
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029971, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier xxxxxx 

CapLoc: Capacitive Sensing Floor for Device-
Free Localization and Fall Detection 

Nathaniel Faulkner1,2, Baden Parr1, Fakhrul Alam1, Senior Member, IEEE, Mathew Legg1, 
Member, IEEE, and Serge Demidenko1,2, Fellow, IEEE 
1Department of Mechanical & Electrical Engineering, School of Food & Advanced Technology, Massey University, Auckland 0632, New Zealand 
2School of Science & Technology, Sunway University, 47500 Selangor, Malaysia  

Corresponding author: F. Alam (e-mail: f.alam@ massey.ac.nz). 

This work was supported in part by the Massey University Doctoral Scholarship for N. Faulkner.  

ABSTRACT Passive indoor positioning, also known as Device-Free Localization (DFL), has applications 

such as occupancy sensing, human-computer interaction, fall detection, and many other location-based 

services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in 

recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy, 

feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has 

been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution 

that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals 

walking 39 paths on the CapLoc show that it can detect and localize a single target’s footsteps accurately 
with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines 

of various poses of the subject lying upon the floor. 

INDEX TERMS Capacitive Sensing, Device-Free Localization, Electric Field Sensing, Fall Detection, 
Footstep Detection, Footstep Tracking, Human Sensing, Indoor localization, Indoor Positioning System 
(IPS), Passive Positioning.  

I. INTRODUCTION 

Passive indoor positioning is the key enabling technology for 

applications like Ambient Assisted Living (AAL) and Human-

Computer Interaction (HCI). Unfortunately, even with the 

attention of researchers for over two decades, passive 

positioning or Device-Free Localization (DFL) remains a 

problem to be solved. Camera-based techniques can 

accurately locate and identify a tag-less target with reasonable 

accuracy [1]. However, they require good lighting conditions 

and are adversely impacted by occlusion. More importantly, 

privacy is a significant concern making such systems less 

acceptable in many applications, especially in a residential 

setting. Many accidents and falls happen in places such as 

bathrooms and bedrooms where cameras would be considered 

to be invasive. While efforts are underway to utilize privacy-

preserving single-pixel cameras [2, 3], it is still early days for 

such a technique. 

Passive localization using Radio Frequency (RF) sensing 

has been extensively researched in recent years [4, 5]. While 

RF-based localization has the advantage of potentially being 

able to repurpose the wireless networks within the built 

environment, there are some inherent disadvantages like 

limited accuracy due to multipath reflections. Application of 

the Channel State Information (CSI) metric utilizing many 

Wi-Fi subcarriers can mitigate the multipath issue [6] to 

achieve much-improved accuracy [7-9] and even perform 

sophisticated tasks like activity recognition [10]. However, 

CSI is not available for the majority of the RF technologies 

(e.g., Bluetooth and ZigBee). In addition to this, most 

consumer-grade Wi-Fi hardware is yet to widely support the 

use of this metric thus limiting its practicality.  

Passive Visible Light Positioning (VLP) [11, 12] is based 

on the principle that the presence of a subject alters optical 

channels. These changes can be detected by nearby light-

sensors as variation in the Received Signal Strength (RSS) of 

the light level and subsequently used to estimate the subject’s 
position. However, the majority of passive VLP techniques are 

vulnerable to change in ambient light levels. Also, they need 

good illumination conditions. Infrared (IR) sensing has been 

proposed as an alternative way for DFL by detecting the heat 

signature of a human target. Passive IR (PIR) sensors, 

commonly available as motion detectors, have been used for 

such localization [13-16]. However, PIR sensors require 
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relative motion between the sensors and a target. Therefore, 

they are unable to deal with a stationary target. IR-sensing 

based positioning using thermopile sensors has been proposed 

[17, 18] to deal with both stationary and mobile targets. 

Unfortunately, such techniques are inherently vulnerable to 

changes in heat signatures resulting from clothing variations.  

Humans spend much of their time in contact with the floor 

when they are inside a building. Therefore, the floor can be 

potentially repurposed as a large sensor for device free 

positioning of individuals. Table 1 summarizes the key works 

in the area of the floor-based DFL.  

Pressure-sensitive floors [19-21] have been used for 

locating and identifying people. There are also systems using 

binary pressure-sensitive switches built into the floor [22]. 

Unfortunately, the pressure-sensitive floors appear to be 

complex to build. Besides, the pressure sensors (e.g., load 

cells) are also subject to wear and tear degradation, especially 

of the mechanical components. 

Floor-based localization can also be accomplished by 

measuring footsteps-induced vibrations with a network of 

seismic sensors [23-25].  The footsteps (and hence the target) 

are located by exploiting the fact that vibration signals take 

different times to reach each sensor depending on the distance 

between the footstep and the sensors. This allows performing 

the localization using Time of Arrival (ToA) or Time 

Difference of Arrival (TDoA) techniques [25]. However, the 

floor is a complex heterogeneous medium. It varies 

significantly from one building to another. This makes the 

calibration challenging thus complicating the transfer of a 

relevant system between different premises. 

Capacitive sensing utilizing the change in capacitive 

coupling between a custom-designed floor and target can be 

an effective localization method. In this scenario, the floor and 

the target form (two plates of) a capacitor. The presence of the 

target alters the electric field, actively generated by a 

transmitter, manifesting as a measurable change in the 

capacitance. Smart Carpet [26] uses fabric into which 

conductive wires are sewn in serpentine patterns to form 0.15 

m × 0.15 m panels. Similarly, SensFloor [27-29] uses 

conductive triangles embedded into a textile. Capacitive floor 

with metal squares was utilized in [30, 31]. CapFloor [32] uses 

two sets of parallel wires orthogonal to each other. A person 

walking above them changes the measured capacitance in 

these wires. Since a person is above at least one wire in each 

direction, an intersection point of these wires presents the 

person’s estimated position.  
In contrast to the aforementioned works that use the loading 

mode of the capacitive sensing [33], TileTrack [34, 35] 

employs  the transmit mode. A square wave signal transmitted 

from the floor tiles is received by an additional electrode 

placed in the room as a receiver. The detected change in the 

signal amplitude caused by a person between the electrode and 

the floor tile helps infer the location. Capacitive sensing is also 

utilized in research [36, 37] where instead of using the floor-

based solution, electrodes are set up on the walls.  

When a person walks on a typical floor, a charge is built up 

due to the Triboelectric Effect [38]. The person can also be 

TABLE 1.  Comparison of CapLoc with other floor-based positioning systems. 

Research Sensing Method Position Accuracy 

Liau et al. [19] Pressure 85-percentile error of 0.283 m 
Andries et al. [20] Pressure Mean error of 0.13 m for a single person, 0.2 m for two people 
Al-Naimi et al. [21] Pressure Mean error 0.0767 m 
Murakita et al. [22] Binary Pressure Sensors Mean error of 0.2 m  
Mirshekari et al. [23] Vibration Median localization error of 0.38 m 
Alajlouni et al. [24] Vibration 80-percentile error of 0.7 m 
Poston et al. [25] Vibration RMSE of 0.6 m and 0.8 m in two separate environments 
Smartcarpet [26] Capacitive MSE 0.0187 m (line) to 0.431 m (C-shape) for various trajectories 
Rimmeinen et al. [30, 31] Capacitive Mean position error of 0.21 m 
Capfloor [32] Capacitive “In the range of 50 cm” 
Tiletrack [34, 35] Capacitive 80-percentile error 0.1 m 
CapLoc (This paper) Capacitive Median error 0.026 m, 90-percentile error 0.066 m 

 

TABLE 2.  Comparison of CapLoc with other passive positioning systems. 

Research Sensing Method Position Accuracy 

Watchers on the Wall [11] Passive VLP Median error 0.12 m 
FieldLight [12] Passive VLP Median error 0.68 m to 1.2 m  
D Yang et al. [14] PIR Mean error 0.21 m  
B Yang et al. [15] PIR Mean error < 0.8 m  
Liu et al. [16] PIR Mean error 0.47 m to 0.71 m  
Tang et al. [42] Passive EFS Mean error 0.104 m to 0.272 m  
P-Loc [43] Passive EFS Mean error 0.48 m  
Zhao et al. [3] Single pixel camera Mean error 0.2 m  
Tariq et al. [37] Capacitive wall sensors Mean error 0.307 m  
Chen et al. [18] Thermophile RMSE of 0.19 m 
Qu et al. [17] Thermophile Mean error 0.07 m 
Zhang et al. [8] Wireless CSI Mean error 0.8 m 
Shi et al. [9] Wireless CSI Mean error 0.63 m 
SpringLoc [5] Wireless RSSI Median error 0.6 m to 1.57 m 
CapLoc (This paper) Capacitive Median error 0.026 m, 90-percentile error 0.066 m 
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considered as being an earthed conductor. Therefore, the 

ambient electric field created by the radiation from the AC 

powerlines (ever-present in buildings) is altered by the 

presence of a human target. This change can be measured with 

Electric Potential Sensors (EPS) and used for both 

identification of subjects [39] as well positioning of them [40-

43]. Unfortunately, such opportunistic, passive electric 

sensing is vulnerable to ambient electrical field noise and 

interference. The relevant systems are mainly implemented 

using EPS units that are placed on the walls or ceiling of a 

room. 
This paper proposes a new capacitive floor system named 

CapLoc for passive positioning. In a preliminary work [44], 
the authors presented how a static foot can be detected when 
a subject stands barefoot on a capacitive sensing panel. This 
paper utilizes that concept to develop CapLoc, a positioning 
system, for real time localization of a moving target 
accurately and potentially detect fall in an automated 
manner. It presents the following original contributions: 

1. CapLoc can determine the position of a mobile target 

in real-time. It is not data-driven and therefore, requires 

minimal calibration for localization making it more 

invariant to changes in the setting. CapLoc is also 

robust and not vulnerable to factors that adversely 

affects other DFL systems like wireless multipath 

propagation (affects wireless DFL), illumination 

condition (impacts camera and passive VLP systems), 

clothing worn by the target (affects IR-based systems) 

etc.; 
2. The experimental results showing the localization of a 

mobile target for multiple trajectories are presented. 
The median and 90 percentile localization errors while 
testing with three different subjects are found to be 
0.026 m and 0.066 m, respectively. This makes 
CapLoc more accurate than most passive localization 

systems reported in the literature (see Tables 1 & 2). 
Also, the majority of the reported DFL systems were 
only tested for a handful of target trajectories. In 
contrast, CapLoc was tested for 39 different paths 
walked by multiple subjects. An accurate ground truth 
recording system was implemented using virtual 
reality technology (HTC Vive [45]) to ensure that the 
localization error is accurately measured. By utilizing 

the procedure outlined in the article, other researchers 
will be able to record accurate ground truth in an 
automated manner, using an affordable consumer 
grade technology;  

3. It is shown that the poses of a person lying on the floor 

can be captured easily. Potentially, this can be used for 

automated fall detection in a non-obtrusive manner. 

The rest of the paper is organized as follows. Section II 

discusses the development of the CapLoc system. Section III 

presents the footstep detection process. Section IV 

demonstrates the localization performance. Pose capture for 

potential fall detection is shown in Section V. Section VI 

concludes the paper and discusses future research directions. 

 
II. SYSTEM DEVELOPMENT 
A. KEY CONCEPT 

CapLoc is based on the formation and the subsequent 

sensing of loading mode capacitance [33, 46]. The concept is 

shown in Fig. 1 where the subject's foot and copper-foil tiles 

underneath the floor form the two plates of the capacitor. This 

capacitor can be modeled as: 𝐶 = ε 𝐴𝑑  , (1) 

where 𝐶 is the total capacitance, 𝜀 is the permittivity of the 

dielectric (assumed to be constant), 𝐴 is the overlapping area 

of the two plates, and 𝑑 is the separation between the two 

plates (details shown in Fig. 1). When the subject stands with 

a foot above the transmitting plate, the capacitance depends on 

two main factors: the proportion of the plate covered by the 

subject’s foot (𝐴), and the distance between the subject’s foot 
and the plate (𝑑). For a rigid floor type, the distance 𝑑 remains 

fairly constant, whereas the area 𝐴 changes as sensors could 

naturally be covered to a different extent. 

B. PROTOTYPE HARDWARE DESIGN 

A 0.6 m × 0.6 m sensing panel, with 25 individual copper-

foil squares, is the basic building block of the CapLoc floor 

(Fig. 2 and 3). Each copper square is soldered to a wire that is 

connected along with 24 other wires to a microcontroller (100-

pin ARM Cortex M3 [47]) where the capacitance is measured. 

The wires are routed within the gaps between the copper 

squares. The total component cost of a 0.6 m × 0.6 m sensing 

panel (excluding the cost of floorboards) is approximately $6. 

 
FIGURE 1.  Loading mode capacitor formed by subject’s foot on CapLoc, 
along with a simplified circuit diagram. A is the overlapping area of the 
two plates, and d is the separation between the two plates. 

 
FIGURE 2.  The structure of the floor. The floor can be topped with any 
non-conductive flooring material such as wood, vinyl or carpet. 
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Therefore, the cost of implementing CapLoc, excluding 

labour, is less than $18/sqm while offering significant 

functionality. Also, the cost of the system is expected to 

decrease significantly with mass manufacture. 

The capacitance is measured by evaluating the RC time 

constant of the equivalent capacitive circuit. The time taken to 

charge a capacitor to a set voltage V0 is given by the well-

known RC charging equation: 𝑉(𝑡) = 𝑉0(1 − 𝑒−t/τ) (2) 

where 𝜏 = 𝑅𝐶. 

If the selected resistance value R is sufficiently high, it can 

be assumed to be reasonably constant and independent of the 

unknown resistance to the ground. Time taken by the capacitor 

to charge to a set value, therefore, depends solely on the 

capacitance. A microcontroller is used to charge the copper 

plate through a high value resistor by applying a voltage to the 

charging pin (Fig. 1). The time taken to reach a set voltage at 

the sensing pin is measured. When a subject’s foot is near the 

copper plate, the effective capacitance is much greater than 

when there is no subject nearby. This leads to a significantly 

longer rise time of the signal. The raw capacitance 

measurements are sent from the microcontroller to an 

application running on PC over the USB serial communication 

line. The PC app processes and displays the incoming data in 

real-time as well as saves the data for further analysis. The 

footstep detection algorithm takes less than 2 ms to run on a 

standard desktop PC running at 3.2 GHz. Trace drawing on 

the screen takes around 15-20 ms. The floor is sampled at 

around 10 Hz, giving the app plenty of time to process each 

frame whilst waiting for the next data frame from the sensors. 

C. FOOT DETECTION 

Figure 3 illustrates the foot detection process that is 

effectively an image processing algorithm where each 

capacitance value from the floor is represented as a single 

grayscale pixel. When CapLoc is first powered on, a number 

(currently set to 10 after many rounds of empirical testing) of 

capacitance readings are taken from the floor sensors as a 

background estimation. It is then subtracted from each 

subsequent capacitance measurement from the floor. Over 

time the background estimations can drift. To counteract this 

phenomenon, periodic CapLoc recalibration can be 

implemented by taking a new set of baseline capacitance 

readings when the floor is known to be vacant. Over a long 

period, the amount of time when a subject is standing on a 

 
FIGURE 3.  Block diagram of the CapFloor system architecture, with the 
custom designed hardware sampling the capacitance values which are 
sent to the PC app for the foot detection process. The foot detection is 
performed by adopting image processing techniques. 

 
FIGURE 4.  The simultaneous detection of multiple feet from multiple 
subjects (interpolated, before thresholding). 
 

 

FIGURE 5.  Foot after thresholding in socks (left) and in thick soled 
footwear (right). In thick footwear the foot is smaller in area after 
thresholding. 
 

 
FIGURE 6.  A sequence of footprints superimposed in time. Both pre (top) and post (bottom) thresholding. Estimated center of the foot marked with a 
cross. 
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square is small compared to that when the subject is not 

standing on it. Therefore, an alternate method is to take a long-

term average of all capacitance readings taken whilst the 

system is in use and employ this long-term average as the 

baseline.   

In terms of image processing, the measured capacitance 

values form a very low-resolution image. Interpolation is 

applied to improve its quality. Several interpolation 

algorithms were tried.  Cubic interpolation showed the best 

performance while enhancing 2 × 2 images to 7 × 7 

interpolated ones. 

A threshold is then applied to the data such that any 

capacitance values below the threshold are set to become “0” 
while those above the threshold are set to be “1”. Once it is 
done, blob detection through connected component analysis 

[48] is applied whereby all connected squares are considered 

to be a part of the blob or cluster. Each blob corresponding to 

a single footprint can then be represented by a matrix 𝐌 of 2 

× 𝑁 dimension, where 𝑁 is the number of data points in the 

cluster. Each column of the matrix is a vector representing the 

position of a single data point in the cluster.  

The center of the footprint (�̅�, �̅�) is estimated by averaging 

the position of each point in the 2 × 𝑁 cluster matrix 𝐌 as: �̅� = ∑ 𝑀1,𝑖𝑁𝑖=1𝑁  
(3) �̅� = ∑ 𝑀2,𝑖𝑁𝑖=1𝑁  

The system was tested with multiple subjects. It detected the 

feet of several subjects concurrently given that they were 

sufficiently spaced apart. Fig. 4 shows two subjects’ feet being 
detected individually. It was observed that feet on adjacent 

squares might be non-detectable as they merged into a larger 

blob. The copper sensing squares are spaced at 120 mm 

intervals thus providing that the feet separation is to be greater 

than around 200 mm to avoid the aliasing. This is because the 

partial occlusion of feet at the very edge of adjacent squares 

does not put them over the threshold. Initial testing, as reported 

in [44], found that the position of the subject’s foot in a static 
situation could be measured accurately. 

When the target is barefoot, the separation between the 

target’s foot and the copper-foil (d of Fig. 1 and Equation 1) is 

the smallest. This results in a larger value of the capacitance 

compared to the case when a subject is wearing a footwear. 

Therefore, CapLoc enjoys the highest SNR when the subject 

is barefoot which is quite common in a home setting. The 

impact of footwear type on foot detection accuracy was thus 

investigated. It was found that the type of footwear had quite 

a minimal effect. Figure 5 demonstrates the cases where a 

subject stands on the floor wearing socks and a pair sneakers 

with thick soles. Whilst one can see the image for the foot in 

the sneaker is slightly smaller (due to it being further from the 

sensing squares), it is still detectable with its position being 

relatively unaffected.  

III. FOOTSTEP LOCALIZATION 

A test floor was set up using eight sensing panels to create 1.2 

m × 2.4 m area. Data from the system were sampled at 10 Hz 

making it possible to track a person moving around the floor. 

Firstly, individual footprints were detected, and the center of 

each footprint was stored. The footprint centers were then 

clustered in time and space to determine if they come from the 

same footstep. The path of the subject was then estimated by 

taking the midpoints of the successive footsteps. Figure 6 

shows the detected footprints from a subject walking on 

CapLoc (in 0.6 m × 4.8 m configuration). 

Implementation of an accurate ground truth system to 

compare the estimated path with the actual one is a challenging 

task. Several approaches were reported in the literature. While 

motion capture can provide an extremely accurate ground 

truth [14], it is not cost-effective. The use of the Xbox Kinect 

was reported in the study [40]. A custom-designed solution 

was reported in [31] whereby a hat on the subject’s head was 

connected via wires to pulleys with attached encoders.  

In this work, the HTC Vive [45] was used as a ground truth 

system due to its low cost, availability, and sufficient 

 
(a) Layout diagram of experimental setup 

 

(b) Photo of experimental setup 

FIGURE 7.  Layout of the floor and Vive calibration points. 
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accuracy. It uses two base stations (called Lighthouses) to 

track a small device called Tracker.   

In pre-experimental testing, the accuracy of the system was 

evaluated using an x-y CNC plotter with max deviation of 

0.025 mm. Vive was found to be accurate within 10 mm. The 

positions reported by the Vive are relative to the primary 

lighthouse. To reconcile this coordinate system to that of the 

floor, a calibration process needs to be undertaken. This also 

means that positions of the lighthouses do not need to be 

carefully measured thus eliminating a potential source of error.  

First, the ground truth system was calibrated using nine 

points around the edge of the floor (Fig. 7). The calibration 

points were used to align the Vive’s reference plane with the 
floor as well as to align point CAL1 with the origin of the 

floor. The calibration points were used to generate a 

transformation matrix (𝐑) that was then applied to all positions 

measured using the Vive.  𝒙′ = 𝐑𝒙, (4) 

Where [49] 𝐑 = 𝐓𝐯 ∙ 𝐑𝐳 ∙ 𝐑𝐲 ∙ 𝐑𝐱 (5) 

and 

𝐓𝐯 = [1 0 0 −𝐶𝐴𝐿1𝑥0 1 0 −𝐶𝐴𝐿1𝑦0 0 1 −𝐶𝐴𝐿1𝑧0 0 0 1 ] (6) 

 

𝐑𝐳(𝛾) = [cos 𝛾 −sin 𝛾 0 0sin 𝛾 cos 𝛾 0 00 0 1 00 0 0 1] (7) 

 

𝐑𝐲(𝛽) = [ cos𝛽 0 sin 𝛽 00 1 0 0− sin 𝛽 0 cos𝛽 00 0 0 1] (8) 

 

𝐑𝐱(𝛼) = [1 0 0 00 cos 𝛼 − sin 𝛼 00 sin 𝛼 cos 𝛼 00 0 0 1] (9) 

Here 𝒙 is a position from the Vive to be transformed, and 𝒙′ is 

the transformed position relative to the floor. The values 𝛼, 𝛽, 

 
FIGURE 8.  The process of aligning the Vive’s calibration points with the floor. The orange crosses represent the calibration points in the Vive’s frame 
of reference, the blue circles in the floor’s frame of reference. (a): Translating the points so that the origins are aligned.  (b): Rotating about the Z axis; 
(c): Rotating about the Y axis; (d): rotating about the X axis; (e): the final outcome with the two sets of points aligned. Note that, the angles (especially 
α and β) have been exaggerated for clarity. In reality, the translation and the rotation γ were usually enough for the ICP algorithm to align the points 
correctly. 

 
FIGURE 9.  The Vive tracker affixed atop a subject’s head. 
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and 𝛾 are the pitch, yaw, and roll between the Vive’s reference 
plane and the floor. Figure 8 illustrates the aforementioned 

process.  

It was then further refined by employing the Iterative 

Closest Point (ICP) algorithm [50] to generate a 

transformation matrix aiming to minimize the Euclidean error 

between the measured and actual positions of all nine 

calibration points. The combination of the two transformations 

was then used to transform the position data from the Vive. 

Literature reports [51-53] suggest that tracking could be lost 

when a line of sight is absent between the lighthouses or 

between the tracker and the lighthouses. The tracker was 

therefore attached to the top of the subject’s head (Fig. 9) to 

maintain a constant line of sight with the two lighthouses that 

were mounted at approximately 2 m above the ground, one on 

each side of the testbed. 

Thirty-nine different paths, split between three subjects - 

two males (subjects 1 and 2) and one female (subject 3), were 

walked across CapLoc with the ground truth of the subject’s 
head being recorded by the Vive. Fig. 10 shows the footsteps 

estimated by CapLoc and the position of the subject’s head 
tracked by the Vive for 12 of the total 39 paths. It can be seen 

that the footsteps very closely match the ground truth. 

Localization errors were computed by considering the position 

 
FIGURE 10.  Twelve paths walked by Subject 1 on CapLoc: crosses represent the estimated foot positions and the lines show the ground truth (Vive 
tracker). 

 
FIGURE 11.  ECDF of localization error for 219 footsteps across 39 
different paths. The median error was found to be 0.026 m and the 90 
percentile error 0.066 m. 
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of the subject to be the midpoints between the successive 

footprints and then comparing them to the relevant points of 

the Vive’s reported path. Empirical Cumulative Distribution 

Function (ECDF) for the 219 footsteps corresponding to all 39 

trajectories is shown in Fig. 11.  

Both U-shaped and diagonal trajectories were walked by all 

three subjects, due to those being easily repeatable paths. That 

was done to verify that the floor was able to locate different 

subjects without the need for calibration in between. Figure 12 

shows two paths for each subject. Table 3 shows the median 

and 90 percentile errors for each of the subjects.  

Five of the paths were walked by subject 1 in a pair of 

sneakers having a thick sole. Other than that, the three subjects 

had similar footwear, considerably thinner than the sneaker. 

The results are shown in Fig. 13 and Table 3. For subject 1, 

the median and 90 percentile errors are slightly worse for the 

thick-soled footwear as the measured capacitance was lower 

(due to higher separation from copper-foil plates, please see 

Section II for more details), and therefore it was more affected 

by noise. 

The results support the assertion that the floor can be used 

for human tracking without any foreknowledge of the subject 

or environment. The only requirement being that the floor 

must be vacant for several seconds after the initial powering 

on to measure the background capacitance. 

Potentially, the error could be further reduced by employing 

a more sophisticated path estimation algorithm. Also, accurate 

tracking is complicated by the impossibility to define the 

subject (person) as a single point object. The top of the head is 

approximately in the center of the subject when viewed from 

a top-down perspective. However, when people walk, they 

tend to sway from side to side.  This was noticed to be even 

more prevalent when a subject walked along pre-marked 

paths. Besides, the amount of the head movements is normally 

somewhat higher than that of the center of mass of the body, 

thus causing additional errors. This can be seen in the paths 

and error statistics for Subject 2, which are worse than those 

for the other two subjects. The U-shaped path in particular 

shows this subjects’ propensity to move their heads as they 

walk. The head movements resulting from the subject’s 
walking pattern may have as much or even more effect 

 
FIGURE 13.  Paths walked in thin (1) and thick-soled footwear (2). 

TABLE 3.  Comparison of path tracking error for different subjects. 

 Median (m) 90 Percentile (m) 
Subject 1 0.025 0.056 

Subject 2 0.039 0.097 

Subject 3 0.026 0.069 

Subject 1 - thick shoes 0.031 0.082 

 

 
FIGURE 12.  Paths walked by different subjects without the need for calibration in between. 
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compared to the thickness of the footwear. As can be 

observed, the localization error for subject 2 with thinner 

footwear is higher than that for subject 1 with thick shoes. 

Tables 1 & 2 compare the localization accuracy of CapLoc 

against the state-of-the-art floor-based and other DFL systems. 

As can be seen, the proposed system is more accurate than 

other systems reported in the literature. CapLoc’s accuracy is 
likely to be even higher than that which is being reported if the 

ground truth of the foot could be more reliably established. 

The problem with placing the tracker on the foot is that it can 

lose line of sight with the light houses. In such a scenario, the 

ground truth recording system loses calibration (as discussed 

earlier), reporting incorrect positions. Therefore, a practical 

compromise was made. It should be noted that, if a person is 

not in contact with the floor, they are not visible to CapLoc. 

However, in a real-life setting, people can only enter and exit 

a room at defined points. They can be tracked around the room 

and if they remove themselves from contact with the floor (e.g. 

by sitting on a chair) they can be assumed to be in that location 

until they are seen again (i.e. they stand up from the chair). 

IV. POSES CAPTURED BY CAPLOC FOR FALL 
DETECTION 

Fall is a major health risk for the elderly, negatively affecting 

their health and quality of lives. It poses also significant 

burden on the healthcare and elderly-care institutions. For 

someone living alone, timely and accurate fall detection is 

needed to initiate  swift medical assistance.  

Personal Alarm System (PAS) can be worn by an elderly 

person. In case of any problems (e.g., a fall), it enables the 

alarm activation by just pressing a button. Unfortunately, if the 

victim loses consciousness or is in a confused or panicked 

state, the button may not be pressed [54]. 

Wearable sensors, utilizing primarily accelerometers (e.g., 

presented in [55]) have been proposed for automated fall 

detection. However, they rely on the subject to wear a sensor 

at all times. Such a wearable device can be forgotten or 

misplaced or get damaged. It also requires charging or battery 

replacement that again can be missed. There may also be a 

reluctance from a person to wear the sensor. Smartphone-

based fall detectors (e.g., discussed in [56]) are also associated 

with similar issues. Camera- [57] and sound- [58] based fall 

detection approaches are perceived to be invasive to privacy. 

Wireless- [59] and IR- [60] based systems rely on anomalous 

activity detection. They utilize the signatures for a fall that are 

not immediately obvious to the naked eye [61]. Large amounts 

of data are generally required to train a model to detect falls. 

However, the falls are rare events. Besides, it is very difficult 

to simulate them with human participants. All of this makes it 

hard to collect enough data to train a robust classifier for fall 

detection [62]. 

When using CapLoc, a simple and more naive algorithm 

potentially could be used for fall detection. For example, a 

sudden increase in the area of contact with the floor could 

suggest that a person has gone from a standing to a prone 

position. By combining it with pose capture and temporal 

 
FIGURE 14.  A subject in a variety of poses upon the floor. 
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changes in the pose, it could be possible to detect an event such 

as a fall. Rather than trying to detect a rare, anomalous event, 

CapLoc can support a fall detection approach identifying the 

immediate aftermath of the fall, i.e., the subject lying on the 

floor. 

A. LYING SUBJECT POSE CAPTURE  

An investigation was undertaken to determine if different 

poses can be observed by using CapLoc. A subject laid on the 

floor in eight different poses, with the system output being 

recorded. The following poses were tried (Fig. 14): A – the 

subject was lying face up with the arms by the sides and legs 

flat; B – the subject was in the same pose except with the knees 

were in the air and the feet whilst still on the floor wre close to 

the body; C – the subject was lying face down with arms by 

the sides; D – the subject was lying face down with arms 

stretched above the head; E – the subject was sitting upright 

with the legs outstretched in front; F – the subject was 

kneeling; G – the subject was crawling on the hands and knees; 

H – the subject was lying in the fetal position. It can be seen 

that the poses were captured reasonably distinctively by the 

CapLoc.  

This suggests that once sufficient data are available, not 

only fall detection but also fall pose recognition could be 

achieved while employing relevant classification models (e.g. 

applying histogram distances [63]). 

B. POSE AREA ESTIMATION 

Parts of the foot detection algorithm can also be used to 

estimate the contact area of a subject with the floor. Each 

individual capacitance reading (represented as a single pixel) 

is subject to background subtraction, cubic interpolation, and, 

finally, binary thresholding as discussed before. Each pixel 

then represents an area of the floor defined by the size of each 

copper-foil sensor and the interpolation factor. The number of 

pixels above the threshold then approximates the area of the 

contact. 

Each of the poses in Fig. 14 had their areas estimated by the 

system to demonstrate the CapLoc potential for fall detection. 

It can be seen from Table 4 that the poses of the lying on the 

floor have much larger contact areas compared to a footprint, 

thus supporting the suggestion that the floor contact area could 

potentially be used for fall detection.  

Certain poses (e.g., G) could be confused for multiple sets 

of footprints. However, if fall detection is combined with 

occupancy tracking, it could distinguish the fall from the case 

of three people standing near each other. People only enter and 

exit the room at defined points and hence they can be tracked 

around the room with reasonable accuracy. Therefore, if there 

is only one person in a room (or in a certain area of it), and an 

image of a potentially dangerous pose arrives, the system 

would be able to trigger the fall alarm. A body on the floor will 

have a significantly larger estimated contact area than a 

footprint regardless of the size of the body. An abrupt increase 

in area suggests that a fall may have occurred. Therefore, the 

difference in body size should not impact the fall detection 

performance. Also, with large amount of data collected for 

people of varying body size, sophisticated image recognition 

techniques (e.g. a deep neural network classifier [64]) could 

be used in the future to recognize a fall event rather than just 

using the contact area. 

V. CONCLUSIONS AND FUTURE WORK 

The developed capacitive floor, CapLoc, can identify the 

position of a subject’s feet and track a single individual while 
walking upon it. The median and 90 percentile error of 

CapLoc for a wide-range of trajectories were found to be 0.026 

m and 0.066 m. The sample rate used by the prototype 

hardware was at 10 Hz per individual copper square. A new 

version of the hardwar e is currently undergoing development. 

It will offer higher sensitivity and a much-improved sample 

rate whilst still being compatible with the current flooring tiles 

as well as signal and data processing techniques. Further work 

will also help to reduce the stray capacitance by potentially 

using shielded cabling and to improve the background 

capacitance measurement. 

The localization experiments were performed with a single 

person on the floor. However, it was demonstrated that the 

system was capable of detecting multiple targets 

simultaneously. For ambient signal based DFL techniques 

(e.g. wireless or IR), each subject adds interference and lowers 

the SNR leading to poor performance. In contrast, subjects on 

CapLoc that are spatially separated do not interfere with each 

other. Therefore, by dividing the floor into sperate smaller 

areas, it is possible to track targets within those spaces using 

the algorithm outlined in this paper. It can be further improved 

by incorporating a particle filter or some similar techniques. 

However, tracking multiple targets in a crossover scenario, 

where targets come together and then diverge, will require user 

identification. It was found that CapLoc systematically 

overestimates the foot area. However, such overestimation 

occurs uniformly around the foot perimeters. As such, it did 

not affect the position of the center of the foot. Unfortunately, 

the overestimation phenomena means that it would not be 

achievable at this stage to accurately identify individuals based 

on their estimated footprint area. However, it is possible to 

discern the different phases of a subject’s footstep on CapLoc 
from the initial heel strike, through the midstance to the toe-

off. During this sequence of events, the center of contact of the 

foot moves from the heel to the toe. With the improved 

hardware, in combination with other features (e.g., stride 

TABLE 4.  Comparison of the area of different poses. 

Pose Area (m2) 
A – lying on back 0.64 
B – lying on back with knees up 0.54 
C – lying on front, hands by side 0.64 
D – lying on front, hands above head 0.59 
E – Sitting with legs outstretched 0.28 
F – Kneeling 0.16 
G – Crawling on hands and knees 0.19 
H – lying in fetal position 0.58 
Single foot area 0.05 
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length and foot angle) future work will also explore the 

identification of individuals using their gait patterns. In order 

to achieve this, significant data needs to be collected to train a 

machine learning algorithm [65]. 

Only flat footwear was employed during the experimental 

investigations while showing good results. Future 

investigations will also include performance evaluation of the 

proposed technique on a variety of footwear types (e.g., 

footwear with raised heels). 

Finally, poses of a subject lying on the floor subject can be 

clearly captured for a variety of positions. Therefore, the 

proposed technique has the potential to be applied to develop 

an accurate yet noninvasive fall detection system. Future work 

will involve collecting sufficient pose data from multiple 

subjects of varying body size. These data can then be used to 

train a classifier to detect poses and subsequently identify the 

fall occurrence. 
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