
Published as a conference paper at ICLR 2020

CAPSULES WITH INVERTED DOT-PRODUCT

ATTENTION ROUTING

Yao-Hung Hubert Tsai1,2, Nitish Srivastava1, Hanlin Goh1, Ruslan Salakhutdinov1,2

1Apple Inc., 2Carnegie Mellon University
yaohungt@cs.cmu.edu,{nitish srivastava,hanlin,rsalakhutdinov}@apple.com

ABSTRACT

We introduce a new routing algorithm for capsule networks, in which a
child capsule is routed to a parent based only on agreement between the par-
ent’s state and the child’s vote. The new mechanism 1) designs routing via
inverted dot-product attention; 2) imposes Layer Normalization as normal-
ization; and 3) replaces sequential iterative routing with concurrent iterative
routing. When compared to previously proposed routing algorithms, our
method improves performance on benchmark datasets such as CIFAR-10 and
CIFAR-100, and it performs at-par with a powerful CNN (ResNet-18) with
4× fewer parameters. On a different task of recognizing digits from over-
layed digit images, the proposed capsule model performs favorably against
CNNs given the same number of layers and neurons per layer. We believe
that our work raises the possibility of applying capsule networks to complex
real-world tasks. Our code is publicly available at: https://github.

com/apple/ml-capsules-inverted-attention-routing. An
alternative implementation is available at: https://github.com/

yaohungt/Capsules-Inverted-Attention-Routing/blob/

master/README.md.

1 INTRODUCTION

Capsule Networks (CapsNets) represent visual features using groups of neurons. Each group (called
a “capsule”) encodes a feature and represents one visual entity. Grouping all the information about
one entity into one computational unit makes it easy to incorporate priors such as “a part can belong
to only one whole” by routing the entire part capsule to its parent whole capsule. Routing is mutually
exclusive among parents, which ensures that one part cannot belong to multiple parents. Therefore,
capsule routing has the potential to produce an interpretable hierarchical parsing of a visual scene.
Such a structure is hard to impose in a typical convolutional neural network (CNN). This hierarchical
relationship modeling has spurred a lot of interest in designing capsules and their routing algorithms
(Sabour et al., 2017; Hinton et al., 2018; Wang & Liu, 2018; Zhang et al., 2018; Li et al., 2018;
Rajasegaran et al., 2019; Kosiorek et al., 2019).

In order to do routing, each lower-level capsule votes for the state of each higher-level capsule. The
higher-level (parent) capsule aggregates the votes, updates its state, and uses the updated state to
explain each lower-level capsule. The ones that are well-explained end up routing more towards
that parent. This process is repeated, with the vote aggregation step taking into account the extent
to which a part is routed to that parent. Therefore, the states of the hidden units and the routing
probabilities are inferred in an iterative way, analogous to the M-step and E-step, respectively, of
an Expectation-Maximization (EM) algorithm. Dynamic Routing (Sabour et al., 2017) and EM-
routing (Hinton et al., 2018) can both be seen as variants of this scheme that share the basic iterative
structure but differ in terms of details, such as their capsule design, how the votes are aggregated,
and whether a non-linearity is used.

We introduce a novel routing algorithm, which we called Inverted Dot-Product Attention Routing. In
our method, the routing procedure resembles an inverted attention mechanism, where dot products
are used to measure agreement. Specifically, the higher-level (parent) units compete for the attention
of the lower-level (child) units, instead of the other way around, which is commonly used in attention

1

https://github.com/apple/ml-capsules-inverted-attention-routing
https://github.com/apple/ml-capsules-inverted-attention-routing
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md

Published as a conference paper at ICLR 2020

Convolutional  
Features

Convolutional  
Backbone

Primary 
Capsules

Convolution  
+ LayerNorm

Routing Routing

Convolutional  
Capsules

Fully-Connected  
Capsules

Class  
Capsules

Classifier

Logits

Routing Routing

Figure 1: Illustration of a Capsule network with a backbone block, 3 convolutional capsule layers, 2 fully-
connected capsule layers, and a classifier. The first convolutional capsule layer is called the primary capsule
layer. The last fully-connected capsule layer is called the class capsule layer.

models. Hence, the routing probability directly depends on the agreement between the parent’s
pose (from the previous iteration step) and the child’s vote for the parent’s pose (in the current
iteration step). We also propose two modifications for our routing procedure – (1) using Layer
Normalization (Ba et al., 2016) as normalization, and (2) doing inference of the latent capsule states
and routing probabilities jointly across multiple capsule layers (instead of doing it layer-wise). These
modifications help scale up the model to more challenging datasets.

Our model achieves comparable performance as the state-of-the-art convolutional neural networks
(CNNs), but with much fewer parameters, on CIFAR-10 (95.14% test accuracy) and CIFAR-100
(78.02% test accuracy). We also introduce a challenging task to recognize single and multiple over-
lapping objects simultaneously. To be more precise, we construct the DiverseMultiMNIST dataset
that contains both single-digit and overlapping-digits images. With the same number of layers and
the same number of neurons per layer, the proposed CapsNet has better convergence than a baseline
CNN. Overall, we argue that with the proposed routing mechanism, it is no longer impractical to
apply CapsNets on real-world tasks. We will release the source code to reproduce the experiments.

2 CAPSULE NETWORK ARCHITECTURE

An example of our proposed architecture is shown in Figure 1. The backbone is a standard feed-
forward convolutional neural network. The features extracted from this network are fed through
another convolutional layer. At each spatial location, groups of 16 channels are made to create
capsules (we assume a 16-dimensional pose in a capsule). LayerNorm is then applied across the 16
channels to obtain the primary capsules. This is followed by two convolutional capsule layers, and
then by two fully-connected capsule layers. In the last capsule layer, each capsule corresponds to
a class. These capsules are then used to compute logits that feed into a softmax to computed the
classification probabilities. Inference in this network requires a feed-forward pass up to the primary
capsules. After this, our proposed routing mechanism (discussed in the next section) takes over.

In prior work, each capsule has a pose and some way of representing an activation probability. In
Dynamic Routing CapsNets (Sabour et al., 2017), the pose is represented by a vector and the activa-
tion probability is implicitly represented by the norm of the pose. In EM Routing CapsNets (Hinton
et al., 2018), the pose is represented by a matrix and the activation probability is determined by
the EM algorithm. In our work, we consider a matrix-structured pose in a capsule. We denote the
capsules in layer L as PL and the i-th capsule in layer L as pL

i . The pose pL
i ∈ R

dL in a vector

form and will be reshaped to R

√
dL×

√
dL when representing it as a matrix, where dL is the number

of hidden units grouped together to make capsules in layer L. The activation probability is not ex-
plicitly represented. By doing this, we are essentially asking the network to represent the absence of
a capsule by some special value of its pose.

3 INVERTED DOT-PRODUCT ATTENTION ROUTING

The proposed routing process consists of two steps. The first step computes the agreement between
lower-level capsules and higher-level capsules. The second step updates the pose of the higher-level
capsules.

Step 1: Computing Agreement: To determine how capsule j in layer L + 1 (pL+1

j) agrees with

capsule i in layer L (pL
i), we first transform the pose pL

i to the vote vL
ij for the pose pL+1

j . This

2

Published as a conference paper at ICLR 2020

Higher-level Capsules

Lower-level Capsules

pose

…

…

Agreement by Dot-Product Attention

multiplication

∑ LayerNorm(⋅)
routing  

coefficients

Pose UpdateRouting Coefficients as Normalized Agreement

agreement

weight

matrix multiplication

reshape

⋅
dot product

⊤

Softmax(⋅)

…

…

…

…

Figure 2: Illustration of the Inverted Dot-Product Attention Routing with the pose admitting matrix structure.

Procedure 1 Inverted Dot-product Attention Routing algorithm returns updated poses of the cap-
sules in layer L+ 1 given poses in layer L and L+ 1 and weights between layer L and L+ 1.

1: procedure INVERTED DOT-PRODUCT ATTENTION ROUTING(PL, PL+1, WL)
2: for all capsule i in layer L and capsule j in layer (L+ 1): vL

ij ←WL
ij · pL

i ⊲ vote

3: for all capsule i in layer L and capsule j in layer (L+ 1): aLij ← pL+1

j

⊤ · vL
ij ⊲ agreement

4: for all capsule i in layer L: rLij ← exp(aLij) /
∑

j′ exp(a
L
ij′) ⊲ routing coefficient

5: for all capsule j in layer (L+ 1): pL+1

j ←
∑

i r
L
ijv

L
ij ⊲ pose update

6: for all capsule j in layer (L+ 1): pL+1

j ← LayerNorm(pL+1

j) ⊲ normalization

7: return PL+1

transformation is done using a learned transformation matrix WL
ij :

vL
ij = WL

ij · pL
i , (1)

where the matrix WL
ij ∈ R

dL+1×dL if the pose has a vector structure and WL
ij ∈ R

√
dL+1×

√
dL

(requires dL+1 = dL) if the pose has a matrix structure. Next, the agreement (aLij) is computed by

the dot-product similarity between a pose pL+1

j and a vote vL
ij :

aLij = pL+1

j

⊤ · vL
ij . (2)

The pose pL+1

j is obtained from the previous iteration of this procedure, and will be set to 0 initially.

Step 2: Computing Poses: The agreement scores aLij are passed through a softmax function to

determine the routing probabilities rLij :

rLij =
exp(aLij)

∑

j′ exp(a
L
ij′)

, (3)

where rLij is an inverted attention score representing how higher-level capsules compete for attention

of lower-level capsules. Using the routing probabilities, we update the pose pL+1

j for capsule j in
layer L+ 1 from all capsules in layer L:

pL+1

j = LayerNorm

(

∑

i

rLijv
L
ij

)

. (4)

We adopt Layer Normalization (Ba et al., 2016) as the normalization, which we empirically find it
to be able to improve the convergence for routing. The routing algorithm is summarized in Proce-
dure 1 and Figure 2.

4 INFERENCE AND LEARNING

To explain how inference and learning are performed, we use Figure 1 as an example. Note that
the choice of the backbone, the number of capsules layers, the number of capsules per layer, the
design of the classifier may vary for different sets of experiments. We leave the discussions of
configurations in Sections 5 and 6, and in the Appendix.

3

Published as a conference paper at ICLR 2020

Procedure 2 Inference. Inference returns class logits given input images and parameters for the
model. Capsule layer 1 denotes the primary capsules layer and layer N denotes the class capsules
layer.

1: procedure INFERENCE(I;θ,W1:N−1)
/* Pre-Capsules Layers: backbone features extraction */

2: F← backbone(I;θ) ⊲ backbone feature
/* Capsules Layers: initialization */

3: P1 ← LayerNorm
(

convolution(F;θ)
)

⊲ primary capsules

4: for L in layers 2 to N : PL ← 0s ⊲ non-primary capsules
/* Capsules Layers (1st Iteration): sequential routing */

5: for L in layers 1 to (N − 1) do
6: PL+1 ← Routing (PL, PL+1; WL) ⊲ non-primary capsules

/* Capsules Layers (2nd to tth Iteration): concurrent routing */
7: for (t− 1) iterations do
8: for L in layers 1 to (N − 1): P̄L+1 ← Routing (PL, PL+1; WL)
9: for L in layers 2 to N : PL ← P̄L ⊲ non-primary capsules

/* Post-Capsules Layers: classification */
10: for all capsule i in layer N : ŷi ← classifier(pN

i ;θ) ⊲ class logits
11: return ŷ

4.1 INFERENCE

For ease of exposition, we decompose a CapsNet into pre-capsule, capsule and post-capsule layers.

Pre-Capsule Layers: The goal is to obtain a backbone feature F from the input image I. The
backbone model can be either a single convolutional layer or ResNet computational blocks (He
et al., 2016).

Capsule Layers: The primary capsules P1 are computed by applying a convolution layer and
Layer Normalization to the backbone feature F. The non-primary capsules layers P2:N are ini-
tialized to be zeros 1. For the first iteration, we perform one step of routing sequentially in each
capsule layer. In other words, the primary capsules are used to update their parent convolutional
capsules, which are then used to update the next higher-level capsule layer, and so on. After doing
this first pass, the rest of the routing iterations are performed concurrently. Specifically, all capsule
layers look at their preceding lower-level capsule layer and perform one step of routing simultane-
ously. This procedure is an example of a parallel-in-time inference method. We call it “concurrent
routing” as it concurrently performs routing between capsules layers per iteration, leading to bet-
ter parallelism. Figure 3 illustrates this procedure from routing iteration 2 to t. It is worth noting
that, our proposed variant of CapsNet is a weight-tied concurrent routing architecture with Layer
Normalization, which Bai et al. (2019) empirically showed could converge to fixed points.

Previous CapsNets (Sabour et al., 2017; Hinton et al., 2018) used sequential layer-wise iterative
routing between the capsules layers. For example, the model first performs routing between layer
L − 1 and layer L for a few iterations. Next, the model performs routing between layer L and
L + 1 for a few iterations. When unrolled, this sequential iterative routing defines a very deep
computational graph with a single path going from the inputs to the outputs. This deep graph could
lead to a vanishing gradients problem and limit the depth of a CapsNet that can be trained well,
especially if any squashing non-linearities are present. With concurrent routing, the training can be
made more stable, since each iteration has a more cumulative effect.

Post-Capsule Layers: The goal is to obtain the predicted class logits ŷ from the last capsule layer
(the class capsules) PN . In our CapsNet, we use a linear classifier for class i in class capsules:
ŷi = classifier(pN

i). This classifier is shared across all the class capsules.

1 As compared to 0 initialization, we observe that a random initialization leads to similar converged perfor-
mance but slower convergence speed. We also tried to learn biases for capsules’ initialization, which results in
similar converged performance and same convergence speed. As a summary, we initialize the capsule’s value
to 0 for simplicity.

4

Published as a conference paper at ICLR 2020

Convolutional 
Features

Primary  
Capsules

Class  
Capsules

Fully-
Connected 
Capsules

Convolutional 
Capsules

Convolutional 
Capsules

(Initialized to Zeros) (Initialized to Zeros) (Initialized to Zeros) (Initialized to Zeros)

Primary  
Capsules

Class  
Capsules

Fully-
Connected 
Capsules

Convolutional 
Capsules

Convolutional 
Capsules

copy routing routing routing routing

Primary  
Capsules

Class  
Capsules

Fully-
Connected 
Capsules

Convolutional 
Capsules

Convolutional 
Capsules

Primary  
Capsules

Class  
Capsules

Fully-
Connected 
Capsules

Convolutional 
Capsules

Convolutional 
Capsules

Iteration 1

Iteration 2

Iteration t

copy

copy

routing

routing routing routing routing

routing routing routing

Logits

… …

Figure 3: Illustration of the proposed concurrent routing from iteration 2 to t with the example in Figure 1.
The concurrent routing is a parallel-in-time routing procedure for all capsules layers.

Table 1: Classification results on CIFAR-10/CIFAR-100 without ensembling models. We report the best
performance for CapsNets when considering 1 to 5 routing iterations. We report the performance from the best
test model for baseline routing methods, our routing method, and ResNet (He et al., 2016).

Method Backbone
Test Accuracy (# of parameters)

CIFAR-10 CIFAR-100

Dynamic Routing (Sabour et al., 2017) simple 84.08% (7.99M) 56.96% (31.59M)
EM Routing (Hinton et al., 2018) simple 82.19 (0.45M) 37.73% (0.50M)

Inverted Dot-Product Attention Routing (ours) simple 85.17 (0.56M) 57.32% (1.46M)

Dynamic Routing (Sabour et al., 2017) ResNet 92.65% (12.45M) 71.70% (36.04M)
EM Routing (Hinton et al., 2018) ResNet 92.15% (1.71M) 58.08% (1.76M)

Inverted Dot-Product Attention Routing (ours) ResNet 95.14% (1.83M) 78.02% (2.80M)

Baseline CNN (simple) 87.10% (18.92M) 62.30% (19.01M)
ResNet-18 (He et al., 2016) 95.11% (11.17M) 77.92% (11.22M)

4.2 LEARNING

We update the parameters θ,W1:N−1 by stochastic gradient descent. For multiclass classification,
we use multiclass cross-entropy loss. For multilabel classification, we use binary cross-entropy loss.
We also tried Margin loss and Spread loss which are introduced by prior work (Sabour et al., 2017;
Hinton et al., 2018). However, these losses do not give us better performance against cross-entropy
and binary cross-entropy losses.

4.3 COMPARISONS WITH EXISTING CAPSNET MODELS

Having described our model in detail, we can now place the model in the context of previous work.
In the following table, we list the major differences among different variants of CapsNets.

Dynamic Routing
(Sabour et al., 2017)

EM Routing
(Hinton et al., 2018)

Inverted Dot-Product Attention Routing
(ours)

Routing sequential iterative routing sequential iterative routing concurrent iterative routing

Poses vector matrix matrix
Activations n/a (norm of poses) determined by EM n/a

Non-linearity Squash function n/a n/a
Normalization n/a n/a Layer Normalization

Loss Function Margin loss Spread loss Cross Entropy/Binary Cross Entropy

5 EXPERIMENTS ON CIFAR-10 AND CIFAR-100

CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) consist of small 32 × 32 real-world
color images with 50, 000 for training and 10, 000 for evaluation. CIFAR-10 has 10 classes, and
CIFAR-100 has 100 classes. We choose these natural image datasets to demonstrate our method
since they correspond to a more complex data distribution than digit images.

5

Published as a conference paper at ICLR 2020

Routing Method
Test Accuracy for Various Routing Iterations

1 2 3 4 5 std

Dynamic (Sabour et al., 2017) 84.08% 83.30% 82.88% 82.90% 82.11% 0.64%
EM (Hinton et al., 2018) 58.08% 82.19% 78.43% 46.13% 31.41% 19.20%

Inverted Dot-Product Attention-A 66.83% 65.83% 66.22% 77.03% 10.00%∗ 23.96%
Inverted Dot-Product Attention-B 84.24% 83.35% 80.21% 83.37% 82.07% 1.40%
Inverted Dot-Product Attention-C 82.55% 83.12% 82.13% 82.38% 81.97% 0.40%

Inverted Dot-Product Attention 84.24% 85.05% 84.83% 85.17% 85.09% 0.34%

Figure 4: Convergence analysis for CapsNets on CIFAR-10 with simple backbone model. Top: convergence
plots for different routing mechanisms. Bottom left: classification results with respect to different routing
iterations. Inverted Dot-Product Attention-A denotes our routing approach without Layer Normalization. In-
verted Dot-Product Attention-B denotes our routing approach with sequential routing. Inverted Dot-Product
Attention-C denotes our routing approach with activations in capsules. ∗ indicates a uniform prediction. Bot-
tom right: memory usage and inference time for the proposed Inverted Dot-Product Attention Routing. For
fairness, the numbers are benchmarked using the same 8-GPU machine with batch size 128. Note that for fu-
ture comparisons, we refer the readers to an alternative implementation for our model: https://github.
com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md. It
uses much less memory, has a significantly faster inference speed, and retains the same performance.

Comparisons with other CapsNets and CNNs: In Table 1, we report the test accuracy obtained
by our model, along with other CapsNets and CNNs. Two prior CapsNets are chosen: Dynamic
Routing CapsNets (Sabour et al., 2017) and EM Routing CapsNets (Hinton et al., 2018). For each
CapsNet, we apply two backbone feature models: simple convolution followed by ReLU nonlinear
activation and a ResNet (He et al., 2016) backbone. For CNNs, we consider a baseline CNN with
3 convolutional layers followed by 1 fully-connected classifier layer. ResNet-18 is selected as a
representative of SOTA CNNs. See Appendix A.1 for detailed configurations.

First, we compare previous routing approaches against ours. In a general trend, the proposed Cap-
sNets perform better than the Dynamic Routing CapsNets, and the Dynamic Routing CapsNets
perform better than EM Routing CapsNets. The performance differs more on CIFAR-100 than
on CIFAR-10. For example, with simple convolutional backbone, EM Routing CapsNet can only
achieve 37.73% test accuracy while ours can achieve 57.32%. Additionally, for all CapsNets, we
see improved performance when replacing a single convolutional backbone with ResNet backbone.
This result is not surprising since ResNet structure has better generalizability than a single convo-
lutional layer. For the number of parameters, ours and EM Routing CapsNets have much fewer as
compared to Dynamic Routing CapsNets. The reason is due to different structures of capsule’s pose.
Ours and EM Routing CapsNets have matrix-structure poses, and Dynamic Routing CapsNets have
vector-structure poses. With matrix structure, weights between capsules are only O(d) with d being
pose’s dimension; with vector structure, weights are O(d2). To conclude, combining the proposed
Inverted Dot-Product Attention Routing with ResNet backbone gives us both the advantages of a
low number of parameters and high performance.

Second, we discuss the performance difference between CNNs and CapsNets. We see that, with
a simple backbone (a single convolutional layer), it is hard for CapsNets to reach the same per-
formance as CNNs. For instance, our routing approach can only achieve 57.32% test accuracy on
CIFAR-100 while the baseline CNN achieves 62.30%. However, with a SOTA backbone structure
(ResNet backbone), the proposed routing approach can reach competitive performance (95.14% on
CIFAR-10) as compared to the SOTA CNN model (ResNet-18 with 95.11% on CIFAR-10).

Convergence Analysis: In Figure 4, top row, we analyze the convergence for CapsNets with respect
to the number of routing iterations. The optimization hyperparameters are chosen optimally for
each routing mechanism. For Dynamic Routing CapsNets (Sabour et al., 2017), we observe a mild
performance drop when the number of iterations increases. For EM Routing CapsNets (Hinton et al.,
2018), the best-performed number of iterations is 2. Increasing or decreasing this number severely
hurts the performance. For our proposed routing mechanism, we find a positive correlation between
performance and number of routing iterations. The performance variance is also the smallest among

6

https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md

Published as a conference paper at ICLR 2020

Method Pose Structure Test Acc. # params.

CapsNet∗ vector 83.39% 42.48M

CapsNet matrix 80.59% 9.96M
CapsNet vector 85.74% 42.48M

Baseline CNN 79.81% 19.55M

0

42.5

85

127.5

170

Training Time (ms)

Baseline CNN
CapsNet (Vector; 2 routing iterations)
CapsNet (Matrix; 2 routing iterations)

0

2

4

6

8

Memory (GB)
0

32.5

65

97.5

130

Evaluation Time (ms)

Figure 5: Table and convergence plot for baseline CNN and CapsNets with different pose structures.
We consider the same optimizer, the same number of layers, and the same number of neurons per layer
for the models. For fairness, memory usage/ inference time are benchmarked using the same 8-GPU
machine with batch size 128. CapsNet∗ denotes the Dynamic routing method and CapsNet denotes
our proposed Inverted Dot-Product Attention Routing method. Note that for future comparisons, we re-
fer the readers to an alternative implementation for our model: https://github.com/yaohungt/

Capsules-Inverted-Attention-Routing/blob/master/README.md. It uses much less mem-
ory, has a significantly faster inference speed, and retains the same performance. The memory usage and
inference time in this implementation now are only marginally higher than the baseline CNN.

the three routing mechanisms. This result suggests our approach has better optimization and stable
inference. However, selecting a larger iteration number may not be ideal since memory usage and
inference time will also increase (shown in the bottom right in Figure 4). Note that, we observe sharp
performance jitters during training when the model has not converged (especially when the number
of iterations is high). This phenomenon is due to applying LayerNorm on a low-dimensional vector.
The jittering is reduced when we increase the pose dimension in capsules.

Ablation Study: Furthermore, we inspect our routing approach with the following ablations: 1) In-
verted Dot-Product Attention-A: without Layer Normalization; 2) Inverted Dot-Product Attention-
B: replacing concurrent to sequential iterative routing; and 3) Inverted Dot-Product Attention-C:
adding activations in capsules 2. The results are presented in Figure 4 bottom row. When remov-
ing Layer Normalization, performance dramatically drops from our routing mechanism. Notably,
the prediction becomes uniform when the iteration number increases to 5. This result implies that
the normalization step is crucial to the stability of our method. When replacing concurrent with
sequential iterative routing, the positive correlation between performance and iteration number no
longer exists. This fact happens in the Dynamic Routing CapsNet as well, which also uses sequential
iterative routing. When adding activations to our capsule design, we obtain a performance deterio-
ration. Typically, squashing activations such as sigmoids make it harder for gradients to flow, which
might explain this. Discovering the best strategy to incorporate activations in capsule networks is an
interesting direction for future work.

6 EXPERIMENTS ON DIVERSEMULTIMNIST

The goal in this section is to compare CapsNets and CNNs when they have the same number of
layers and the same number of neurons per layer. Specifically, we would like to examine the dif-
ference of the representation power between the routing mechanism (in CapsNets) and the pooling
operation (in CNNs). A challenging setting is considered in which objects may be overlapping with
each other, and there may be a diverse number of objects in the image. To this end, we construct the
DiverseMultiMNIST dataset which is extended from MNIST (LeCun et al., 1998), and it contains
both single-digit and two overlapping digit images. The task will be multilabel classification, where
the prediction is said to be correct if and only if the recognized digits match all the digits in the
image. We plot the convergence curve when the model is trained on 21M images from DiverseMul-
tiMNIST. Please see Appendix B.2 for more details on the dataset and Appendix B.1 for detailed
model configurations. The results are reported in Figure 5.

First, we compare our routing method against the Dynamic routing one. We observe an improved
performance from the CapsNet∗ to the CapsNet (83.39% to 85.74% with vector-structured poses).
The result suggests a better viewpoint generalization for our routing mechanism.

Second, we compare baseline CNN against our CapsNet. From the table, we see that CapsNet
has better test accuracy compared to CNN. For example, the CapsNet with vector-structured poses
reaches 85.74% test accuracy, and the baseline CNN reaches 79.81% test accuracy. In our CNN
implementation, we use average pooling from the last convolutional layer to its next fully-connected

2We consider the same kind of capsules activations as described in EM Routing CapsNets (Hinton et al.,
2018).

7

https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md

Published as a conference paper at ICLR 2020

layer. We can see that having a routing mechanism works better than pooling. However, one may
argue that the pooling operations requires no extra parameter but routing mechanism does, and
hence it may not be fair to compare their performance. To address this issue, in the baseline CNN,
we replace the pooling operation with a fully-connected operation. To be more precise, instead of
using average pooling, we learn the entire transformation matrix from the last convolutional layer to
its next fully-connected layer. This procedure can be regarded as considering pooling with learnable
parameters. After doing this, the number of parameters in CNN increases to 42.49M , and the
corresponding test accuracy is 84.84%, which is still lower than 85.74% from the CapsNet. We
conclude that, when recognizing overlapping and diverse number of objects, the routing mechanism
has better representation power against the pooling operation.

Last, we compare CapsNet with different pose structures. The CapsNet with vector-structured poses
works better than the CapsNet with matrix-structured poses (80.59% vs 85.74%). However, the
former requires more parameters, more memory usage, and more inference time. If we increase
the number of parameters in the matrix-pose CapsNet to 42M , its test accuracy rises to 91.17%.
Nevertheless, the model now requires more memory usage and inference time as compared to using
vector-structured poses. We conclude that more performance can be extracted from vector-structured
poses but at the cost of high memory usage and inference time.

7 RELATED WORK

The idea of grouping a set of neurons into a capsule was first proposed in Transforming Auto-
Encoders (Hinton et al., 2011). The capsule represented the multi-scale recognized fragments of
the input images. Given the transformation matrix, Transforming Auto-Encoders learned to dis-
cover capsules’ instantiation parameters from an affine-transformed image pair. Sabour et al. (2017)
extended this idea to learn part-whole relationships in images systematically. Hinton et al. (2018)
cast the routing mechanism as fitting a mixture of Gaussians. The model demonstrated an im-
pressive ability for recognizing objects from novel viewpoints. Recently, Stacked Capsule Auto-
Encoders (Kosiorek et al., 2019) proposed to segment and compose the image fragments without
any supervision. The work achieved SOTA results on unsupervised classification. However, despite
showing promising applications by leveraging inherent structures in images, the current literature
on capsule networks has only been applied on datasets of limited complexity. Our proposed new
routing mechanism instead attempts to apply capsule networks to more complex data.

Our model also relates to Transformers (Vaswani et al., 2017) and Set Transformers (Lee et al.,
2019), where dot-product attention is also used. In the language of capsules, a Set Transformer
can be seen as a model in which a higher-level unit can choose to pay attention to K lower-level
units (using K attention heads). Our model inverts the attention direction (lower-level units “attend”
to parents), enforces exclusivity among routing to parents and does not impose any limits on how
many lower-level units can be routed to any parent. Therefore, it combines the ease and parallelism
of dot-product routing derived from a Transformer, with the interpretability of building a hierarchical
parsing of a scene derived from capsule networks.

There are other works presenting different routing mechanisms for capsules. Wang & Liu (2018)
formulated the Dynamic routing (Sabour et al., 2017) as an optimization problem consisting of a
clustering loss and a KL regularization term. Zhang et al. (2018) generalized the routing method
within the framework of weighted kernel density estimation. Li et al. (2018) approximated the
routing process with two branches and minimized the distributions between capsules layers by an
optimal transport divergence constraint. Phaye et al. (2018) replaced standard convolutional struc-
tures before capsules layers by densely connected convolutions. It is worth noting that this work
was the first to combine SOTA CNN backbones with capsules layers. Rajasegaran et al. (2019) pro-
posed DeepCaps by stacking 10+ capsules layers. It achieved 92.74% test accuracy on CIFAR-10,
which was the previous best for capsule networks. Instead of looking for agreement between cap-
sules layers, Choi et al. (2019) proposed to learn deterministic attention scores only from lower-level
capsules. Nevertheless, without agreement, their best-performed model achieved only 88.61% test
accuracy on CIFAR-10. In contrast to these prior work, we present a combination of inverted dot-
product attention routing, layer normalization, and concurrent routing. To the best of our knowledge,
we are the first to show that capsule networks can achieve comparable performance against SOTA
CNNs. In particular, we achieve 95.14% test accuracy for CIFAR-10 and 78.02% for CIFAR-100.

8

Published as a conference paper at ICLR 2020

8 CONCLUSION AND FUTURE WORK

In this work, we propose a novel Inverted Dot-Product Attention Routing algorithm for Capsule
networks. Our method directly determines the routing probability by the agreements between parent
and child capsules. Routing algorithms from prior work require child capsules to be explained
by parent capsules. By removing this constraint, we are able to achieve competitive performance
against SOTA CNN architectures on CIFAR-10 and CIFAR-100 with the use of a low number of
parameters. We believe that it is no longer impractical to apply capsule networks to datasets with
complex data distribution. Two future directions can be extended from this paper:

• In the experiments, we show how capsules layers can be combined with SOTA CNN back-
bones. The optimal combinations between SOTA CNN structures and capsules layers may
be the key to scale up to a much larger dataset such as ImageNet.

• The proposed concurrent routing is as a parallel-in-time and weight-tied inference process.
The strong connection with Deep Equilibrium Models (Bai et al., 2019) can potentially
lead us to infinite-iteration routing.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Neural Information
Processing Systems (NeurIPS), 2019.

Jaewoong Choi, Hyun Seo, Suee Im, and Myungju Kang. Attention routing between capsules. arXiv
preprint arXiv:1907.01750, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In Interna-
tional Conference on Artificial Neural Networks, pp. 44–51. Springer, 2011.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Adam R Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked capsule autoen-
coders. arXiv preprint arXiv:1906.06818, 2019.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3744–3753, 2019.

Hongyang Li, Xiaoyang Guo, Bo DaiWanli Ouyang, and Xiaogang Wang. Neural network encap-
sulation. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–267,
2018.

Sai Samarth R Phaye, Apoorva Sikka, Abhinav Dhall, and Deepti Bathula. Dense and diverse
capsule networks: Making the capsules learn better. arXiv preprint arXiv:1805.04001, 2018.

9

Published as a conference paper at ICLR 2020

Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Suranga
Seneviratne, and Ranga Rodrigo. Deepcaps: Going deeper with capsule networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10725–10733, 2019.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Dilin Wang and Qiang Liu. An optimization view on dynamic routing between capsules. 2018.

Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast dynamic routing based on weighted kernel density
estimation. In International Symposium on Artificial Intelligence and Robotics, pp. 301–309.
Springer, 2018.

A MODEL CONFIGURATIONS FOR CIFAR-10/CIFAR-100

A.1 MODEL SPECIFICATIONS

The configuration choices of Dynamic Routing CapsNets and EM Routing CapsNets are followed
by prior work (Sabour et al., 2017; Hinton et al., 2018). We empirically find their configurations
perform the best for their routing mechanisms (instead of applying our network configurations to
their routing mechanisms). The optimizers are chosen to reach the best performance for all models.
We list the model specifications in Table 2, 3, 4, 5, 6, 7, 8, and 9.

We only show the specifications for CapsNets with a simple convolutional backbone. When con-
sidering a ResNet backbone, two modifications are performed. First, we replace the simple feature
backbone with ResNet feature backbone. Then, the input dimension of the weights after the back-
bone is set as 128. A ResNet backbone contains a 3× 3 convolutional layer (output 64-dim.), three
64-dim. residual building block (He et al., 2016) with stride 1, and four 128-dim. residual building
block with stride 2. The ResNet backbone returns a 16× 16× 128 tensor.

For the optimizers, we use stochastic gradient descent with learning rate 0.1 for our proposed
method, baseline CNN, and ResNet-18 (He et al., 2016). We use Adam (Kingma & Ba, 2014)
with learning rate 0.001 for Dynamic Routing CapsNets and Adam with learning rate 0.01 for EM
Routing CapsNets. We decrease the learning rate by 10 times when the model trained on 150 epochs
and 250 epochs, and there are 350 epochs in total.

A.2 DATA AUGMENTATIONS

We consider the same data augmentation for all networks. During training, we first pad four zero-
value pixels to each image and randomly crop the image to the size 32× 32. Then, we horizontally
flip the image with probability 0.5. During evaluation, we do not perform data augmentation. All
the model is trained on a 8-GPU machine with batch size 128.

B MODEL CONFIGURATIONS FOR DIVERSE MULTIMNIST

B.1 MODEL SPECIFICATIONS

To fairly compare CNNs and CapsNets, we fix the number of layers and the number of neurons
per layer in the models. These models consider the design: 36x36 image→ 18x18x1024 neurons
→ 8x8x1024 neurons→ 6x6x1024 neurons→ 640 neurons→ 10 class logits. The configurations
are presented in Table 10, 11, and 12. We also fix the optimizers across all the models. We use
stochastic gradient descent with learning rate 0.1 and decay the learning rate by 10 times when the
models trained on 150 steps and 250 steps. One step corresponds to 60, 000 training samples, and
we train the models with a total of 350 steps.

10

Published as a conference paper at ICLR 2020

B.2 DATASET CONSTRUCTION

Diverse MultiMNIST contains both single-digit and overlapping-digit images. We generate im-
ages on the fly and plot the test accuracy for training models over 21M (21M = 350(steps) ×
60, 000(images)) generated images. We also generate the test images, and for each evaluation step,
there are 10, 000 test images. Note that we make sure the training and the test images are from the
disjoint set. In the following, we shall present how we generate the images. We set the probability
of generating a single-digit image as 1

6
and the probability of generating an overlapping-digit image

as 5

6
.

The single-digit image in DiverseMultiMNIST training/ test set is generated by shifting digits in
MNIST (LeCun et al., 1998) training/ test set. Each digit is shifted up to 4 pixels in each direction
and results in 36× 36 image.

Following Sabour et al. (2017), we generate overlapping-digit images in DiverseMultiMNIST train-
ing/ test set by overlaying two digits from the same training/ test set of MNIST. Two digits are
selected from different classes. Before overlaying the digits, we shift the digits in the same way
which we shift for the digit in a single-digit image. After overlapping, the generated image has size
36× 36.

We consider no data augmentation for both training and evaluation. All the model is trained on a
8-GPU machine with batch size 128.

Table 2: Baseline CNN for CIFAR-10.

Operation Output Size

input dim=3, output dim=1024, 3x3 conv, stride=2, padding=1
16x16x1024

ReLU

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=1
8x8x1024

ReLU + Batch Norm

2x2 average pooling, padding=0 4x4x1024

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=1
2x2x1024

ReLU + Batch Norm

2x2 average pooling, padding=0 1x1x1024

Flatten 1024

input dim=1024, output dim=10, linear 10

Table 3: Baseline CNN for CIFAR-100.

Operation Output Size

input dim=3, output dim=1024, 3x3 conv, stride=2, padding=1
16x16x1024

ReLU

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=1
8x8x1024

ReLU + Batch Norm

2x2 average pooling, padding=0 4x4x1024

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=1
2x2x1024

ReLU + Batch Norm

2x2 average pooling, padding=0 1x1x1024

Flatten 1024

input dim=1024, output dim=100, linear 100

11

Published as a conference paper at ICLR 2020

Table 4: Dynamic Routing with Simple Backbone for CIFAR-10.

Operation Output Size

input dim=3, output dim=256, 9x9 conv, stride=1, padding=0
24x24x256

ReLU

input dim=256, output dim=256, 9x9 conv, stride=2, padding=0 8x8x256

Capsules reshape
8x8x32x8

Squash

Capsules flatten 2048x8

Linear Dynamic Routing to 10 16-dim. capsules
10x16

Squash

Table 5: Dynamic Routing with Simple Backbone for CIFAR-100.

Operation Output Size

input dim=3, output dim=256, 9x9 conv, stride=1, padding=0
24x24x256

ReLU

input dim=256, output dim=256, 9x9 conv, stride=2, padding=0 8x8x256

Capsules reshape
8x8x32x8

Squash

Capsules flatten 2048x8

Linear Dynamic Routing to 100 16-dim. capsules
100x16

Squash

Table 6: EM Routing with Simple Backbone for CIFAR-10.

Operation Output Size

input dim=3, output dim=256, 4x4 conv, stride=2, padding=1
16x16x256

Batch Norm + ReLU

input dim=256, output dim=512, 1x1 conv, stride=1, padding=0
&

input dim=256, output dim=32, 1x1 conv, stride=1, padding=0
Sigmoid

16x16x512
&

16x16x32

Capsules reshape (only for poses)
16x16x32x4x4

&
16x16x32

Conv EM Routing to 32 4x4-dim. capsules, 3x3 conv, stride=2
7x7x32x4x4

&
7x7x32

Conv EM Routing to 32 4x4-dim. capsules, 3x3 conv, stride=1
5x5x32x4x4

&
5x5x32

Capsules flatten
800x4x4

&
800

Linear EM Routing to 10 4x4-dim. capsules
10x4x4

&
10

12

Published as a conference paper at ICLR 2020

Table 7: EM Routing with Simple Backbone for CIFAR-100.

Operation Output Size

input dim=3, output dim=256, 4x4 conv, stride=2, padding=1
16x16x256

Batch Norm + ReLU

input dim=256, output dim=512, 1x1 conv, stride=1, padding=0
&

input dim=256, output dim=32, 1x1 conv, stride=1, padding=0
Sigmoid

16x16x512
&

16x16x32

Capsules reshape (only for poses)
16x16x32x4x4

&
16x16x32

Conv EM Routing to 32 4x4-dim. capsules, 3x3 conv, stride=2
7x7x32x4x4

&
7x7x32

Conv EM Routing to 32 4x4-dim. capsules, 3x3 conv, stride=1
5x5x32x4x4

&
5x5x32

Capsules flatten
800x4x4

&
800

Linear EM Routing to 100 4x4-dim. capsules
100x4x4

&
100

Table 8: Proposed Inverted Dot-Product Attention Routing with Simple Backbone for CIFAR-10.

Operation Output Size

input dim=3, output dim=256, 3x3 conv, stride=2, padding=1
16x16x256

ReLU

input dim=256, output dim=512, 1x1 conv, stride=1, padding=0
Layer Norm

16x16x512

Capsules reshape 16x16x32x4x4

Conv Inverted Dot-Product Attention Routing to 32 4x4-dim. capsules, 3x3 conv, stride=2
Layer Norm

7x7x32x4x4

Conv Inverted Dot-Product Attention Routing to 32 4x4-dim. capsules, 3x3 conv, stride=1
Layer Norm

5x5x32x4x4

Capsules flatten 800x4x4

Linear Inverted Dot-Product Attention Routing to 10 4x4-dim. capsules
Layer Norm

10x4x4

Reshape 10x16

input dim=16, output dim=1, linear 10x1

Reshape 10

13

Published as a conference paper at ICLR 2020

Table 9: Proposed Inverted Dot-Product Attention Routing with Simple Backbone for CIFAR-100.

Operation Output Size

input dim=3, output dim=128, 3x3 conv, stride=2, padding=1
16x16x128

ReLU

input dim=128, output dim=1152, 1x1 conv, stride=1, padding=0
Layer Norm

16x16x1152

Capsules reshape 16x16x32x6x6

Conv Inverted Dot-Product Attention Routing to 32 6x6-dim. capsules, 3x3 conv, stride=2
Layer Norm

7x7x32x6x6

Conv Inverted Dot-Product Attention Routing to 32 6x6-dim. capsules, 3x3 conv, stride=1
Layer Norm

5x5x32x6x6

Capsules flatten 800x6x6

Linear Inverted Dot-Product Attention Routing to 20 6x6-dim. capsules
Layer Norm

20x6x6

Linear Inverted Dot-Product Attention Routing to 100 6x6-dim. capsules
Layer Norm

100x6x6

Reshape 100x36

input dim=36, output dim=1, linear 100x1

Reshape 100

Table 10: CapsNet with matrix-structured poses for DiverseMultiMNIST.

Operation Output Size

input dim=3, output dim=1024, 3x3 conv, stride=2, padding=1
18x18x1024

ReLU

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=0
Layer Norm

8x8x1024

Capsules reshape 8x8x16x8x8

Conv Inverted Dot-Product Attention Routing to 16 8x8-dim. capsules, 3x3 conv, stride=1
Layer Norm

6x6x16x8x8

Capsules flatten 576x8x8

Linear Inverted Dot-Product Attention Routing to 10 8x8-dim. capsules
Layer Norm

10x8x8

Reshape 10x64

input dim=64, output dim=1, linear
Sigmoid

10x1

Reshape 10

14

Published as a conference paper at ICLR 2020

Table 11: CapsNet with vector-structured poses for DiverseMultiMNIST.

Operation Output Size

input dim=3, output dim=1024, 3x3 conv, stride=2, padding=1
18x18x1024

ReLU

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=0
Layer Norm

8x8x1024

Capsules reshape 8x8x16x64

Conv Inverted Dot-Product Attention Routing to 16 64-dim. capsules, 3x3 conv, stride=1
Layer Norm

6x6x16x64

Capsules flatten 576x64

Linear Inverted Dot-Product Attention Routing to 10 8x8-dim. capsules
Layer Norm

10x64

input dim=64, output dim=1, linear
Sigmoid

10x1

Reshape 10

Table 12: Baseline CNN for DiverseMultiMNIST.

Operation Output Size

input dim=3, output dim=1024, 3x3 conv, stride=2, padding=1
18x18x1024

ReLU

input dim=1024, output dim=1024, 3x3 conv, stride=2, padding=0
ReLU + Batch Norm

8x8x1024

input dim=1024, output dim=1024, 3x3 conv, stride=1, padding=0
ReLU + Batch Norm

6x6x1024

input dim=1024, output dim=640, linear 6x6x640

6x6 average pooling, padding=0 1x1x640

Flatten 640

input dim=640, output dim=10, linear
Sigmoid

10

15

	Introduction
	Capsule Network Architecture
	Inverted Dot-Product Attention Routing
	Inference and Learning
	Inference
	Learning
	Comparisons with Existing CapsNet Models

	Experiments on CIFAR-10 and CIFAR-100
	Experiments on DiverseMultiMNIST
	Related Work
	Conclusion and Future Work
	Model Configurations for CIFAR-10/CIFAR-100
	Model Specifications
	Data Augmentations

	Model Configurations for Diverse_MultiMNIST
	Model Specifications
	Dataset Construction

