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Abstract This review of capillary electrophoresis methods

for DNA analyses covers critical advances from 2009 to

2014, referencing 184 citations. Separationmechanisms based

on free-zone capillary electrophoresis, Ogston sieving, and

reptation are described. Two prevalent gel matrices for gel-

facilitated sieving, which are linear polyacrylamide and

polydimethylacrylamide, are compared in terms of perfor-

mance, cost, viscosity, and passivation of electroosmotic flow.

The role of capillary electrophoresis in the discovery, design,

and characterization of DNA aptamers for molecular recogni-

tion is discussed. Expanding and emerging techniques in the

field are also highlighted.

Keywords DNA . DNA aptamer . Capillary gel

electrophoresis . Sievingmatrix

Introduction

Capillary electrophoresis separations are significant be-

cause they provide fast separations of limited sample vol-

umes. Following reports of outstanding separation effi-

ciencies of amines, amino acids, and peptides achieved

using a 75-μm-inner-diameter glass capillary [1, 2], the

technology was quickly adapted to DNA [3, 4]. The rapid

growth and sustained use of capillary electrophoresis for

DNA analyses is best illustrated by the number of annual

journal publications, which is summarized in Fig. 1.

Critical innovations reported early in the method develop-

ment [5–10] dramatically increased the applicability to

sequence and size DNA. Landmark applications include

genome sequencing [11], forensic analysis of DNA with

commercial systems [12, 13], and lab-on-a-chip [14–17].

In addition to sizing DNA, capillary electrophoresis has

played a pivotal role in the generation of DNA aptamers

and the quantification of aptamer binding affinity.

As the technology matures, research-driven advances have

been transformed into heavily utilized applications, generating

a large user-base focused on applying the methodology.

Perhaps the best indicator of progress in the field of capillary

electrophoresis DNA separations is the translation of this tech-

nology into the teaching laboratory [18, 19]. Capillary elec-

trophoresis separations of DNA have been integrated in teach-

ing exercises in genomic identification of food with a com-

mercial chip [18]. Despite the maturity of this technology

innovative research and new applications are reported. The

goal of this review is to summarize developments in the use

of capillary electrophoresis for DNA analyses. This paper in-

cludes capillary electrophoresis techniques reported from

2009 to 2014 that address critical barriers. The review begins

with a brief discourse on the mechanisms relevant to DNA

separations.

Separation

Capillary electrophoresis is a high-throughput separation

method commonly employed for DNA analysis owing to

rapid analysis times and small sample volumes. Various

modes of capillary electrophoresis, which are summarized

in Table 1, are used depending upon the application. Free-
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zone and gel-facilitated sieving are the most commonly

reported modes for DNA analyses. Unfortunately, free-

zone capillary electrophoresis methods for DNA separa-

tions are limited because of the similar charge-to-size

ratio of fragments of different length. To circumvent

this problem gels are incorporated in capillary electro-

phoresis separations to sieve DNA fragments on the

basis of size.
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Reports of Capillary Electrophoresis and DNAFig. 1 Number of publications

on capillary electrophoresis

separations of DNA in the

SciFinder® database

Table 1 Capillary/microchip electrophoresis mechanisms

Free solution / electrophoretic mobility
Mechanism:  

Electrophoretic mobility (i.e. charge-to-size ratio of 
fragment)

Attributes
+ Simple to implement
- Poor separation of similar DNA charge-to-size ratio 

Application: 
Affinity studies with DNA aptamer 

Ogston sieving:  sieving through a gel with pores DNA Radius of Gyration
Mechanism:  

Electromigration through pores; size determines
probability of impeded motion 

Attributes
+ Relationship between length and migration linear 
+ Sizing 1 base
- Limited to fragments < 1000 nucleotides

Application: 
Sizing for species identification, or disease markers

Reptation:  sieving through a gel with pores DNA Radius of Gyration
Mechanism:  

Electromigration of DNA through pores requires 
deformation; nonlinear correlation between size and time 
to traverse gel

Attributes
+ Suited for fragments > 1000 nucleotides
- Size precision poor

Application: 
Coarse sizing/fingerprinting, comet assays
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Gel-facilitated sieving

Gel-facilitated sieving is one of the most commonly used

methods for sequencing DNA in parallel analyses and sizing.

Electroosmotic flow is suppressed by coating the surface of

the capillary, and then the capillary is filled with sieving gel.

Ogston sieving and reptation are the mechanisms of DNA

transport through the gel. In Ogston sieving, shown in

Table 1, DNA behaves as an incompressible sphere. The sep-

aration, which occurs with suppressed electroosmotic flow

under reversed polarity, is based on the ability of DNA to pass

unobstructed through the pores formed by the gel matrix.

Smaller fragments of DNA migrate faster than longer frag-

ments, and a linear relationship is observed between fragment

size and migration time. Both sequencing and sizing are con-

ducted within the Ogston regime. Reptation, which is depicted

in Table 1, occurs when a DNA molecule is too large to pass

freely through the pores of the gel and must deform or unfold

to fit through the matrix. With this mode of sieving, the rela-

tionship between migration time and DNA fragment size is

non-linear and peak resolution is worse, which makes

sizing difficult. The fragment size at which the separation

transitions from Ogston sieving to reptation can be approx-

imated with a DNA size ladder and determined experimen-

tally. A variety of matrices for DNA separations have been

reviewed [20–26].

Characteristics of DNA sieving gels

Prevalent matrices used for sequencing or sizing from 2009 to

2014 are summarized in Table 2. The factors that determine

which separation matrix is utilized for a specific application

are included in the table. The separation performance, which

is the most critical figure of merit of a sieving gel, is measured

by the chromatographic resolution and the upper size limit for

Ogston sieving. Chromatographic peak resolution (Rs), is de-

fined as Rs=(Δt)/Wave,whereΔt is the difference in migration

times of two adjacent peaks and Wave is the average width of

the peak at the base (estimated as 4σ) [27, 28]. Resolution is

more often calculated using the width at half-height [29, 30],

which for a Gaussian peak is 2.35σ, because it obviates prac-

tical issues associated with a noisy baseline or overlapping

peaks [29]. For Gaussian peaks this calculation generates the

same value as obtained using the width of the base [27]. Peak

resolution can also be described in terms of the minimum

number of nucleotides that are distinguishable for two DNA

fragments. This is calculated by dividing the difference in the

number of bases for the two adjacent peaks by the calculated

chromatographic resolution. For simplicity, the resolution that

can be expected for different sieving matrices is reported in

Table 2 in terms of the size in bases by which fragments can

reliably be distinguished from one another.

In addition to separation performance, the cost, viscosity,

and coating capability of a gel must also be considered. A gel

that is easily synthesized or readily available at a low cost is

preferred. The viscosity of the gel matrix is also critical be-

cause high pressure systems are required to introduce and

remove viscous gels from capillaries. Such high pressures

are incompatible with microfluidics. Coating the capillary or

channel surface is necessary to suppress the electroosmotic

flow. The coating must be stable and the effect on electroos-

motic flow reproducible.

Linear polyacrylamide is used in capillary gel electropho-

resis techniques owing to outstanding performance and low

cost. The disadvantages of linear polyacrylamide are the high

viscosity and inability to coat the surface of the capillary.

Linear polyacrylamide is among the most viscous matrices

used in DNA analysis; however, under a sheer force of

1.32 s−1, the viscosity of a 2 % linear polyacrylamide gel

drops to 27,000 cP [31]. A suppressed electroosmotic flow

is required, and different strategies for surface modification

have been reported [32–34].

Linear polyacrylamide matrices were used for various ap-

plications between 2009 and 2014. The synthesis and optimi-

zation of two linear polyacrylamide matrices for the capillary

electrophoresis separation of DNA fragments with less than

70 bases was reported and applied to size PCR markers for

wild-type and mutant gastric cancer tissues with a resolution

below five bases [35]. A 5 % linear polyacrylamide matrix

was used in an integrated microfluidic lab-on-a-chip platform

for DNA extraction, amplification, separation, and detection

from a crude biological sample, and a full profile of short

tandem repeats (STRs) was obtained for a standard DNA tem-

plate in a 40-min analysis time [34]. Other microfluidic plat-

forms utilizing linear polyacrylamide were employed for the

analysis of E. coli [36–38], Staphylococcus aureus [37, 39],

Salmonella typhimurium [37], human respiratory viruses [40],

Alu insertions used for gender and ethnicity determination [41,

42], p53 gene mutations [43], and EndoV/DNA ligase muta-

tions [44].

Polydimethylacrylamide matrices overcome the two major

limitations of linear polyacrylamide sieving gels: viscosity

and coat ing abi l i ty. The most prevalent ly used

polydimethylacrylamide matrix is performance optimized

polymer 4 (POP-4™), which contains 4 % polymer with

5 % 2-pyrrolidinone and 8M urea [45]. Single-base resolution

of DNA fragments up to 250 bases and two-base resolution up

to 350 bases have been demonstrated within a 31-min separa-

tion for forensic DNA applications [46]. Other POP™ matri-

ces containing higher percentage polymer concentrations have

been optimized for sequencing applications. Matrices of 6.5%

polydimethylacrylamide have a viscosity between 75 and

1200 cP depending on whether the low or high molecular

weight polymer is used in the synthesis reaction [47]. The

POP-7™ formulation has a viscosity of only 395 cP [48].

Capillary electrophoresis applied to DNA (2009-2014) 6925



The low viscosity is an advantage of polydimethylacrylamide.

Unlike linear polyacrylamide, polydimethylacrylamide can

coat the surface, so other coating materials or modifica-

tions are not required. The advantages of using a

polydimethylacrylamide sieving matrix come at a cost, as

it is the most expensive matrix available with POP-4™

(cat. # 402838 or # 4363752) available at a cost of ap-

proximately US$60 per mL [49]. It is also expensive to

synthesize a polydimethylacrylamide matrix using the

dimethylacrylamide monomer, but has been shown to yield

comparable separation performance to commercially available

matrices of polydimethylacrylamide in capillary electrophore-

sis [50] and linear polyacrylamide in a microfluidics platform

[51]. The material is heavily used in forensics applications.

New integrated microfluidics have been applied to

methylated DNA using polydimethylacrylamide sieving

gel to identify whether a forensic sample source was

tissue [52], body fluid [53], or semen [54] and has been

utilized to analyze seminal stains as old as 56 years

[55], as well as analyzing polymorphisms of STRs

[56].

Matrices composed of polydimethylacrylamide are also

employed for a variety of applications outside of forensics.

Sizing DNA with new matrices [57] and microfluidic plat-

forms developed for STR analysis [58, 59] are often compared

to bench-top analyses achieved using polydimethylacrylamide

matrices. Applications of polydimethylacrylamide matrices

outside of forensics include multi-locus variable number repeat

analysis to genotype several bacteria including Shigella spp.

[60], Streptococcus agalactiae [61], Staphylococcus aureus

Table 2 Gels used for DNA sequencing and sizing applications
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[62], Clostridium difficile [63], Listeria monocytogenes [64],

Legionella pneumophila [65], Pseudomonas aeruginosa [66],

and Francisella noatunensis [67], and study the association of

specific point mutations with susceptibility to particular antimi-

crobial agents [68]. These matrices also have merit in the agri-

cultural field having aided in methods for sizing biomarkers for

the identification of seven pathogenic species in bovine milk

[69]. They have also been used in distinguishing genetically

modified cotton and soybean [70], and single strand conforma-

tional analysis for the identification of seven infectious disease-

causing pathogens [71].

Hydroxyethylcellulose, a polysaccharide-based gel derived

from cellulose, is a low cost and low viscosity matrix; how-

ever, with this matrix the electroosmostic flow is not eliminat-

ed but is only suppressed by 20 % [72]. A drawback to utiliz-

ing hydroxyethylcellulose is polydispersity of the polymer

chain because it is a naturally occurring polymer.

Hydroxyethylcellulose matrices cost approximately US$0.14

per gram [73] with low viscosities at dilute concentrations. An

early application of hydroxyethylcellulose for DNA separa-

tions yielded two-base resolution at an upper size limit of

570 bases using a 2 % matrix composed of polymer with a

molecular weight range of 90–105 kDa that had been purified

using an ion-exchange resin [74]. The viscosity of

hydroxyethylcellulose matrices can be adjusted so that it can

be suited for separating DNA of different size ranges by vary-

ing the percentage of low and high molecular weight

hydroxyethylcellulose in the preparation [75]. A lower molec-

ular weight, 90-kDa hydroxyethylcellulose matrix was used

for the identification of genetically modified maize with DNA

marke r s l e s s t han 200 ba s e s [76 ] . A b l ended

hydroxyethylcellulose matrix consisting of 0.21 % 27-kDa

and 0.07 % 1-MDa hydroxyethylcellulose with 0.12 % 7-

MDa linear polyacrylamide was used for the separation of

DNA fragments ranging from 200 to 40,000 bases in 2 min

in a glass microfluidic coated with polyhydroxyethylacrylamide

[77]. The poor surface passivation by hydroxyethylcellulose can

be overcome by blending other effective surface coating agents

such as polyethylene glycol [78], polyvinyl alcohol [79], and

polydimethylacrylamide [79].

Polyvinylpyrrolidone is a sieving matrix with mediocre

separation performance, but excellent surface coating proper-

ties, low cost [80], and low viscosity, which can range from

only 3 to 27 cP [81]. Polyvinylpyrrolidone matrices have been

reported to demonstrate the feasibility of using short capil-

laries [82], performing portable methods [83], and improving

detection through base stacking and field gradients [84].

Although this matrix is not widely used, a newly developed

blended sieving matrix comprised of 20 % polyvinylpyrroli-

done and 80% hydroxyethylcellulose [57] harnesses the com-

plementary properties of each material. Polyvinylpyrrolidone

is an excellent coating material, and hydroxyethylcellulose

provides better separation performance. The viscosity of the

mixture is lower than a matr ix conta ining only

hydroxyethylcellulose and has been used for more than 90

consecutive capillary electrophoresis runs without deteriora-

tion in separation performance [85]. Thematrix is mainly used

in microfluidic platforms for DNA sizing for human identifi-

cation STR analysis because it provides single-base resolution

up to 200 bases and two- to three-base resolution up to 400

bases in a 15-min separation [58].

Pivotal applications of capillary gel electrophoresis

for DNA sieving

Beyond de novo genome sequencing

Next-generation sequencing strategies are now commercial-

ized as cheaper and faster alternatives based on highly

multiplexed analysis of short reads [86]. However, Sanger

sequencing via capillary gel electrophoresis is still commonly

used to correct for errors in assembling the sequence data, for

example in long repeats of DNA polymers. Thus, capillary gel

electrophoresis is reported as an analytical technique used to

assist in genome sequencing with next-generation sequencing

technology. Capillary gel electrophoresis is used to improve

quality control in next-generation sequencing [87], or to quan-

tify the DNA library [88]. Droplet microfluidics was used in

conjunction with capillary gel electrophoresis to ensure that a

suitable amount of DNA is generated by PCR without a bias

in size distribution [89].

End-labeled free-solution electrophoresis

End-labeled free-solution electrophoresis relies upon free

zone capillary electrophoresis to separate DNA fragments that

are covalently attached to a large molecule, such as synthetic

peptoids [90] or proteins [91], often referred to as drag-tags.

DNA mobility decreases with the fragment size, so smaller

fragments migrate slower than larger fragments due to a de-

crease in the charge-to-friction ratio. Decrease in the polydis-

persity of proteins used for drag-tags decreases variation in

charge and size distribution, which extends the sequencing

read length [91]. Increase in the charge on the drag-tag in-

creases wall interactions, which increases band broadening

[92, 93]. Micelle drag-tags have been utilized in commercial

capillary electrophoresis instruments and microfluidics to im-

prove the readout time by optimizing the electroosmotic coun-

terflow [94]. Additional applications for drag-tag methods in-

clude hybridization assays with short single-strand DNA tar-

gets [95] for the detection of single nucleotide polymorphisms

(SNPs) [96] or to assess the formation of primer dimers in

multiplex PCR reactions [97].

Capillary electrophoresis applied to DNA (2009-2014) 6927



DNA sizing

Beyond the use of capillary gel electrophoresis for DNA se-

quencing of the entire human genome, capillary gel electro-

phoresis continues to play a significant role in assigning STRs

for human identification or detecting pathogen biomarkers.

Repetitive sequences within the genome are harnessed to

uniquely identify specific biomarkers for a number of appli-

cations relevant to pathogen detection, human disease, and

especially human identification. DNA analyses are critical to

forensic laboratories around the world. Human identification

methods are based on the analysis of DNA sequences known

as STRs, which contain two to five base repeats. For example,

the STR Penta E has the recurring sequence AAAGA, and can

vary among individuals from five to as many as 24 repeats of

AAAGA. An individual will have two different sets of this

repeat, one copy from each parent. Thirteen different STRs are

used in the Federal Bureau of Investigation (FBI) combined

DNA index system, also known as CODIS, for probability

matching of a DNA sample to a specific individual. In a single

forensic analysis a minimum of 16 markers are separated and

sized. Four different fluorescent labels (e.g., FAM, JOE,

TAMRA, ROX) are used to distinguish the STRs because

some have similar length and overlap in separation space.

Therefore, these overlapping lengths are resolved spectrally.

The amplicons reflect the number of repeats at a specific lo-

cus, and the assignment of size is accomplished using a stan-

dard DNA ladder. These overlapping fragments are separated

in the polydimethylacrylamide sieving gel matrix. The rela-

tionship between migration time and fragment size is linear.

Sizing is used for genotyping through the identification of

markers that have specific lengths and DNA sieving gels are

critical to these separations.

Chip-based forensics

Microfluidic systems for forensic analyses continue to ad-

vance. Newer device designs generate results from buccal

cells in under 3 h [98] or 4 h [58]. DNA from whole blood

was processed using a device to integrate solid phase extrac-

tion with a 1.2 μL PCR chamber [99]. A simple disposable

chip fabricated in 10 min using a printer and polyester toner at

a cost of US$0.15 was reported [100]. A more sophisticated

plastic microchip was reported for integrated sample extrac-

tion, PCR amplification, and DNA separation (Fig. 2A) and

achieved single-base resolution of buccal samples with only a

7-cm separation channel [101]. The plastic device is cost-

effective and was used over a 6-month period. In another

report a microfluidic droplet generator, shown in Fig. 2B,

was used for high-throughput isolation of single cells prior

to integrated extraction, amplification, and sizing [102]. This

approach of isolating single cells circumvents issues of

analyzing and interpreting data obtained with DNA frommul-

tiple donors.

Self-assembled gels

Self-assembled gels with tunable selectivity are an alternative

to POP-4™ gels. The phospholipids dimyristoyl-sn-glycero-

3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-

Fig. 2 Examples of microchip devices for integrated forensic analysis of

DNA. a An integrated microchip fabricated for online sample extraction,

PCR amplification, and separation. Reprinted with permission from Le

Roux D, Root BE, Reedy CR, Hickey JA, Scott ON, Bienvenue JM,

Landers JP, Chassagne L, de Mazancourt P (2014) DNA analysis using

an integrated microchip for multiplex PCR amplification and electropho-

resis for reference samples. Analytical Chemistry 86(16):8192–8199.

Copyright 2014 American Chemical Society. b The process of separating

cells into oil droplets using a microfluidic droplet generator for single-cell

processing and analysis is depicted. Reprinted with permission from

Geng T, Novak R, Mathies RA (2014) Single-cell forensic short tandem

repeat typing within microfluidic droplets. Analytical Chemistry

86(1):703–712. Copyright 2014 American Chemical Society
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phosphocholine (DHPC) spontaneously forms a thermally re-

versible nanogel for DNA sizing [103, 104]. The nanogel

adopts a bilayer nanodisk morphology at 19 °C which corre-

sponds to a low loading viscosity of 50 cP for a 20 % solution

[105]. When the temperature is increased to 30 °C the phos-

pholipids assume a nanoribbon-like structure that forms a

higher viscosity interconnected network. The DMPC-DHPC

preparation is self-coating, suppressing electroosmotic flow

by simply flushing the capillary with the phospholipid [106].

The phospholipid nanogel is roughly one-third of the cost of

POP-4™ gels used for human STR analyses [107–109]. The

nanogel separation shown in Fig. 3 is of FAM-labeled STRs

from the PowerPlex® 16 analysis kit [103]. Single-base reso-

lution up to 250 bases was demonstrated with a 10 % phos-

pholipid nanogel [103]. Nanogels diluted to 2.5 % extend the

range for precise DNA sizing up to 1500 base pairs [110]. The

thermally responsive viscosity can support sieving gradients

[103] as well as stacking cartridges that preconcentrate DNA

upon injection and can be thermally erased prior to separation

[110].

Capillary electrophoresis and DNA aptamers

Generating DNA aptamers

DNA recognition elements, also called aptamers, can be tai-

lored to bind biomolecule targets with selectivity and speci-

ficity approaching that of antibodies. An aptamer of single-

stranded DNA spontaneously forms secondary structure that

leads to strong aptamer–target molecular binding. Figure 4A

depicts the secondary structure of an atrazine aptamer [111] as

predicted by m-fold [112]. Unlike antibodies, aptamers are

stable under the conditions required for robust biosensors.

Once aptamer–target binding is realized the temperature can

be manipulated to release the target and then refold the

aptamer. This thermal reversibility of aptamer structure can

be harnessed to reset the biosensor and use it repeatedly.

DNA aptamers are produced through a process of iterative

enrichment of the DNA–target complex from a DNA library

through a method called systematic evolution of ligands by

exponential enrichment (SELEX) [113]. Higher-throughput

separation techniques play a significant role in the enrichment

process. The unique separation capabilities of capillary elec-

trophoresis have led to new strategies for aptamer generation

and provide a quantitative means to measure binding affinity

of DNA aptamers.

Capillary electrophoresis is used to generate aptamers for

targets with an electrophoretic mobility different from that of

Time (min)

31292722 302825 262423 3332

0.01 RFU

131

223

179

318227

231 322

D3S1358

THO1

D21S11 D18S51

424

379

PentaE

Fig. 3 Separation of the 5 FAM labeled STRs produced from the

multiplex PCR amplification of standard DNA template K562. Reprinted

with permission from Durney BC, Lounsbury JA, Poe BL, Landers JP,

Holland LA (2013) A thermally responsive phospholipid pseudogel: tun-

able DNA sieving with capillary electrophoresis. Analytical Chemistry

85(14):6617–6625. Copyright 2013 American Chemical Society.

b) Separation of Binding and 

Non-binding DNA

a) Secondary Structure of Atrazine 

Aptamer R12.23

-+

Eph vectors

EOF vector
Fig. 4 a An atrazine aptamer is used as an example of how DNA

aptamers exploit secondary structure of single-stranded DNA to bind a

target. Reprinted fromWilliams RM, Crihfield CL, Gattu S, Holland LA,

Sooter LJ. In vitro selection of a single-stranded DNA molecular recog-

nition element against atrazine (2014) International Journal of Molecular

Sciences 15(8):14332–14347, available under a Creative Commons At-

tribution License. b The change in migration resulting from aptamer

binding to target is depicted
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DNA fragments. The similar electrophoretic mobility of

DNA fragments in free zone capillary electrophoresis sep-

arations is considered a disadvantage for DNA separa-

tions, but is harnessed for this technique. Upon binding

to the target, the DNA–target complex undergoes a

change in electrophoretic mobility, which shifts the migra-

tion time of the complex from that of the non-binding

DNA fragments. Figure 5B depicts this change in migra-

tion when the target is either positively charged or neutral

and the experiment does not suppress electroosmotic flow.

The integration of capillary electrophoresis in the SELEX

process, as first described by Mendonsa and Bowser

[114], is illustrated in Fig. 6A. Non-binding fragments

co-migrate in a single unresolved band, whereas binding

fragments migrate before or after the non-binding band

depending on whether the target molecule increases or

decreases the mobility of the DNA–target complex.

Fractions are collected from the capillary so that they

may be amplified and further enhanced by repetitive

rounds of positive or negative selection. Advantages of

capillary electrophoresis-SELEX over other SELEX

methods are a smaller sample handling volume, faster

screening, and most importantly no need to immobilize

either the aptamer or the target during selection rounds.

Capillary electrophoresis-SELEX

Capillary electrophoresis-SELEX methods [115–120] have

recently been used to generate aptamers predominantly for

proteins, although work with peptides [121] and small mole-

cules [122] is reported. Innovations in the field of capillary

electrophoresis-SELEX continue. The method has been trans-

lated into a micro free-flow electrophoresis, which is a two-

dimensional device in which electrophoresis is applied per-

pendicularly to hydrodynamic flow to separate binding and

non-binding DNA fragments [116]. Integrating the selection

into a microfluidic device further reduces the volume required

for fraction collection with next-generation sequencing.

Previously, observations of unexpected decreases in the rate

of aptamer enrichment with successive rounds were attributed

to the appearance of short DNA by-products [123]. Bias in the

PCR amplification of non-binding fragments over bound frag-

ments leads to inaccurate selection of aptamer candidates.

Drawbacks of PCR amplification have led to the use of real-

time PCR to decrease the number of enrichment cycles [118].

The method of capillary electrophoresis-SELEX has been

adapted to reduce the repetitive selections required to enhance

binding so that only a single amplification step is utilized after

the capillary electrophoresis enrichment. This alternative

method of capillary electrophoresis–non-SELEX integrates

DNA selection without amplification as outlined in Fig. 6B

[124]. With non-SELEX capillary electrophoresis, regions of

free and bound DNA are not fully resolved. The

dissociation is evaluated by assessing the relative amount of

DNA that is bound, free, or dissociates during the capillary

electrophoresis separation [125]. Predictive models have been

developed to optimize the approach [126]. Non-SELEX

methods have recently been used to generate aptamers for

proteins [127–137], although work with lipopolysaccharide

[138] is also reported. Emulsion PCR has been reported to

reduce accumulation of DNA by-products [132]. The method

continues to be refined by combining in-capillary mixing of

reactants and affinity analysis [127], and passivating the cap-

illary surface [137]. Other adaptations of capillary electropho-

resis for aptamer generation include the integration of repro-

ducible fraction collection with on-column non-covalent fluo-

rescent labeling [139] and next-generation sequencing [140]

with capillary isotachophoresis. Innovations in automated

fraction collection using ink jet printers and 96-well microtiter

plates will further improve the method [119].

Evaluating DNA aptamer binding

Capillary electrophoresis is a powerful tool to quantitatively

measure dissociation constants for aptamers with targets, and

excellent reviews of affinity binding methods for aptamers

and targets are available [141, 142]. Capillary electrophoresis

is well suited to evaluate aptamer affinity when the

Incubate 

DNA library +target

Separate library

with CE

discard 

non-binding DNA 

collect 

binding DNA 

Amplify 

DNA

Incubate 

DNA library +target

Separate library

with CE

discard 

non-binding DNA 

collect 

binding DNA 

a) SELEX-Capillary Electrophoresis

b) non-SELEX-Capillary Electrophoresis

Fig. 5 a Aptamer discovery via capillary electrophoresis-SELEX re-

quires cycles of incubation of DNA with target, removal of non-

binding DNA, and amplification of binding DNA. b Aptamer discov-

ery via non-SELEX-capillary electrophoresis reduces the time re-

quired by removing the amplification step between each incubation

with target
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electrophoretic mobility of free and bound aptamer differ sig-

nificantly because the separations are fast and require working

sample volumes of 15 μL to deliver injection sample volumes

of 2 nL or less. Methods of assessing dissociation constants

with capillary electrophoresis are based on a change in the

charge-to-size ratio upon binding, which leads to mobility

shift that depends on the rate of association. Protein–aptamer

complexes have a large change in mobility, which can be

easily detected with electrophoresis. The most common

methods are classical mobility shift affinity capillary electro-

phoresis [143], pre-equilibrium affinity capillary electropho-

resis [144], or nonequilibrium capillary electrophoresis of

equilibrium mixtures [145]. These processes are depicted in

Fig. 6 and discussed in greater detail below.

Classical mobility shift affinity

Classical mobility shift affinity, shown in Fig. 6A, involves

the separation of an aptamer in a background electrolyte de-

void of target and then in background electrolyte with increas-

ing concentrations of target. The concentration of aptamer and

target determines the amount of time the aptamer is com-

plexed as it migrates in the capillary. The migration time will

shift with increasing target concentration as a function of the

dissociation constant. An advantage to using measurements of

mobility shift to measure aptamer dissociation constants is

that the experiment can be used when it is difficult to estimate

the concentration of the target (e.g., bacteria [146]). Mobility

shift affinity capillary electrophoresis is best suited to aptamer

complexes with weak or intermediate binding affinity in order

to sample a range of complex migration shifts resulting from

fractional complex formation within the time frame of the

separation. As a result, the use of mobility shift affinity capil-

lary electrophoresis is not reported frequently to measure

aptamer–target affinity, although it has been used to evaluate

the effect of interactions between aptamers and metal ions

[147].

Pre-incubation equilibrium affinity capillary electrophoresis

Pre-incubation equilibrium affinity capillary electrophoresis

(Fig. 6B) requires that aptamer and target are incubated

off-capillary. Different concentrations of the target are incu-

bated in a constant concentration of the aptamer. Each

incubation shown in Fig. 6B is separated by capillary electro-

phoresis to quantify the bound and free concentration of

aptamer. Pre-equilibrium affinity capillary electrophoresis is

used when the aptamer complex does not dissociate signifi-

cantly during the time frame of the separation. Pre-incubation

equilibrium affinity capillary electrophoresis has been applied

freebound

timetime

DNA

time
marker

time

free

bound

b) Pre-equilibrium c) NECEEMa) Mobility Shift

[L] = 0

[L] = 2

[L] = 4

incubate aptamer and ligand
separate with CE
quantify bound/free

incubate aptamer and ligand
separate with CE
quantify using decay from 
bound and free regions

separate with CE in several
different ligand concentrations 
in the buffer and measure 
mobility shift

CE CE

Fig. 6 Obtaining a binding

constant for aptamer using a

mobility shift, b pre-equilibrium,

or c nonequilibrium capillary

electrophoresis methods. a

Aptamer and ligand interaction

occurs in-capillary, and the

binding constant is determined on

the basis of the shift in migration

time correlating to the ligand

concentration. b Aptamer and

ligand interaction occur off-

capillary, and the amount of

bound and free aptamers is

monitored in relation to ligand

concentration. c In

nonequilibrium capillary

electrophoresis of equilibrium

mixtures, aptamer and target are

in equilibrium off-capillary.

Dissociation begins during

separation. Binding constants are

determined using the decay from

the bound and free regions of the

electropherogram

Capillary electrophoresis applied to DNA (2009-2014) 6931



to proteins [114, 116, 117, 123, 148], peptides [121], and

small molecules [117, 149]. An innovative application utilizes

a micro free-flow device for affinity capillary electrophoresis

as a means to sample the ratio of bound and free aptamer at a

wide range of concentrations. The method uses concentration

change due to lateral diffusion, internal standards, and two-

dimensional detection to record concentrations from different

line scans obtained throughout the separation [150].

Measurements based on nonequilibrium capillary

electrophoresis

Measurements based on nonequilibrium capillary electropho-

resis of equilibrium mixtures (Fig. 6C) involve injecting and

then separating a mixture of target and aptamer in the capil-

lary. The complex dissociates throughout the run and the

resulting electropherogram does not contain discrete peaks

that are baseline resolved. Instead the electropherogram con-

tains zones of fully bound and free aptamer that define an

intermediate region reflecting dissociation with increasing

run time. Deconvolution of the unresolved peaks and mathe-

matical manipulation provide both the binding constant and

decay constant of the DNA aptamer–target [145] and can be

utilized when the concentration of the target is unknown

[151]. Nonequilibrium capillary electrophoresis of equilibri-

um mixtures provides information about the dissociation con-

stant and the rate constants in a single run. The method is

predominantly used to evaluate protein binding aptamers

[115, 120, 124, 127, 129–133, 135–137, 145, 151–153], al-

though measurements of peptides [134], small molecules in-

cluding lipopolysaccharide [138], and quinine [154] have re-

cently been reported.

Future directions of emerging and expanding

technology

Innovations in the development of capillary electrophoresis

methods for DNA separations have emerged beyond sizing

DNA, generating aptamers, or characterizing the affinity bind-

ing. Several recent research advances in mechanisms of DNA

separations, novel sieving gels, and even artificial gels enable

new areas of scientific discovery. A few of these techniques

are highlighted as areas to watch for future expansion.

Improved analyses based on composition

A recent report outlines a separation of the set of single-

stranded DNA, 76 nucleotides in length differing in sequence

by 2–5 bases per DNA strand. The separations were per-

formed in running buffer containing different phosphate-

derived sodium salts. The presence of guanosine 5'-

monophosphate, adenosine 5'-monophosphate, uridine 5'-

monophosphate, deoxyguanosine monophosphate, or phos-

phate supported sequence-based selectivity of DNA frag-

ments which was suggested as an alternative to stability and

conformation-based analyses [155]. Metal cation mediated-

capillary electrophoresis, which is sensitive to conformational

change [156], generates separation-based aptamer assays of

5 μM cocaine detection through conformational change asso-

ciated with displacement of the aptamer target [157]. DNA

aptamers can also be used as labels for indirect molecular

detection. The concept of conformational change associated

with aptamer–target displacement is utilized for multiplexed

separation-based assays [158]. In the absence of the target,

aptamers are cleaved by phosphodiesterase I [158]. Aptamer

binding stabilizes the DNA aptamer and protects it from en-

zymatic cleavage [158]. Thus, intact fluorescently labeled

aptamer strands indicate binding. The separation is

multiplexed by using 23-, 36-, and 49-nucleotide-long

aptamers to detect adenosine, ochratoxin A, and tyrosinamide

[158].

Improved analyses with transformable gels

Thermally responsive matrices, such as phospholipid

nanogels [103, 110], are ideal for DNA analysis because the

material can be loaded into a separation channel under condi-

tions of low viscosity and then switched to a higher viscosity

to accommodate the sieving separation. One class of separa-

tion matrix includes triblock copolymers of poly(ethylene gly-

col) (PEG) and poly(propylene glycol) (PPO) that have com-

positional formulas of PEGaPPObPEGa and are commonly

known as Pluronics. The use of these materials as DNA sep-

aration matrices stems from an aqueous micelle structure that

allows for higher concentration polymer solutions to be im-

plemented for sieving while keeping a very low viscosity, e.g.,

a 15 % Pluronic F108 matrix has a viscosity of only 21 cP

[159]. From 2009 to 2014 Pluronic matrices were predomi-

nantly used for single-strand conformation polymorphism

analysis, when multiple fragments with the same length and

only slight differences in sequence can be resolved for a cost

as low as US$0.10 per gram [160]. These methods require a

matrix that is non-denaturing allowing for the exploitation of

subtle differences in mobility due to changes in secondary

structure created byDNA sequence variability. The hydrophil-

ic micelle structure of the polyethylene oxide chains in

Pluronic matrices provides dynamic surface coating and fa-

vorable interactions with DNA analytes in solution, making it

possible to resolve fragments on the basis of secondary struc-

tural differences. There are 48 total Pluronic formulations;

however, only a few are transparent and can be used in con-

junction with DNA detection methods [161]. The Pluronic

F108 matrix was utilized for the detection of pathogens

[159, 161–168] or human biomarkers [169, 170].
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Artificial matrices

Artificial matrices can be created with micrometer to sub-

micrometer features fabricated within separation channels

with electrically insulatingmaterials. Channels with nanoscale

dimensions, pillar arrays, and self-assembling colloidal crys-

tals are examples of artificial matrices. Many studies utilizing

pillar arrays examined the effects of geometry [171], size

[172], order [173], and space [174, 175] on separation perfor-

mance. Square and rectangular pillars with different orienta-

tions were used to show that electric field distribution, veloc-

ity, and motion are impacted by pillar geometry and packing

[171]. Improvements in resolution have been obtained by de-

creasing pillar diameter [172], decreasing convective steering

by increasing spacing [174], maintaining order of the array

[173], and creating a more uniform electric field through the

use of a nanofence rather than a traditional hexagonal pillar

array [175]. Motion within sparse hexagonal ordered arrays

has been proven to be driven by a non-uniform electric field

[176], which causes conformational changes in DNA leading

to band broadening [175]. Changing the angle of the applied

electric field with post arrays expanded the range of applied

voltages for separations and decreased the required separation

length [177].

Studies utilizing fabricated obstacles provide an experi-

mental means to elucidate basic principles of DNA separation

and provide insight regarding transport. When the separation

channel dimension is equal to the persistence length of the

DNA molecule (45 nm) the mobility decreases with increase

in DNA length [178]. The relationship holds true for channel

dimensions 10 times greater than the persistence length

(450 nm), and supports the assumptions of Ogston transport.

However, the opposite trend for DNA mobility (i.e., increase

in mobility with increase in DNA length) was observed for a

channel of intermediate size (250 nm) [178]. Understanding

this shift in mobility and how it relates to changes in entropy

and the degree of interaction between the DNA and the chan-

nel wall provide a means to tune the size of a fabricated matrix

around particular DNA applications involving separating a

specific range of fragment sizes. Along with the physical bar-

riers that impact DNA mobility, ionic strength of the buffer

ties to the degree of electrostatic interactions and hydrody-

namic confinement between the DNA and the wall of a

nano-channel [179, 180]. The field-dependent mobility and

DNA trapping mechanisms can be observed at high and low

DC electric fields through the use of polyvinylpyrrolidone to

decrease the overall width of a channel by forming rigid chain

obstructions [181, 182]. Similar results were obtained using

glass capillaries with a 750-nm inner diameter, obviating the

need for high resolution lithography used to fabricate a nano-

slit device [183]. In other studies, colloidal crystal suspensions

have been utilized to create artificial matrices, which are more

easily fabricated than pillar arrays or nano-slits. The use of

monodisperse colloidal crystals is critical for creating uniform

pore sizes for optimal resolution and reduced band broadening

in comparison to a matrix composed of colloidal particles of

differing size [184]. These technologies hold the potential to

generate low-cost, high-performance, fabricated microfluidics

for DNA analyses and eliminate the need for a gel sieving

matrix.

Capillary electrophoresis plays a critical role in the develop-

ment of DNA analysis technologies. It has been the method of

choice for DNA analysis techniques commonly used for se-

quencing, sizing, and aptamer discovery and affinity studies.

As novel approaches emerge, capillary electrophoresis tech-

niques evolve from development stages to validated and applied

methods. Still, the development of techniques to better under-

stand separations in capillary, such as artificialmatrices, suggests

that optimization of capillary electrophoresis methods will con-

tinue to be pivotal in expanding the field of DNA analysis.
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