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Abstract. We introduce a natural class of cellular automata charac-
terised by a property of the local transition law without any assumption
on the states set. We investigate some algebraic properties of the class
and show that it contains intrinsically universal cellular automata. In
addition we show that Rice’s theorem for limit sets is no longer true
for that class, although infinitely many properties of limit sets are still
undecidable.

Cellular automata (ca for short) are discrete dynamical systems capable of
producing a wide class of different behaviours. They consist of a large collection
of simple identical components (the cells) with uniform local interactions. As
such they provide an idealistic model to study complex systems observed in
nature. Despite the simplicity of the model, most of the richness of behaviours
they exhibit is still to be understood. Moreover, many interesting and natural
properties are undecidable. To that extent it is meaningful to consider classes
of ca obtained by structural assumptions on the local transition law with the
hope that these local assumptions are sufficiently handleable to express global
dynamical properties of ca from this class.

To our knowledge, the main attempt in that sense appearing in literature
is the class of additive ca first suggested by O. Martin, A. M. Odlyzko and
S. Wolfram in [1]. Additive ca are those which are linear with respect to some
commutative ring structure on the state set. Thanks to classical algebraic tools,
such ca are now well understood on several aspects. Unfortunately, they don’t
reveal the richness of ca both dynamically and algorithmically (in particular,
they cannot be intrinsically universal). Notice that other classes, like threshold
ca studied in [2], were defined using an interpretation of the states as weights
and are now well-understood.

In this paper, we define a new class of ca, namely captive cellular automata
(Cca for short), which relies on a characterisation of their local transition law
without endowing the state set with any external structure. This characterisa-
tion is based on a natural notion of sub-dynamical system in the context of ca,
the notion of sub-automaton, which has often been considered and, particularly,
play a central role in the algebraic classifications of ca introduced by J. Ma-
zoyer and I. Rapaport in [3] and generalised by N. Ollinger in [4]. Cca are ca
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following a canonical form with respect to that notion: precisely those for which
the transition law is stable for any set of states. By means of this strong char-
acterisation, we investigate properties of Cca which show that this class makes
sense on several aspects.

First we prove that it possesses interesting closure properties (especially re-
versibility) and we fully characterise Cca which are also additive or permutive.
Then, we construct for any ca a Cca capable of simulating it, what shows that
there exists intrinsically universal Cca. We also show that Cca are non-trivially
distributed with respect to the algebraic classification mentioned above. Finally,
we consider Rice’s theorem for limit sets (established by J. Kari in [5]) and
show that it does not hold for the class of Cca, although an unavoidable set
of infinitely many properties are still undecidable due to the ability of Cca to
uniformly simulate ca.

1 Definitions and Notations

Formally, a cellular automaton A of dimension d (d-ca) is given by a state set
A, a tuple of neighbourhood vectors (−→v 1, . . . ,

−→v n) and a local transition map f
from An to A. A cell is indexed by a position −→z of the lattice Zd. A configuration
of A is a mapping from the lattice Zd to the state set A giving a state to each
cell. When the dimension is fixed, AZd

will be called the set of A-configurations.
On each discrete time step, the cells alter their states synchronously according
to f . This defines a mapping A from configurations to configurations as follows:

∀c ∈ AZd

,∀−→z ∈ Zd :
(
A(c)

)
(−→z ) = f

(
c(−→z +−→v 1), . . . , c(−→z +−→v n)

)
.

Global maps on configurations which are actual global maps of ca have been
characterised topologically by M. L. Curtis, G. A. Hedlund and R. C. Lyndon in
[6] (they give the characterisation for dimension 1, and D. Richardson extends
the result to any dimension in [7]). The set of configurations endowed with the
natural topology is a compact space. Then the global maps of ca are precisely
the continuous maps which commute with the translations (for any

−→
t ∈ Zd, the

translation σ−→
t

is defined by σ−→
t
(c)(

−→
i +

−→
t ) = c(

−→
i )). Notice that this charac-

terisation justifies the fact that the inverse map of a ca global map is itself a
ca global map.

Without loss of generality we consider only ca whose neighbourhood is a
ball, for the infinite norm on Zd, centred on (0, . . . , 0). When considering a ca
A, the notation A denotes at the same time the local transition map and the
global map on configurations, A denotes the state set and rA the radius of the
ball neighbourhood of A.

The limit set ΩA of a ca A is the set of configurations that may appear at
any time step in the evolution of A (for a more complete study of limit sets, see
[8]). Formally,

ΩA =
⋂
t∈N

At
(
AZd)

.



It is always non-empty but it can be a singleton. It has also the important
property that for any configuration c ∈ ΩA, there is d ∈ ΩA such that A(d) = c.
When ΩA is reduced to a single configuration, A is said to be nilpotent. The
nilpotency problem is undecidable in any dimension (the first proof for dimension
d ≥ 2 appears in [8], later a proof for any dimension was given in [9]).

Let A be a ca and A′ ⊆ A. The fact that A′ is stable under the action of A
(namely A((A′)Zd

) ⊆ (A′)Zd

) is denoted by A′ v A. The restriction of A to A′

is then called a sub-automaton of A. More generally, a ca B is a sub-automaton
of A (also denoted by B v A) if there is some A′ v A such that B is isomorphic
to the restriction of A to A′.

Definition 1. A is a captive cellular automaton (Cca for short) if it satisfies
the following equivalent conditions:

1. ∀B ⊆ A : B v A ;
2. ∀B ⊆ A : |B| = |A| − 1 ⇒ B v A ;
3. ∀a1, . . . , a(2rA+1)d ∈ A : A(a1, . . . , a(2rA+1)d) ∈ {a1, . . . , a(2rA+1)d}.

Those equivalent conditions will often be referred to as “the jail property”.
It is clear that this is a locally checkable property. Notice that the identity map
and more generally any shift map is trivially a Cca. Besides, a 2-state ca is a
Cca if and only if each of its states is quiescent (q is quiescent if the uniform
configuration q is a fixed point).

To end this section, we assume from this point on and without explicit men-
tion that any ca considered will be one-dimensional and with at least 2 states.
To simplify notations when considering a ca A of radius r, A will denote not
only the local and the global map but also the action of the ca over the set of
words over the alphabet with length at least 2rA + 1. A word of length 2rA + 1
will be called a neighbourhood word for A. We denote by L(c) the set of words
appearing in the configuration c. Finally, for any word w let Σ(w) denote the
set of letters appearing in it.

2 First Properties

We will now present some simple properties implied by the strong structure of
the local transition map of a Cca.

First it is straightforward to verify that Cca are closed under composition
and sub-automata (any sub-automaton of a Cca is itself a Cca) but not by
Cartesian product. An interesting and less immediate closure property is that of
inversion. We give here a one-dimensional proof for clarity in notations but it is
straightforward to extend it to any dimension.

Proposition 1. Let A be a Cca which is reversible and denote by A−1 its
inverse ca. Then A−1 is a Cca.

Proof. Let r be the radius of A−1 and consider any (2r + 1)-tuple of states
(x−r, . . . , xr). Let c be a periodic configuration of period x−r . . . xr. The sequence



of configurations
(
An(c)

)
n∈N is periodic (the sequence cannot be only ultimately

periodic because A is bijective). Then there is n ∈ N such that An(c) = c. There-
fore A−1(x−r . . . xr) ∈ {x−r, . . . , xr} because An−1(c) = A−1(c) and An−1 has
the jail property. ut

We now give two illustrations of other constraints induced by the jail prop-
erty. We characterise Cca which are respectively additive and permutive. First,
for the additive case, we consider the following definition which clearly contains
the linear ca of [1].

Proposition 2. Let A be a Cca. If we can endow the states set A with a group
law denoted by + with neutral element 0 such that

∀c, c′ ∈ AZ, A(c+c′) = A(c)+A(c′)

(where + is the uniform extension of + to configurations), then either A is a
shift map or A has only 2 states.

Proof. Let k = 2rA + 1 and for 1 ≤ i ≤ k denote by fi : A → A the map

x 7→ A(0, . . . , 0︸ ︷︷ ︸
i−1

, x, 0, . . . , 0︸ ︷︷ ︸
k−i

).

By hypothesis, ∀x1, . . . , xk ∈ A,A(x1, . . . , xk) =
∑k

i=1 fi(xi). Moreover,A being
a Cca, ∀x and ∀i, either fi(x) = 0 or fi(x) = x. Let i be fixed and consider x
such that fi(x) = x and y such that fi(y) = 0. Then

fi(x + y) = 0 ⇒ x = 0 and fi(x + y) = x + y ⇒ y = 0.

So either fi = Id or fi = 0. Let now suppose that the group A has an element
a such that a + a 6= a and a + a 6= 0. Then there is at most one i such that
fi = Id. Indeed, if fi = fj = Id with i 6= j, A cannot satisfy the jail property
on the input x1, . . . , xk with xi = xj = a and xm = 0 for m 6= i, m 6= j. In this
case, either A is a shift, or the constant map equal to 0, but a Cca with a least
2 states cannot be constant.

Otherwise, each element a 6= 0 of A is of order 2. Then if A is neither a shift
nor the constant map equal to 0 (i.e. if there is i 6= j such that fi = fj = Id), A
cannot contain 2 distinct elements a and b different from 0 because A would not
satisfy the jail property on the entry x1, . . . , xk with xi = a, xj = b and xm = 0
for m 6= i, m 6= j: a + b can neither be 0 (otherwise a = −b = b), nor a (otherwise
b = 0), nor b (otherwise a = 0). Thus A has only 2 elements. ut

The notion of permutivity was essentially studied through LR-permutive ca
which are simple examples of expansive ca (see [10] for example). A proposition
similar to proposition 2 for permutivity can be stated as follows.

Proposition 3. A ca A is said to be permutive at position i (1 ≤ i ≤ 2r + 1)
if for all u ∈ Ai−1 and all v ∈ A2r+1−i the map πi,u,v : x 7→ A(uxv) is bijective
from A to A. If A is a Cca which is permutive at 2 positions i 6= j, then A has
only 2 states.



Proof. Without loss of generality one can suppose i < j. Consider u ∈ Ai−1,
v ∈ A2r+1−i and P = Σ(uv). Let I denote the set π−1

i,u,v(P ). The map π−1
i,u,v

is bijective by hypothesis so |P | = |I|. Consider x ∈ I \ P . We have x 6∈ P and
π−1

i,u,v(x) 6= x (because πi,u,v(x) ∈ P ), then x = A
(
uπ−1

i,u,v(x)v
)
6∈ Σ

(
uπ−1

i,u,v(x)v
)

which contradicts the jail property. Thus I \ P = ∅ and hence I = P . Therefore
for any a 6∈ P , A(uav) 6∈ P because a 6∈ I, so A(uav) = a by the jail property.
The same is true at position j.

Suppose now a, b, c are 3 different elements in A; according to what was
shown above a = A(bi−1abj−i−1cb2r+1−j) = c: contradiction. So |A| = 2. ut

3 Simulations and Universality

From previous section, Cca appear to be very constrained and could constitute
a marginal class of ca (as additive ca). In this section we will show that it is not
the case: Cca actually exhibit as much richness and complexity as ca in general.
To give a precise sense to the latter assertion, we rely on the algebraic framework
introduced by J. Mazoyer and I. Rapaport ([3]) and extended by N. Ollinger
([11]). It consists in a quasi-order over ca interpreted as a simulation relation:
a ca can simulate another if the second is a sub-automaton of the first, up to
“rescaling” of both. It naturally induces an equivalence relation and an order
on equivalence classes which provides an interesting formal tool to compare ca.
The generalised notion of rescaling introduced by N. Ollinger leads to an order
with a global maximum which correspond to the set of intrinsically universal ca,
that is ca which can simulate any ca. Notice that this notion captures intuitive
ideas already present in the work of E. R. Banks (see [12]) and formalised for
the first time by J. Albert and K. Čulik in [13]. We refer the reader to [4] (in
French) or [14] for a deeper study of such ideas.

The notion of rescaling can be uniformly formalised in any dimension but
for clarity we give only the definition for one-dimensional ca. For any ca A and
any positive integer m denote by om the “packing” map from A-configurations
to Am-configurations:

∀c ∈ AZ,∀z ∈ Z :
(
om(c)

)
(z) =

(
c(mz), c(mz + 1), . . . , c(m(z + 1)− 1)

)
.

For any ca A and any k ∈ Z, m > 0 and n > 0 let A<m,n,k> denote the (m,n, k)-
rescaling ofA defined as follows:A<m,n,k> = σk ◦ om ◦ An ◦ (om)−1. ThenA can
simulate B (denoted by A � B) if there exist k, k′ ∈ Z and m,m′, n, n′ > 0 such
that B<m,n,k> v A<m′,n′,k′>. Let us now show how any ca can be simulated in
that precise sense by an appropriate Cca.

Definition 2. Let A be a ca of radius r and state set A = {a1, . . . , an} and
let # be an additional state not in A. Let w = w1w2 . . . wn+2 denote the word
#a1a2 . . . an#. Then κ#,A denote the following injective coding map from AZ to
(A ∪ {#})Z:

(
κ#,A(c)

)
(z) =

{
c(k) if z = k(n + 3) for k ∈ Z,

wi otherwise where i = z mod (n + 3).



We define ρ#(A), a ca of radius r(n + 3) + n + 2 and state set A ∪ {#}. It
acts as follows on any neighbourhood word u = u−r(n+3)−n−2 . . . ur(n+3)+n+2 :

(
ρ#(A)

)
(u) =


A(c−r . . . c0 . . . cr) if u = wc−rw . . . wciw . . . wcrw,

# if u 6∈ L
(
κ#,A(AZ)

)
and # ∈ Σ(u)

u0 otherwise.

Informally, κ#,A(c) consist in the bi-infinite concatenation of macro-cells of
the form mc((i)) = c(i)#a1 · · · an#, where mc(i) begins at position i(n + 3) in
κ#,A(c) and encodes the cell at position i in the configuration c.

A word for ρ#(A) is said to be valid if it is a sub-word of κ#,A(c) for some
c ∈ AZ. In such a word, a letter is said to be informative if it is the first letter of a
macro-cell. A valid neighbourhood word is active if its central cell is informative.
Here is an illustration of those notions for n = 2 and r = 1 :

︸ ︷︷ ︸
active

#a1a2#a1#a1a2#a2#

valid but not active︷ ︸︸ ︷
a1a2#a2#a1a2#a1#a1a2#a1#a1a2#a2#a1a2 #a2#a2︸ ︷︷ ︸

non-valid

Then ρ#(A) acts as follows on a neighbourhood word u:

– if u is active then ρ#(A) mimics A using informative letters present in u;
– if u is not valid and contains # then the cell state becomes #;
– no change is done in other cases.

It is thus clear that ρ#(A) is a Cca: updates of the cell state are done in such
a way that the new cell state was already present in the neighbourhood word.
The construction gives raise to simulation of any ca by a Cca (and it can be
straightforwardly extend to higher dimensions).

Proposition 4. For any ca A, we have A � ρ#(A).

Proof. We actually show that A v ρ#(A)<n+3,1,0>. By construction, we have
the following commutative diagram:

AZ κ#,A−−−−→ κ#,A

(
AZ) on+3

−−−−→ MZyA yρ#(A)

yρ#(A)<n+3,1,0>

AZ κ#,A−−−−→ κ#,A

(
AZ) on+3

−−−−→ MZ

where M denotes the set of all macro-cells in the sense of the coding map κ#,A.
The construction guaranties that M v ρ#(A)<n+3,1,0>. ut

We deduce from proposition 4 that Cca reach the top of the order on ca,
that is there exists intrinsically universal Cca. We can also show that the order,
restricted to the classes containing Cca, is still rich. More precisely, it contains
infinite chains and admits any finite tree as a sub-order. These two facts are
straightforward corollaries of the following proposition.



Proposition 5. There exists a family
(
Bm,n

)
m,n∈N,n≥m

of Cca such that:

– (m ≤ m′) ∧ (n ≤ n) ⇒ Bm,n � Bm′,n′ ;
– (n < n′) ∨ (m < m′) ⇒ Bm′,n′ 6� Bm,n

Proof. For each m, n let Am,n = {1, . . . ,m + n} and Am,n be a Cca of radius 5
on the state set Am,n ∪ {#} defined hereafter. Let w = w1w2w3w4 be the word
#m##. Among configurations of Am,n we distinguishes the following set of
configurations: S0

m,n = {c ∈ (Am,n ∪ {#})Z : c(i) = wi mod 5 if i 6= 0 mod 5}. Let

Sm,n =
⋃
i∈Z

σi(S0
m,n). Then Am,n is defined by

Am,n(u−5 . . . u5) =



max(x, y, z) if u = xwywz and max(x, y, z) ≥ m

x if u = xwxwx and x ≤ m

m otherwise if u = xwywz and x, y, z ≤ m

u0 otherwise if u ∈ L(Sm,n)
# if u 6∈ L(Sm,n) and if # ∈ u

min(ui) in any other case.

Now, for any ca A, let Y (A) be the set of cycles in the phase space of A,
and let U(A) be the set of cycles containning only configurations with a unique
predecessor.

We claim that
∣∣Y (A<a,b,c>

m,n )
∣∣ = 6(m + n) + 1 and

∣∣U(A<a,b,c>
m,n )

∣∣ = 5(m− 1)
for any rescaling parameters a, b and c. To complete the proof from that claim
it is sufficient to notice that:

1. m ≤ m′ and n ≤ n′ ⇒ Am,n v Am′,n′ ;

2. for any ca A and B: A v B ⇒

{
|Y (A)| ≤ |Y (B)| and
|Y (A) \ U(A)| ≤ |Y (B) \ U(B)|

.

Then define Bm,n = Am,n−m.
To prove the claim, first notice that rescaling a ca A does not change the

cardinalities of the sets Y and U . Thus the proof is brought down to enumerating
Y (Am,n) and U(Am,n). This is a straightforward case study from the definition
of Am,n. The reader can verify that configurations from the sets Sm,n, AZ

m,n and
X = {c : c 6∈ Sm,n ∪AZ

m,n} have disjoint orbits. Thus, considering Am,n on each
of these sets separately, we can easily infer :

– Y (Am,n) ∩ Sm,n = {c : c is periodic of period xw with x ∈ Am,n} ;
– U(Am,n) ∩ Sm,n = {c : c is periodic of period xw with x ∈ Am,n, x < m} ;
– Y (Am,n) ∩AZ

m,n = {x : x ∈ Am,n} ;
– Y (Am,n) ∩X = {#} ;
– U(Am,n) ∩AZ

m,n = U(Am,n) ∩X = ∅.

To conclude the proof, just notice that for any x ∈ Am,n there are exactly 5
periodic configurations of period xw. ut



4 Decidability

We will now present some decidability results. The situation concerning Cca is
somewhat balanced because on one hand many undecidable properties for ca
are preserved under the coding schemes introduced in section 3, and on the other
hand the nilpotency problem used in many proofs by reduction becomes trivial
in the context of Cca (a Cca A has at least 2 configurations in its limit set
because for any state s the uniform configuration s is a fixed point.) We now
give precise decidability results.

We will focus on an analog of Rice’s theorem for ca limit sets established by
J. Kari in [5]. It states that, in any dimension, any non-trivial property of limit
sets is undecidable. More precisely J. Kari shows that the nilpotency problem
can be reduced to any decision problem concerning a non-trivial property of
limit sets. As said before, there are no nilpotent Cca. Thus it is natural to ask
what Kari’s theorem becomes when restricted to Cca. We are going to show
that there is as many undecidable properties for Cca as undecidable properties
for ca in general. This result actually relies on the properties of the maps κ#,A

and ρ#, while the jail property is not directly used in the proof. So we present
it in the general framework of any set of ca. Before stating the theorem let us
formalise the notion of property of limit sets.

To avoid irrelevant set theoretical problems (due to renaming of states), we
will temporally assume like in [5] that any ca state set comes from a countably
infinite set of states S = {s0, s1, . . .}. For any finite set T ⊆ S let PT denote the
set of all subsets of T Z (PT contains all possible limit sets involving only states
from T ). Finally let U be the infinite union of sets PT for all finite T . A property
P of limit sets is a subset of U and a ca A has the property P (denoted by
A ` P) if ΩA ∈ P.

Theorem 1. Let E be a set of ca such that there are maps ρ and κA with the
following properties:

– ρ is a computable map from the set of ca to E ;
– for any ca A, κA maps the configurations of A to configurations of ρ(A)

and the following diagram commutes:

AZ κA−−−−→ κA
(
AZ)yA yρ(A)

AZ κA−−−−→ κA
(
AZ)

– κ maps are overall injective: κA(c) = κB(d) ⇒ κA = κB and c = d;
– κ maps are honest: if ρ(A)

(
d
)

= c then c ∈ κB(BZ) ⇒ d ∈ κA(AZ).

Then there is an injective map Φ on U such that, for any non-trivial property
P, Φ(P) is an undecidable property when restricted to the set E of input ca.



Proof. The map Φ is defined as follows:

Φ(P) =
⋃
A

{
P+ ∈ U : P+ ∩ κA(AZ) ∈ {κA(P ) : P ∈ P, P 6= ∅}

}
.

First notice that Φ is injective because if Pa 6= Pb in U , there is Pa ∈ Pa, Pa 6∈ Pb

(the proof is the same if Pb \ Pa 6= ∅). Let A be a ca such that Pa ⊆ AZ and let
K = κA(Pa). Clearly K ∈ Φ(Pa). Suppose K ∈ Φ(Pb). Then there are P ∈ Pb,
P 6= ∅ and a ca B such that K ∩ κB(BZ) = κB(P ). By overall injectivity of κ
maps, this implies A = B. Therefore κA(P ) = K and hence, by injectivity of κA,
Pa = P ∈ Pb: contradiction.

Let us now show that A ` P if and only if ρ(A) ` Φ(P) (what is sufficient
to complete the proof by Kari’s theorem since ρ is computable). First suppose
ΩA ∈ P. We have by the commutative diagram κA(ΩA) ⊆ Ωρ(A) ∩ κA(AZ). Con-
versely for any c ∈ Ωρ(A) ∩ κA(AZ) there is d ∈ Ωρ(A) such that

(
ρ(A)

)
(d) = c

(by the property of limit sets mentioned in section 1). Therefore by the hon-
esty property d ∈ κA(AZ). We can repeat this argument to construct an infinite
history of configurations in κA(AZ) leading to c by ρ(A). By the commutative di-
agram, we deduce that c ∈ κA(ΩA). Thus Ωρ(A) ∩ κA(AZ) ⊆ κA(ΩA) and hence,
Ωρ(A) ∩ κA(AZ) = κA(ΩA). Therefore Ωρ(A) ∈ Φ(P) by definition of Φ.

Suppose now that Ωρ(A) ∈ Φ(P). Then there are P ∈ P, P 6= ∅ and a ca B
such that Ωρ(A) ∩ κB(BZ) = κB(P ). As above, for any c ∈ Ωρ(A) ∩ κB(BZ), we
have d ∈ Ωρ(A) such that

(
ρ(A)

)
(d) = c. By the honesty property, this implies

d ∈ κA(AZ) and c ∈ κA(AZ). Thus, by overall injectivity, κA = κB (and therefore
A = B). We have shown above that Ωρ(A) ∩ κA(AZ) = κA(ΩA). So we have the
following:

κA(ΩA) = Ωρ(A) ∩ κA(AZ) = Ωρ(A) ∩ κB(BZ) = κB(P ) = κA(P ).

By injectivity of κA, we deduce that ΩA = P ∈ P. ut

Let us now show how to construct κ and ρ maps for Cca. Some technical
points must be made more precise. First, the macro-cells used in the construction
of κ#,A rely on an enumeration of the state set A. Given that any ca considered
here take its states from S we will always use enumerations following the order
of elements in S. We will also shift the states to free s0 which will play the role of
the special state #. Formally, let s denote the successor map on S (s(si) = si+1)
and s its extension to configurations. ρ and κ maps are then defined as follows

ρ(A) = ρs0

(
s ◦ A ◦ s−1

)
, κA = κs0,A ◦ s.

Lemma 1. The maps defined above fill the hypotheses of theorem 1 for the set
of Cca.

Proof. First, it is clear that ρ is computable and proposition 4 shows that the
diagram in the hypotheses commutes. Let us show that κ maps are overall in-
jective and honest. Let A and B be two ca on state sets A = {a1, . . . , ak} and
B = {b1, . . . , bl} enumerated in increasing order according to S.



Suppose that c ∈ AZ and d ∈ BZ are such that κA(c) = κB(d). Necessarily
k = l because if k < l (the other case is symmetric) then

(
κA(c)

)
(k + 2) = s0

and
(
κB(d)

)
(k + 2) = bk+1, but s0 6= bk+1 because bk+1 > b1 ≥ s0. Then equality

of configurations κA(c) and κB(d) at positions 2 to k + 1 implies A = B and
therefore κA = κB. Finally, c = d because κA(c) and κB(d) are equal at position
z(k + 3) for any z ∈ Z. This shows overall injectivity. For honesty, suppose that
c ∈ κB(BZ) and d ∈

(
s(A) ∪ {s0}

)Z are such that ρ(A)
(
d
)

= c. Let R = ρ(A).
First R has the following property :

(R(x)(i− 1) 6= s0) ∧ (R(x)(i) = s0) ∧ (R(x)(i + 1) 6= s0) ⇒ x(i) = s0.

Indeed, if x(i) 6= s0 and R(x)(i) = s0 the the neighbourhood of cell i in x is
non-valid and contains a s0. Then either cell i− 1 or cell i + 1 has a non-valid
neighbourhood which contains s0 (it is straightforward to verify): thus either
R(x)(i− 1) = s0 or R(x)(i + 1) = s0. We deduce that c(i) = s0 ⇒ d(i) = s0 be-
cause s0s0 6∈ L(c) (c is a valid configuration for κB). In particular, any neighbour-
hood word for R in d contains s0. Let us suppose that d 6∈ κA(AZ). Then there
is z ∈ Z such that position z in d is non-valid and contains s0 in its neighbour-
hood. Therefore R(d)(z) = c(z) = s0 and, according to what was shown above,
d(z) = s0. Either position z − 1 or z + 1 is non-valid and has s0 in its neighbour-
hood (precisely at position z): in both case we have exhibited an occurrence of
the word s0s0 in c which contradicts its validity. ut

This lemma together with theorem 1 shows that there is an infinite number
of undecidable properties of limit sets for Cca. However, the analog of Rice’s
theorem is no longer true for Cca. For instance, the property “an even number
of different states appears in the limit set” is clearly decidable for Cca although
non-trivial, simply because each state of a Cca appears in its limit set.

Let us now present a natural problem on limit sets which is undecidable for
ca but decidable for Cca. We no longer follows the hypothesis of states being
taken in S. Let A be a fixed ca of radius r.

Proposition 6. Consider the following decision problems :

(P1) Input : a ca B of radius r. Question : ΩA = ΩB?
(P2) Input : a Cca B of radius r. Question : ΩA = ΩB?

P1 is undecidable whereas P2 is decidable.

Proof. First let X denote the set of states appearing in ΩA. Notice that a Cca
B is such that ΩB = ΩA only if B = X. Thus there is only a finite number of
possible Cca having the same limit set as A and the problem P2 is trivially
decidable. Now we prove that P1 is undecidable. We proceed by a reduction
from the nilpotency problem which is proven undecidable in [9] even if we restrict
ourselves to ca of radius r with a spreading state (a state q is spreading for N
if N (u) = q for any neighbourhood word u containing an occurrence of q). Now
given any ca N of radius r with a spreading state q, we can algorithmically
construct a ca D as follows. First (up to renaming) we can suppose A ∩N = ∅.



Let D = A ∪ (N \ {q}) be the state set of D. Let f and g denote the following
maps from D to N and form N to D (respectively), where a0 ∈ A is fixed:

f : x 7→

{
q if x ∈ A,

x otherwise,
g : y 7→

{
a0 if y = q,
y otherwise.

Then D is defined by

D(x−r, . . . , xr) =

{
A(x−r, . . . , xr) if xi ∈ A,−r ≤ i ≤ r,

g
(
N (f(x−r), . . . , f(xr))

)
otherwise.

Then ΩD = ΩA if and only if N is nilpotent. Indeed, if N is nilpotent there is
n0 such that for all c, Nn0(c) = q. Therefore Dn0(DZ) ⊆ AZ and ΩD ⊆ ΩA. So
ΩD = ΩA because D is equal to A on AZ. Conversely, if N is not nilpotent, then
there is c 6= q in ΩN . Then for any t ∈ N there is ct ∈ NZ such that N t(ct) = c.
Let dt = g(ct) (where g is the uniform extension of g to configurations). Clearly
for any i ∈ Z such that c(i) 6= q, we have

(
Dt(dt)

)
(i) 6∈ A. By compactness, there

is d ∈ DZ with infinite history for D and such that d 6∈ AZ : thus ΩD cannot be
equal to ΩA. ut

5 Conclusion and Perspectives

The model of ca is widely admitted as a relevant framework to study questions
raised by the paradigm of complex systems. Unfortunately, most of the interest-
ing properties concerning their behaviours are undecidable. It is then natural to
consider sub-classes of ca with the hope that classical problems and generally
behaviours classification will be easier when restricted to that class. Cca intro-
duced here constitute such a class, with both the property that some undecidable
problems become decidable when restricted to the class (section 4) and that it
somehow preserves the complexity of ca (section 3).

We defined Cca by a formal property of the local transition law. A re-
markable fact is that reversible Cca satisfy the property both forwards and
backwards. Is there a topological proof of the stability by inversion of the jail
property? And more generally is there a topological characterisation of Cca?

Besides, we emphasise the non-closure of Cca by Cartesian product and
a noticeable consequence: the classical simulation of any ca by a one-way ca
cannot be directly transfered to Cca. More generally, the role played by the
radius and the number of states are highly non-symmetric in the context of
Cca, contrary to the general case. Is there a hierarchy of complexity for Cca
according to the radius?

We also showed that undecidability remains highly present in Cca. The
frontier between decidability and undecidability is thus still to be made more
precise. Particularly, are classical properties like that of reaching the limit set in
finite time or being reversible in dimension 2 still undecidable for Cca?



Finally, experiments1 on randomly chosen Cca show particular dynamics
(for example, equicontinuity points appears very often) and propositions 2 and
3 suggests that “chaotic-like” behaviours are extremely constrained for Cca.
Can we give a more precise sense to this assertion? For instance, can we explicit
the intersections of Cca with Kůrka’s classes (introduced in [15])?
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