[30] Airport Wireless Technology, http://www.apple.com/airport/.

[31] P.J.Brown. The Stick-e Document: a Framework for Creating Context-aware Applications.
In Proceedings of EP’96, Palo Alto, published in EP, January 1996.

	CAPEUS: AN ARCHITECTUREFOR CONTEXT-AWARE SELECTIONAND EXECUTION OF SERVICES
	1. INTRODUCTION
	2. DESIGNING A CONTEXT-AWARE SERVICEARCHITECTURE
	2.1. The Concept of Context-Aware Packets (CAPs)
	2.2. Context Constraints
	2.3. Composing Services
	2.4. Example: A CAP for local Printing
	2.5. CAP Life-Cycle

	3. IMPLEMENTATION
	3.1. CAPEUS Architecture
	3.2. Prototype

	4. RELATED WORK & FUTURE DIRECTIONS
	References

