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1Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5521, F-34095 Montpellier Cedex 5, France
2CNRS, Laboratoire Charles Coulomb, UMR 5521, F-34095 Montpellier Cedex 5, France
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We report theoretical predictions and measurements of the capillary force acting on a spherical colloid

smaller than the capillary length that is placed on a curved fluid interface of arbitrary shape. By coupling

direct imaging and interferometry, we are able to measure the in situ colloid contact angle and to correlate

its position with respect to the interface curvature. Extremely tiny capillary forces down to femtonewtons

can be measured with this method. Measurements agree well with a theory relating the capillary force to

the gradient of Gaussian curvature and to the mean curvature of the interface prior to colloidal deposition.

Numerical calculations corroborate these results.
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Strong normal restoring forces due to the surface tension
are sufficient to confine solid objects at fluid interfaces.
This trapping can be cleverly used to both address funda-
mental problems [1,2] and to create new materials [3,4]. In
many studies, the interface is planar and spatially uniform,
merely providing a 2D confinement on particles. When
curved, interfaces might play a more active role, imposing
a lateral force on the particles. Usually, the curvature is
induced by the colloids themselves. This is the case of
heavy colloids that attract each other by falling in the
gravitational well they have created [5]. When the effective
weight of the trapped particles is negligible, a nonspherical
shape [6] or the pinning of the triple line [7–9] induces a
surface deformation. Lateral forces may emerge from the
coupling with such capillary induced curvature of the
interface [10]. A spectacular demonstration of this force
is the meniscus-climbing technique of the beetle larva [11].
In the presence of a curved interface, the mechanical
equilibrium conditions at the triple line larva-water-air
impose an extra surface deflection and thus a lateral force
on the larva. This force is also sufficient to drive micron-
long cylinder self-assembly on a water-air curved interface
[12]. Despite these interesting studies, a full comparison
between experiment and theory is still lacking. Theories
are restricted to spherical colloids trapped on a minimal
surface [13] or with weak mean curvature [14], and no
effects on spherical colloids have been reported so far.

In this Letter, we combine theory and experiment to
address the capillary force acting on a spherical colloid
placed on a curved fluid interface. We develop a new
theoretical model able to predict this force in the general
case of interfaces with arbitrary curvature. Using a built-in
interferometric method coupled with particle tracking,
we measured the femtonewton forces which control the

equilibrium position of microspheres on a curved inter-
face. We found a good agreement with our theoretical
predictions.
Let us consider a spherical colloid of radius a trapped at

an interface of tension �LV � � between a liquid L
and a vapor V. At equilibrium, the contact angle between
the interface and the colloid (C) surface is everywhere
equal to the Young angle � with � cos� ¼ ð�CV � �CLÞ
[15]. The interface prior to colloid deposition is assumed
to be arbitrarily deformed with typical curvatures much
smaller than a�1. If a is much smaller than the capillary
length [15], the gravitational corrections to the capillary
force can be neglected [16,17]. The tangential force f
acting on the colloid can then be expressed as the gradient
of a scalar potential W, which is expected to depend only
on the local curvature tensor field prior to colloid
deposition KijðrÞ ¼ n �Ditj, where i, j 2 f1; 2g, n is the

normal to the interface, (t1, t2) is a tangential basis, andDi

is the covariant derivative [18]. We expand W in terms of
all the scalars that can be formed by contracting the tensors
Kjk (order 1), KjkK‘m (order 2), DjDkK‘m and KjkK‘mKnp

(order 3), etc. Laplace law [15] imposes the total curvature

Kj
j to be constant (Einstein’s summation convention used).

Then, taking into account that DiKjk ¼ DjKik [18], the

force fi ¼ �DiW reduces to fi / ð�þ�K‘
‘ÞDiðKk

jK
j
kÞ þ

Oð5Þ. In terms of the principal curvatures c1 and c2 of

the interface, K‘
‘ ¼ c1 þ c2 and Kk

jK
j
k ¼ ðK‘

‘Þ2 � 2c1c2,

and thus

fi ¼ ½�þ�ðc1 þ c2Þ�Diðc1c2Þ þOð5Þ; (1)

where the constants � and � depend only on �, a, and �.
To determine � and �, we calculate the interface shape

in the presence of the colloid for an arbitrary asymptotic
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profile. The system free energy is F ¼ �ALV þ
�CLACL þ �CVACV þ PV L, with AXY the area of the
X-Y interface, V L the volume of L, and P the pressure
jump across the L-V interface (see the Supplemental
Material [19]). For small deformations of the latter,

F ’
Z

�S

�
�

�
1þ 1

2
ðruÞ2

�
þ PuðrÞ

�
dr

þ
Z
S

�
� cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrhÞ2

q
þ P½H þ hðrÞ�

�
dr; (2)

up to a constant. Here, uðrÞ describes in the Monge gauge
the height of the interface above a reference plane parame-
trized by r, H is the height of the center of the colloid, and
hðrÞ is the height of the colloid with respect to its center
(Fig. 1). The domain S is the projection of the upper cap
on the reference plane and �S the rest of this plane. The
equilibrium configuration is obtained by minimizing F
with respect to arbitrary variations of uðrÞ, H, and the
boundary of S, parametrized by r ¼ �ð�Þ in polar coor-
dinates. As a result, we obtain the Laplace law �r2u ¼ P,
the equilibrium conditions of the contact line

1þ 1

2
ðruÞ2 � cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrhÞ2

q

þ
�
1

�2
��u� � ur

�
ður � hrÞ ¼ 0; (3)

and of the vertical position of the colloid

Z 2�

0

�
1

�
��u� � �ur þ P

2�
�2

�
d� ¼ 0; (4)

plus the matching condition u½�ð�Þ;��¼Hþh½�ð�Þ;��.
In the above formulas, the subscripts indicate partial
derivatives, e.g., ur ¼ @u=@r.
To deal with the free boundary problem at the contact

line, we search for a perturbative solution uðr;�Þ¼u0ðrÞþ
�u1ðr;�Þ, �ð�Þ¼�0þ��1ð�Þ, andH¼H0þ�H1, where �
is a small parameter and the zeroth-order solution u0 is a
parabola (constant curvature accounting for P). Inserting
this perturbative expansion into the equilibrium equations
yields r2u1 ¼ 0 with, at first order in �, boundary con-
ditions on the fixed, unperturbed contour r ¼ �0. The most
general solution for u1 breaking the axial symmetry can be
expanded in multipoles as

�u1ðr; �Þ ¼ X1
n¼1

ðAn �r
n þ A0

n �r
�nÞ cosðn�Þ

þ X1
n¼1

ðBn �r
n þ B0

n �r
�nÞ sinðn�Þ; (5)

where �u ¼ u=�0 and �r ¼ r=�0. Note that An and Bn

characterize the asymptotic profile. Matching the boundary
conditions yields, at first order in p ¼ Pa=� (i.e., for c1 þ
c2 � a�1), A0

n=An ¼ B0
n=Bn ¼ ðn� 1Þ=ðnþ 1Þ þOðp2Þ.

Integrating the stress tensor [20] (I is the unit tensor)

� ¼
�
�

�
1þ 1

2
ðruÞ2

�
þ Pu

�
I� �ru � ru (6)

on an arbitrary contour surrounding the colloid yields a
curvature force parallel to the reference plane

Fc ¼ ��

6
�a4sin4�½1� 2aðc1 þ c2Þ cos��rðc1c2Þ; (7)

which agrees with Eq. (1). Here, rðc1c2Þ is the gradient of
the Gaussian curvature, prior to colloid deposition, at the
position where it will be placed. It is thus calculated on the
unperturbed interface and depends only on the coefficients
A2, A3, B2, and B3. Equation (7) generalizes the result of
Würger [13] to surfaces of arbitrary shapes. To validate
our theoretical formula (7), we consider a spherical colloid
free to slide along the z axis. Imposing a deformation
uðL;�Þ ¼ u2 cosð2�Þ þ u3 cosð3�Þ far from the colloid,
we calculate numerically the resulting shape uðr;�Þ of
the interface and the force fx exerted on the colloid [17].
We find a good agreement, as shown in Fig. 1.
The value of the expected capillary force obtained from

Eq. (7) is extremely weak. Indeed, typical values of surface
tensions at fluid-air interfaces � � 50 mN=m, particle
radius a ¼ 1 �m � ‘c, and gradients of Gaussian curva-
ture of the order of 1=R3 � 1012 m�3, where a � R ¼
100 �m, give a force of the order of femtonewtons.
Measuring such tiny forces to test the experimental validity
of Eq. (7) is rather challenging [21,22]. We use a null force
method where the known gravity force on the particle
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FIG. 1 (color online). Normalized force �F ¼ fx=ð�LÞ vs nor-
malized pressure �P ¼ PL=� for a colloid of radius a ¼ 0:2L
with Young angle � ¼ 45�. The boundary deformation corre-
sponds to u2 ¼ u3 ¼ 5	 10�3L, which yields, in the absence
of the colloid, a Gaussian curvature gradient rðc1c2Þ ’ �6	
10�4L�3. The solid (black) line is the exact numerical result, the
dashed (red) line is our analytical result (7), and the dash-dotted
(blue) line corresponds to the analytical result without the
pressure (i.e., total curvature c1 þ c2) correction [13]. The inset
shows the parameters defining the geometry of the spherical
colloid trapped at a liquid interface.
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competes with the force Fc to be measured. Especially
devised setup and method, combining direct imaging of the
particle and interferometry, give the capillary force down
to the femtonewton scale.

In the experiment, we use designed containers formed
by two coaxial cylinders in which the liquid filling the
gap exhibits an interface with a spontaneous large gradient
of Gaussian curvature. Using standard photolithography
procedures, we patterned rings of a negative photoresist
(SU8-2025, Microchem) on a Si wafer. After polydime-
thylsiloxane (PDMS) molding, we obtained 100 �m
thick cuvettes of inner and outer radii R1 ¼ 100 �m and
R2 ¼ 200 �m (Fig. 2). The cuvettes are filled with mineral
oil (M3516, Sigma).

The air-oil interface is accurately characterized by
means of a custom-made phase shift interferometer (PSI)
mounted on a Leica 2500 optical microscope. The cuvettes
are fixed on the stage of the microscope placed on a
vibration-isolation table (CVI). A 633 nm monochromatic
light and a	25Mirau objective (Nikon) are used to create
interferences between the reflected beams at the reference
mirror and at the air-oil interface. The interferometer is
first vertically aligned by maximizing the fringes width at
a horizontal air-glycerin interface. With the cuvette, a set
of interference images is collected by a CCD Sony XCD-
X710 camera during the vertical scanning of the objective
over distances of a wavelength using a nanopositioner
(Nano-F, MCL). The continuous interface profile is then
reconstructed by standard phase-unwrapping algorithms.
It follows the Young-Laplace equation P ¼ �ðc1 þ c2Þ
that can be worked out analytically because hydrostatic

pressure is negligible at the considered scale. Using nota-
tions of Fig. 2(b), the slope angle ’ðRÞ is given by

sin’ðRÞ ¼ sin’0

R2 � R1

�
R� R2R1

R

�
; (8)

where ’0 is the corresponding value at the container walls,
fixed by the Young’s relation at the air-oil-PDMS triple
line. The bottom of the interface should be located at
the radius Rg ¼

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p � 141 �m, independently of ’0.

The fringes are indeed centered at Rg. Moreover, the PSI

reveals that Eq. (8) well describes the actual profile
[see Fig. 2(c)], with best-fitting values ’0 ¼ 53� 
 5�
over different samples, corresponding to the measured
contact angle of a mineral oil droplet deposited on PDMS.
Silica beads of 3:93
 0:44 �m diameter (Bangs

Laboratories) have been used. Their contact angle has been
controlled by treating their surface eitherwith oleophilicN,N-
dimethyl-N-octadecy-3-aminopropyltrimethoxysilylchloride
(DMOAP) [23] or with oleophobic perfluorooctyltrichlor-
osilane (PFOTS). After treatment, the colloids are thor-
oughly dried and deposited individually with an air pulse
at the air-oil interface. A bead rapidly sits in the vicinity of
Rg due to its higher density (�b � 2 g cm�3 compared to

�o ¼ 0:84 g cm�3 for oil). This localization allows the
in situ measurement of � [23] by vertical scanning inter-
ferometry (VSI) [24] achieved with the PSI setup (see the
Supplemental Material [19]). We found � ¼ 0�–5� for
DMAOP treated beads and � ¼ 30� 
 2� for PFOTS ones.
Once deposited, a colloid can be moved across the inter-

face with a tiny air jet. The relaxation dynamics to its
equilibrium position is recorded at 30 fps. From image
analysis, we extract data sets of the particle center of mass.
A typical trajectory is shown in Fig. 3(a) for a 0� contact
angle bead. Starting from the vicinity of the outer radius,
the particle falls down toward Rg, the minimum height of

the profile. This behavior is expected since only gravity
and buoyancy forces act. For oleophobic beads, a different
behavior is observed. As shown in Fig. 3(b), a bead par-
tially embedded in oil overpasses its gravity potential
minimum, climbs the slope, and finally reaches an equi-
librium radius Req such than R1 < Req <Rg. In Fig. 3(c),

different experiments on the same bead and on different
beads and cuvettes are presented. A systematic radial
deviation from the minimum height location Rg � Req ¼
3:6
 0:9 �m is observed for PFOTS treated beads [see
Fig. 3(c)]. It indicates the presence of an additional inward
radial force. The dispersion of points around Req for differ-

ent cuvettes and beads is roughly the same as the one for
the different experiments repeated on the same bead. It thus
may be related more to differences in the pinning of the
triple line on the bead from one experiment to another
rather than to the small differences on beads sizes and
cuvettes.
More quantitatively, the interface profile from Eq. (8)

yields, with Eq. (7), a curvature force,

(a)

(c)

(b)

FIG. 2 (color online). Experimental setup and geometric nota-
tions in (a) 3D view and (b) side view. (c) Example of an
experimental radial profile with its best fit (plain curve) obtained
from Eq. (8) and yielding ’0 � 57�. Inset: Interface region
reconstructed by PSI from which the radial profile has been
extracted.
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Fc ¼ � 2��a4sin4�sin2’0

3ðR�1
2 � R�1

1 Þ2
�
1� 4a sin’0 cos�

R2 � R1

�
cos’ðRÞ

R5
:

This force is negative and varies only little around Rg [see

Fig. 3(e)] and should be counterbalanced by the bead effe-
ctive weight (gravity and buoyancy) Fg ¼ �mfg sin’ðRÞ,
where the effective mass mf ¼ �a3�o½4�b=�o � 2�
3 cos�þ cos3��=3 is obtained from geometric
considerations.

The weight can therefore be used to determine the
curvature force. We first directly measure mf by consider-

ing the thermally driven fluctuations 	RðtÞ around Req [see

Figs. 3(a) and 3(b)]. At first order, thermal energy com-
petes only with the gravitational potential since Fc is
nearly constant near Rg. The linearized restoring force f

acting on the bead located at Req þ 	R is then fð	RÞ �
�2mfg sin’0=ðR2 � R1Þ	R, yielding a Boltzmann

distribution probability Pð	RÞ / exp½�ð1=2Þ	R2=w2�,
where w2 ¼ kBTðR2 � R1Þ=ð2mfg sin’0Þ. The measured

distribution probability is well fitted by this function.
For the example shown Fig. 3(d), the standard deviation
w � 0:67
 0:03 �m yields mf � 5:7
 0:5	 10�11 g

and a force Fc¼�2:5
0:3fN. Corresponding calculated
forces Fg, Fc, and FT ¼ Fc þ Fg vs R are summarized in

Fig. 3(e). The new equilibrium position Req is expected to

be shifted by �3 �m with respect to the one imposed by
the gravity alone Rg. This is in good agreement with the

measurements. Note that our experimental resolution does
not allow us to check directly the mean-curvature correc-
tion in Eq. (7). Indeed, we have c1 þ c2 ¼ 2 sin’0=
ðR2 � R1Þ ’ 0:016 �m�1 � a�1. However, we have veri-
fied the latter by using numerical calculations (cf. Fig. 1).
In this Letter, we investigated both theoretically and

experimentally the role of the gradient of curvature on
the lateral force acting on microspheres confined at a fluid
interface of arbitrary shape. By using a new theoretical
approach, based on a direct calculation of the forces in an
arbitrary imposed interface morphology, we showed that
the force acting on the colloid should depend both on the
gradient of Gaussian curvature and on the mean curvature.
The experimental measurement of this capillary force was
challenging due to its extremely weak value of the order of
femtonewtons. We devised an experimental setup based on
a null force method coupling particle tracking and inter-
ferometry to access to such tiny forces. The measured force
agrees with our theoretical predictions. Our findings open
the way to the control of the force and the assembly of
micrometric size particles by the design of the interface
morphology. We believe also that the used optical method
and setup can be applied in other contexts and offer a new
method to increase the sensitivity of force measurement
experiments down to the femtonewton scale.
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