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Abstract—Breast cancer is one of the most common cancers all over the world, which bring about more than 450,000 deaths

each year. Although this malignancy has been extensively studied by a large number of researchers, its prognosis is still poor.

Since therapeutic advance can be obtained based on gene signatures, there is an urgent need to discover genes related to breast

cancer that may help uncover the mechanisms in cancer progression. We propose a deep learning method for the discovery of breast

cancer-related genes by using Capsule Network based Modeling of Multi-omics Data (CapsNetMMD). In CapsNetMMD, we make

use of known breast cancer-related genes to transform the issue of gene identification into the issue of supervised classification.

The features of genes are generated through comprehensive integration of multi-omics data, e.g., mRNA expression, z scores for

mRNA expression, DNA methylation, and two forms of DNA copy-number alterations (CNAs). By modeling features based on the

capsule network, we identify breast cancer-related genes with a significantly better performance than other existing machine learning

methods. The predicted genes with prognostic values play potential important roles in breast cancer and may serve as candidates for

biologists and medical scientists in the future studies of biomarkers.

Index Terms—Multi-omics data, capsule network, prediction of cancer-related genes, machine learning, breast cancer
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1 INTRODUCTION

THERE are more than 1,300,000 persons around the world
suffering from breast cancer each year, which result in

greater than 450,000 deaths [1]. As one of the most common
cancers, breast cancer is extensively studied by a large
number of researchers [2], [6]. Although the diagnosis and
treatment of breast cancer are greatly advanced such as the
identification of subtype-associated predictors including
estrogen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor receptor 2 (HER2) [1], [7],
the prognosis of this malignancy is still poor. Since thera-
peutic advance can be obtained based on gene signatures
[1], there is an urgent need to discover genes related to
breast cancer and utilize them to help uncover the mecha-
nisms in the progression of this cancer, thus making an
improvement in its therapy.

With the help of known breast cancer-related genes, the
discovery of novel genes can be transformed into an issue of
supervised classification by regarding various biological
characteristics of genes as their features. Common classifica-
tion methods include classical classifiers such as Neural
Network (NN), Support Vector Machine (SVM), Adaboost
and K-Nearest Neighbors (KNN), which are widely used

in bioinformatics for a long time. For example, Lancashire
et al. identify gene transcript signatures predictive for
lymph node status and estrogen receptor in breast cancer
by means of a stepwise method using artificial neural net-
works [8]. Guyon et al. utilize SVM with recursive feature
elimination to build a new method for genetic diagnosis
and drug discovery [9]. Guan et al. present an Adaboost-
based prediction tool mirExplore, which can detect miRNAs
from both next generation sequencing and genome data
[10]. Okun et al. explore the data complexity in cancer clas-
sification by taking advantage of ensembles of KNN [11].
Although these methods usually serve as convenient tools
in solving bioinformatics problems, they may not be the
best choice for the increasingly larger biological data and
their performance also need to be improved.

As the development of computer science, many novel clas-
sification methods emerge to face the challenges of machine
learning brought by enormous data, among which eXtreme
Gradient Boosting (XGBoost) [12] and a newGBDT algorithm
with GOSS and EFB, i.e., LightGBM [13], are famous due to
the state-of-the-art results they achieve in tackling these chal-
lenges. Specifically, XGBoost is a scalable end-to-end tree
boosting system with a novel sparsity-aware algorithm and
a weighted quantile sketch [12]. LightGBM is a gradient
boosting decision tree implemented with the techniques
of gradient-based one-side sampling and exclusive feature
bundling [13]. Recently, there are already some researches in
the field of bioinformatics making use of these two methods.
As regard to XGBoost, Zhong et al. predict essential proteins
with the help of an XGBoost-based framework [14] and
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Zheng et al. establishmiRNAclassificationmodel through the
combination of SVM and XGBoost [15]. Meanwhile, Wang
et al. apply LightGBM to the classification ofmiRNA in breast
cancer patients, which achieves a good performance [16]. In
spite of the achievement in disease researches brought by
newmachine learning methods, these studies do not take full
advantage of high-throughput experimental data, which may
provide comprehensive and valuable biological information.
For example, The Cancer Genome Atlas (TCGA) [1], [17], [18]
and International Cancer Genome Consortium (ICGC) [19],
[21], which are promoted by the rapid development of DNA
sequencing technology, provide massive experimental data
of different kinds of cancer in multiple omics such as geno-
mics, epigenomics and transcriptomics [17], [19]. Analysis of
these useful information based on effective machine learning
methodswill be beneficial to the diagnosis, treatment and pre-
vention of cancer.

In this study, we propose a deep learning method for the
discovery of breast cancer-related genes by using Capsule
Network based Modeling of Multi-omics Data (Cap-
sNetMMD). Capsule network is a novel network structure,
which is first put forward in the field of image recognition
[22]. It has not yet been applied in bioinformatics, let alone
the identification of cancer-related genes. In CapsNetMMD,
multi-omics data, e.g., mRNA expression, z scores for
mRNA expression, DNA methylation and two forms of
DNA copy-number alterations (CNAs) are fully integrated
to generate feature matrixes of genes. Then known breast
cancer-related genes are incorporated to transform the issue
of gene identification into the issue of supervised classifica-
tion. The evaluation results on several measurements show
that CapsNetMMD can achieve the best performance when
compared with other machine learning methods, which
indicate that the settings of instantiation parameters and
dynamic routing mechanism in capsule network are suit-
able for the discovery of cancer-related genes. The prognos-
tic values of the genes predicted by CapsNetMMD are also
explored in the subsequent survival analysis, which may
not only corroborate the effectiveness and superiority of
CapsNetMMD, but also imply the potential important roles
of the genes in the study of breast cancer.

2 METHODS AND MATERIALS

2.1 Multi-omics Data for Breast Cancer

The multi-omics data utilized in this study are derived from
TCGA project, which produces tremendous data of cancer
genomics. Specifically, we download the data of breast can-
cer including mRNA expression, DNA methylation and
CNA from an open platform: The cBioPortal for Cancer
Genomics (http://cbioportal.org) [23], [24], which makes
large-scale raw data provided by TCGA more directly
and easily available to researchers. Among these data, DNA
methylation consists of methylation beta-values that
indicate the methylation levels of CpG loci by calculating
the intensity ratio between unmethylated and methylated
alleles [24]. MRNA expressions obtained from RNA
sequencing data are processed via RNA-Seq by Expectation
Maximization (RSEM) [25]. CNA data has two forms, i.e.,
relative linear copy-number values and discrete copy-num-
ber calls. In the latter form, �2;�1; 0; 1 and 2 respectively

represent homozygous deletion, hemizygous deletion, neu-
tral, gain and high level amplification [24]. Besides, z scores
for mRNA expression are also used to increase the variety
of data. These scores are precomputed for each sample
through comparing a gene’s expression value to the typical
expression for this gene, which is represented by the distri-
bution in a reference population such as expression data in
normal tissues [24]. In order to perform survival study,
we further download clinical data from cBioPortal, which
provides various clinical details about patient samples,
e.g., survival and age at diagnosis [24]. As regard to mRNA
expression, expression z scores, methylation, CNA and lin-
ear CNA, we extract the common 770 patient samples and
10,462 genes in these five types of data for follow-up stud-
ies. The information of overall survival for common patient
samples is also extracted.

2.2 Known Genes Related to Breast Cancer

To extract known genes related to breast cancer, we resort to
a public platform named DisGeNET (http://www.disgenet.
org), which collects one of the largest amount of genes and
variants that related to human diseases based on scientific
literature, GWAS catalogues, expert curated repositories
and animal models [26], [27]. The latest version of DisGe-
NET (v5.0) is used in this study including 561,119 gene-dis-
ease associations between 20,370 diseases and 17,074 genes
[27]. By searching keywords “Breast Carcinoma”, we obtain
4,572 gene-breast cancer associations and the genes in these
associations are further regarded as known genes related to
breast cancer.

2.3 Capsule Network Based Modeling
of Multi-omics Data for Predicting
Breast Cancer-Related Genes

In this study, we propose a deep learning method for discov-
ery of breast cancer-related genes by using capsule network
basedmodeling of multi-omics data. The structure of the cap-
sule network based model shown in Fig. 1 mainly consists of
two convolutional layers and one fully connected layer [22].
First, for a given gene i, the data of its expression, expression z
score, methylation, discrete and linear CNA are respectively
normalized (½0; 1� for expression and methylation, ½�1; 1� for
the others) into five vectors by the following equation:

yi;norm ¼
yi;min þ ðxi � xi;minÞ �

yi;max�yi;min

xi;max�xi;min
if yi;max 6¼ yi;min

yi;min if yi;max ¼ yi;min:

�

(1)

Fig. 1. The structure of capsule network based model for discovery of
breast cancer-related genes.
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Then these vectors are integrated to generate a feature
matrix with size 770� 5. For better modeling in the follow-
ing process, we further reshape the feature matrix into 77
rows and 50 columns. Afterwards, the feature matrix will
be referred to as input for the first convolutional layer,
which consists of 256 convolution kernels with size 5� 5

and a stride of 5. The activation function of this layer is
Rectified linear units (ReLU) [28]:

fðxÞ ¼ maxð0; xÞ ¼
0; x < 0

x x � 0

�
: (2)

In this procedure, the initial feature matrix of gene i is
converted to higher-level and more abstract local features.

The second layer (PrimaryCaps) is a capsule layer that
similar to the convolutional capsule layer in [22]. It is a special
convolutional layer that consists of 256, 4� 4 convolution
kernels with a stride of 1. The difference between Primary-
Caps and ordinary convolutional layer is that the feature
maps after convolution are further transformed to 32 chan-
nels of 8D capsules (each capsule is a vector contains 8 convo-
lutional units) in PrimaryCaps. In a word, PrimaryCaps has
totally ½32� 7� 13� capsules and each capsule share their
weights with each other in the [7], [13] grid. Besides, Primary-
Caps utilizes a non-linear squashing function [22] to ensure
short vectors and long vectors respectively get shrunk to
almost zero and slightly below 1. Thus the output length of a
capsule represents the probability that the entity exists [22].
The squashing function is computed as follows [22]:

Oj ¼
Ij

�� ��2

1þ Ij
�� ��2

Ij

Ij
�� �� ; (3)

where Ij is the input of capsule j and Oj is the output vector
of capsule j. Besides the first layer, the input of a capsule in
all other layers is calculated by the weighted sum of all
“prediction vectors” m̂jji [22]:

Ij ¼
X

i

rj;im̂jji; (4)

in which m̂jji equals to the product of capsulemi andWi;j as
follows:

m̂jji ¼ Wi;jmi; (5)

where Wi;j is the weight matrix with size 8� 5 in this study.
Coupling coefficients ri;j in (4) are determined by softmax
transformation of pi;j with dynamic routing algorithm [22]
and the function is shown below:

ri;j ¼
expðpi;jÞP
k expðpi;kÞ

; (6)

where pi;j represent the prior probabilities that capsule i and
j are coupled.

The final layer (BCGCaps) has two 5D capsules Cj, which
indicate the status of input gene: positive and negative, i.e.,
whether the input gene is related to breast cancer. The compu-
tation process from the second layer PrimaryCaps to the final
layer BCGCaps is based on dynamic routing algorithm,
which only exist between these two layers. As shown in
Fig. 2, PrimaryCaps consists of 2,912 8D capsules ðmiÞ and the

weighted sum of mi can be obtained with Wi;j, m̂jji and ri;j
that calculated by equation (5) and (6). Then Cj are computed
through non-linear transformation using squashing activa-
tion function. Finally, based on the length of Cj, we get the
probability of each gene that it is related to breast cancer.

Overall, the difference between capsule network and
commonly used multi-layer convolution neural network
can be described as follows. First, the basic unit of capsule
network is scalar while that of commonly used multi-layer
convolution neural network is vector. Second, capsule net-
work performs dynamic routing algorithm [28] in the
modeling process and in commonly used multi-layer convo-
lution neural network only supervised classification is used.
Finally, the activation function of capsule network and com-
monly used multi-layer convolution neural network are
respectively squashing function and tanh function.

2.4 Implementation of Model

In the training procedure, we randomly extract 10 percent
data from the training set each time and repeat this process 10
times to get a model until all training data has been picked.
Then after 10� n (n is set to 10 in this study) experiments, the
best model with the highest AUC can be obtained. Besides,
according to the suggestion of [22], the dynamic routing
mechanism is implemented with three routing iterations and
margin loss function, which is shown in equation (7):

Lk ¼ Yk max 0;mþ � Okk kð Þ
2
þ � 1� Ykð Þ max 0; Okk k �m�ð Þ2;

(7)

where Yk is the true label and Yk ¼ 1 if the input belongs to
class k. Ok is the output of capsule k. The default values of
mþ and m� are 0.9 and 0.1, respectively [22]. The parameter
� l for down-weighting of the loss is set to 0.5 as recorded in
[22]. The total loss of the model is the sum of the losses of k
classes [22]. In this section, the deep learningmodel is imple-
mented in TensorFlow 1.2.0, and training and test process of
the model are performed on Ubuntu 16.04 LTS work station
with processor Intel Xeon(R) CPU e5-2680 v2 @ 2.80 GHz �
40. The main code and data of CapsNetMMD are available
from https://github.com/ustcpc/CapsNetMMD.

2.5 Performance Evaluation

To evaluate the performance of CapsNetMMD, we use
five-fold cross validation in the test process, i.e., the data are

Fig. 2. Computation process from PrimaryCaps to BCGCaps.
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averagely divided into five parts and every part is taken
as test data in turn. The probabilities predicted by
CapsNetMMD are regarded as the scores of genes and
higher scores represent more relevance to breast cancer.
First, the false discovery rate (FDR) of our method is
estimated following the strategy in [28] and [29]:

dFDRt ¼
Nt

Gt

; (8)

where Gt is the number of genes whose scores are larger
than threshold t in our results. Nt is the gene number in the
intersection of Gt and the genes identified at t with random
dataset. Specifically, at the f-th permutation, the feature
matrix of gene is permuted to generate a random dataset.
Then we run CapsNetMMD on this dataset to identify genes
with threshold t and calculate gene number ~NðfÞ

t in the
intersection of Gt and Gt the results from random dataset.
After F permutations, dFDRt is finally given by equation (9):

dFDRt ¼
Nt

Gt

¼
1
F

PF
f¼1

~N
fð Þ

t

Gt

: (9)

Threshold t is set to ½0:5; 0:95� in this study.
In addition, after ranking the scores of genes in descend-

ing order, the top k ranked genes with the highest scores are
regarded as breast cancer-related genes in our study.
Known genes related to breast cancer are defined as golden
standard positive (GSP) and the other genes are defined as
golden standard negative (GSN). The interaction of top k
ranked genes with GSP and GSN are respectively referred
to as true positive (TP) and false positive (FP). The comple-
ment of TP with respect to GSP and the complement of FP
with respect to GSN are respectively considered as false
negative (FN) and true negative (TN). Then sensitivity (Sn)
and specificity (Sp) can be computed as:

Sp ¼
TN

TN þ FP
Sn ¼

TP

TP þ FN
: (10)

Based on these two parameters, we plot Receiver Operat-
ing Characteristic curves (ROC curves) and calculate the area
under the curve (AUC). x axis and y axis in ROC curves
respectively represent 1-Sp and Sn. Moreover, Rank Cutoff
curves [30] that measures the proportions of GSP among the
top k percent ranked genes are plottedwith k in [0, 20]. Finally,
we draw Precision Recall curves [31] with rank threshold
varying from 200 to 2000 according to equation (11):

precision ¼
TP

TP þ FP
recall ¼

TP

TP þ FN
: (11)

3 RESULTS

The performance of CapsNetMMD is evaluated and com-
pared with other machine learning methods based on sev-
eral measurements in this parts.

3.1 FDR of CapsNetMMD

The FDR of CapsNetMMD is calculated with threshold t

varying from 0.5 to 0.95 and the results are shown in Fig. 3.
Initially, the mean FDR of CapsNetMMD is 0.31 when t is 0.5
(Supplementary Table I). Then the value of FDR decreases as
the threshold increases. When t is set to 0.6, the mean FDR
drops to 0.043, which is smaller than 0.05. Afterwards, the
mean values of FDR are stably 0 with threshold t larger than
0.65. These results potentially indicate the effectiveness of
CapsNetMMDandmay serve as a guideline for the usage of it.

Fig. 3. Boxplot of the FDR of CapsNetMMD. Threshold t varies from 0.5
to 0.95. The red line with green markers represents variations of the
mean values of FDR.

TABLE 1
The Fractions of Known Breast Cancer-Related Genes with Different Rank Cutoffs and Their Corresponding

p-Values in the Results of LightGBM, XGBoost, NN, SVM, Adaboost, and KNN

Rank cutoff Top 1% Top 5% Top 10% Top 15% Top 20%

CapsNetMMD Fraction 17.5% 58.5% 78.2% 85.7% 89.4%
p-value 8.1 � 10-125 4.2 � 10-261 5.3 � 10-234 1.1 � 10-182 3.6 � 10-141

LightGBM Fraction 16.9% 53.8% 67.3% 75.9% 82.4%
p-value 3.0 � 10-114 2.4 � 10-225 2.2 � 10-178 7.4 � 10-145 1.1 � 10-119

XGBoost Fraction 17.0% 52.8% 72.2% 78.1% 81.6%
p-value 1.0 � 10-116 5.5 � 10-218 1.5 � 10-202 4.4 � 10-153 3.9 � 10-117

NN Fraction 16.5% 51.1% 67.5% 74.4% 79.9%
p-value 1.4 � 10-109 5.8 � 10-206 3.4 � 10-179 3.0 � 10-139 4.2 � 10-112

SVM Fraction 14.8% 47.1% 64.4% 73.7% 76.6%
p-value 4.0 � 10-89 2.9 � 10-178 1.0 � 10-164 8.8 � 10-137 2.8 � 10-102

Adaboost Fraction 14.2% 41.7% 55.0% 62.2% 69.7%
p-value 7.0 � 10-82 8.2 � 10-144 2.2 � 10-122 3.8 � 10-97 4.7 � 10-83

KNN Fraction 7.9% 21.8% 34.6% 40.6% 49.2%
p-value 7.5 � 10-30 2.5 � 10-42 4.7 � 10-47 1.9 � 10-36 4.3 � 10-35
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3.2 Performance Comparison of CapsNetMMD
with Other Methods

To obtain a reliable result, we perform CapsNetMMD ten
times with the same parameters and use their average scores
as the final scores for genes. The performance of Cap-
sNetMMD are compared with other machine learning meth-
ods based on several measurements. Here we implement not
only well-established methods including common Neural
Network (NN), Support Vector Machine (SVM), Adaboost
and K Nearest Neighbors (KNN), but also recent famous
methods, i.e., XGBoost [12] and LightGBM [13], which
achieve good performance on many machine learning chal-
lenges. The optimal parameters of these machine learning
methods that can achieve the best performance are chosen
through cross validation. As shown in Fig. 4A, the ROC curve
of CapsNetMMD is obviously above those of other methods.
Specifically, the AUC value of CapsNetMMD is 94.6 percent,
which is 4.4 and 4.5 percent higher than that of LightGBM
and XGBoost, respectively (Fig. 4B). Meanwhile, the AUC
values of NN, SVM, Adaboost and KNN are all lower than
90 percent. Besides, at all stringent levels of Sp, the Sn values
of CapsNetMMD are always the largest among these
machine learning methods (Fig. 4B). Especially when Sp is
95 percent, the Sn value of CapsNetMMD (75.4 percent) is
6.8 percent larger than that of XGBoost andmore than 10 per-
cent larger than those of the other methods. When Sp drops
to 90 percent, the Sn value of CapsNetMMD reaches
85.3 percent and is still at least 8 percent higher than the
others. These phenomenon represent the superiority of
CapsNetMMD in detecting true positives and true negatives.

Moreover, the Rank Cutoff curve of CapsNetMMD shown
in Fig. 4C is significantly above the curves of LightGBM,
XGBoost, NN, SVM, Adaboost and KNN. To prove that the
results are not obtained by chance, we also utilize fisher’s
exact test to calculate their corresponding p-values. The
detailed results with top 1, 5, 10, 15 and 20 percent ranked
genes are listed in Table 1. In top 1 percent ranked genes,
CapsNetMMD achieves the best result although the

differences between the fractions of CapsNetMMD and
other three methods (LightGBM, XGBoost and NN) are not
obvious, which are no larger than 1 percent. When rank
cutoff increases to top 5 percent, CapsNetMMD begins to
show its advantage in identifying breast cancer-related
genes. Specifically, CapsNetMMD can predict more than
half (58.5 percent) known breast cancer-related genes by
ranking them into top 5 percent while the fractions of
SVM, Adaboost and KNN are all less than 50 percent.
When rank cutoff is set to 10 percent, the fraction of Cap-
sNetMMD grows to 78.2 percent, which is 10.9, 6.0, 10.7,
13.8, 23.2 and 43.6 percent higher than that of LightGBM,
XGBoost, NN, SVM, Adaboost and KNN, respectively. The
growth of fractions slows down as the range of rank cutoff
enlarges. In top 20 percent ranked genes, CapsNetMMD
can even predict nearly 90 percent of known breast cancer-
related genes, which is far ahead of other methods. Fur-
thermore, the p-values of CapsNetMMD at all fractions are
always statistically significant ð< 0:05Þ and consistently
smaller than those of other methods.

In addition, the Precision Recall curve of CapsNetMMD
(Fig. 4D) is above those of other six methods in the whole
range. Initially, within the top 200 ranked genes, the precision
and recall of CapsNetMMD are respectively 89 and 30 per-
cent, which are similar to those of LightGBM and higher than
those of XGBoost, NN, SVM, Adaboost and KNN. Then the
variation tendencies of precision and recall are opposite, i.e.,
precision decreases as recall increases. When gene number
enlarges to top 500, the recall of CapsNetMMD is boosted to
56.7 percent, which is respectively 4.4, 4.9, 6.6, 10.7 and
15.9 percent higher than that of LightGBM, XGBoost, NN,
SVM, Adaboost and KNN. Meanwhile, the precision of
CapsNetMMD reaches 67.2 percent that is at least 5 percent
higher than any of other methods. Within the top 2,000
ranked genes, the recall of CapsNetMMD (88.7 percent) can
even get close to 90 percent while the precision is still not low
(26.3 percent). All results of performance evaluation based on
above measurements indicate that CapsNetMMD has a sig-
nificantly better performance in discovery of breast cancer-
related genes than othermachine learningmethods.

Besides the well-established methods, we also search rele-
vant references and compare the performance of Cap-
sNetMMD with other two studies [32], [33] in discovery of
novel breast cancer-related genes. In [32], a computational
method is built based on the shortest path algorithm and in
[33] a consensus signature from a set of seemingly different
gene signatures is constructed bymapping them on a protein
interaction network. The performance of these methods are
shown by ROC curves and Sn values at stringent levels of Sp
in Supplementary Figure 1. From Supplementary Figure 1A, we
can see that the ROC curve of CapsNetMMD is significantly
above those of other two methods. Specifically, the AUC
value of CapsNetMMD is respectively 16 and 7 percent
higher than that of shortest path based algorithm [32] andnet-
work based method [33] (Supplementary Figure 1B). When Sp
is 99 percent, the Sn value of CapsNetMMD is 47.9 percent,
which is almost nine times larger than that of shortest path
algorithm [32] and more than three times larger than that of
network based method. Similarly, the gaps between the Sn
value of CapsNetMMD and those of other two methods are
also largewhen Sp is 95 or 90 percent.

Fig. 4. Performance comparison of CapsNetMMD with LightGBM,
XGBoost, NN, SVM, Adaboost, and KNN. A. ROC curves. B. AUC val-
ues and Sn values at three stringent levels of Sp. C. Rank Cutoff curves.
D. Precision Recall curves.
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3.3 Discovery of Novel Breast Cancer-Related
Genes

To study the results predicted by CapsNetMMD, we exact
the top 100 ranked genes that do not contain known breast
cancer-related genes and perform survival analysis on them
using their features. Specifically, the relationships between
genes and clinical outcome of patient samples is evaluated
by Kaplan-Meier (KM) plot based on mRNA expression,
CNA and DNA methylation of this gene. If the survival
plots of a gene using a kind of features are significantly dif-
ferent (p < 0.05), we regard this gene as prognostic candi-
date gene [34]. Since there are three kinds of features, a gene
may serve as prognostic candidate gene in any of the three
categories: expression, CNA and methylation. The details of
the evaluation results are shown in Supplementary Table II,
from which we see that more than 2/3 (73) genes that
ranked in top 100 are discovered as potential prognostic
candidate genes. Among these genes, 4 genes are found to
be prognostic candidate genes in all three categories, i.e.,
the information of CNA, expression and methylation of
these genes can all be used to help classify patient samples
into long survival and short survival. Besides, there are
25 genes being identified as prognostic candidate genes in
two of the three categories and 44 genes in one of the three
categories. The distribution of potential prognostic candi-
date genes in three categories is displayed as Venn diagram
(Fig. 5), in which the number of genes in the category
of expression is largest. The results of survival analysis
show the prognostic values of the genes predicted by
CapsNetMMD, which may corroborate the effectiveness
and superiority of CapsNetMMD.

Furthermore, we analyze the results of survival analysis on
top 10 ranked genes in detail. The KM plots with p-values
smaller than 0.05 in CNA, DNA methylation and mRNA
expression are shown in Fig. 6, Supplementary Figure 21, 3,
respectively. Among the top 10 ranked genes, 8 genes are
identified as potential prognostic candidate genes in breast
cancer: 4 genes in CNA (p� value ¼ 2:2� 10�2 for RPL14,
p-value ¼ 2:1� 10�3 for CHD4, p� value ¼ 1:6� 10�2 for
LAPTM4A and p� value ¼ 2:3� 10�2 for DYNC1H1), 4
genes in methylation (p� value ¼ 8:0� 10�3 for AEBP1,
p-value ¼ 1:6� 10�3 for DSTN, p-value ¼ 4:8� 10�2 for
ORAOV1 and p-value ¼ 4:2� 10�2 for DYNC1H1) and
5 genes in expression (p� value ¼ 1:1� 10�2 for RPL14,

p-value ¼ 2:1� 10�2 for AEBP1, p-value ¼ 2:4� 10�3 for
LAPTM4A, p-value ¼ 4:3 � 10�2 for DYNC1H1 and
p-value ¼ 3:8� 10�2 for RNF213). In order to analyze these
genes conveniently, their names and scores are also listed in
Supplementary Table III.

Based on the information provided by Supplementary Table
III, we can see that geneRPL14 ranks firstwith the highest nor-
malized score. Besides, from Fig. 6 and Supplementary Figure 3,
RPL14 is also identified as potential prognostic candidate
gene in both CNA (p-value ¼ 2:2� 10�2) and expression
ðp-value ¼ 1:1� 10�2Þ. By consulting literatures, significant
loss of heterozygosity of RPL14 are detected in several tumors
such as non-small cell lung cancer according to [35] and
similar results are also obtained in the study of [36], which
suggests that the analysis to RPL14may be used as a potential
molecular marker of esophageal squamous cell carcinomas
[36]. These discoveries are to some extent in accordance with
the above results of our study, which indicate that gene RPL14
may play important roles in cancer progression. In addition,
the second-ranked gene AEBP1 simultaneously appears in
categories of methylation ðp-value ¼ 8:0� 10�3Þ and expres-
sion ðp-value ¼ 2:1� 10�2Þ while the fourth-ranked gene
LAPTM4A in categories of CNA ðp-value ¼ 1:6� 10�2Þ and
expression ðp-value ¼ 2:4� 10�3Þ.

Moreover, according to Fig. 6, Supplementary Figure 2, 3,
the eighth-ranked gene DYNC1H1 is found to be potential
prognostic candidate gene in all three categories
(p-value ¼ 2:3� 10�2 for CNA, p-value ¼ 4:2� 10�2 formeth-
ylation and p-value ¼ 4:3� 10�2 for methylation). Recently,
there are researches finding that the missense mutations
of DYNC1H1 are related to deleterious cancer including
pancreatic cancer, colorectal cancer, etc [37]. Meanwhile,
earlier researches indicate that DYNC1H1 mutation can
cause spinal muscular atrophy [38] and Charcot-Marie-
Tooth disease [39]. Although the relationship between
DYNC1H1 and breast cancer is not discussed in these
references, the functions of DYNC1H1 in other diseases
especially other cancers may imply its potential values
in the researches of breast cancer.

Fig. 5. Venn diagram of the distribution of potential prognostic candidate
genes in three categories.

Fig. 6. The KM plots of RPL14, CHD4, LAPTM4A, and DYNC1H1
using CNA.
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4 CONCLUSION AND DISCUSSION

We present a deep learning method named CapsNetMMD to
identify breast cancer-related genes bymodelingmulti-omics
data based on capsule network. Commonly, with the help of
known disease-related genes, prediction of novel genes can
be transformed into an issue of supervised classification [40].
Therefore, appropriate features and suitable classifier are cru-
cial for the results of the research. In this study, we integrate
multi-omics data of breast cancer from TCGA database to
generate the feature matrix of genes, which include mRNA
expression, z scores for mRNA expression, DNAmethylation
and two forms of CNAs. These five kinds of data comprehen-
sively provide useful information of genes in different omics
and the features are further reshaped to obtain a valid input
for the classifier. Besides, the settings of instantiation parame-
ters and dynamic routing mechanism in the modeling pro-
cess make the classifier learn effectively from the training
dataset and precisely predict novel disease-related genes. In
all, the significantly better performance of CapsNetMMD
compared with other existing machine learning method is
attributed to not only the integration of multi-omics data but
also the modeling based on capsule network. The predicted
genes with prognostic values in breast cancer may serve as
candidates for biologists and medical scientists in the future
studies of biomarkers of breast cancer.

In spite of the superiority of CapsNetMMD in discovery of
breast cancer-related genes, there are still some limitations in
its generalization to other diseases. For example, since super-
vised classification is performed based on known breast can-
cer-related genes, CapsNetMMD cannot be applied to the
diseases that have no known genes. In that case, the identifica-
tion of disease-related geneswill be transformed into the issue
of unsupervised classification [41], [42], [43], [44], which is
usually implemented with clustering methods and the results
will be hard to evaluate. Alternatively, the network-based
algorithms [31], [45], [46], [47] can be used by introducing sim-
ilarities between diseases. Specifically, the relationships
between candidate genes and the disease that to be studied
are assessed through exploring the associations between can-
didate genes and known genes related to similar diseases [48],
[49], [50]. In addition, due to the fact that a critical factor lead-
ing to the success of CapsNetMMD is the integration of multi-
omics data of breast cancer, this method is unsuitable for dis-
eases whose multi-omics data are incomplete even unavail-
able. Nonetheless, the reduced cost and rapid development of
high-throughput technologies (e.g., next generation sequenc-
ing,microarrays, etc.) greatly promote the researches ofmulti-
omics data, thus it is predictable that more complete data will
be available in the future. Moreover, many other information
about genes including their interactions with non-coding
RNAs such as microRNAs (miRNAs) or long non-coding
RNAs (lncRNAs), which have been reported to play importa-
tion roles in human cancers [51], [52], are not taken into
account in this study.Wewill incorporate these data into Cap-
sNetMMD in future works to generate a more comprehensive
model in uncovering themechanismunder humandiseases.
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