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The rigorous analysis of crystallographic models, refined through the use of

least-squares minimization, is founded on the expectation that the data provided

have a normal distribution of residuals. Processed single-crystal diffraction data

rarely exhibit this feature without a weighting scheme being applied. These

schemes are designed to reflect the precision and accuracy of the measurement

of observed reflection intensities. While many programs have the ability to

calculate optimal parameters for applied weighting schemes, there are still

programs that do not contain this functionality, particularly when moving

beyond the spherical atom model. For this purpose, CAPOW (calculation and

plotting of optimal weights), a new program for the calculation of optimal

weighting parameters for a SHELXL weighting scheme, is presented and an

example of its application in a multipole refinement is given.

1. Introduction

When experimentally determined crystallographic data are

reduced to give reflection intensities, the degree of ambiguity

in the precision of a measurement is described by its standard

uncertainty. These uncertainties are calculated during the data

reduction process (Schwarzenbach et al., 1995) for every

reflection measured. However, it is useful to consider the

reliability of the calculation of the uncertainties and how they

should be applied when interpreting models derived by fitting

the data. The standard uncertainties for each measurement

can be obtained by the summation of many, small, random

errors and/or error propagation (Birge, 1939) within the data

collection and processing. These standard uncertainty errors

are usually calculated by the data processing software,

although they can be evaluated from the analysis of multiple

measurements of the same reflection (Blessing, 1987). It is

expected that with a full and complete treatment of errors

within the data collection and processing these will tend

towards a normal distribution, in accordance with the central

limit theorem. Therefore, crystallographic refinement

programs have been designed to allow the application of

weighting schemes, to produce a more normal distribution of

residuals resultant from a refined data set. These schemes are

used to calculate a value that represents the weight of each

reflection in a least-squares minimization (Schwarzenbach et

al., 1989). The choice of weighting scheme employed is left to

the user but is often dependent on the type of structural

refinement being implemented. Those most generally

exploited in modern crystallographic refinements can take

various forms; for example, the weighting can be the same for
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each reflection (unit, w = 1), based only on the standard

uncertainty of a reflection (statistical, w = 1=�2
F2

o
where �F2

o
is

the standard uncertainty of the reflection) or more complex,

with additional contributions from the intensity and/or reso-

lution (Spagna & Camalli, 1999).

Advanced weighting schemes can be applied to give an

improved distribution of residuals if the refined structural

model is understood to be complete and correct. The potential

weighting schemes that can be applied, unless direct manip-

ulation of the standard uncertainties occurs, are dependent

upon what is available within the refinement packages being

used. One popular weighting scheme for small-molecule

crystallography is employed in the SHELX suite (Sheldrick,

2015). The SHELXL weighting scheme has six variables which

can be defined by the user (a–f). For a refinement on F2,

w ¼
q

�2
F2

o
þ ðapÞ2 þ bpþ dþ e sin �

; ð1Þ

where p ¼ f F2
o þ ð1� f ÞF2

c and q varies depending on the

sign of parameter c:

q ¼ 1:0 when c = 0,

q ¼ exp½cðsin �=�2
Þ� when c > 0, and

q ¼ 1� exp½cðsin �=�Þ2� when c > 0.

Here, � is the wavelength of the X-ray radiation.

Optimal values for the a and b parameters are routinely

calculated for data refined in native SHELXL refinements,

with the other parameters remaining fixed (c, d, e = 0 while f is

set to 1/3, which has been shown to reduce the bias of the

weighting scheme as opposed to using Fc or Fo alone; Wilson,

1976). While many refinement packages have routines to

obtain values for a and b there are some programs that do not

have this functionality, especially when going beyond the

spherical atom model. Therefore, in order to use this scheme

effectively and increase confidence in the uncertainties on

parameters derived in these situations, a method for calcu-

lating the optimal values is required. Herein we present a

program, CAPOW, that allows the calculation of these para-

meters optimized to produce a minimized variance of resi-

duals, for use in the SHELXL weighting scheme, and

demonstrate its application in an aspherical atom refinement.

2. Program summary

CAPOW, a program for the calculation and plotting of opti-

mized weights, is written in Python 2.7 (Oliphant, 2007). The

program can calculate the optimized a and b values for a

SHELXL scheme using a structure factor file from a

completed refinement. A graphical user interface (GUI) has

been created to allow straightforward operation of the

program and provide informative output. The current version

of CAPOW features a window with two different tabs: one for

the calculation of the optimal weighting scheme and another

for the creation of a normal probability plot (Abrahams &

Keve, 1971) of data from a crystallographic refinement.

Normal probability plots have previously been used to

determine the distribution of residuals and hence assess the

quality of crystallographic refinements and the data they rely

upon (Zhurov et al., 2008; Henn & Meindl, 2016). These plots

should demonstrate a normal distribution, if the structural

model is correct and errors in the measurements and applied

weights have been evaluated correctly, because of the

expected tendency of residuals towards a normal distribution

as in the central limit theorem. Residuals from a refinement

are sorted in ascending order and plotted against the residual

value that would be expected if the residuals have a normal

distribution. The residuals are described as being normally

distributed where a gradient of 1 and an intercept of 0 are

observed.

While least-squares minimization methods do not depend

upon a normal distribution of residuals, the refinements are

not robust to cases where these residuals are not normally

distributed (Prince, 2004). Furthermore, uncertainties for any

parameters derived from the model, such as atom positions,

bond lengths or molecular properties like dipole interactions,

are calculated with the assumption that the residuals are

normally distributed. The presence of a non-normal distribu-

tion of residuals can imply the existence of systematic errors,

incorrect or incomplete modelling of the data, or error

propagation within a given refinement. Such potential errors

should be investigated and removed before applying a

weighting scheme.

2.1. Calculation of optimal weighting parameters

The optimal weighting calculation is based upon a script

from the computational crystallographic toolbox (cctbx;

Grosse-Kunstleve et al., 2002). The cctbx is open source and

freely available to download and alter. To enable easier

modification and adaptation, the cctbx-dependent functions

were rewritten to remove the requirement of the cctbx

package for the operation of the program; however, the actual

process for the optimization is largely unchanged.

The optimal weighting is determined using a grid-search

method. After the initial starting values for a and b are

calculated, the data are arranged in order of Fc and divided

into ten equal bins. The variance of the weighted goodness of

fit (wGooF) of each of the ten bins is calculated for a 9 � 9

grid of incrementally increasing a and b values. The combi-

nation of a and b that gives the minimum variance within the

grid is used to give a new starting point for the next grid. The

step size, i.e. how much a or b increases between subsequent

grid points, is reduced, provided that the minimum variance

did not occur at the edge of the grid. The process is repeated

until a stopping condition, usually based on the size of the a or

b step, is fulfilled. The values of a and b that give the minimum

variance from the final grid are taken as the optimal para-

meters to be used in the weighting scheme. The user interface

has been customized to allow a choice of both stopping

condition and initial starting values for a and b.

Weights calculated using CAPOW were compared with

those calculated in Olex2 (Dolomanov et al., 2009), a spherical

atom refinement program which utilizes the cctbx within the

olex2.refine function to calculate weighting parameters.
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There was a high degree of consistency between the computed

values.

The interface to the weighting scheme calculation is

displayed in Fig. 1. This interface allows the user to apply

various cut-offs to the data from which the weighting scheme

should be determined as well as the starting and stopping

points for the grid search. Starting points can be either input

manually or calculated using a SHELXL-style method (which

is the default when the ‘Calculate Start’ check box is selected).

Selected weights can then be transferred to the normal

probability plot tab using the ‘Send Weights to Tab 1’ button.

2.2. Normal probability plots

Normal probability plots are created using the matplotlib

package (Hunter, 2007) and are based upon DRKplot (Stash,

2007). The graphs of normal probability output by DRKplot

are calculated using the average of binned residuals within the

range �4 to +4. However, to allow for the identification of

potential outliers, additional features were implemented in

CAPOW. The normal probability plots created in this

program display every residual value and the option to edit

the range of the axes.

Within the normal probability plot tab (Fig. 2), cut-offs to

the data based on intensity, intensity over standard uncer-

tainty and resolution can be applied, alongside a weighting

scheme, which can be either chosen manually or calculated in

the ‘Weighting Scheme’ tab. An information box allows the

user to see the weighting scheme that was applied in the

displayed plot. It can also display the reflection indices and

structure factor information for any given data point in the

plot.

2.3. Requirements

The CAPOW GUI requires Python 2.7 and the packages

numpy, scipy (van der Walt et al., 2011), matplotlib and pyqt

(Summerfield, 2007). Optimized a and b values are calculated

for refinements on F2, based on F2
o, F2

c and �2
F2 found within an

.fcf (SHELXL LIST 4 or 8) or .fco [XD2016 (Volkov et al.,

2016), a multipolar refinement program] structure factor file,

containing the indices and the calculated and observed

structure factors as well as the associated standard uncer-

tainties for observed reflections. Additional information is

required from a .cif file (the number of independent para-

meters applied to refinement) and .ins/.mas file (wave-

length, weight applied and unit-cell parameters). The program

outputs optimized values for both a and b to be applied in

further refinement.

The source code has been tested using Scientific Linux 7.0

and Windows 8, and has been written with no operating

system dependencies.

3. Application

XD2016, and prior versions, is a widely used crystallographic

refinement package for aspherical atom refinement. Atom-

centred spherical harmonic (multipolar) functions are used to

describe aspherical electron density distributions (Hansen &

Coppens, 1978). These can reveal additional features of

interest in the structural model, such as the locations of

bonding and lone pair electron density.

Within the XD2016 program, three different weighting

schemes can be applied; unit, statistical or a SHELXL

weighting scheme. Whilst a statistical weighting scheme is

most often utilized when conducting charge density refine-

ments, the success of this scheme depends upon the standard

uncertainty of each reflection being calculated correctly

during the data reduction and processing steps. The under-

estimation of standard uncertainties has been documented for

multipolar refinements uncertainties (Leusser, 2012) and

produces a characteristically shaped normal probability plot

(Henn & Meindl, 2016). This would suggest that statistically

weighting the data in the refinement of the structural model in

these cases is inadequate.
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Figure 1
Screenshot of the ‘Weighting Scheme’ tab from the CAPOW GUI.

Figure 2
Screenshot of the ‘Normal Probability Plot’ tab from the CAPOW GUI.



There is no function to optimize the parameters for the

SHELXL weighting scheme within XD2016. Weighting values

calculated for a spherical atom model of the data are not

transferable to a multipole refinement, owing to the differ-

ences in the predicted data from the model. Therefore, we

have used CAPOW to calculate optimal values of a and b

parameters.

To assess the applicability of a grid-search mechanism for

multipolar data (as used by CAPOW) it was important to

examine the spread of the variance of the wGooF of binned

data from a charge density refinement: the value to be mini-

mized in the weighting scheme opti-

mization. The variance was calculated

for SHELXL weighted data with

different combinations of a and b and

displayed as a contour plot (Fig. 3).

The variance tends towards a single

minimum between 0 and 0.02. The

optimal a and b values calculated by

the weighting scheme minimization

correlate well to the position of the

minimum of the variance within the

grid.

When using data from a multipole

refinement, the stopping points

originally applied in the cctbx function

(a_stop = 0.0001 and b_stop = 0.005)

did not result in convergence. The

calculated a and b starting values are

used to determine initial grid step sizes,

giving values that were smaller than

the stopping conditions (thus preventing the grid search from

running). To counteract this, we recommend using a and b

stopping points of a_stop > 0.00001 and b_stop > 0.0005. The

problem could also be overcome by changing the initial

starting points for a and b. The weighting applied in this

refinement was calculated with stopping points a_stop = 1 �

10�7 and b_stop = 1 � 10�6.

Fig. 4(a) shows the normal probability plot created using

statistically weighted data. The values for a normal distribu-

tion of residuals are shown as a dashed red line that can be

compared with the experimental values. The deviation of the

residuals from a normal distribution can be assessed by

computing a line of regression using data between the lower

and upper quartiles to remove bias from any large outliers. For

the statistically weighted data, this gives an equation of y =

1.3985x � 0.02406. As previously stated, if the residuals were

normally distributed a gradient of 1 and an intercept of 0

would be expected. The result shown, alongside visual

inspection of the graph, highlights that these data do not

demonstrate a normal distribution.

To apply the SHELXL weighting scheme, optimal para-

meters determined by CAPOW are input into the refinement

master file. Several iterations of the least-squares refinement

were undertaken until convergence was achieved. Optimal a

and b parameters for the newly converged model are calcu-

lated and then applied. The process of calculation and

refinement is repeated until convergence of the a and b

parameters occurs.

The normal probability plot from the converged SHELXL

weighted refinement (Fig. 4b) is much closer to that which

would be expected from a normal distribution of residuals.

The line of regression of data between the lower and upper

quartiles has an equation of y = 0.9707x � 0.00006, i.e. a

gradient much closer to the ideal value of 1, with an intercept

of close to zero.

Key refinement statistics from both the statistical and the

SHELXL weighting are shown in Table 1. A reduction in the
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Figure 3
A contour plot of the variance of a SHELXL weighted multipole
refinement calculated for a range of a and b values. The optimized weight
determined by CAPOW and the actual minimum variance of the grid are
also displayed.

Figure 4
Normal probability plots generated inside CAPOW, showing statistically weighted residuals (a) and
the calculated, optimized, weighting scheme (a = 0.0114 and b = 0.0082) (b) for a completed
multipole refinement. The dashed red line indicates the expected values for normally distributed
residuals.



wGooF with the SHELXL weighting is found, giving a value

much closer to 1, along with an increase in the value of the

weighted residual. For the data set used in the above refine-

ments, there was no significant statistical difference observed

for atom positions, bond lengths, bond angles or multipolar

populations between the statistical and SHELXL weighted

refinements. However, the multipole parameters calculated

from the SHELXL weighted refinement have larger standard

uncertainties than the statistically weighted refinement. This

causes some populations to become less statistically signifi-

cant.

4. Conclusions

We have demonstrated the use of a standalone weighting

program, CAPOW, embedded within a user-friendly graphical

interface, enabling the calculation of the optimal a and b

values of a SHELXL weighting scheme. We have shown that,

by applying a correctly determined weighting scheme, a more

normal distribution of residuals can be produced. However,

caution must always be exercised when applying a weighting

scheme that is based upon a model. This situation relies on the

assumption that the model is correct. Therefore, as a non-

normal distribution of residuals can indicate the presence of

systematic errors, it is always advisable to use statistical

weights initially and eliminate as far as possible any systematic

errors before applying a more complex weighting scheme.

The SHELXL refinement has three other parameters that

could also be optimized (c, d and e). Further work is being

conducted to analyse the impact of and to expand the opti-

mization routines to evaluate these additional parameters.

CAPOW and its source code are distributed via the nu-xtal-

tools repository which can be found at http://github.com/nu-

xtal-tools.
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Table 1
Table of refinement parameters from statistical and SHELXL weighted
refinements.

Weighting scheme Statistical SHELXL

R1 0.0180 0.0180
wR2 0.0199 0.0289
GooF 1.6143 1.6679
wGooF 1.6143 1.0118
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