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ABSTRACT As an influential technology of swarm evolutionary computing (SEC), the particle swarm
optimization (PSO) algorithm has attracted extensive attention from all walks of life. However, how to
rationally and effectively utilize the population resources to equilibrate the exploration and utilization is still
a key dispute to be resolved. In this paper, we propose a novel PSO algorithm called Chaos Adaptive Particle
Swarm Optimization (CAPSO), which adaptively adjust the inertia weight parameter w and acceleration
coefficients c1, c2, and introduces a controlling factor γ based on chaos theory to adaptively adjust the range
of chaotic search. This makes the algorithm have favorable adaptability, and then the particles cannot only
effectively prevent missing the global optimal solution, but also have a high probability of jumping out of the
local optimal solution. To verify the stability, convergence speed, and accuracy of CAPSO, we conduct ample
experiments on 6 test functions. In addition, to further verify the effectiveness and scalability of CAPSO,
comparative experiments are carried out on the CEC2013 test suite. Finally, the results prove that CAPSO
outperforms other peer algorithms to achieve satisfactory performance.

INDEX TERMS Swarm evolutionary computing, particle swarm optimization, chaos theory, function
optimization.

I. INTRODUCTION
Most engineering optimization problems can be abstracted
into the mathematical representation of multimodal func-
tions with multiple minimum (maximum) values [1]. How
to solve such problems has critically influenced academic
dialogue [2]–[4]. The Particle Swarm Optimization (PSO)
algorithm [5], which is researched and developed by
Kennedy and Eberhart [6], is an important technology
with uniqueness and effectiveness in optimization problems.
Once it was published, it triggered a wave of research.
For example, Iranmehr et al. [7] develop a new method
based on PSO to extract audio features similar to human
ears. Seo et al. [8] propose a multi-group particle swarm
optimization (MGPSO) algorithm and further apply it to
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electromagnetic optimization problems. Lei [9] introduces
the concave function form of the inertia weight into the
PSO, and applies it to the model parameter optimization
of the established Francis hydraulic turbine governing sys-
tem. Marjani et al. [10] combine genetic algorithms and PSO
to supervise neural networks. They track the connections
between the applied operators and the layers through genetic
algorithms and use PSO to check the values of all individ-
ual deviations and weights in the neural network to mod-
ify the best network topology. Bouzidi et al. [11] develop a
new operator specifically used to solve combinatorial opti-
mization problems, and embed it into the improved discrete
particle swarm optimization algorithm (DPSO-CO), opening
up a new horizon to solve the traveling salesman problem.
Due to its excellent performance, PSO has been widely
used in many fields [3], [4], [12] such as medicine, chemi-
cal industry, agriculture, finance, etc., and has successfully
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FIGURE 1. The influence of local best position pbest and global best
position gbest on population flight. xk and xk+1 represent the position
of the particle before and after the particle is updated, respectively.
vk and vk+1 represent the running velocity of the particle before and
after the particle is updated, respectively. vpb represents the velocity
when the particle moves towards pbest . vgb represents the velocity when
the particle moves towards gbest .

achieved satisfactory application results in resource schedul-
ing, control system design, load problems, and power system
optimization.

As the key algorithm for swarm intelligence optimization,
the principle of PSO is to simulate the social behavior of
biological communities [13], and use the evolution and itera-
tion of the population to achieve the purpose of optimization.
In the process of aggregation and predation, the position
corresponds to the solution of the problem, and the velocity
determines the direction and distance of the next search [14].
The movement direction of the particle is adjusted according
to the position closest to the food found by itself and the
entire group [5]. Therefore, the location of the food that
the population is looking for can be abstracted as the best
solution in the solution of the problem.Moreover, PSO judges
whether the position of the particle is the best according to the
value of the fitness function, which plays a guiding role for
the flight of the population [15]. As shown in FIGURE 1,
in each iteration, the direction and distance of the particle
search will be adjusted in time under the joint influence of
its local optimal position and the global optimal position of
all particles. Iterate many times until the conditions are met.

However, in the optimization process of traditional PSO,
problems such as low convergence accuracy and difficulty
in finding the global optimum are prone to occur. Mean-
while, Chaos Optimization Algorithm (COA) [16] can pro-
vide search diversity in the optimization process, and has
been successfully used in robot optimization control, param-
eter optimization in control systems, financial systems, and
manufacturer scheduling [17], etc. In COA, chaotic mapping,
as a simple and effective mapping method, can improve the
exploration of meta-heuristic algorithms. Inspired by COA
making full use of many characteristics of chaotic variables
in a certain range of search space to improve the probability of
searching for global optimal solutions, we propose the Chaos
Adaptive Particle Swarm Optimization algorithm (CAPSO).
The main contributions of CAPSO can be summarized as
follows:

1) We combine linear and nonlinear inertia weight to
adaptively adjust the local and global search ability of
particles. A nonlinear method is adopted to adjust the
acceleration coefficient adaptively so that the particles
can quickly obtain the global optimal solution, avoid
falling into the local optimal, and speed up the conver-
gence speed.

2) The Logistic mapping is used to initialize the popula-
tion, which increases the richness and convenience of
the population and makes it easier for particles to jump
out of the local optimum.

3) To replace the current global optimal point with a better
point, the control factor γ is introduced to adaptively
adjust the search range of the particles near the global
optimal solution.

4) Finally, extensive experiments are carried out to verify
the effectiveness of the algorithm. The results show
that CAPSO can dynamically adjust the value of each
parameter, but also has high convergence accuracy and
strong stability.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. Section III manifests the prob-
lem definition of this paper. The proposed CAPSO algorithm
is presented in Section IV. In Section V, the results of our
experiment are provided. Finally, in Section VI, we summa-
rize our work done.

II. RELATED WORK
At present, the related work of the improved PSO algorithm
can be roughly summarized into the following aspects.

A. INERTIA WEIGHT AND ACCELERATION COEFFICIENT
Zhang et al. [18] introduce a fuzzy system into PSO for the
breast cancer problem, and propose a fuzzy adaptive PSO
algorithm to adjust the searchability of the algorithm. The
application of fuzzy adaptive PSO to train the feedforward
neural network is more accurate and stable, can converge
to the best position faster, and reduce the risk of overfitting
to a certain extent. Lynn and Suganthan propose a novel
PSO, called Heterogeneous comprehensive learning particle
swarm optimization (HCLPSO) [19]. It divides the popu-
lation into two sub-populations for exploration and utiliza-
tion respectively, and proposes a comprehensive learning
strategy combined with particle experience for the search
process, which made the algorithm obtain satisfactory con-
vergence. Inspired by the activation function widely used
in neural networks, Liu et al. [20] combine the Sigmoid
function for weighting to adaptively adjust the acceleration
coefficient, and propose Adaptive Weighted Particle Swarm
Optimization (AWPSO), which significantly improved the
convergence of the population. To solve the problem of
slightly insufficient performance of the standard particle
swarm optimization algorithm (SPSO) for high-dimensional
complex optimization problems, Lin et al. [21] introduce a
new parameter adjustment strategy of piecewise nonlinear
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acceleration coefficient (PNAC), and propose an improved
SPSO algorithm (P-SPSO) based on PNAC. At the same
time, they also develop a mean difference mutation
strategy (MDM) for the update mechanism of P-SPSO,
which is called mean-differential-mutation-strategy embed-
ded P-SPSO (MP-SPSO). This algorithm has significant
effects in terms of solution quality and robustness and has
been successfully applied in practical applications.

B. VELOCITY AND POSITION FORMULA
Combining the characteristics of wireless sensor networks,
Nagireddy et al. [3] propose a PSO algorithm based on veloc-
ity adaptation (VAPSO), which improves the traditional
velocity update formula by introducing partial derivatives of
local and global optimums to time. It improves the conver-
gence and minimizes the positioning error, thereby helping
to improve the positioning accuracy and network life.

C. INTRODUCE NEW RULES OR PARAMETERS
To balance the convergence and diversity of the population,
Zhang et al. [22] propose an adaptive bare-bones particle
swarm optimization (ABPSO) algorithm. It adds disturbance
value to each particle through convergence and population
diversity, and introduces a mutation operator to adaptively
adjust the global search process. Moreover, to solve the prob-
lem of resource-constrained project scheduling (RCPSP),
Kumar and Vidyarthi [23] embed the valid particle gener-
ator (VPG) operator into the PSO, and propose an adap-
tive particle swarm optimization algorithm (A-PSO). This
algorithm can convert the invalid particles caused by the
dependent behavior of RCPSP into effective particles, and
adjust the inertia weight through three parameters of fitness
value, previous inertia weight, and the iteration counter to
speed up the convergence speed of the algorithm. Due to
the large shrinkage factor of traditional PSO in the initial
iteration process, its global distribution in the solution space
cannot accurately track the local optimal solution, which
leads to the problem of difficulty in convergence. Acharya
and Kumar [24] propose a new shrinkage factor (ECF) and
apply it to channel equalization. The simulation results prove
that this algorithm achieves a perfect balance between local
and global search, and has better performance. Yan et al. [25]
introduce the constraint factor into the velocity update of the
SPSO, and dynamically adjust the inertia weight according
to the exponential decay mode. This makes it possible not
only to obtain enjoyable global searchability in the early stage
of the optimization process, but also to obtain a higher local
search performance in the later stage. The results show that
it has more advantages than other algorithms in terms of
convergence speed and stability.

D. HYBRID APPROACH
Chuang et al. [26] propose an accelerated chaotic parti-
cle swarm optimization (ACPSO) algorithm by combining
chaotic mapping and acceleration strategies. This algorithm
searches for the appropriate cluster center through any data

set, and can efficiently find an ideal alternative solution to
the data clustering problem. Wang et al. [27] combine PSO
and Chaos Search Technology (CST) to solve the problem
of nonlinear bipolar programming. This method can greatly
increase the search diversity of the population and avoid the
algorithm capturing local particles. Gong et al. [28] propose
a novel Genetic Learning PSO Algorithm (GLPSO) by com-
bining genetic evolution techniques. Specifically, it trains
particles through the genetic algorithm and uses the experi-
ence of particles to guide the evolution process, which makes
GLPSO have a significant improvement in searchability and
efficiency. On this basis, Xia et al. [29] combine the genetic
algorithm and propose Triple Archive Particle Swarm Opti-
mization (TAPSO) to improve search efficiency through the
collaboration of three different roles particles. Wei et al. [30]
propose Multiple Adaptive Particle Swarm Optimization
(MAPSO), which divides multiple clusters in each itera-
tion, adjusts the cluster distribution according to fitness, and
breeds particles using differential evolution. GOLCHI [31]
proposed a hybrid algorithm of firefly and improved particle
swarm optimization (IPSO) to optimize load balancing in
a cloud environment to achieve a better average load and
to improve important indicators such as effective resource
utilization and task response time. This algorithm not only
has obvious advantages in convergence speed and response
speed, but also has better flexibility than other methods in
minimizing average load through different goals.

III. PROBLEM DEFINITION
A. NOTATION
The definitions of related notations used in this paper are
shown in the Table 1.

TABLE 1. Related notations.

B. PROBLEM DEFINITION
Due to PSO being prone to premature convergence and dif-
ficult to accurately search for the global optimum, Shi and
Eberhart [32] try to introduce a new parameter-inertia weight
parameter w based on the original parameters to make more
fine adjustments to the algorithm. Such PSO algorithms with
w parameters are collectively referred to as standard particle
swarm optimization algorithms (SPSO).

Suppose a total of M particles are searched in an
N−dimensional space, where the local optima of particles
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and the global optima of all particles can be broadly
expressed as pbesti =

(
pbesti,1, pbesti,2, . . . , pbesti,N

)
and

gbest = (gbest1, gbest2, . . . , gbestN ). During each itera-
tion of SPSO, the velocity vij and position xij of the particle
i in the j dimension of the search space are adjusted by Eq.1
and Eq.2.

vk+1ij = wvkij + c1r1
(
pbestij − xkij

)
+ c2r2

(
gbestj − xkij

)
,

(1)

xk+1ij = xkij + v
k+1
ij , (2)

where i = 1, 2, . . . ,M . j = 1, 2, . . . ,N . r1, r2 are random
numbers belonging to [0, 1].

C. INFLUENCE OF PARAMETERS
The SPSO algorithm is simple, efficient, and easy to under-
stand and implement. However, in the optimization process,
the selection and adjustment of various parameters are closely
related to the performance of the algorithm, as follows:

1) INERTIAL WEIGHT w
In SPSO, the inertia weight can be used to adjust the particle’s
ability to explore the solution space, and its value determines
the ability to adjust the current velocity during the velocity
update process. When the value of w is large (w > 1.2),
the particles tend to search globally, and constantly try to
search in new areas. There is a high probability that the
global optimal solution will be missed, and more iterations
are needed to find it. When the value of w is average (0.8 <
w < 1.2), the particles’ global search ability is the best.When
the value of w is small (0.4 < w < 0.8), the particles tend
to search for local areas. At this time, if the particles search
near the global optimal solution, the possibility of finding it is
higher. Shi and Eberhart [32] suggest that the inertia weight
w is dynamically adjusted during the optimization process,
starting from a larger value of 0.9 (more inclined to global
search), and dynamically reduced to 0.4 (more inclined to
local search).

2) ACCELERATION COEFFICIENT c1, c2
The acceleration coefficient is also called the learning factor,
which can adjust the particle and population cognitive ability.
When its value is large, it can make the particles search
quickly outside the target area, and the search range is wide,
but it is easy to miss the global optimal solution. When
its value is small, it can make the particles search within
the target area. The particle search range is small, but it is
difficult to jump out of the local optimum. For example, when
c1 = c2 = 0, the particles can only move along the initial
direction, the search range of the particles is small, and to
a large extent, the global optimal solution cannot be found.
When c1 = 0, c2 6= 0, the particles can only search based
on population experience, and it is also difficult to find the
global optimal solution.When c1 6= 0, c2 = 0, the population
experience cannot be relied on. At this time, the particle itself
cannot be effectively searched, and the search range is also

small, making it difficult to find the global optimal solution.
Therefore, to avoid affecting the information exchange and
optimization capabilities between particles, it is necessary
to set appropriate learning factors. Furthermore, the setting
strategy is generally divided into static and dynamic strate-
gies. Static strategy refers to setting the learning factor to a
constant, usually set to 2 [32], but some scholars believe that
it can be set to 1.494 [33], 2.05, 2.5 [34] etc. The dynamic
strategy means that the value of the learning factor changes
dynamically with the optimization process. For example, the
values of c1 and c2 are continuously increased [35], c1 keeps
decreasing while c2 keeps increasing [36], etc.

3) POPULATION SIZE M
For SPSO, the larger the value ofM means the more particles
need to be searched. At the same time, the searchability of
the algorithm is stronger, and the easier it is to search for
the global optimal solution, the corresponding search for the
solution will take the longer. The smaller the value ofM , the
fewer particles need to be searched, the more difficult it is to
search for the global optimal solution, but the corresponding
search for the solution will be shorter. For different optimiza-
tion problems, it is generally set according to experience and
the difficulty of the problem to be optimized.

4) MAXIMUM VELOCITY vmax

The purpose of maximum velocity is to control the change of
particle velocity. The larger its value, the greater the ampli-
tude of particle movement and the higher the possibility of
missing the global optimal solution. The lower the value, the
smaller the amplitude of particle movement, it may take a
long time to find the required solution and it is difficult to
jump out of the local optimum. Related studies have shown
that the effect of setting the maximum velocity and adjusting
the inertia weight w is the same, so it is generally not adjusted
further.

Given the influence of different parameters, CAPSO opti-
mizes the adjustment and change process of the parameters
on the basis of the SPSO, which will be introduced in detail
in Section IV.

IV. THE PROPOSED APPROACH CAPSO
A. ADAPTIVE INERTIA WEIGHT w
The inertia weight w determines the extent to which the
current velocity is affected by the previous velocity, and its
value seriously affects the accuracy and convergence speed
of the SPSO. In the early stage of the iteration, using a larger
w can increase the particle’s movement velocity and global
search capability. In the later stage of the iteration, using a
smaller w can reduce the moving velocity of the particles and
make them focus on the local search to improve the accuracy
of the optimal solution. Generally, as the iteration progresses,
w decreases linearly. Whereas the optimization process of
SPSO is very complicated, simple linear adjustment can
no longer meet the needs of the algorithm. We combine
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linear and nonlinear w to adaptively adjust the particle’s local
and global searchability. The specific adjustment method is
shown in Eq.3.

w =


wmax, 0 ≤

k
T
≤ 0.1,

wmin +
(wmax + wmin)

e−wmax + e−1.2+
20k
T

, else,
(3)

where wmax and wmin are the predefined maximum and min-
imum values of inertia weight, respectively.

B. ADAPTIVE ACCELERATION COEFFICIENT c1, c2
The acceleration coefficients c1 and c2 are designed to enable
the algorithm to quickly cover the entire search space in the
early stage, and improve the accuracy and convergence speed
of the algorithm in the later stage. In most existing work, it is
usually set to a constant, but on the whole, adaptive adjust-
ment can increase the ability of particles to find the optimal
solution and make the algorithm have better performance.
We combine the non-linear strategy to make the value of
c1 gradually decrease from 2.5 while adjusting the value of
c2 to gradually increase from 0.5. In this way, the particles
are more inclined to find the optimal solution based on their
own experience in the early iteration process, increasing the
diversity of the search while quickly obtaining the global
optimal solution, avoiding falling into the local optimal. In the
later iterative process, the particles are more inclined to find
the optimal solution based on the experience of the population
and have a strong local search ability, which can adjust the
accuracy of the global optimal solution in more detail and
speed up the convergence speed. The specific adjustment
strategies for acceleration coefficients c1 and c2 are shown
in Eq.4 and Eq.5.

c1 = 0.5 ∗ (cmax − cmin)

(
k
T

)2

+ cmin, (4)

c2 = (cmax − cmin)

(
k
T

)2

+ cmax, (5)

where cmax and cmin are the maximum and minimum values
of the predefined acceleration coefficient, respectively.

C. INITIAL POPULATION
In the SPSO, initializing the population is the first and critical
step. The stronger the ergodicity of the initial population,
the richer the diversity of the population, and the easier it is
to overcome the obstacles of the local optimum to find the
global optimum so that the performance of the algorithm is
superior. In general, the most commonly used is to initialize
particles randomly, but to some extent, it is difficult to ensure
the ergodicity of the population, which affects the final result.

In our work, Logistic mapping is used to generate a series
of chaotic variables to initialize the population, which is
shown in Eq.6.

zk+1 = azk (1− zk ), (6)

FIGURE 2. Logistic mapping.

where zk+1 is the value after mapping, zk is the value before
mapping, and a is a random variable. As illustrated in the
FIGURE 2, when a changes from 3.569945672 to 4, the
chaotic state of the system gradually changes from the ini-
tial state to the complete state. When its value exceeds 4,
the system will become unstable. Therefore, the value of a
is generally set to 4. To better illustrate the superiority of
Logistic chaotic mapping over randomly initialized popula-
tions, we conduct 1000 iterations of experiments, and the
results are shown in FIGURE 3. It can be seen that the ergod-
icity of generating points using Logistic chaotic mapping is
better than random function.

D. CHAOS OPTIMIZATION
When some particles are searching near the global optimal
solution, if they move at the previous velocity, they may miss
the position of the solution. When the particle moves to the
vicinity of the local optimal value, as it continues to iterate,
the remaining particles will move in the direction of this
particle, thereby causing the particles to fall into the local
optimal value. To solve this problem, we introduce the control
factor γ shown in Eq.7, which not only can effectively prevent
the particles from missing the global optimal solution, but
also makes them have a great probability of jumping out of
the local optimal situation.

γ = ξ +
1

e0.1+
5k
T

, (7)

where ξ ∈ [0, 1] is the adjustment variable that can be
adjusted according to the actual situation.

Use γ to control chaotic search, and the process of opti-
mizing gbest is shown in the Algorithm 1.

In the process of iterative search, the value of the control
factor γ decreases nonlinearly, so that the search range near
the global optimal solution is gradually reduced, and the
current optimal point is replaced with a better point. In the
early iterative search process, the value of γ is large, so that
the population roughly searches for the larger area around
the current global optimal solution. In the middle and later
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FIGURE 3. Comparison chart of Logistic chaotic mapping and random function.

Algorithm 1 Chaos Optimization gbest
1. Scale the value of each dimension of gbest =
(gbest1, gbest2, . . . , gbestN ) to the range of
[0, 1] according to gbest0t1 =

gbest−u
u−l , where

l = (l1, l2, . . . , lN ) is the minimum value of the
solution space, u = (u1, u2, . . . , uN ) is the maximum
value of the solution space;
2. Use the Eq.6 to map gbest0t1 to generate chaotic vari-
ables gbestc;
3. Use linear mapping gbest∗ = l + gbestc × (u − l) to
map the chaotic variable gbestc back to the original value
range, and get gbest∗;
4. According to xi = γ × gbest∗i , i = 1, 2, . . . ,N control
the search of the neighborhood range and calculate the
corresponding fitness function value f (xi);
5. If there is f (xi) < gbest , then let gbest = f (xi).

iterative search process, the value of γ is small, so that a more
refined search can be performed to find the global optimal
point. In this case, the search can quickly converge, thereby
reducing running time.

E. CAPSO ALGORITHM FLOW
Function optimization problems include minimum and max-
imum optimization. Without loss of generality, in this paper,
we carry out the corresponding research with the minimum
optimization of multimodal functions. Based on our work, the
maximum problem is also easy to derive.

Suppose the constrained optimization problem is expressed
as: minfi(x), X = (x1, x2, . . . , xi, . . . , xM ) is the parti-
cle population, and the position of each particle is xi =
(xi1, xi2, . . . , xij, . . . , xiN ) where xij ∈ [lj, uj]. The algorithm
steps of CAPSO are shown in the Algorithm 2.

It is assumed that the i-th iteration of the population of
particles takes Ci time, the maximum number of iterations
is T ,M is the number of particles in the population,Mi is the
number of particles in the i-th iteration of the population, and
N is the dimension of the search space. Then the computa-
tional complexity of the proposed CAPSO is:

complexity =
T∑
i=1

N ×Mi × Ci. (8)

V. EXPERIMENT
A. TEST FUNCTION
This work selects 6 commonly used test functions to test the
performance of CAPSO, which are:

1) DROP-WAVE FUNCTION
The DROP-WAVE function is shown in the Eq.9, and its
image is illustrated in FIGURE 4(a). It can be seen that this
function is multi-model and complex, and the value of the
global optimal solution is −1.

f1(x1, x2) = −
1+ cos

(
12
√
x21 + x

2
2

)
0.5

(
x21 + x

2
2

)
+ 2

, (9)

where the domain of definition is xi ∈ [−5.12, 5.12], i = 1, 2.

2) BUKIN FUNCTION
The BUKIN function is shown in Eq.10, and its image is illus-
trated in FIGURE 4(b). It can be seen that this function has
many local minima, the value of its global optimal solution is
0, and these minima are all located in a ridge.

f2(x1, x2) = 100
√∣∣x2 − 0.01 x21

∣∣+ 0.01 |x1 + 10| , (10)

where the domain of definition is x1 ∈ [−15,−5] and
x2 ∈ [−3, 3].
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FIGURE 4. Test function.

Algorithm 2 The Algorithm Steps of CAPSO
Initialization parameters: wmax , wmin, cmax , cmin, ξ , T , l,
u, k = 0.
Initialize the particle population X :
1. Randomly initialize each dimension xij of each parti-

cle xi, where 0 ≤ xij ≤ 1, and xij /∈ (0, 0.25, 0.5, 0.75, 1);
2. Use Eq.6 to map the population X to generate the

chaotic variable X c;
3. Use linear mapping X k = l +X c× (u− l) to map X c

to the original value, and then obtain the initial population
X k = (xk1 , x

k
2 , . . . , x

k
i , . . . , x

k
M ).

repeat
1. Calculate the fitness value fi(xki ) of each particle xi for
the fitness function fi(x).
2. if fi(xki ) < pbesti then
pbesti = fi(xki )

end
3. if fi(xki ) < gbesti then
gbesti = fi(xki )

end
4. Update the inertia weight w and acceleration coeffi-
cient c1, c2 according to Eq.3, Eq.4 and Eq.5;
5. Update the velocity vkij and the position xkij of each
particle in the populationX k according to Eq.1 and Eq.2;
6. According to the algorithm 1, the control factor γ is
used to control the chaotic search and optimize gbest;
7. k++.

until the cycle epoch iterates T times or the fitness function
value fi(X k ) no longer changes.
Output: global optimal solution gbest .

3) RASTRIGIN FUNCTION
The RASTRIGIN function is shown in Eq.11, and its image
is illustrated in FIGURE 4(c). It can be seen that this
multi-modal function has a global optimal solution with a

TABLE 2. Comparison of parameter settings.

value of 0 and multiple local optimal solutions.

f3(xi) = 10N +
N∑
i=1

[
x2i − 10 cos (2πxi)

]
(11)

where the domain of definition is xi ∈ [−5.12, 5.12],
i = 1, 2, . . . ,N .

4) GRIEWANK FUNCTION
The GRIEWANK function is shown in Eq.12, and its image
is illustrated in FIGURE 4(d). It can be seen that this func-
tion has a global minimum value of 0 and multiple local
minimums.

f4(xi) =
N∑
i=1

x2i
4000

−

d∏
i=1

cos
(
xi
√
i

)
+ 1 (12)

where the domain of definition is xi ∈ [−10, 10],
i = 1, 2, . . . ,N .

5) SCHWEFEL FUNCTION
The SCHWEFEL function is shown in Eq.13, and its image is
illustrated in FIGURE 4(e). It can be seen that this function
has multiple local minima and the value of the global optimal
solution is 0.

f5(xi) = 418.9829 N −
N∑
i=1

xi sin
(√
|xi|
)

(13)

where the domain of definition is xi ∈ [−500, 500],
i = 1, 2, . . . ,N .
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TABLE 3. Test function results of each algorithm when N = 2.

FIGURE 5. The change of average fitness value of each algorithm on GRIEWANK function.

6) SPHERE FUNCTION
The SPHERE function is shown in Eq.14, and its image is
illustrated in FIGURE 4(f). It can be seen that this function is
unimodal and convex, with N local minima, and the value of
the global optimal solution is 0.

f6(xi) =
N∑
i=1

x2i (14)

where the domain of definition is xi ∈ [−5.12, 5.12],
i = 1, 2, . . . ,N .

B. BASELINE
We compare CAPSO with Standard Particle Swarm Opti-
mization algorithm (SPSO) [32], Linearly Decreasing

inertia Weight Particle Swarm Optimization algorithm
(LDWPSO) [37], ChPSO (a PSO algorithm improved by
Cheng and Han) [38], and Chaos Modified Particle Swarm
Optimization algorithm (CMPSO) [39] in terms of conver-
gence speed and accuracy. The parameters of each algorithm
are adjusted and set for each test function, as shown in
Table 2. Taking into account the influence of randomness, for
all algorithms, the dimensions N are selected as 2 and 10 in
the test process to repeat the experiment 30 times.

C. PERFORMANCE
When N = 2, the results of the mean, variance, and standard
deviation of the difference between the fitness value of the
repeated experiment on the test function f1 − f6 and the
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TABLE 4. Test function results of each algorithm when N = 10.

actual global optimal solution of each algorithm are shown
in Table 3, where the bolded data represent the smallest value
of the algorithm on the corresponding function.

It can be concluded that although the variance and standard
deviation results of CAPSO on the BUKIN function are
not optimal, they are not much different from the results
of LDWPSO. In other test functions, CAPSO’s indicators
are better than other algorithms. On the whole, the conver-
gence accuracy of CAPSO is significantly better than other
algorithms. In addition, although CAPSO has not reached
the global optimal solution on the SPHERE function and
GRIEWANK function, it has been infinitely close to the global
optimal solution, indicating that CAPSO is more stable and
has a lower probability of falling into the local optimal
solution.

To evaluate the convergence, we take the GRIEWANK
function as an example. The average change of the best fitness
value obtained by each algorithm repeated 30 times on this
function is shown in the curve drawn in FIGURE 5. Accord-
ing to the curve change, CAPSO is slower in the early stage
and faster in the later stage. It is better than the SPSO and
LDWPSO.Generally speaking, it is still within the acceptable
range, and the most important thing is that CAPSO has the
highest convergence accuracy.

When N = 10, since f1 and f2 are two-dimensional func-
tions, we repeat the experiment 30 times on the f3 − f6 test
function. The results of the mean, variance, and standard
deviation of the difference between the fitness value of the
repeated experiment and the actual global optimal solution
of each algorithm are shown in Table 4, where the bolded
data represent the smallest value of the algorithm on the
corresponding function.

It can be seen from Table 4 that CAPSO has obvious
advantages over other algorithms in terms of mean, variance,
and standard deviation. Although the effect of CAPSO on the
GRIEWANK function is not satisfactory, the results on the
SPHERE function and the SCHWEFEL function are approx-
imately 0, indicating that CAPSO is infinitely close to or
reaches the global optimal solution in 30 repeated experi-

TABLE 5. Parameter configuration information of Peer algorithms.

ments. On the whole, the CAPSO algorithm we proposed
has higher convergence accuracy, stronger stability, and it is
easier to search for the global optimal solution.

D. CEC2013 TEST SUITE
To further verify the effectiveness of CAPSO, we con-
duct experiments on the CEC2013 test suite to verify the
performance of the proposed algorithm in different envi-
ronments. It should be noted that in CEC2013, f1-f5 are
unimodal functions, f6-f20 are multimodal functions, and
f21 − f28 are combined functions. Moreover, we set dimen-
sions N = 10 and N = 50 respectively to verify the scalabil-
ity of CAPSO.

1) PEER ALGORITHMS
We selected 5 PSO variants that were widely used in
CEC2013. To ensure the rigor and fairness of the comparative
experiments, all relevant parameters of peer algorithms are
set according to the recommendations in the original paper.
In addition, we ensure that all algorithms are experimented
with in the same environment to remove the effects of any
random errors. All peer algorithms and corresponding con-
figuration information are recorded in Table 5.

2) PERFORMANCE ON CEC2013
In Table 6 and Table 7, the mean and standard deviation
of the peer algorithms on the CEC2013 suite when N =
10 and N = 50 are recorded respectively. By comparison,
we can know the effectiveness of CAPSO. It can be found that
CAPSO almost all shows the best performance on unimodal
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TABLE 6. Test results of CAPSO and peer algorithms on CEC2013 suite (N = 10).

functions, multimodal functions, and combined functions
with high optimization difficulty. Furthermore, CAPSO also
displays better reliability when the test function is extended

to higher dimensions. It is mainly since CAPSO adaptively
adjusts the inertia weight and acceleration coefficient, and
adaptively adjusts the search range through the control factor
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TABLE 7. Test results of CAPSO and peer algorithms on CEC2013 suite (N = 50).

of chaos theory. Therefore, CAPSO has better adaptability,
and can easily jump out of the local optimal solution and
approach the global optimal solution infinitely. To sum up,
our proposed CAPSO algorithm is effective.

VI. CONCLUSION AND FUTURE
Based on the in-depth research and analysis of traditional par-
ticle swarm optimization algorithms, this paper aims to deal
with complex function optimization problems and practical
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applications that are prone to poor convergence accuracy and
the inability to effectively obtain global optimization. On the
basis of chaos theory, we propose a chaotic adaptive particle
swarm optimization (CAPSO) algorithm. To prove the stabil-
ity, convergence speed, and accuracy of CAPSO, experiments
are performed on 6 test functions with other algorithms. The
comparative analysis results show that although CAPSO has
a slight deficiency in the convergence speed, its convergence
accuracy is higher, the stability is stronger, and it is not easy to
fall into the local optimum. To further prove the effectiveness
and scalability of CAPSO, extensive experiments are per-
formed on the CEC2013 test suite. All results comprehensive
prove CAPSO has achieved satisfactory performance.

Furthermore, CAPSO achieves advanced retrieval accu-
racy due to a series of adaptive computations. However,
its convergence speed, although within an acceptable range,
is still slightly slower. In the future, we hope to further sim-
plify the search process of the algorithm based on the adap-
tive adjustment strategy to improve the convergence speed.
Moreover, due to the advantages of CAPAO in terms of con-
vergence, stability, and accuracy, we believe that it will play a
role in resource scheduling, load problems, system optimiza-
tion, and other fields. In the follow-up work, we also expect
to work with other researchers to further explore and make
breakthroughs in parameter sensitivity, high-dimensional
solution space, multi-objective optimization, etc.
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