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Spontaneous capillary flow of liquids in narrow spaces plays a key role in a plethora
of applications including lab-on-a-chip devices, heat pipes, propellant management
devices in spacecrafts and flexible printed electronics manufacturing. In this work we
use a combination of theory and experiment to examine capillary-flow dynamics in
open rectangular microchannels, which are often found in these applications. Scanning
electron microscopy and profilometry are used to highlight the complexity of the
free-surface morphology. We develop a self-similar lubrication-theory-based model
accounting for this complexity and compare model predictions to those from the
widely used modified Lucas–Washburn model, as well as experimental observations
over a wide range of channel aspect ratios λ and equilibrium contact angles θ0. We
demonstrate that for large λ the two model predictions are indistinguishable, whereas
for smaller λ the lubrication-theory-based model agrees better with experiments. The
lubrication-theory-based model is also shown to have better agreement with experiments
at smaller θ0, although as θ0 → π/4 it fails to account for important axial curvature
contributions to the free surface and the agreement worsens. Finally, we show that the
lubrication-theory-based model also quantitatively predicts the dynamics of fingers that
extend ahead of the meniscus. These findings elucidate the limitations of the modified
Lucas–Washburn model and demonstrate the importance of accounting for the effects
of complex free-surface morphology on capillary-flow dynamics in open rectangular
microchannels.
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1. Introduction

Capillary flow is the spontaneous wicking of liquid in narrow spaces without the assistance
of, or even in opposition to, external forces such as gravity. This phenomenon has been
investigated since the early twentieth century and has been exploited for a diverse range of
applications including lab-on-a-chip devices (Olanrewaju et al. 2018), heat pipes (Faghri
1995), propellant management devices in spacecrafts (Levine et al. 2015) and fabrication
of flexible printed electronics (Cao et al. 2018; Jochem et al. 2018).

Early studies focused on understanding the physical mechanism driving spontaneous
capillary flow in capillary tubes. Lucas (1918) and Washburn (1921) appear to have been
the first to propose theoretical models describing the meniscus position z̃m as a function
of time t̃ for flow of a Newtonian liquid in cylindrical capillaries. Lucas (1918) assumed
the flow is driven by the capillary pressure gradient caused by the circular-arc meniscus
front, while Washburn (1921) also included hydrostatic pressure gradients and an imposed
pressure difference between the two ends of the capillary. For a horizontal capillary tube

open at both ends, an analytical solution z̃m =
√

k̃t̃ is obtained, commonly referred to as
the Lucas–Washburn relation, where k̃ is known as the mobility parameter and depends
on the cylinder radius, liquid viscosity, surface tension and contact angle. The mobility
parameter k̃ can be thought of as a diffusion coefficient driving the growth of the liquid
interface.

Numerous studies extended the theoretical work of Lucas (1918) and Washburn (1921)
by including inertial (Quéré 1997; Rideal 1922; Bosanquet 1923), dynamic contact angle
(Siebold et al. 2000; Popescu, Ralston & Sedev 2008; Ouali et al. 2013) and surface
roughness (Ouali et al. 2013) effects. Additionally, these theoretical models have been
extensively compared to experiments (Rideal 1922; Fisher & Lark 1979; Ichikawa &
Satoda 1994; Quéré 1997; Ichikawa, Hosokawa & Maeda 2004; Ouali et al. 2013),
confirming the z̃m ∼ t̃1/2 scaling.

Due to breakthroughs in lithographic fabrication techniques, open microchannels with
various cross-sectional geometries can be fabricated easily and inexpensively, including
rectangular (Yang et al. 2011; Sowers et al. 2016; Lade et al. 2018; Kolliopoulos et al.

2019), trapezoidal (Chen 2014), U-shaped (Yang et al. 2011) and V-shaped (Rye, Yost
& O’Toole 1998; Mann et al. 1995; Rye, Mann & Yost 1996; Yost, Rye & Mann 1997)
cross-sections. The lack of a top provides access to the inside of the channel, and has been
exploited in applications such as capillary micromoulding and microfluidics. Some studies
have generalized the Lucas–Washburn relation to arbitrary cross-sectional geometries
(Ouali et al. 2013; Berthier, Gosselin & Berthier 2015). However, predictions of the
modified Lucas–Washburn models for open capillaries have resulted in varying agreement
with experiments (Yang et al. 2011; Ouali et al. 2013; Chen 2014; Sowers et al. 2016;
Kolliopoulos et al. 2019). This is because the mechanism for capillary flow in open
channels is more complex than that for closed channels. While for closed channels the
force driving the flow is due to the pressure gradient caused by the circular-arc meniscus
front, for open channels the additional free surface also contributes to driving the flow
(this will be discussed in more detail when presenting figure 4).

The additional contribution of the free-surface curvature to capillary flow has been
theoretically and experimentally investigated primarily for V-shaped channels (Mann et al.

1995; Romero & Yost 1996; Rye et al. 1996; Yost et al. 1997; Rye et al. 1998; Weislogel
& Lichter 1998; Weislogel 2012). However, while the most widely used open-channel
cross-sectional geometry is rectangular (Olanrewaju et al. 2018), previous theoretical
studies have only considered capillary flow in open rectangular channels for liquids
with contact angles of θ0 = 0◦ and large channel aspect ratios λ = H/W (height/width)
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Capillary-flow dynamics in open rectangular microchannels

(Tchikanda, Nilson & Griffiths 2004; Nilson et al. 2006), or reported three-dimensional
simulations using the volume-of-fluid method to study the effects of gravity on capillary
rise in open rectangular channels (Gurumurthy et al. 2018).

In open rectangular channels the free-surface morphology is more complex than in
V-shaped channels. From the channel inlet to the meniscus front the upper meniscus spans
the entire channel width. However, at the meniscus front the flow splits into the channel
corners provided the equilibrium contact angle θ0 < π/4 (Concus & Finn 1969). This
splitting of the flow leads to filaments or fingers extending ahead of the meniscus front
and influencing its propagation. Such a transition is not observed in V-shaped channels.

In this work we use a combination of experiment (§ 2) and theory (§ 3) to study
capillary-flow dynamics in open rectangular channels. This is achieved by developing
a self-similar lubrication-theory-based model (§ 3.2), and comparing model predictions
to the modified Lucas–Washburn (MLW) model (§ 3.1) and complementary flow
visualization experiments. We investigate the effects of the complex free-surface
morphology on the flow dynamics over a wide range of channel aspect ratios λ and
equilibrium contact angles θ0 (§ 4.1) and identify limitations of the MLW model (§ 4.2).
Finally, we show good agreement between lubrication-theory-based model predictions of
the finger dynamics and experiments (§ 4.3).

2. Capillary-flow experiments

Experiments with a non-volatile liquid are used to study capillary flow in open rectangular
microchannels. Flow visualization is used to track the meniscus front and a combination
of scanning electron microscopy (SEM) and profilometry is used to characterize the effect
of channel aspect ratio on the free-surface morphology.

2.1. Channel fabrication and materials characterization

2.1.1. Fabrication of master pattern

Traditional microfabrication techniques were used to form silicon master patterns of
capillary channels. A 10.2 cm diameter silicon wafer was cleaned in an oxygen asher
(Technics Oxygen Asher) for 5 min with an oxygen flow of 200 SCCM and RF power
of 250 W. MicroChem SU-8 2010 negative tone photoresist was spin-coated onto the
wafer at 300 rpm for 5 s and 1000 rpm for 30 s, followed by edge-bead removal
with MicroChem EBR PG. These coating conditions target a 20 µm layer thickness.
Fabrication of capillary channels using SU-8 was chosen because it gives smother
sidewalls, sharper bottom corners and a flatter channel bottom than deep reactive-ion
etching. The resist was soft-baked on a hot plate at 95 ◦C for 4 min. The photoresist
was exposed through a photomask using a Karl Suss MA6 contact mask aligner in soft
contact mode for 12.5 s with a 50 µm gap to define the capillary channels. Measurement
gradient marks were included in the master pattern to facilitate tracking of the capillary
flow. The wafer was then baked at 95 ◦C for 4 min. The exposed wafer was developed in
propylene glycol momomethyl ether acetate (Sigma Aldrich) and rinsed with isopropanol.
The resist was then hard baked at 150 ◦C for 30 min and an anti-stick fluorinated
monolayer was formed by placing the dried wafer in a reduced-pressure chamber
with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Aldrich) vapour overnight. The
resulting microchannel height was 22.5 µm, measured with a KLA Tencor P16 surface
profilometer.
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Figure 1. (a) Schematic of microchannel connected to reservoir and (b) SEM image of channel cross-section
for λ = H/W = 0.45 (scale bar: 20 µm).

2.1.2. Substrate fabrication

Capillary channels were prepared by first casting a silicone stamp (Sylgard 184) over the
master pattern, curing the stamp and then using the stamp to imprint UV-curable adhesive
(Norland Products NOA68 or NOA73) as explained in Kolliopoulos et al. (2019). Briefly,
the UV-curable adhesive was coated on glass slides and then the silicone stamp was
pressed into the adhesive. The adhesive was solidified by exposure to 365 nm UV light
(Honle UV Spot 100) at 30 mW cm−2 for 270 s. The stamp was then delaminated from
the prepared capillary channels and the channels were inspected with a digital microscope
for defects. Any channels with defects were not used for capillary-flow experiments. The
microchannel length and height were 30 mm and 22.5 µm, respectively. Microchannel
widths were 17, 25, 50, 75, 100 and 200 µm. The reservoir radius was 3 mm. A schematic
of the microchannel geometry and a SEM image of a 100 µm wide and 22.5 µm deep
channel are shown in figure 1.

2.1.3. Materials characterization

The non-volatile test liquids chosen for capillary-flow experiments included UV-curable
adhesive (NOA74, Norland Products), silicone oil (DC-704, Dow Corning Corporation),
mineral oil (Sigma-Aldrich) and propylene glycol (Froggy’s Fog). Shear viscosity µ was
measured using a stress-controlled rheometer (AR-G2, TA Instruments) with a stainless
steel cone-and-plate geometry (40 mm, 2◦ cone angle). Surface tension σ was measured
using a Krüss DSA-30 digital tensiometer. A Krüss goniometer was used to measure
equilibrium contact angles θ0 on flat test substrates prepared in the same way as the
capillary channels. Density values were obtained from the manufacturer specifications.
The physical properties and equilibrium contact angles of the test liquids are shown in
table 1. Note that all liquids have θ0 < 45◦.

2.2. Experimental methods

2.2.1. Capillary-flow visualization

The experimental investigation of capillary flow was conducted with the apparatus
depicted in figure 2(a). Capillary channels were placed on a custom-built motorized
stage assembly which was lit from below through the transparent stage and substrate. A
controlled volume of the test liquid was placed into the reservoir attached to the capillary
channel using a Nordson EFD ValveMate 7100 drop dispensing system with a 25 GA
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Capillary-flow dynamics in open rectangular microchannels

Liquid ρ (g cm−3) µ (mPa s) σ (mN m−1) θ0 (deg.)

NOA74 >1 541.1 ± 2.2 29.1 ± 0.2 10 ± 3a

Silicone oil 1.07 43.0 ± 0.2 23.5 ± 0.2 18 ± 3a

Mineral oil 0.838 27.2 ± 0.1 29.8 ± 0.7 32 ± 2a

Propylene glycol 1.04 43.4 ± 0.2 33.8 ± 0.2 42 ± 2b

Table 1. Physical properties and equilibrium contact angles of test liquids.
aSolid NOA73 substrate.
bSolid NOA68 substrate.
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Figure 2. (a) Schematic of experimental apparatus. (b) Meniscus position z̃m as a function of time t̃ for
different channel aspect ratios λ with NOA74. The solid lines and shaded areas represent the average and
range of experimental results, respectively. The filled symbols indicate the meniscus position and flow time at
which samples were cured to obtain SEM and profilometry images (figure 3). For λ = 0.45 the shaded region
is so small it cannot be seen.

Nordson EFD tip mounted above the reservoir. Sufficient liquid was deposited at the centre
of the reservoir to fully fill the reservoir. After deposition, a programmed microstepping
motor (Automation Direct STP-MTRD-23042RE) moved the stage assembly and ensured
the liquid front remained in the field of view, allowing for visualization of longer flow
distances compared with prior studies (Yang et al. 2011; Sowers et al. 2016; Lade et al.

2018; Kolliopoulos et al. 2019). A high-speed camera (Photron Fastcam-Ultima APX) with
a Micro-Nikkor 105 mm lens, Nikon PN-11, Nikon PK-13 and Kenko 20 mm and 36 mm
extension tubes and a Kenko N-AFD 2× Teleplus MC7 lens was used to visualize the
flow at 60 frames per second. Flow was recorded until the liquid meniscus reached the end
of the 30 mm long channel or until the maximum recording time of the camera (∼400
s) was reached. Experiments were conducted at ambient conditions (23 ± 1 ◦C). Flow
visualization experiments were analysed using ImageJ software. A minimum of four trials
were conducted for a given channel aspect ratio and test liquid. The meniscus-position
time evolution z̃m(t̃) was averaged over all trials and the maximum and minimum z̃m(t̃)

were used for the range of experimental results. The meniscus-position time evolution
z̃m(t̃) for different channel aspect ratios λ using NOA74 as the test liquid can be seen in
figure 2(b). Results using the other test liquids are reported in § 4.2.

2.2.2. Free-surface profile characterization

The following experiments were conducted to investigate the effect of channel aspect
ratio λ on the free-surface morphology. A UV-curable liquid (NOA74, Norland Optical
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Adhesives) was deposited in the reservoir connected to the microchannel and allowed to
flow along the channel length. The flow was terminated at a desired time by exposing
the NOA74 to a high-intensity UV light source (Omnicure S1500A with a custom light
guide) at a UV intensity of approximately 1.6 W cm−2. The liquid was fully cured in <2
s, but the flow terminates well before full solidification, so the process essentially creates
a snapshot of the free-surface profile at a given time. The position of the meniscus front
and the time at which curing occurred are represented by the filled symbols in figure 2(b)
for two channel aspect ratios λ.

After solidification, the free-surface profile was measured with a stylus profilometer
(KLA-Tencor P16) by making repeated scans across the channel width. The samples were
then coated with a conductive gold film and the region near the meniscus front was imaged
with a SEM instrument (JEOL JSM-6010PLUS/LA) in secondary electron imaging mode
with a sample rotated 40◦ about the z̃ axis (figure 3f ). The SEM images and profilometry
scans for channels of aspect ratio λ = 0.45 and λ = 0.225 corresponding to the filled
symbols in figure 2(b) are shown in figure 3.

2.3. Free-surface morphology

We investigate the effect of channel aspect ratio λ on the free-surface morphology by
initially examining the profilometry scans in figures 3(a) and 3(c). It is observed that for
both channel aspect ratios the liquid height h̃ at the centre of the channel decreases down
the channel length. This decrease in h̃ at the centre of the channel results in an increase
of the free-surface curvature, causing capillary pressure gradients that drive the flow. At
a certain distance down the channel, h̃ at the centre of the channel goes to zero and the
liquid splits into two filaments along the bottom corners. The filament morphology can be
seen in the SEM images in figures 3(b) and 3(d).

From figures 3(a) and 3(b), it appears that the free-surface morphology can be divided
into three regimes. The first is a meniscus-deformation regime (I) (or accommodation
regime) where the liquid is pinned to the top of sidewalls and the top meniscus curvature
increases down the length of the channel. The second is a meniscus-recession regime (II)
where the liquid depins from the top of the channel wall and the meniscus begins to recede
down the channel walls. The third is a corner-flow regime (III) where the liquid splits and
recedes into the corners.

Examination of figures 3(c) and 3(d) also suggests the presence of three regimes. The
first is the meniscus-deformation regime (I) similar to that seen in figure 3(b). However,
in this case the meniscus splits into filaments prior to the liquid depinning from the top of
the channel wall (see figure 3e) so that the meniscus-recession regime (II) is absent. After
the splitting of the meniscus a corner-transition regime (IV) is observed, where the liquid
remains pinned to the top of the channel wall. This is followed by a corner-flow regime
(III) similar to that seen in figure 3(b).

The above visualizations suggest that there is a critical channel aspect ratio λc at which
the free-surface morphology transitions from that seen in figures 3(a) and 3(b) to that
seen in figures 3(c) and 3(d). This is in agreement with experimental observations of
Seemann et al. (2005). In their study, polystyrene droplets were deposited on grooves
with rectangular cross-sections via vapour condensation. The polystyrene droplets flowed
in the grooves and were solidified by lowering the temperature of the polymer below its
glass transition temperature. The solidified samples were then characterized using atomic
force microscopy.
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ỹ ỹx̃
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Figure 3. Profilometry scans and SEM images of cured NOA74 in channels of aspect ratios (a,b) λ = 0.45
and (c,d) λ = 0.225. Dashed boxes in (a,c) represent the corresponding locations of SEM images in (b,d),
respectively. The SEM images were obtained from samples rotated 40◦ about the z̃ axis as seen in ( f ) (scale
bars: (b) 50 µm and (d) 100 µm). Regimes: (I) meniscus deformation, (II) meniscus recession, (III) corner flow
and (IV) corner transition. (e) A SEM image of cured NOA74 in a channel with λ = 0.225 depicting the pinned
contact line at the top of the channel sidewall. ( f ) Schematic of sample orientation for SEM visualization.

The expression that Seemann et al. (2005) used for λc was

λc = 1 − sin θ0

2 cos θ0
, (2.1)

by assuming a circular upper meniscus contacting the bottom of the rectangular channel
while being attached to the top of the channel walls. For NOA74 with θ0 = 10◦ we obtain
λc = 0.42 from (2.1), which is consistent with the free-surface morphology transition
observed in figure 3. While the corner-transition (IV) regime has been previously observed
experimentally, it has not, to the best of our knowledge, been accounted for in theoretical
studies.

In the following sections we evaluate the importance of the free-surface morphology
in model predictions. This is achieved by comparing two theoretical models describing
capillary flow, where one accounts for the complexity of the free-surface morphology
(§ 3.2) whereas the other assumes that it is flat (§ 3.1).
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3. Mathematical modelling

Here, we describe two mathematical models for capillary flow of a non-volatile, isothermal
Newtonian liquid in an open rectangular channel in contact with an ambient passive gas.
We consider a liquid of density ρ, viscosity µ, surface tension σ and equilibrium contact
angle θ0. The open rectangular channel has width W, height H and length L. In this work,
we use the notation f̃ to denote the dimensional version of a variable f .

3.1. Modified Lucas–Washburn model

In this model, the flow is assumed to be driven by the capillary pressure gradient caused
by the circular-arc meniscus front, while viscous forces resist the flow and inertial and
gravitational forces are neglected. The capillary driving force is obtained by assuming a
flat upper liquid–air interface and a circular-arc meniscus front governed by fluid statics,
while the viscous force is obtained by assuming a fully developed parallel flow. Through
conservation of linear momentum in the axial direction an analytical expression is obtained
for the position of the meniscus front z̃m as a function of time t̃, which in dimensional form
is

z̃m =
√

k̃t̃, where k̃ = 2σHζo(λ)

3µ
[cos θ0(1 + 2λ) − 1]. (3.1)

Here, k̃ is the mobility parameter and has units of (length)2/time, λ = H/W is the channel
aspect ratio and ζo(λ) is an aspect-ratio function defined as

ζo(λ) = 24

π4λ2

∞
∑

n=0

1

(2n + 1)4

[

1 − tanh[(2n + 1)πλ]

(2n + 1)πλ

]

. (3.2)

Detailed derivation of ζo(λ) can be found in the work of Ouali et al. (2013). Equation (3.1)
will be referred to as the MLW model and has been used in several other studies (Baret
et al. 2007; Yang et al. 2011; Ouali et al. 2013; Sowers et al. 2016; Kolliopoulos et al.

2019).

3.2. Lubrication-theory-based model

We develop a model describing capillary flow in open rectangular channels that accounts
for the non-flat shape of the upper liquid–air interface, which results in capillary pressure
gradients that drive flow. This is a more complex model than the MLW model (3.1), which
assumes a flat upper liquid–air interface.

3.2.1. Model geometry

We begin by considering flow in an open rectangular channel as depicted in figure 4,
motivated by the experiments in § 2.3. Recall that λc is the aspect ratio at which the circular
upper meniscus contacts the bottom of the rectangular channel while being attached to the
top of the channel sidewalls with a contact angle of θ0.

For λ ≥ λc (figure 4a) the free-surface morphology is divided into three regimes
along the z̃ axis as discussed in § 2.3: a meniscus-deformation regime [0, z̃d(t̃)], a
meniscus-recession regime [z̃d(t̃), z̃m(t̃)] and a corner-flow regime [z̃m(t̃), z̃t(t̃)]. In the
meniscus-deformation regime, the liquid is pinned to the top of the channel wall (ã = H).
The channel inlet is assumed to be fully filled (θ(0, t̃) = π/2) and the upper meniscus
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Figure 4. Schematic of liquid undergoing capillary flow in an open rectangular channel for aspect ratios (a)
λ ≥ λc and (b) λ < λc.

curvature increases down the channel length (θ(z̃, t̃) decreases) until the contact angle
θ(z̃d, t̃) = θ0, where z̃d is the end of meniscus-deformation regime.

We then transition to the meniscus-recession regime, where the contact angle θ = θ0
and the liquid height starts to recede down the channel sidewalls (ã(z̃, t̃) decreases) until
the upper meniscus contacts the channel bottom. From (2.1), here ã(z̃m, t̃) = Wλc, where
z̃m is the meniscus position. This results in a morphology transition where the flow splits
into the channel corners, leading to the corner-flow regime. In the corner-flow regime,
θ = θ0 at the channel bottom and the sidewall, and the liquid height on the sidewall ã(z̃, t̃)

decreases from ã(z̃m, t̃) = Wλc to ã(z̃t, t̃) = 0, where z̃t is the finger tip position.
For λ < λc (figure 4b) the free-surface morphology is also divided into three regimes:

a meniscus-deformation regime [0, z̃m(t̃)], a corner-transition regime [z̃m(t̃), z̃c(t̃)] and a
corner-flow regime [z̃c(t̃), z̃t(t̃)] as discussed in § 2.3. In the meniscus-deformation regime
the liquid is pinned to the top of the channel wall (ã = H). The channel inlet is assumed
to be fully filled (θ(0, t̃) = π/2) and the upper meniscus curvature increases down the
channel length (θ(z̃, t̃) decreases) until the contact angle θ(z̃m, t̃) = θC, where θC is the
contact angle at the channel sidewall when the upper meniscus touches the channel bottom.

After the upper meniscus contacts the channel bottom, it splits into the channel corners,
leading to the corner-transition regime. In this regime the liquid remains pinned to the
top of the channel wall (ã = H), and we assume that the contact angle at the channel
bottom reaches θ0 instantaneously. To conserve mass, the contact angle at the sidewall
must change from θC to θ(z̃m, t̃) = θT , where θT is defined in § 3.2.4 (note that θT = θC

if θ0 = 0). The upper meniscus curvature increases down the channel length (θ(z̃, t̃)

at the sidewall decreases) until θ(z̃c, t̃) = θ0, where z̃c is the finger depinning position
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(the position at which the liquid depins from the top of the channel wall). Once θ = θ0
on the channel bottom and sidewall, the morphology transitions to the corner-flow regime
where the liquid height on the channel sidewall ã(z̃, t̃) decreases from ã(z̃c, t̃) = H to
ã(z̃t, t̃) = 0.

In the following sections we develop a mathematical model for capillary flow
considering both λ ≥ λc (figure 4a) and λ < λc (figure 4b) and accounting for the complex
upper liquid–air interface morphology.

3.2.2. Governing equations

We consider mass and momentum conservation of an incompressible Newtonian liquid
with constant density, given by

∇̃ · ũ = 0, (3.3a)

ρ

[

∂ũ

∂ t̃
+ (ũ · ∇̃)ũ

]

= −∇̃p̃ + µ∇̃2ũ + ρg̃, (3.3b)

where ũ = (ũ, ṽ, w̃) is the velocity field in Cartesian coordinates, p̃ is the liquid pressure
and g̃ = (g̃x, g̃y, g̃z) is the gravitational acceleration. The no-slip and no-penetration
conditions are applied along the solid walls as

ũ = 0. (3.4)

The boundary conditions for the normal and tangential stresses at the liquid–air interface
h̃(x̃, z̃, t̃) are given by

[[n · T̃ · n]] = σ(∇̃s · n), (3.5a)

[[t1 · T̃ · n]] = 0, (3.5b)

[[t2 · T̃ · n]] = 0. (3.5c)

Here, T̃ = −p̃I + µ[∇̃ũ + (∇̃ũ)T] is the stress tensor, I is the identity tensor, ∇̃s =
∇̃ − n(n · ∇̃) is the surface gradient operator, n is the unit outward normal vector and
t1 and t2 are the two tangent vectors at the interface in the transverse and axial directions,
respectively (expressions for these vectors can be found in the supplementary material
available at https://doi.org/10.1017/jfm.2020.986).

Equations (3.3a) and (3.3b) are rendered dimensionless using the following scalings:

(x̃, ỹ, z̃) = (Hx, Hy, Lz), t̃ = L

U
t, p̃ = µU

ǫH
p,

(ũ, ṽ, w̃) = (ǫUu, ǫUv, Uw), ǫ = H

L
, U = 2ǫσ

µ
.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.6)

Additionally, the gravitational acceleration vector is scaled as (g̃x, g̃y, g̃z) = (ggx, ggy, ggz),
where g is the magnitude of the gravitational acceleration. The dimensionless parameters
that arise are the Reynolds number Re = ρUH/µ (ratio of inertial to viscous forces), the
capillary number Ca = µU/ǫσ (ratio of viscous to surface tension forces) and the Bond
number Bo = ρgH2/σ (ratio of gravitational to surface tension forces).

911 A32-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.986
https://doi.org/10.1017/jfm.2020.986


Capillary-flow dynamics in open rectangular microchannels

In the limits where ǫ2 ≪ 1, ǫRe ≪ 1 and Bo/Ca ≪ ǫ, the governing equations reduce
to

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (3.7a)

∂p

∂x
= ∂p

∂y
= 0, (3.7b)

∂p

∂z
= ∂2w

∂x2
+ ∂2w

∂y2
. (3.7c)

The boundary conditions for the normal (3.5a), transverse tangential (3.5b) and axial
tangential (3.5c) stresses at the free surface reduce to

p = −Ca−1 ∂2
x h

[1 + (∂xh)2]3/2
= −Ca−1

[

∂xh

[1 + (∂xh)2]1/2

]

x

, (3.8a)

0 = [1 − (∂xh)2]

(

∂u

∂y
+ ∂v

∂x

)

+ 2∂xh

(

−∂u

∂x
+ ∂v

∂y

)

− ∂zh

(

∂w

∂x
+ ∂xh

∂w

∂y

)

, (3.8b)

0 = ∂w

∂y
− ∂xh

∂w

∂x
. (3.8c)

The normal stress balance in (3.5a) has as a special case the Young–Laplace equation p =
−Ca−1κ , where κ accounts for both transverse and axial curvature contributions. However,
in the limit ǫ2 ≪ 1, axial curvature contributions are negligible and only the leading-order
transverse curvature contributions are accounted for in (3.8a). Based on (3.7b) the O(1)

term in p is only dependent on z and t, and thus the leading-order curvature term (term in
brackets on the far right of (3.8a)) is actually independent of x and must only depend on
z and t. The derivation of (3.7) and (3.8) can also be seen in Yang & Homsy (2006) and
White & Troian (2019), who considered V-shaped channel cross-sections.

Up to this point no assumption has been made regarding the channel cross-sectional
geometry. Here, we consider two geometries for the channel cross-section: (a) rectangular
(figure 5a) and (b) V-shaped (figure 5b). Using these two geometries we can describe
all the liquid cross-sections in figures 4(a) and 4(b) in terms of the liquid height on the
solid wall a(z, t) and the contact angle θ(z, t). The meniscus-deformation (a = 1) and
meniscus-recession (θ = θ0) regimes are described using the rectangular cross-section,
while the corner-transition (a = 1) and corner-flow (θ = θ0) regimes are described using
the V-shaped cross-section.

Each cross-sectional geometry requires three additional boundary conditions to obtain
expressions for p(z, t) and h(x, z, t): the contact-line location on the solid wall, a symmetry
condition and the definition of the contact angle θ . Expressions for these boundary
conditions can be found in the supplementary material. We obtain expressions for p(z, t)

and h(x, z, t) as a function of a(z, t) and θ(z, t) for each regime in figure 4 by integrating
(3.8a) twice with respect to x and imposing the boundary conditions. The resulting O(1)

expressions are

p = −λ cos θ(z, t)

h = 1 + tan θ(z, t)

2λ
−

[

1

4λ2 cos2 θ(z, t)
− x2

]1/2

⎫

⎪

⎬

⎪

⎭

meniscus deformation, (3.9a)
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θ(z, t)

θ(z, t)θ0

h(x, z, t)

a(z, t) a(z, t)

x

y

kn

x

y

h(x, z, t) β

n

k
(b)(a)

Figure 5. Cross-sectional schematics of (a) meniscus-deformation (a = 1) and meniscus-recession (θ = θ0)
regimes, and (b) corner-transition (a = 1) and corner-flow (θ = θ0) regimes.

p = −λ cos θ0

h = a(z, t) + tan θ0

2λ
−

[

1

4λ2 cos2 θ0
− x2

]1/2

⎫

⎪

⎬

⎪

⎭

meniscus recession, (3.9b)

p = −cos θ0 − sin θ(z, t)

2

h = cos θ(z, t)

cos(θ(z, t) + β)
−

[

(

sin β

cos(θ(z, t) + β)

)2

− x2

]1/2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

corner transition, (3.9c)

p = −cos θ0 − sin θ0

2a(z, t)

h = a(z, t) cos θ0

cos(θ0 + π/4)
−

[

(

a(z, t) sin π/4

cos(θ0 + π/4)

)2

− x2

]1/2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

corner flow, (3.9d)

where θ0 is the equilibrium contact angle, β = arctan(cos θ/ cos θ0) (see supplementary
material for further details) and λ is the channel aspect ratio. Equations (3.9a) and (3.9b)
were also used by Tchikanda et al. (2004) and Nilson et al. (2006). A similar expression
to (3.9c) can be found in Weislogel & Nardin (2005). The expressions in (3.9d) were also
used by Romero & Yost (1996), Weislogel & Lichter (1998), Nilson et al. (2006), Yang
& Homsy (2006) and White & Troian (2019). We note that to reconstruct free-surface
profiles, the height profiles h in (3.9c) and (3.9d) corresponding to figure 5(b) must
be rotated by angles β = arctan(cos θ/ cos θ0) and β = π/4, respectively, to match the
orientation of the channel cross-section in figures 4(a) and 4(b).

3.2.3. Diffusion equations

Lenormand & Zarcone (1984) derived the following expression from system (3.7), relating
the gradient in the dimensionless flux q to the time derivative of the dimensionless liquid
cross-sectional area A:

∂A

∂t
= −∂q

∂z
. (3.10)

The dimensionless flux is defined as

q =
∫

A

w dA = −∂p

∂z
w̄iA, (3.11)
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Capillary-flow dynamics in open rectangular microchannels

where w̄i is a rescaled cross-sectional-averaged dimensionless velocity. Here, i is equal
to D, T or C for the meniscus-deformation, corner-transition and corner-flow regimes,
respectively. (As discussed below, the meniscus-recession regime is neglected.) Details of
the calculation of w̄i are discussed in the supplementary material.

It is evident from (3.9a)–(3.9d) that the dimensionless streamwise flux q in (3.11) is
a function of either the dimensionless liquid height a(z, t) on the sidewall or the liquid
contact angle θ(z, t) depending on the regime. Rather than considering a(z, t) and θ(z, t)

separately, we introduce the liquid saturation s = Ã(a, θ)/HW = λA (ratio of channel
cross-sectional area filled with liquid to total channel cross-sectional area). For each
regime the liquid saturation s is given by

s = 1

2λ

[

2λ− arcsin(cos θ)

2 cos2 θ
+ 1

2
tan θ

]

, meniscus deformation, (3.12a)

s = 1

2λ

[

2λa − arcsin(cos θ0)

2 cos2 θ0
+ 1

2
tan θ0

]

, meniscus recession, (3.12b)

s = λB̂(θ, θ0)

(cos θ0 − sin θ)2
, corner transition, (3.12c)

s = a2 2λÂ(θ0)

(cos θ0 − sin θ0)2
, corner flow, (3.12d)

where the geometric functions B̂ and Â can be found, respectively, in (A1) and (A2) in
appendix A. Equations (3.12a), (3.12b) and (3.12d) are equivalent to expressions reported
by Nilson et al. (2006).

Since the pressure p in (3.9b) is constant in the meniscus-recession regime, the flux q =
0 for this regime based on (3.11). This is because the transverse curvature gradients are zero
and the only contribution to q is from the O(ǫ2) axial curvature gradients, for which we did
not account. Nilson et al. (2006) estimated that the meniscus-recession regime size δ ≈
L(ǫ2
λ/2)1/3. For the microchannel dimensions considered in our study δ ≈ 180–320 µm,

which is negligible considering the channel length is 30 mm. This estimate for δ agrees
with the observations in figure 3(b) where the meniscus-recession regime size is less than
50 µm. Therefore, effects of the meniscus-recession regime will be neglected (i.e. z̃d = z̃m

in figure 4a) and the regime transition from meniscus deformation to corner flow (for
λ/λc > 1) will be treated as a saturation jump.

By using (3.12a)–(3.12d) in (3.10) we obtain the following system of nonlinear partial
differential equations governing the liquid saturation:

∂s

∂t
= ∂

∂z

(

DDs
∂s

∂z

)

, meniscus deformation, (3.13a)

∂s

∂t
= ∂

∂z

(

DTs1/2 ∂s

∂z

)

, corner transition, (3.13b)

∂s

∂t
= ∂

∂z

(

DCs1/2 ∂s

∂z

)

, corner flow, (3.13c)
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where

DD = w̄D

(

2λ2 sin θ cos2 θ

1 − tan θ arcsin(cos θ)

)

, (3.14a)

DT = w̄T

(cos θ0 − sin θ)2

4

(

1

λB̂(θ, θ0)

)1/2
(

B̂(θ, θ0)

B̂(θ, θ0) − tan θ(cos θ0 − sin θ)2

)

,

(3.14b)

DC = w̄C

(cos θ0 − sin θ0)
2

4

(

1

2λÂ(θ0)

)1/2

. (3.14c)

The quantities DD, DT and DC can be thought of as dimensionless diffusion coefficients
describing the interface growth.

Recall that λc (see (2.1)) is the aspect ratio at which the circular upper meniscus
contacts the bottom of the rectangular channel while being attached to the top of the
channel sidewalls with a contact angle of θ0. When λ ≥ λc (figure 4a), the bounds of the
meniscus-deformation and corner-flow regimes are (0, zm) and (zm, zt), respectively, where
zm is the meniscus position and zt is the finger tip position. When λ < λc (figure 4b),
the bounds of the meniscus-deformation, corner-transition and corner-flow regimes are
(0, zm), (zm, zc) and (zc, zt), respectively, where zc is the finger depinning position.

3.2.4. Similarity transformation

We exploit the self-similar nature of the nonlinear diffusion equations (3.13) by
introducing the variable η = z/

√
t (Romero & Yost 1996; Weislogel & Lichter 1998; Chen,

Weislogel & Nardin 2006; White & Troian 2019). For λ ≥ λc shown in figure 4(a), the
self-similar governing equations are

−1

2
η

ds

dη
= d

dη

(

DDs
ds

dη

)

, η ∈ [0, δ0η0), meniscus deformation, (3.15a)

−1

2
η

ds

dη
= d

dη

(

DCs1/2 ds

dη

)

, η ∈ (δ0η0, η0], corner flow, (3.15b)

subject to

s(0) = 1, s(δ0η0)
− = sD, s(δ0η0)

+ = sC, s(η0) = 0, (3.15c)

where η0 = zt/
√

t is the rescaled finger tip position and δ0η0 = zm/
√

t is the rescaled
meniscus position. The channel cross-section at the inlet is assumed to be fully filled and
θ = π/2. At the end of the meniscus-deformation regime θ = θ0, which is used in (3.12a)
to calculate sD.

At the beginning of the corner-flow regime a = λc/λ, which is used in (3.12d) to
determine sC. (Recall from § 3.2.1 that the corner-flow regime begins when ã = Wλc,
which in dimensionless form is a = λc/λ.) Finally at the finger tip, the liquid height goes
to zero. Note that sD = sC only for λ = λc (meniscus contacts the channel bottom at end of
the meniscus-deformation regime). Equation (2.1) is used to determine λc, which depends
only on θ0. For all λ, it is assumed in the corner-flow regime that the contact angle on
the channel sidewall and bottom is always θ0, and thus independent of speed. This is the
simplest assumption and allows us to focus on the influence of other problem parameters.
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Capillary-flow dynamics in open rectangular microchannels

Two additional conditions are required to determine η0 and δ0, which specify the bounds
of each regime. The first condition is the flux matching condition given by

[

−DDs
ds

dη
− 1

2
sη

]

−
−

[

−DCs1/2 ds

dη
− 1

2
sη

]

+
= 0, at η = δ0η0, (3.15d)

where the second term in each bracket accounts for the potential discontinuity in s due
to transitioning from the meniscus-deformation regime to the corner-flow regime. A
derivation of (3.15d) can be seen in the appendix B. The second condition is that the flux
approaches zero at the finger tip (i.e. DCs1/2 ds/dη → 0, as η → η0). Following Romero &
Yost (1996) and using (3.15b), it can be shown that to satisfy this condition, the following
must be true:

− DCs−1/2 ds

dη
= 1

2
η0, at η = η0. (3.15e)

For λ < λc shown in figure 4(b), the self-similar governing equations are

−1

2
η

ds

dη
= d

dη

(

DDs
ds

dη

)

, η ∈ [0, δ0η0), meniscus deformation, (3.16a)

−1

2
η

ds

dη
= d

dη

(

DTs1/2 ds

dη

)

, η ∈ (δ0η0, δ1η0), corner transition, (3.16b)

−1

2
η

ds

dη
= d

dη

(

DCs1/2 ds

dη

)

, η ∈ (δ0η1, η0], corner flow, (3.16c)

subject to

s(0) = 1, s(δ0η0)
− = sD, s(δ0η0)

+ = sT , s(δ1η0)
− = s(δ1η0)

+ = sC, s(η0)=0,

(3.16d)

where δ1η0 = zc/
√

t is the rescaled finger depinning position (§ 3.2.1). The channel
cross-section at the inlet is assumed to be fully filled and θ = π/2. At the end of the
meniscus-deformation regime θ = θC (critical angle at which the upper meniscus touches
the channel bottom, calculated from λ = (1 − sin θC)/2 cos θC), which is used in (3.12a)
to calculate sD, and the contact angle at the channel bottom is θ = 0.

At the transition from the meniscus-recession regime to the corner-transition regime, the
liquid remains pinned to the top of the channel sidewall and the upper meniscus contacts
the channel bottom with the flow splitting into the channel corners. At the beginning of
the corner-transition regime we assume the liquid instantaneously attains θ0 at the channel
bottom and θC → θT at the channel sidewall. To conserve mass, we equate the amount of
liquid in the channel cross-section on each side of this transition. This specifies θT , which
is calculated (via Newton’s method) by setting (3.12c) equal to sD. If the calculated θT ≤
π/4, then sT = sD. If θT > π/4, then DT < 0 which makes the problem ill-posed (Romero
& Yost 1996). In this case, we set θT = π/4, leading to a saturation jump. Equation (3.12c)
is then used to determine sT based on θT . Note that in the corner-transition regime the
contact line at the channel sidewall is assumed to be pinned while the contact line at
the channel bottom is allowed to move with constant contact angle θ0. At the end of the
corner-transition regime and the beginning of the corner-flow regime a = 1, which is used
in (3.12d) to determine sC. (Recall from § 3.2.1 that the corner-flow regime begins when
ã = H, which in dimensionless form is a = 1.) Finally at the finger tip, the liquid height
goes to zero.
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Three additional conditions are required to determine η0, δ0 and δ1, which are

[

−DDs
ds

dη
− 1

2
sη

]

−
−

[

−DTs1/2 ds

dη
− 1

2
sη

]

+
= 0, at η = δ0η0, (3.16e)

[

−DTs1/2 ds

dη
− 1

2
sη

]

−
−

[

−DCs1/2 ds

dη
− 1

2
sη

]

+
= 0, at η = δ1η0, (3.16f )

−DCs−1/2 ds

dη
= 1

2
η0, at η = η0, (3.16g)

where (3.16a) and (3.16b) are flux matching conditions (see appendix B) and (3.16c) is the
condition setting the flux to zero at the finger tip.

For λ ≥ λc the system of governing equations is (3.15), whereas for λ < λc the system
consists of (3.16). What is required to solve these systems are the cross-sectional-averaged
dimensionless velocities w̄D(s), w̄T(s) and w̄C(s), which influence the values of DD,
DT and DC through (3.14). The cross-sectional-averaged dimensionless velocities are
calculated for a given cross-section by solving (3.7c) subject to no-slip and no-penetration
conditions along the solid walls and no-stress condition (3.8c) at the liquid–air interface
(see supplementary material for further details).

3.2.5. Numerical methods

Velocity fields (see supplementary material) are numerically solved for with a Galerkin
finite-element method using quadratic basis functions. To validate our computations, our
results for w̄D(s), w̄T(s) and w̄C are compared to results from prior studies. Results for
w̄D(s) and w̄T(s) are in agreement with results of Tchikanda et al. (2004) and Weislogel
& Nardin (2005), respectively. Results for w̄C agree with results of Ayyaswamy, Catton &
Edwards (1974), Ransohoff & Radke (1988) and Yang & Homsy (2006). Note that these
prior studies do not consider capillary flow in open rectangular channels over the range of
contact angles θ0 and aspect ratios λ examined in the present work.

Results for w̄D(s) and w̄T(s) from the finite-element method simulations are fitted using
Chebyshev polynomials of the first kind using the least-squares method. These Chebyshev
polynomials are then used in the system of equations (3.15) (λ ≥ λc) and (3.16) (λ < λc)
to evaluate DD and DT . Since w̄C does not depend on s, an exact expression for DC can be
obtained via (3.14c). Both nonlinear systems of equations (3.15) and (3.16) are discretized
using a second-order centred finite-difference method and solved using the fsolve solver
in MATLAB.

4. Results and discussion

Similarity solutions for the liquid saturation profiles s(η) and their dependence on
the channel aspect ratio λ and equilibrium contact angle θ0 are presented first
(§ 4.1). Using these similarity solutions, three-dimensional liquid height profiles are
obtained to highlight the complex free-surface morphology similar to that seen in
figure 3. Model predictions for the evolution of the meniscus position z̃m(t̃) from
the lubrication-theory-based and MLW models are then compared to experimental
observations (§ 4.2). Finally, lubrication-theory-based model predictions of the finger
length evolution lf (t) = zt(t) − zm(t) are compared to experimental results (§ 4.3).
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Figure 6. Effect of (a) aspect ratio λ and (b) equilibrium contact angle θ0 on liquid saturation profiles s(η). The
two filled symbols on each curve correspond to the end of the meniscus-deformation regime and the beginning
of the corner-flow regime, respectively (see figures 4a and 4b). The dashed lines indicate the saturation jump
due to neglecting the meniscus-recession regime when λ > λc (see § 3.2.3). Note that λc = 0.42 for θ0 = 10◦.

4.1. Saturation profiles

Computed similarity solutions of the liquid saturation s(η) for different aspect ratios λ and
an equilibrium contact angle θ0 = 10◦ are shown in figure 6(a). Solutions for λ > λc and
λ < λc are obtained solving the system of equations (3.15) and (3.16), respectively. These
similarity solutions are valid for intermediate times, when channel entrance and end effects
can be neglected.

In figure 6(a) when λ > λc (here λc = 0.42), s(0) = 1 corresponds to a fully
filled channel cross-section. Moving down the length of the channel, s decreases
monotonically and at the meniscus position (filled symbol) the flow transitions from
the meniscus-deformation regime to the corner-flow regime (see figure 4a). A jump in
s (dashed lines) is observed because we neglected the meniscus-recession regime as
discussed in § 3.2.3. In the corner-flow regime s continues to decrease until s(η0) = 0
at the finger tip.

From figure 6(a), the s(η) profiles have a non-monotonic dependence on λ, suggesting
that there is an optimal λ for capillary flow. The effect of the equilibrium contact angle θ0
on s(η) for an aspect ratio λ = 0.75 is shown in figure 6(b). Decreasing θ0 results in more
capillary filling. Although in figure 6(b) we consider λ > λc, the same trend is observed
for λ < λc.

The non-monotonic effect of λ on capillary flow becomes more clear in figure 7. Here,
the rescaled finger tip position η0, meniscus position δ0η0 and finger depinning position
δ1η0 (defined in § 3.2.4) are presented as a function of λ for different θ0. The shaded areas
between the curves represent the sizes of the meniscus-deformation (I), corner-flow (III)
and corner-transition (IV) regimes (seen in figures 4a and 4b), which depend on λ and θ0.

We first consider results in figure 7(a), where θ0 = 10◦. When λ≫ λc the flow
is dominated by the meniscus-deformation (I) regime. With decreasing λ, the size
of the corner-flow (III) regime monotonically increases. However, the size of the
meniscus-deformation (I) regime increases and then decreases, with decreasing λ. When
λ drops below λc, the corner-transition (IV) regime appears. As λ is further decreased, the
sizes of the corner-flow (III) and corner-transition (IV) regimes increase, while the size
of the meniscus-deformation (I) regime decreases. These trends are observed for the other
values of θ0 considered in figure 7(b–d).
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Figure 7. Lubrication-theory-based model predictions of the rescaled finger tip position η0, meniscus
position δ0η0 and finger depinning position δ1η0 as a function of channel aspect ratio λ for (a) θ0 = 10◦,
(b) θ0 = 18◦, (c) θ0 = 32◦ and (d) θ0 = 42◦. The shaded areas between the curves represent the sizes of the
meniscus-deformation (I), corner-flow (III) and corner-transition (IV) regimes.

Similarity solutions for s(η) are used to construct three-dimensional free-surface
profiles. These solutions for s(η) are used in (3.12) to determine θ(η) (via Newton’s
method) and a(η) for each regime. The three-dimensional free-surface profiles h

are determined using (3.9). Since the h expressions in (3.9c) and (3.9d) for the
corner-transition and corner-flow regimes correspond to figure 5(b), they require rotation
by angles β = arctan(cos θ/ cos θ0) and β = π/4, respectively, to match the channel
orientation seen in figure 4. By solving the system of ordinary differential equations
(3.15) and (3.16) we can construct three-dimensional free-surface profiles for any time
t̃. Dimensional free-surface profiles h̃ for λ > λc and λ < λc after 100 s of flow of NOA74
are depicted in figure 8.

Qualitative agreement is observed between the three-dimensional free-surface profiles
in figure 8 and the profilometry measurements in figures 3(a) and 3(c). The channel is fully
filled at the channel inlet and the upper meniscus bows down as we move down the length
of the channel until it contacts the channel bottom and splits into the channel corners. A
quantitative comparison between theory and experiment is made in the following section.

4.2. Comparison with experiments

We compare predictions of the meniscus-position time evolution z̃m(t̃) from the
lubrication-theory-based and MLW models to experimental observations.
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Figure 8. Simulated liquid height profiles of NOA74 after t̃ = 100 s of flow for (a) λ = 0.45 (λ > λc) and
(b) λ = 0.225 (λ < λc). For NOA74, λc = 0.42.

This comparison is made in figure 9 for the test liquids detailed in table 1. Solid and dashed
lines represent the lubrication-theory-based and MLW model predictions, respectively,
while experimental observations are shown as symbols. Each panel in figure 9 includes
experiments for λ > λc and λ < λc, except for the case of propylene glycol (figure 9d)
where only experiments for λ > λc were conducted.

When λ > λc, the lubrication-theory-based and MLW models are in good agreement
with experiments for NOA74 (figure 9a) and silicone oil (figure 9b). For mineral oil
(figure 9c) and propylene glycol (figure 9d), the lubrication-theory-based model agrees
well with the experiments but the MLW model underpredicts z̃m(t̃).

For NOA74 (figure 9a) and silicone oil (figure 9b), the lubrication-theory-based model
agrees with experiments for λ < λc, but the MLW model overpredicts z̃m(t̃). For mineral
oil (figure 9c), both models overpredict z̃m(t̃) for λ < λc. For propylene glycol (figure 9d),
at larger λ the lubrication-theory-based model predictions agree better with experiments
than predictions of the MLW model. However, as λ→ λc the MLW model predictions
agree with experiments, whereas the lubrication-theory-based model overpredicts z̃m(t̃).

To further compare theory and experiment we consider the dimensionless mobility
parameter k = z2

m/t, which can be thought of as a diffusion coefficient driving the growth
of the meniscus position. In the lubrication-theory-based model,

k = (δ0η0)
2, (4.1a)

since δ0η0 = zm/
√

t from (3.15a) and (3.16a). Computed values of δ0η0 for different λ and
θ0 are shown in figure 7. In the MLW model,

k = k̃/UL, (4.1b)

where k̃ is defined in (3.1), U is the characteristic velocity (see § 3.2) and L is the
channel length. Experimentally, k is determined by fitting the function zm = (kt)n to
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Figure 9. Dimensional meniscus position z̃m as a function of time t̃ for different channel aspect ratios λ with
(a) NOA74 (θ0 = 10◦, λc = 0.42), (b) silicone oil (θ0 = 18◦, λc = 0.36), (c) mineral oil (θ0 = 32◦, λc = 0.28)
and (d) propylene glycol (θ0 = 42◦, λc = 0.22). Symbols and shaded areas represent average and range of
experimental results, respectively. Solid and dashed lines represent lubrication-theory-based and MLW model
predictions, respectively.

experiments similar to those shown in figure 9 using nonlinear regression. A comparison
of theoretically predicted and experimentally determined k values as a function of λ and
θ0 is shown in figure 10.

When λ≫ λc, the lubrication-theory-based and MLW model predictions are
indistinguishable regardless of θ0. In this limit the finger contribution to the flow becomes
negligible and the flow asymptotically approaches that between two parallel plates.
Note that when λ = H/W ≫ λc, the effects from the channel bottom become negligible
compared with the effects from the sidewalls. As λ→ 1 the two model predictions begin
to deviate because the viscous resistance in the fingers becomes significant, and fingers
are not accounted for in the MLW model. However, both model predictions for k are in
reasonable agreement with experiments. As λ→ λc the lubrication-theory-based model
agrees better with experiments, compared to the MLW model (except in figure 10d).
The disagreement between the MLW model and experiments becomes more evident as
λ decreases because the free-surface height profiles (figures 3b and 3d) become more
non-uniform. Therefore, the assumption of a flat free-surface height profile used in the
MLW model becomes less valid with decreasing λ.

However, the lubrication-theory-based model does not always perform better than the
MLW model (figure 10d). As θ0 → π/4 the transverse free-surface curvature in the
corner-transition and corner-flow regimes vanishes and the flow in these regimes is then
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Figure 10. Dimensionless mobility parameter k as a function of aspect ratio λ for (a) NOA74 (θ0 = 10◦, λc =
0.42), (b) silicone oil (θ0 = 18◦, λc = 0.36), (c) mineral oil (θ0 = 32◦, λc = 0.28) and (d) propylene glycol
(θ0 = 42◦, λc = 0.22). Filled symbols represent experimental results, dashed and solid lines represent MLW
and lubrication-theory-based model predictions, respectively, and shaded areas represent λ < λc. Insets: fitted
scaling exponent n (from zm = (kt)n) as a function of aspect ratio λ for liquids with different equilibrium
contact angles θ0. Solid lines represent lubrication-theory-based and MLW model predictions of n = 0.5.

driven by axial curvature gradients (Yang & Homsy 2006). These axial curvature gradients
are neglected in the lubrication-theory-based model (see (3.8a)) because they are O(ǫ2)

terms. When the axial curvature contributions are included in the pressure, then

p = −Ca−1
[

CT(s) + ǫ2
CA

(

s, ∂zs, ∂
2
z s

)]

, (4.2)

where CT(s) and CA(s, ∂zs, ∂
2
z s) are the transverse and axial curvature contributions,

respectively. Including the axial curvature gradients in the model results in fourth-order
spatial derivatives of s, for which we were unable to find similarity solutions. An additional
reason for the deviation between the lubrication-theory-based model predictions and the
experimental observations as θ0 → π/4 is that the lubrication approximation itself is
expected to become less accurate as the contact angle increases.

For predicting zm(t), the choice of using the lubrication-theory-based or MLW model
depends on λ and θ0. For large λ both models give similar results, so the MLW model is
preferred because of its simplicity, but for small λ the lubrication-theory-based model
is more accurate. Additionally, the lubrication-theory-based model performs better for
smaller θ0 compared to the MLW model. However, it neglects key physical contributions as
θ0 → π/4 which results in poorer agreement. Nevertheless, when additional information
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Figure 11. Effect of (a) aspect ratio λ and (b) equilibrium contact angle θ0 on dimensionless finger length lf as
a function of dimensionless time t. Filled symbols and shaded areas represent average and range of experimental
results, respectively. Solid lines represent lubrication-theory-based model predictions. The liquids are mineral
oil (θ0 = 32◦) and silicone oil (θ0 = 18◦).

is desired, such as the free-surface morphology (figure 8) or finger dynamics (§ 4.3), then
the lubrication-theory-based model must be chosen.

4.3. Finger dynamics

A key advantage of the lubrication-theory-based model compared with the MLW model
is that it describes finger dynamics. The dimensionless finger length lf (t) is defined as
the distance between the dimensionless finger tip position zt(t) and the dimensionless
meniscus position zm(t) which can be seen in figure 4. Predictions of the dimensionless
finger length time evolution lf (t) by the lubrication-theory-based model are compared to
experimental observations in figure 11. Model predictions for lf were computed using

lf = zt(t) − zm(t) = (1 − δ0)η0t1/2, (4.3)

where η0 = zt/
√

t and δ0η0 = zm/
√

t; values for η0 and δ0η0 are shown in figure 7.
The effects of λ and θ0 on lf (t) are shown in figures 11(a) and 11(b). Solid lines

and symbols represent lubrication-theory-based model predictions and experimental
observations, respectively. It is important to note the shorter dimensionless times
compared to the meniscus-tracking experiments (figure 9) were caused by the finger tip
moving out of the field of view. In figure 11(a), experimental observations are compared
to model predictions for mineral oil (λc = 0.28), where increasing channel aspect ratio
λ results in a decrease in lf (t). Good agreement between theory and experiments is
observed, with model predictions being within the range of experimental observations
for all but one trial (i.e. λ = 0.3 in figure 11a). A possible reason for this discrepancy is
the error in identifying the position of the finger tip where the liquid height goes to zero,
which is challenging during the meniscus-tracking experiments where the stage is moving
(figure 2a).

In figure 11(b), experimental observations for mineral oil (θ0 = 32◦, λc = 0.28) and
silicone oil (θ0 = 18◦, λc = 0.36) are compared to model predictions for λ = 0.23 (λ <

λc). Increasing θ0 leads to a decrease in lf (t). Model predictions are in good agreement
with experimental observations in this case as well. Hence, the lubrication-theory-based
model accurately captures effects of λ and θ0 on lf (t). Additionally, the good agreement
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between theory and experiment in figure 11 emphasizes the importance of accounting
for the corner-transition regime (figure 4b) when describing the finger dynamics in open
rectangular channels when λ < λc.

We make two additional comments about the fingers. First, although curvature of
the channel corners may affect finger length (Chen et al. 2006; Gerlach et al. 2020),
the good agreement observed here suggests that the corner curvature does not play a
significant role in our experiments. Second, although the lubrication-theory-based model
overpredicts the meniscus position for mineral oil (figure 9d), it accurately predicts the
finger length (figure 11) which is the difference between the positions of the meniscus
and finger tip (4.3). This indicates that while the lubrication-theory-based model may
not predict absolute positions accurately, it can predict relative positions accurately.
A deeper understanding of the reasons for this likely requires a comparison of the
lubrication-theory-based model and direct numerical simulations, which is beyond the
scope of the present work.

5. Conclusions

In this work we combine theory and experiment to examine capillary-flow dynamics
in open rectangular microchannels. For open microchannels, the free surface greatly
influences the capillary-flow dynamics. We visualize the free-surface morphology and its
dependence on the channel aspect ratio λ using SEM and profilometry. The SEM images
suggest a qualitative difference in the free-surface morphology at λ = λc and highlight the
significance of a corner-transition regime when λ < λc, which was not accounted for in
previous studies of capillary flow in open rectangular channels.

Effects of the free-surface morphology on capillary-flow dynamics were examined
using two theoretical models. The first model is a MLW model, which assumes a flat
free surface and has been extensively used in prior studies. The second model is a
self-similar lubrication-theory-based model, which was developed to account for the
complex free-surface morphology observed in the experiments.

Predictions of the lubrication-theory-based and MLW models were compared to
complementary flow visualization experiments over a wide range of channel aspect ratios
λ and equilibrium contact angles θ0. For large λ, predictions from the two models are
indistinguishable, since free-surface morphology effects are negligible. However, for
smaller λ the lubrication-theory-based model is in better agreement with experiments
since the influence of fingers is significant. Additionally, the lubrication-theory-based
model agrees better with experiments for smaller θ0, although as θ0 → π/4 the agreement
worsens because important axial curvature contributions are neglected. Finally, the
lubrication-theory-based model predictions accurately capture the finger length time
evolution seen in experiments over a range of λ and θ0, further highlighting the importance
of accounting for the corner-transition regime in the model formulation when λ < λc.

Our lubrication-theory-based model and flow visualization experiments reveal the
limitations of the widely used MLW model. In addition, our results significantly advance
physical understanding of capillary-flow dynamics in open rectangular microchannels,
which play a key role in a number of technological applications (§ 1) but are less
well studied than V-shaped channels. Finally, the systematic development of our model
allows for it to be readily extended to incorporate other important phenomena such as
gravitational effects, solute transport and evaporation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.986.
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Appendix A. Geometric functions

Geometric functions B̂ and Â appear in the expressions for the liquid saturation s in the
corner-transition (3.12c) and corner-flow (3.12d) regimes, respectively. These geometric
functions are defined as

B̂ = θ + θ0 − π/2 − cos θ(sin θ − cos θ0) + cos θ0(cos θ − sin θ0) (A1)

and

Â = θ0 − π/4 + cos θ0(cos θ0 − sin θ0). (A2)

Appendix B. Flux matching condition

We consider the interface between the meniscus-deformation regime and the corner-flow
regime (figure 4). Following Panton (2013), the global continuity equation assuming no
accumulation at the interface is

[∫

Ã

n · (ũ − ũI)ρ dÃ

]

−
−

[∫

Ã

n · (ũ − ũI)ρ dÃ

]

+
= 0 at z̃ = z̃m, (B1)

where n = (0, 0, 1) is the unit normal to the interface, ũ = (ũ, ṽ, w̃) is the liquid velocity,
ũI = (0, 0, dz̃m/dt̃) is the interface velocity and Ã− and Ã+ are the meniscus-deformation
and corner-flow regime cross-sectional areas, respectively.

Equation (B1) simplifies to
[∫

Ã

w̃ dÃ − dz̃m

dt̃
Ã

]

−
−

[∫

Ã

w̃ dÃ − dz̃m

dt̃
Ã

]

+
= 0 at z̃ = z̃m. (B2)

Using the scalings in § 3.2.2 and dividing both sides by the channel cross-section HW

gives
[∫

s

w ds − dzm

dt
s

]

−
−

[∫

s

w ds − dzm

dt
s

]

+
= 0 at z = zm. (B3)

Recall that the dimensionless flux is defined as q =
∫

A
w dA = λ

∫

s
w ds. It can be shown

that qD = −λDDs(∂s/∂z) and qC = −λDCs1/2(∂s/∂z), resulting in
[

−DDs
∂s

∂z
− dzm

dt
s

]

−
−

[

−DCs1/2 ∂s

∂z
− dzm

dt
s

]

+
= 0 at z = zm. (B4)
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Capillary-flow dynamics in open rectangular microchannels

We then apply the similarity transformation using η = z/
√

t, which leads to
[

−DDs
ds

dη
− 1

2
ηs

]

−
−

[

−DCs1/2 ds

dη
− 1

2
ηs

]

+
= 0 at η = δ0η0, (B5)

which is the flux matching condition shown in (3.15d). Consequently a jump in the
dimensionless flux is necessary because of the saturation jump across the interface
(i.e. s(δ0η0)

− = sD and s(δ0η0)
+ = sC). Similarly, we can obtain the matching conditions

for the meniscus-deformation and meniscus-transition regimes in (3.16e) and the
meniscus-transition and corner-flow regimes in (3.16f ).
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