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Abstract

This two-part paper discusses the analysis and con-
trol of legged locomotion in terms of N -step captura-
bility: the ability of a legged system to come to a
stop without falling by taking N or fewer steps. We
consider this ability to be crucial to legged locomo-
tion and a useful, yet not overly restrictive criterion
for stability.

Part 1 introduces a theoretical framework for as-
sessing N -step capturability. This framework is used
to analyze three simple models of legged locomotion.
All three models are based on the 3D Linear Inverted
Pendulum Model. The first model relies solely on
a point foot step location to maintain balance, the
second model adds a finite-sized foot, and the third
model enables the use of centroidal angular momen-
tum by adding a reaction mass. We analyze how
these mechanisms influence N -step capturability, for
any N > 0. Part 2 will show that these results can
be used to control a humanoid robot.
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1 Introduction

Preventing falls is essential in legged locomotion. A
fall can be energetically costly and dangerous for both
the legged system itself and other agents. Healthy
humans are able to avoid falling in almost all condi-
tions experienced in everyday life. While many legged
robots can currently walk, run, and dance without
falling, these tasks are usually performed in a con-
trolled environment. Unexpected perturbations will
easily topple most current bipedal robots. The ability
of legged robots to avoid falling must be significantly
improved before they can find utility in complex en-
vironments.

Measuring how close a legged system is to falling
can provide useful insight and could be used for con-
troller design. However, effectively quantifying close-
ness to falling is challenging. For traditional con-
trol systems, stability can be analyzed using measures
such as eigenvalues, phase margins or loop gain mar-
gins. Legged locomotion on the other hand is gen-
erally characterized by nonlinear dynamics, under-
actuation, and a combination of continuous and dis-
crete dynamics. These properties limit the rele-
vance of traditional analysis and control techniques
to legged locomotion.

Existing stability measures for legged locomotion
such as those based on the Zero Moment Point or a
Poincaré map analysis may be readily computed but
only apply to specific classes of controllers or robot
motions [13, 28]. More general techniques, such as
the Viability Margin [58], have been proposed but
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are difficult to compute, limiting their usefulness.

This leads us to propose the analysis of legged lo-
comotion based on N -step capturability, which we in-
formally define as the ability of a system to come to a
stop without falling by taking N or fewer steps, given
its dynamics and actuation limits. N -step capturabil-
ity offers measures that are applicable to a large class
of robot motions, including non-periodic locomotion
over rough terrain with impassable regions, and it
does not require a specific control system design. N -
step capturability may be readily approximated, and
it is useful in controller design.

Both preventing a fall and coming to a stop require
adequate foot placement as a result of the ground
reaction force constraints that are typical to legged
locomotion. We will focus extensively on this aspect
of legged locomotion using the N -step capture region,
the set of points to which a legged system in a given
state can step to become (N − 1)-step capturable. A
new measure of capturability in a given state, termed
the N -step capturability margin, is then naturally de-
fined as the size of the N -step capture region. Addi-
tionally, we will introduce the d∞ capturability level,
which allows a general, state-independent capturabil-
ity comparison between simple gait models.

The remainder of this first part is structured as fol-
lows. Section 2 provides a survey of relevant litera-
ture. Section 3 contains definitions of the various con-
cepts that consitute the N -step capturability frame-
work. In Sections 4 through 7 we apply the captura-
bility framework to three simple gait models based
on the Linear Inverted Pendulum Model [23,24]. For
these simple gait models, we can exactly compute
capturability. Section 8 introduces the two captura-
bility measures and compares the simple gait models
in terms of these measures. A discussion is provided
in Section 9, and we conclude the part in Section 10.

In Part 2 of the paper, we demonstrate the utility
of the capturability framework by using the results of
the simple gait models to control and analyze balanc-
ing and walking motions of a 3D bipedal robot with
two 6-degree-of-freedom legs.

2 Background

The question “how stable is a given legged system?”
has been the subject of much research and debate, in
both robotics and biomechanics. We will now present
previous work attempting to answer this question,
including previous work on capturability.

The Zero Moment Point (ZMP) is often used as an
aid in control development, with the constraint that
it must remain in the interior of the base of support
of a legged robot. A common ZMP control method is
to maintain the ZMP along a precomputed reference
trajectory [55]. During walking, the error between
the actual and desired ZMP can be used as a measure
of the error between the current and desired state
of the robot [35]. The repeatability of the gait can
also be used as an error measure [55]. One drawback
to following a precomputed trajectory is the inabil-
ity of the robot to recover from a large unexpected
push. Further work has expanded the ZMP method
to include step placement adjustment in reaction to
disturbances [32, 34], but there is no measure of the
ability of the robot to reactively avoid a fall when
following a given preplanned ZMP trajectory. In ad-
dition, the ZMP requires significant modification to
apply to non-flat terrain [58] or dynamic gait with a
foot that rotates on the ground.

Poincaré maps have been used to measure the lo-
cal stability of periodic gaits, and to induce periodic
gaits of real robots using reference trajectories [31].
Based on Poincaré Map analysis, the Gait Sensitiv-
ity Norm [13] provides a measure of robustness for
limit cycle walkers [14] and has been shown to corre-
late well with the disturbance rejection capabilities of
simulated planar walkers. The Gait Sensitivity Norm
is calculated as the sensitivity of a given gait measure,
such as step time, to a given disturbance type, such
as a step-down in terrain, using a simulated model or
experimental data. Another Poincaré map method
based on Floquet multipliers has been used to ana-
lyze the stability of human walking gaits [8]. How-
ever, Poincaré map analysis assumes cyclic gait to
yield a measure of stability. In addition, it requires a
linearization at a given point in the gait cycle, which
limits the applicability of the method to large distur-
bances between steps where the linearization fails to
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capture essential dynamics of the motion [8].
Poincaré map analysis has also been applied to the

case of passive limit cycle walkers under stochastic
environmental perturbations [5], without linearizing
the system around the fixed point, yielding a proba-
bilistic basin of attraction. The stability of a walker
is described with a mean first passage time, which is
the expected number of steps before failure, given a
set of statistics for the stochastic environmental dis-
turbance. However, this method assumes an approxi-
mately periodic gait, and does not apply to large gen-
eral disturbances such as a significant push. Poincaré
map analysis has been extended to control a walker in
acyclic desired gaits, by applying linear control based
on a continuous family of Poincaré maps along the en-
tire trajectory [27]. This control method can provide
a measure of robustness about the desired trajectory,
but it does not consider the robustness of the desired
trajectory itself.
The concepts of Virtual Constraints and Hybrid

Zero Dynamics have been used to obtain and prove
asymptotic stability of periodic motions for walking
robots [6]. Introducing Virtual Constraints reduces
the dimensionality of the walking system under con-
sideration by choosing a single desired gait, allowing
a tractable stability analysis. However, if actuator
limitations render the robot incapable of maintaining
the Virtual Constraints after a large perturbation, it
is possible a fall could be avoided only by changing
the desired trajectory to alter foot placement and use
of angular momentum.
The Foot Placement Estimator, like the present

work, considers the footstep location to be of pri-
mary importance and can be used both to control
and to analyze bipedal systems [59]. For a simple
planar biped that maintains a rigid A-frame configu-
ration, the Foot Placement Estimator demarcates the
range of foot placement locations that will result in
a statically standing system. This approach is quite
similar to ours, though it is unclear how to extend
this method to more general systems.
Wieber uses the concept of viability theory [3] to

reason about the subset of state space in which the
legged system must be maintained to avoid falling.
He shows a Lyapunov stability analysis for standing
on non-flat terrain given a balance control law. How-

ever, the standing assumption precludes the use of
this method in walking, and it provides no informa-
tion on choosing step locations to avoid falling. Cap-
turability is closely related to viability theory, but
focuses on states which are most relevant to normal
walking and also provides a method to explicitly com-
pute acceptable regions to step.
In previous work, we have implicitly used the con-

cept of capturability to develop the notion of cap-
ture points, the places on the ground to step that
will allow a legged robot to come to a stop. We
have used capture points based on simple models
to control complex models, including a simulation of
M2V2, a 12 degree of freedom humanoid robot. We
have designed controllers that balance, recover from
pushes, and walk across randomly placed stepping
stones [45, 46]. Some of these capture point-based
control methods were also implemented on the phys-
ical M2V2 [44]. We will extend the concept of capture
points, applying the theory to general legged systems,
considering multiple steps and providing a more com-
plete analysis of the ability of a legged system to come
to a stop.

3 Capturability Framework

Consider a class of hybrid dynamic systems that have
dynamics described by

ẋ = f(x,u) if hi(x) 6= 0 (1a)

x← gi(x) if hi(x) = 0 (1b)

u ∈ U(x) (1c)

for i ∈ I ⊂ N. Here, x is the state of the system and u
is the system’s control input, which is confined to the
state-dependent set of allowable control inputs U(x).
When the system state lies on a switching surface,
such that hi(x) = 0, the discrete jump dynamics reset
the state to gi(x) instantaneously. An evolution of
this system is a solution to (1a) and (1b) for some
input satisfying (1c).

For this analysis, we assume that some part of state
space must be avoided at all cost – a set of failed
states. For a bipedal robot, this set could comprise
all states for which the robot has fallen. The viability
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kernel, described in [3,4] and introduced into the field
of legged locomotion in [57,58], is the set of all states
from which these failed states can be avoided. That
is, for every initial state in the viability kernel, there
exists at least one evolution that never ends up in
a failed state. As long as the system state remains
within the viability kernel, the system is viable.
The viability concept arises quite naturally and can

be seen as a very generic and unrestrictive defini-
tion of ‘stability’ for a dynamic system. However,
determining the viability kernel is generally analyti-
cally intractable, and approximation is computation-
ally expensive [58]. In addition, it is not trivial to
synthesize a controller based solely on the viability
kernel, even if it were given. This motivates the use of
more restrictive definitions of stability. N -step cap-
turability adds the restriction that the system be able
to come to a stop by taking N or fewer steps, result-
ing in the following definition:

Definition 1 (N-step capturable) Let Xfailed

denote a set of failed states associated with a hybrid
dynamic system defined by (1). A state x0 of this
system is N -step capturable with respect to Xfailed,
for N ∈ N, if and only if there exists at least one
evolution starting at x0 that contains N or fewer
crossings of switching surfaces (steps), and never
reaches Xfailed.

Similar to the viability kernel and the viable-
capture basin [4], we define an N -step viable-capture
basin as the set of all N -step capturable states. The
0-step viable-capture basin will also be referred to
as the set of captured states, and if a system’s state
is within the 0-step viable-capture basin, the system
will be referred to as captured.

N -step viable-capture basins, shown schematically
in Figure 1, describe the subsets of state space in
which a controller should maintain the system so that
the system is able to reach a captured state (‘come
to a stop’) by taking N or fewer steps. For N > 0,
the N -step viable-capture basin is equivalent to the
set containing every initial state x0 for which at least
one evolution containing a single step and starting at
x0 reaches the (N − 1)-step viable-capture basin in
finite time, while never reaching a failed state. This

viability kernel

captured states 

1-step viable-capture basin

∞-step viable-capture basin
failed states 

a)

b)

d)

c)

e)

Figure 1: Conceptual view of the state space of a hy-
brid dynamic system. Several N -step viable-capture
basins are shown. The boundary between two N -step
viable-capture basins is part of a step surface. The
∞-step viable-capture basin approximates the viabil-
ity kernel. Several evolutions are shown: a) an evo-
lution starting outside the viability kernel inevitably
ends up in the set of failed states; b) the system starts
in the 1-step viable-capture basin, takes a step, and
comes to a rest at a fixed point inside the set of cap-
tured states (i.e. the 0-step viable-capture basin); c)
an evolution that eventually converges to a limit cy-
cle; d) an evolution that has the same initial state as
c), but ends up in the set of failed states because the
input u(·) was different; e) impossible evolution: by
definition, it is impossible to enter the viability kernel
if the initial state is outside the viability kernel.

property allows the use of recursive methods to derive
or approximate N -step viable-capture basins.
The ∞-step viable-capture basin is generally a

strict subset of the viability kernel because having
the ability to eventually come to a stop is not a nec-
essary condition for avoiding the set of failed states.
However, for human locomotion, the difference be-
tween the ∞-step viable-capture basin and the via-
bility kernel is ‘small’, as it is hard to imagine a state
in which a human can avoid falling, but cannot even-
tually come to a captured state. A notable exception
is a purely passive walker [29], for which walking per-
sists in an infinite limit cycle with no possibility of
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coming to a stop. In fact, an infinitely repeatable
gait has been found for a simulated 3D passive walk-
ing model that has no captured states [7].
A problem that N -step viable-capture basins share

with the viability kernel is that they do not provide
a direct means of controller design. This motivates
the introduction of N -step capture points and N -step
capture regions. While viable-capture basins specify
capturability in terms of state space, capture points
and capture regions are defined in Euclidean space,
and describe the places where the system can step
to reach a captured state. This information can for
example be used to determine future step locations,
to be used in a control algorithm for a bipedal robot.
We encode step locations using contact reference

points. Each body that is allowed to come in contact
with the environment during normal operation is as-
signed a single contact reference point, which is fixed
with respect to the contacting body. Contact ref-
erence points provide a convenient, low-dimensional
way of referring to the position of a contacting body,
and allow us to define the N -step capture points and
N -step capture regions as follows:

Definition 2 (N-step capture point, region)
Let x0 be the state of a hybrid dynamic system
defined by (1), with an associated set of failed states
Xfailed. A point r is an N -step capture point for
this system, for N > 0, if and only if there exists at
least one evolution starting at x0 that contains one
step, never reaches Xfailed, reaches an (N − 1)-step
capturable state, and places a contact reference point
at r at the time of the step. The N -step capture
region is the set of all N -step capture points.

A conceptual visualization of N -step capture re-
gions is shown in Figure 2.

4 Three Simple Gait Models

Legged locomotion can be difficult to analyze and
control due to the dynamic complexity of a legged
system. Simple gait models permit tractable and in-
sightful analysis and control of walking. We present
three models for which it is possible to determine
N -step viable-capture basins and capture regions in

c) b)  a) 

N-step capture regions

N = 1

N = 2

N = ∞

Figure 2: a) A conceptual representation of the N -
step capture regions for a human in a captured state
(standing at rest). b) N -step capture regions for a
running human. The capture regions have decreased
in size and have shifted, as compared to a). c) N -step
capture regions for the same state as b), but with
sparse footholds (e.g. stepping stones in a pond).
The set of failed states has changed, which is reflected
in the capture regions.

closed form. The results can be used as approxima-
tions for more complex legged systems and prove use-
ful in their control.

To illustrate the results obtained in this research,
a Matlab graphical user interface (GUI) was created
that allows the user to manipulate the control inputs
for all models described in this paper, while the N -
step capture regions are dynamically updated. This
GUI is included as Multimedia Extension 1.

All three models are based on the 3D Linear In-
verted Pendulum Model (3D-LIPM) [23, 24], which
comprises a single point mass maintained on a plane
by a variable-length leg link. The complexity of the
presented models increases incrementally. To each
subsequent model, another stabilizing mechanism is
added. These mechanisms are generally considered
fundamental in dealing with disturbances, both in
the biomechanics and robotics literature [1,12,19,22,
33,51].

The first model (Section 5) relies solely on point
foot placement to come to a stop. The second model
(Section 6) is obtained by adding a finite-sized foot
and ankle actuation to the first model, enabling mod-
ulation of the Center of Pressure (CoP). The third
model (Section 7) extends the second by the addi-
tion of a reaction mass and hip actuation, enabling
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the human-like use of rapid trunk [19,54] or arm mo-
tions [40, 47].

5 3D-LIPM with Point Foot

The 3D Linear Inverted Pendulum Model, described
by Kajita et al. [23, 24] and depicted in Figure 3,
comprises a point mass with position r at the end of
a telescoping massless mechanism (representing the
leg), which is in contact with the flat ground. The
point mass is kept on a horizontal plane by suitable
generalized forces in the mechanism. Torques may
be exerted at the base of the pendulum. For this
first model, however, we set all torques at the base
to zero. Hence, the base of the pendulum can be
seen as a point foot, with position rankle. Foot posi-
tion changes, which occur when a step is taken, are
assumed instantaneous, and have no instantaneous
effect on the position and velocity of the point mass.

Following the capturability framework introduced
in Section 3, we treat the 3D-LIPM with point foot
as a hybrid dynamic system, with dynamics that will
be derived in Section 5.1. Its control input is the
point foot position. We define a set of allowable val-
ues for this control input, described in Section 5.2.
The point rankle will be the contact reference point
for all models in this paper. Changing the location
of the point foot is considered crossing a step sur-
face. The set of failed states for all simple models
presented in this paper comprises all states for which
‖r− rankle‖ → ∞ as t→∞, for any allowable control
input.

5.1 Equations of Motion

The equations of motion for the body mass are

mr̈ = f +mg (2)

where m is the mass, r =
(
x y z

)T
is the position

of the center of mass (CoM), expressed in an inertial

frame, f =
(
fx fy fz

)T
is the actuator force act-

ing on the point mass and g =
(
0 0 −g

)T
is the

gravitational acceleration vector.

ê
x

ê
y

ê
z

g

r
ankle

z
0

Pr

f

r

m

Figure 3: Schematic representation of the 3D-LIPM
with point foot. The model comprises a point foot
at position rankle, a point mass at position r with
mass m and a massless telescoping leg link with an
actuator that exerts a force f on the point mass that
keeps it at constant height z0. The projection matrix
P projects the point mass location onto the xy-plane.
The gravitational acceleration vector is g.

A moment balance for the massless link shows that

−(r − rankle)× f = 0 (3)

where rankle =
(
xankle yankle 0

)T
is the location of

the ankle.
If ż = 0 initially, the point mass will stay at z = z0

if z̈ = 0. Using (2), we find fz = mg. This can be
substituted into (3) to find the forces fx and fy,

fx = mω2
0(x − xankle)

fy = mω2
0(y − yankle)

where ω0 =
√

g
z0

is the reciprocal of the time constant

for the 3D-LIPM.
The equations of motion, (2), can now be rewritten

as
r̈ = ω2

0(Pr − rankle) (4)

where P =
(

1 0 0
0 1 0
0 0 0

)

projects r onto the xy-plane.

Note that the equations of motion are linear. This
linearity is what makes the model valuable as an anal-
ysis and design tool, as it allows us to make closed
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form predictions. In addition, the equations are de-
coupled and represent the same dynamics in the x-
and y-directions. Each of the first two rows of (4) de-
scribes a separate 2D-LIPM with point foot. There-
fore, results obtained for the 2D model can readily
be extended to the 3D model.

5.2 Allowable Control Inputs

We introduce two constraints on the stepping capa-
bilities of the model. First, we introduce an upper
limit on step length, i.e., the distance between subse-
quent ankle locations. This maximum step length is
denoted lmax and is assumed to be constant; it does
not depend on the CoM location r. Second, we intro-
duce a lower limit to the time between steps (ankle
location changes), ∆ts, which models swing leg dy-
namics.

5.3 Dimensional Analysis

We perform a dimensional analysis to reduce the
number of variables involved and to simplify subse-
quent derivations. Let us define dimensionless point
mass position r′, ankle (point foot) position r′ankle
and time t′ as1

r′ =
r

z0
r′ankle =

rankle
z0

t′ = ω0t.

Throughout this paper, the dimensionless counter-
parts of all positions and lengths will be obtained by
dividing by z0, and times and time intervals will be
nondimensionalized by multiplying by ω0.
The dimensionless point mass position can be dif-

ferentiated with respect to dimensionless time to ob-
tain dimensionless velocity ṙ′ and acceleration r̈′:

ṙ′ =
d

dt′
r′ =

ṙ

ω0z0

r̈′ =
d

dt′
ṙ′ =

r̈

ω2
0z0

=
r̈

g
.

Using these dimensionless quantities, the equations
of motion, (4), become

r̈′ = Pr′ − r′ankle. (5)

1All dimensionless quantities will be marked with a prime.

Further derivations will be simplified by the ab-
sence of ω0 in this equation, as compared to (4).

5.4 Instantaneous Capture Point

As a first step toward examining N -step capturabil-
ity, we now introduce the instantaneous capture point.
For the 3D-LIPM with point foot, it is the point on
the ground that enables the system to come to a stop
if it were to instantaneously place and maintain its
point foot there. Although its definition is motivated
by the current model, it will also be useful in the
analysis of the other models presented in this part,
and we consider it an important quantity to monitor
even for more complex, physical, legged systems.

Note that the instantaneous capture point is not
necessarily a capture point. According to the def-
initions given in Section 3, capture points must be
reachable, considering the dynamics and actuation
limits, while the instantaneous capture point does
not take into account the step time or step length
constraints as defined in Section 5.2.

The location of the instantaneous capture point
can be computed from energy considerations. For
a given constant foot position, we can interpret the
first two rows of (5) as the descriptions of two decou-
pled mass-spring systems, each with unit mass and
negative unit stiffness. Dimensionless orbital ener-
gies [23, 24], E′

LIP,x and E′

LIP,y, are then defined as
the Hamiltonians of these systems:

E′

LIP,x =
1

2
ẋ′2 −

1

2
(x′ − x′

ankle)
2 (6a)

E′

LIP,y =
1

2
ẏ′2 −

1

2
(y′ − y′ankle)

2. (6b)

Since Hamiltonians are conserved quantities, so are
the orbital energies.

The orbital energy for a direction determines the
behavior of the 3D-LIPM in that direction when the
CoM is moving toward the foot. Considering the x′-
direction for example, three cases of interest arise:

1. E′

LIP,x > 0. The orbital energy is sufficient to
let x′ reach x′

ankle, after which x′ continues to
accelerate away from x′

ankle.
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2. E′

LIP,x < 0. x′ reverses direction before x′

reaches x′

ankle.

3. E′

LIP,x = 0. x′ comes to a rest exactly at x′

ankle.

We can solve for a foot location that results in ei-
ther desired orbital energies or, equivalently, a de-
sired velocity vector at a given value of r′ [23, 24].
To determine the instantaneous capture point, we
are interested in the foot placement required to ob-
tain zero orbital energy in each direction. Solving
(6) for r′ankle and choosing the solution for which the
point mass moves toward the point foot shows that
the dimensionless version of the instantaneous cap-
ture point [45] is

r′ic = Pr′ + ṙ′ (7)

or, in terms of the original physical quantities:

ric = Pr +
ṙ

ω0
. (8)

This quantity was independently described by Hof
et al. [15–17] and named the Extrapolated Center
of Mass. It was shown to have significant ties to
balancing and walking in human test subjects.

5.5 Instantaneous Capture Point Dy-

namics

If the point foot is not instantaneously placed at the
instantaneous capture point, the instantaneous cap-
ture point will move. We will now analyze this mo-
tion. The results of this analysis are depicted graph-
ically in Figure 4. The dynamics that describe the
motion of the instantaneous capture point on the
ground can be derived by reformulating the dimen-
sionless equations of motion in state space form. The
state space model is based on the x′-dynamics only
(i.e., the first row of (5), a 2D-LIPM), but the deriva-
tions can readily be extended to both directions, as
noted in Section 5.1. The first row of (5) is rewritten
in state space form as

(

ẋ′

ẍ′

)

=

(

0 1

1 0

)

︸ ︷︷ ︸

A

(

x′

ẋ′

)

+

(

0

−1

)

︸ ︷︷ ︸

B

x′

ankle. (9)

The state matrix A has eigenvalues λ1,2 = ±1 and
corresponding eigenvectors

V =
(
v1 v2

)
=

1

2

(

1 1

1 −1

)

.

The eigendata show that there is a saddle point
with one stable and one unstable eigenvector. The
state matrix can be diagonalized using the similarity
transformation T = V−1, which results in the new
state vector

(

x′

1

x′

2

)

=

(

1 1

1 −1

)

︸ ︷︷ ︸

T

(

x′

ẋ′

)

. (10)

The new state x′

1 is identical to the instantaneous
capture point x′

ic, and x′

2 is the point reflection of the
instantaneous capture point across the projection of
the point mass onto the ground. The diagonalized
state space model is

(

ẋ′

1

ẋ′

2

)

=

(

1 0

0 −1

)

︸ ︷︷ ︸

TAT−1

(

x′

1

x′

2

)

+

(

−1

1

)

︸ ︷︷ ︸

TB

x′

ankle. (11)

The diagonal state matrix TAT−1 shows that the
model’s instantaneous capture point dynamics are
first order. State x′

1 = x′

ic corresponds to the un-
stable eigenvalue +1 and is thus of primary interest
in stabilizing the system.
These derivations can be repeated for the y′-

direction, so that the first row of (11) can be extended
to

ṙ′ic = r′ic − r′ankle. (12)

This derivation proves the following theorem:

Theorem 1 For the 3D-LIPM with point foot, the
instantaneous capture point moves on the line through
the point foot and itself, away from the point foot, at
a velocity proportional to its distance from the point
foot.

As the instantaneous capture point moves away
from the foot, its velocity increases exponentially.
Figure 4 shows the motion of both the instantaneous

8
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Figure 4: Top view of the 3D-LIPM with point foot
for a given initial state at time t. By adding the
CoM velocity vector ṙ (divided by ω0, see (8)) to
the projected CoM position Pr, we find the instanta-
neous capture point location ric. The future trajecto-
ries of the point mass and the instantaneous capture
point are along the dotted lines for a constant foot
location rankle. For this figure, Pr = [−0.4, 0.4, 0],
ṙ = [0.7,−0.3, 0], rankle = [0, 0, 0], and model param-
eters z0, m and g are all set to unit magnitude.

capture point and the point mass when the point foot
is kept fixed. Note that the projection of the point
mass onto the xy-plane describes a hyperbolic curve,
as shown in [23].
An explicit formulation of the instantaneous cap-

ture point trajectory for a fixed foot position is found
by solving (12):

r′ic(∆t′) = [r′ic(0)− r′ankle]e
∆t′ + r′ankle. (13)

This equation will prove useful, both in determining
whether a state is N -step capturable and in comput-
ing N -step capture regions.

5.6 Capturability

The instantaneous capture point is now used to de-
termine N -step capturability for the 3D-LIPM with
point foot. Although computing complete N -step
viable-capture basins is possible for this model, we
choose to only examine N -step capturability for a
part of state space that we consider interesting. The
reasons for this choice are brevity and clarity of pre-
sentation and because only those parts of the state
space need to be considered to compute the N -step
capture regions and related capturability measures.

For the current model in particular, we will only con-
sider those states for which the model has just taken
a step. Denoting the time at which the previous step
has been taking t′s,prev, we set t′ = t′s,prev = 0.
For the 3D-LIPM with point foot, N -step cap-

turability for these states can be fully described in
terms of the initial distance between the contact ref-
erence point and the instantaneous capture point,
‖r′ic(0)− r′ankle‖. The maximum distance for which
the state is still N -step capturable will be denoted
d′N . Figure 5 shows an evolution that captures the
model in the minimum number of steps and the val-
ues of d′N for five values of N . We now proceed to
determine these d′N , first for N = 0 and then for the
general case.

5.6.1 0-step capturability

The requirement for 0-step capturability follows di-
rectly from the definition of the instantaneous cap-
ture point, which shows that the model is 0-step
capturable if and only if the instantaneous cap-
ture point coincides with the point foot location.
The requirement for 0-step capturability is thus
‖r′ic(0)− r′ankle‖ ≤ d′0, with d′0 = 0 for this model. If
this requirement is not met, then ‖r− rankle‖ → ∞
as t→∞ for any evolution that contains no steps.

5.6.2 N-step capturability

For higher N , N -step capturability requires being
able to reach an (N − 1)-step capturable state using
an evolution that contains only a single step. This is
possible if and only if the distance between the foot
and the instantaneous capture point, evaluated at the
earliest possible step time, ∆ts, is such that there ex-
ists a step of allowable length that makes the model
(N − 1)-step capturable:

‖r′ic(∆t′s)− r′ankle‖ ≤ d′N−1 + l′max. (14)

Using (13), this can be rewritten as

‖r′ic(0)− r′ankle‖ ≤ (d′N−1 + l′max)e
−∆t′s = d′N (15)

which leads to a recursive expression for d′N :

d′N = (d′N−1 + l′max)e
−∆t′s , d′0 = 0. (16)
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Figure 5: N -step capturability for the 3D-LIPM
with point foot, characterized using the values of dN
(shown for N ∈ {0 . . . 3,∞}). The quantity dN is the
maximum distance between the instantaneous cap-
ture point and the ankle, evaluated at step time, for
which the model is N -step capturable. An exam-
ple initial state is shown, which is 3-step capturable.
Note that this state is different from the state de-
picted in Figure 4. Because the initial state is not
1-step capturable, the distance between the ankle
and instantaneous capture point at ∆ts is larger than
lmax. A first step of length lmax towards the instan-
taneous capture point results in a discrete jump in
the distance between the instantaneous capture point
and the ankle. A second step is required to make the
state 1-step capturable, and a third step is required
to reach a captured state. Note that the dN levels
only describe capturability just after a step has been
taken: capturability is not in any way reduced dur-
ing the continuous evolution of the dynamics. For
this figure, ∆ts and lmax are set to unit magnitude.

The maximum distance for N -step capturability, d′N ,
follows a converging geometric series, since

d′N+1 − d′N = (d′N − d′N−1)e
−∆t′s , ∀N ≥ 1.

The ratio of the geometric series, exp(−∆t′s) =
exp(−

√

g/z0∆ts), can be interpreted as a measure
of the dynamic mobility of the legged system. The
ratio is a dimensionless quantity that takes a value in
the interval [0, 1) if the minimum step time is strictly
positive. Hence, the series d′N converges. Moreover,
notice that being allowed to take more steps to come
to a stop suffers from diminishing returns. The na-

ture of the series allows the requirement for ∞-step
capturability to be computed in closed form:

d′
∞

= d′0 +

∞∑

N=0

[
d′N+1 − d′N

]
(17a)

= l′max

e−∆t′s

1− e−∆t′s
(17b)

since d′0 = 0 for the 3D-LIPM with point foot.

5.7 Capture Regions

The N -step capture regions for the 3D-LIPM with
point foot are shown in Figure 6 for an example state.
The values of d′N obtained in the previous section will
be used to determine these N -step capture regions in
three steps:

1. determine the instantaneous capture point loca-
tion at the minimum step time;

2. determine the set of possible instantaneous cap-
ture point locations before the first step is taken;

3. construct a series of nested regions around this
set of possible instantaneous capture point loca-
tions.

5.7.1 Instantaneous capture point location
after the earliest possible step time

The legged system will come to a stop if it steps
to the instantaneous capture point. However, step-
ping is only possible after the minimum step time has
passed. Hence, we first determine where the (future)
instantaneous capture point will be at the first pos-
sible time at which a step can be taken. This point
is readily found by substituting ∆t′ = ∆t′s into (13).

5.7.2 Possible instantaneous capture point
locations before the first step is taken

If a step is not taken at the earliest possible time, the
instantaneous capture point will just keep moving far-
ther away from the point foot, as shown by Theorem
1. Therefore, the set of possible future instantaneous
capture point locations at t′ ≥ ∆t′s is a ray starting
at r′ic(∆t′s) which points away from r′ankle.
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5.7.3 Nested regions

N -step capture regions for N ∈ [1,∞] can be found
using this ray and the expression for d′N in (16). Af-
ter taking a single step to an N -step capture point,
the legged system’s state should be (N −1)-step cap-
turable. Step locations that put the legged system
in such a state are readily found using (16): all
points within a distance of d′N−1 to a possible in-
stantaneous capture point at t′ ≥ ∆t′s are N -step
capture points, provided that the legged system can
reach those points given the maximum step length
constraint.2 This results in the nested regions de-
picted in Figure 6.

Note that finding the 1-step capture region is espe-
cially simple. Since d′0 = 0, the step of finding points
with distance d′N−1 to the ray simply results in the
ray itself. The 1-step capture region is then the part
of the ray that is inside the maximum step length
circle.

6 3D-LIPM with Finite-Sized

Foot

In this section, we extend the 3D-LIPM with point
foot by making the foot size finite. The finite-sized
foot articulates with the leg at a 2-DoF ankle joint,
and is assumed massless. At the ankle, torques may
be applied in the pitch and roll directions. However,
the torques are limited in such a way that the foot
does not start to rotate with respect to the ground.
The foot orientation (about the z-axis, i.e. the yaw
direction) may be chosen arbitrarily when a step is
taken. The model is shown in Figure 7.

6.1 Equations of Motion

Only slight modifications to the derivation of the
equations of motion for the 3D-LIPM are necessary.
Equation (2) also applies to this model. Adding con-
trollable ankle torques τankle,x and τankle,y and a re-
action torque τankle,z changes the moment balance of

2A point that cannot be reached can never be an N -step
capture point.
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Figure 6: Top view of the 3D-LIPM with point foot
and N -step capture regions, for the same state as
shown in Figure 4. Additional to the information in
Figure 4, this figure gives a schematic representation
of the N -step capture regions for N ∈ {1 . . . 4,∞}.
Before the first step, the instantaneous capture point
ric will move away from the point foot, rankle, on the
dashed line. The set of possible future instantaneous
capture point locations for which the minimum step
time has passed is the ray starting at ric(∆ts) and
pointing along the dashed line, away from the point
foot. N -step capture regions are then found as the
sets of points within a distance of dN−1 to the ray,
as long as they lie inside the maximum step length
circle. For this figure, model parameters ∆ts and lmax

are set to unit magnitude.

the massless leg link, (3), to

−(r − rankle)× f + τ ankle = 0 (18)

where τ ankle =
(
τankle,x τankle,y τankle,z

)T
is the

ankle torque and rankle is now the projection of the
ankle joint onto the ground.

As before, fz = mg due to the model constraint
z̈ = 0, and we find the actuator forces fx, fy and the
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reaction torque τankle,z from (18):

fx =mω2
0(x − xankle) +

τankle,y
z0

fy =mω2
0(y − yankle)−

τankle,x
z0

τankle,z =−
τankle,x

z0
(x − xankle)

−
τankle,y

z0
(y − yankle).

The equations of motion can then be derived by
substituting this into (2), resulting in

r̈ = ω2
0(Pr − rCoP) (19)

where rCoP is the location of the CoP, given by

rCoP = rankle +∆rCoP,

∆rCoP = −
1

mg






τankle,y

−τankle,x

0




 = −

τ ankle × êz
mg

.

The fact that this is the CoP for this model follows
readily from a moment balance for the foot, consid-
ering that the ankle torques are such that the foot
does not rotate with respect to the ground, by model
definition.
Comparing (19) to (4) clearly shows that the dy-

namics are essentially unchanged. The only differ-
ence is that it is now possible to displace the CoP
without taking a step. Hence, the results of Section
5.5 are still valid if rankle is replaced by rCoP.

The dynamics of our 3D-LIPM with finite-sized
foot are the same as those of the original 3D-LIPM
by Kajita et al. [23], where the virtual inputs are in-
terpreted as components of an ankle torque vector,
expressed in a ground-fixed frame.

6.2 Allowable Control Inputs

The step length and step time limits as defined for
the 3D-LIPM with point foot in Section 5.2 also apply
to the 3D-LIPM with finite-sized foot.3 We augment
these allowable control inputs by specifying limits on

3Note that the ankle location is still used as the reference
point for determining step length.
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Figure 7: The 3D-LIPM with finite-sized foot, ob-
tained by extending the 3D-LIPM with point foot
(Figure 3) by a finite-sized foot and the ability to
apply ankle torques τ ankle.

the ankle torques. The allowable ankle torques are
easiest to describe in terms of their resulting CoP
location. To fulfill the requirement that the foot must
not rotate about its edge, rCoP must be kept inside
the base of support.4

When a step is taken, the foot orientation may be
chosen without restriction.

6.3 Dimensional Analysis

In addition to the dimensionless quantities defined
for the 3D-LIPM with point foot in Section 5.3, we
define dimensionless ankle torque τ

′

ankle as

τ
′

ankle =
τ ankle

mω2
0z

2
0

.

The dimensionless counterpart of the CoP is then

r′CoP =
rCoP

z0
= r′ankle − τ

′

ankle × êz

and the equations of motion reduce to

r̈′ = Pr′ − r′CoP. (20)

4To be precise, rCoP is the foot rotation indicator [11],
which must be kept inside the base of support to prevent foot
rotation. If it is inside the base of support, then the CoP co-
incides with the foot rotation indicator; hence we have chosen
the notation rCoP.
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Replacing r′ankle by r′CoP, (12) becomes

ṙ′ic = r′ic − r′CoP (21)

and for a constant CoP, (13) becomes

r′ic(∆t′) = [r′ic(0)− r′CoP]e
∆t′ + r′CoP. (22)

6.4 Equivalent Constant CoP

To find the capture region for this model, the effect
of a time-varying CoP must be investigated.
Suppose a time-varying CoP causes the instanta-

neous capture point to move from an initial position
to a final position in a certain time interval. The
equivalent constant CoP is the point where the CoP
could have been held constant, while it would still
move the instantaneous capture point from the ini-
tial position to the final position in the same time
interval.5

We can use (22) to compute the equivalent con-
stant CoP as

r′CoP,eq =
r′ic(∆t′)− r′ic(0)e

∆t′

1− e∆t′
(23)

Let us now examine the equivalent constant CoP
for a piecewise constant CoP trajectory. Suppose the
CoP is initially located at r′CoP,0, and is kept there
for ∆t′0. Subsequently, it is changed to r′CoP,1 and
kept there for ∆t′1. The final instantaneous capture
point position is found by applying (22) twice:

r′ic(∆t′0) = [r′ic(0)− r′CoP,0]e
∆t′0 + r′CoP,0

r′ic(∆t′0 +∆t′1) = [r′ic(∆t′0)− r′CoP,1]e
∆t′1 + r′CoP,1

(24)

Solving (23) and (24) for r′CoP,eq (with ∆t′ = ∆t′0+
∆t′1), we find

r′CoP,eq = (1− w′)r′CoP,0 + w′r′CoP,1 (25)

where

w′ =
e∆t′1 − 1

e∆t′0+∆t′1 − 1

5The equivalent constant CoP is only equivalent in terms
of instantaneous capture point motion and not necessarily in
terms of other parts of the state.

The dimensionless scalar w′ lies in the interval [0, 1]
because both ∆t′0 and ∆t′1 are nonnegative. The
equivalent constant CoP is thus a weighted average of
the two individual CoPs, where the weighting factors
depend only on the time intervals. This statement
can be generalized to any number of CoP changes
and, in the limit, even to continuously varying CoPs,
thus proving the following theorem:

Theorem 2 For the 3D-LIPM with finite-sized
foot, the equivalent constant CoP is a weighted av-
erage of the CoP as a function of time.

The time-varying CoP must always be inside the
base of support, which is a convex set. By definition,
a weighted average of elements of a convex set must
also be in the convex set. Therefore:

Corollary 1 If the base of support of the 3D-LIPM
with finite-sized foot is constant, then the equivalent
constant CoP for any realizable instantaneous capture
point trajectory lies within the base of support.

Theorem 2 and Corollary 1 greatly simplify the
analysis of capturability and capture regions, since
only constant CoP positions within the base of sup-
port have to be considered in our subsequent deriva-
tions.

Equation (25) reveals some interesting properties
of computing the equivalent constant CoP for a piece-
wise constant CoP trajectory:

• distributivity over addition: adding a constant
offset to the individual CoP locations results in
an equivalent constant CoP that is offset by the
same amount;

• associativity: when computing the equivalent
constant CoP for a sequence of three individ-
ual CoP locations, the order of evaluation of the
composition does not matter;

• non-commutativity: when computing an equiv-
alent constant CoP for a sequence of individual
CoP locations, the order of the sequence being
composed does matter.
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6.5 Capturability

The instantaneous capture point and equivalent con-
stant CoP concepts are now used to determine cap-
turability for the 3D-LIPM with finite-sized foot.

6.5.1 0-Step capturability

We first analyze 0-step capturability. We can replace
the point foot position by the CoP in Theorem 1 be-
cause the model dynamics are equivalent if the ankle
position is replaced by CoP. Hence, the instantaneous
capture point diverges away from the CoP. Since the
base of support is a convex set and cannot change if
no step is taken, a corollary of that theorem is:

Corollary 2 Once the instantaneous capture point
of the 3D-LIPM with finite-sized foot is outside the
base of support, it is impossible to move it back inside
without taking a step.

Since a captured state can only be reached when
the CoP can be made to coincide with the instan-
taneous capture point, Corollary 2 shows that the
3D-LIPM with finite-sized foot is 0-step capturable if
and only if the instantaneous capture point is inside
the base of support.

6.5.2 N-Step capturability

For higher N , capturability is analyzed in much the
same way as for the 3D-LIPM with point foot. For
the same reasons as mentioned in Section 5.6, we will
not compute complete N -step viable-capture basins.
For this model we restrict the analysis to states at
which a step has just been taken and for which the
foot is optimally oriented, in the sense that the dis-
tance between the border of the base of support and
the instantaneous capture point is minimized, given
a fixed ankle location.6 For these states, capturabil-
ity can again be expressed in terms of the distance
‖r′ic(0)− r′ankle‖.
The strategy that brings the model to a halt in as

few steps as possible comprises stepping as soon as

6Informally speaking: the foot is optimally oriented when
the toes point in the direction of the instantaneous capture
point. See Figure 8.

possible in the direction of the instantaneous capture
point and always maintaining the CoP as close to the
instantaneous capture point as possible.
The CoP should be placed at the point on the edge

of the base of support that is closest to the instanta-
neous capture point. Due to the assumption of opti-
mal orientation, this point also has the greatest dis-
tance to the ankle. This greatest distance will be de-
noted rmax and is normalized as r′max = rmax/z0. The
requirement for 0-step capturability thus becomes

‖r′ic(0)− r′ankle‖ ≤ r′max = d′0.

Similar to Section 5.6, we can now start at (14)
and arrive at formulas for d′N and d′

∞
:

d′N = (l′max − r′max + d′N−1)e
−∆t′s

+ r′max, N ≥ 1 (26a)

d′
∞

= l′max

e−∆t′s

1− e−∆t′s
+ r′max. (26b)

It is seen that the difference between d′
∞

for the
model with point foot and d′

∞
for the model with

finite-sized foot is simply the normalized maximum
distance between the contact reference point and the
edge of the foot, r′max.

6.6 Capture Regions

The N -step capture regions for the 3D-LIPM with
finite-sized foot are shown in Figure 8. The analysis
follows the same steps as in Section 5.7.

6.6.1 Possible instantaneous capture point
locations at earliest possible step time

Due to the possibility of placing the CoP at any lo-
cation in the base of support, there is now more than
one location where the instantaneous capture point
can be at the first time that a step can be taken, i.e.
at ∆t′s. Theorem 2 and Corollary 1 reveal that only
constant CoP positions within the base of support
need to be considered in this analysis. To find the
set of possible instantaneous capture point locations
at ∆t′s, we apply (22) and scan through all possible
CoP locations in the base of support. Examining (22)
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Figure 8: Top view of the 3D-LIPM with finite-sized
foot, showing the N -step capture regions. The fig-
ure is an extension of Figure 6: rankle, r and ṙ are
identical. We have omitted the labels shown in Fig-
ure 6 to avoid cluttering. CoP locations 1 and 3 are
just in line of sight of ric(t) and determine to which
locations the instantaneous capture point may be di-
rected (dashed lines). CoP location 2 is closest to
ric(t) and results in the closest possible location of
ric(∆ts). The set of all possible instantaneous cap-
ture point locations at ∆ts is a scaled point reflec-
tion of the base of support across the instantaneous
capture point (dash-dotted lines), as demonstrated
by example CoP locations 1 to 3 and corresponding
capture point locations 1 to 3. To obtain the N -step
capture regions, the region of possible instantaneous
capture point locations before the first step is taken
is surrounded by bands of width d′N , given by (26a).
For this figure, rmax = 0.2.

shows that this set of possible instantaneous capture
point locations is a scaled point reflection of the base
of support across the instantaneous capture point as
shown in Figure 8.

6.6.2 Possible instantaneous capture point
locations before the first step is taken

If a step is not taken at the earliest possible time,
the instantaneous capture point will be pushed far-
ther and farther away by the CoP. Since the CoP can
only lie within the base of support, the instantaneous
capture point can only be pushed in the directions
allowed by Theorem 1 (with point foot replaced by
CoP), resulting in the wedge-shaped region of pos-
sible instantaneous capture point locations shown in
Figure 8. Note that this region is bounded by the
‘lines of sight’ from the instantaneous capture point
to the base of support (dashed lines in Figure 8).

6.6.3 Nested regions

To find the N -step capture regions, we follow the
same procedure as in Section 5.7, that is, we create
nested regions around the region of possible instanta-
neous capture point locations. This time, the greatest
allowed distance to the possible instantaneous cap-
ture point locations is computed using (26a) instead
of (16). This method assumes that the foot orienta-
tion will be chosen optimally when the step is taken.
Note that for this model, d′0 = r′max > 0, as opposed
to the previous model. Discarding points that are
outside the maximum step length circle results in the
final N -step capture regions for this model.

7 3D-LIPM with Finite-Sized

Foot and Reaction Mass

We now extend the 3D-LIPM with finite-sized foot
by modeling not just a point ‘body’ mass at the end
of the leg, but a rigid body possessing a non-zero
mass moment of inertia. Actuators in the hip can
exert torques on this reaction mass in all directions,
enabling lunging motions in 3D. The model, depicted
in Figure 9, is a 3D version of the Linear Inverted
Pendulum plus Flywheel Model presented in [42]. It
can also be considered a linear version of the Reaction
Mass Pendulum [25] with a constant mass moment of
inertia.
To make the analysis tractable, we specify several
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Figure 9: The 3D-LIPM with finite-sized foot and
reaction mass. The 3D-LIPM with finite-sized foot
(Figure 7) is extended with a non-zero mass moment
of inertia tensor J and the ability to apply hip torques
τ hip to obtain the 3D-LIPM with finite-sized foot and
reaction mass.

constraints. We place limits on the allowable angle
of the reaction mass with respect to the vertical axis.
At the start of our analysis, we assume that both this
angle and the angular velocity of the body are zero.
Hip torques can be used to accelerate the reaction
mass, but must be followed by decelerating torques
to prevent the reaction mass from exceeding its angle
limit. Furthermore, we assume that the robot can
only lunge once, in only one direction, similar to a
human using a single impulsive lunging response in an
attempt to regain balance after a severe perturbation.
Besides angle limits, we place limits on the allowable
hip torque. The hip torque component around the
z-axis is determined by the requirement of no yaw
of the reaction mass. This requirement makes the
equations of motion linear. For the horizontal torque
components, we assume a bang-bang input profile, as
used in [50, 51]. We assume in the analysis that the
execution time of the profile is less than the minimum
step time and that the CoP is held constant while the
torque profile is executed.

7.1 Equations of Motion

The equations of motion for the reaction mass are

mr̈ = f +mg (27a)

Jω̇ = τ hip − ω × (Jω) (27b)

where ω =
(
ωx ωy ωz

)T
is the angular velocity

vector of the upper body, expressed in the inertial ref-

erence frame, τ hip =
(
τhip,x τhip,y τhip,z

)T
is the

hip torque vector, J is the mass moment of inertia
in the body-fixed frame, and m, r, f and g are as
defined in Section 5.1.

Assuming that ωz = 0, that τhip,z is such that ω̇z =
0, and that J is diagonal, (27b) can be rewritten as

Jxxω̇x = τhip,x

Jyyω̇y = τhip,y

0 = τhip,z + (Jxx − Jyy)ωxωy.

This last equation specifies the hip torque about the
z-axis that is required to keep the reaction mass from
yawing. Note that no hip torque about the z-axis is
required if Jxx = Jyy.
The moment balance for the massless leg link is

−(r − rankle)× f − τ hip + τ ankle = 0. (28)

Keeping the mass at z = z0 means that fz = mg,
as before. This fact and (28) can be used to find
the reaction forces fx and fy, and the ankle torque
τankle,z:

fx = mω2
0(x − xCoP)−

τhip,y
z0

fy = mω2
0(y − yCoP) +

τhip,x
z0

τankle,z =
τhip,x − τankle,x

z0
(x− xankle)

+
τhip,y − τankle,y

z0
(y − yankle) + τhip,z.

We can now rewrite (27) to obtain the equations
of motion,

r̈ = ω2
0(Pr − rCMP) (29a)

ω̇ = J−1Pτ hip (29b)
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where r, ω0 and P are as defined in Section 5.1, and

rCMP = rCoP +∆rCMP, (30a)

∆rCMP =
1

mg






τhip,y

−τhip,x

0




 =

τ hip × êz
mg

. (30b)

The point rCMP is the Centroidal Moment Pivot
(CMP) as defined in [41]. Here we have used the fact
that the CoP is equal to the Zero Moment Point when
the ground is flat and horizontal [41].
The equations of motion are again linear. Note

the similarity to the equations of motion for the pre-
vious models, which allows us to reuse most results
obtained for those models if the CoP is replaced by
the CMP.

7.2 Allowable Control Inputs

The actuation limits of the 3D-LIPM with finite-sized
foot are extended to include the hip torque profile.
The set of allowable hip torque profiles is the set of
bang-bang torque profiles for which the torque and
angle limits are not exceeded at any time. Any al-
lowable torque profile can be written as

Pτ hip = τhipêτ [u(t)− 2u(t−∆tRM) + u(t− 2∆tRM)]
(31)

where τhip is the torque magnitude, êτ is the torque
direction, u(·) is the Heaviside step function, and
∆tRM is the duration of each torque ‘bang’. The hip
torque magnitude is limited as τhip ≤ τhip,max.
To comply with model assumptions, the angular

velocity of the reaction mass must be zero both before
and after the application of the hip torque profile,
so both bangs must have equal duration. For a 2D
version of the presented model, [51] and [42] have
shown that this duration has a maximum value

∆tRM,max =
√

Jθmax/τhip (32)

given the scalar mass moment of inertia J , the an-
gle limit θmax with respect to vertical, and the hip
torque τhip. The appropriate scalar inertia value for
the model presented here can be obtained from the
mass moment of inertia tensor and the torque direc-
tion as J = êTτ Jêτ .

7.3 Dimensional Analysis

Additional dimensionless quantities are needed to
nondimensionalize the equations of motion. We de-
fine the dimensionless mass moment of inertia J′, an-
gular velocity ω

′, and hip torque τ
′

hip as

J′ =
J

mz20
ω

′ =
J′
ω

ω0
τ
′

hip =
τ hip

mω2
0z

2
0

.

The dimensionless angular velocity ω
′ is differenti-

ated with respect to dimensionless time t′ to obtain
dimensionless angular acceleration:

ω̇
′ =

d

dt′
ω

′ =
J′
ω̇

ω2
0

.

The dimensionless version of the CMP is

r′CMP =
rCMP

z0
= r′CoP +∆r′CMP (33a)

∆r′CMP = τ
′

hip × êz. (33b)

These quantities can be used to rewrite the equa-
tions of motion, (29), as

r̈′ = Pr′ − r′CMP (34a)

ω̇
′ = Pτ

′

hip. (34b)

Replacing r′CoP by r′CMP, (21) becomes

ṙ′ic = r′ic − r′CMP (35)

and for a constant CMP, (22) becomes

r′ic(∆t′) = [r′ic(0)− r′CMP]e
∆t′ + r′CMP. (36)

7.4 Effect of the Hip Torque Profile

To analyze capturability for this model, we first ex-
amine how the hip torque profile influences the in-
stantaneous capture point motion.
Since the CoM dynamics of the current model,

(34a), are the same as those of the previous model,
(19), with the CoP replaced by the CMP, we can
reuse the equivalent constant CoP concept from Sec-
tion 6.4. During the application of the hip torque
profile, the CMP will first be held constant at
r′CoP + τ ′hipêτ × êz for ∆t′RM, after which it moves
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to r′CoP − τ ′hipêτ × êz when the torque direction is
reversed, and stays there for another ∆t′RM. The
equivalent constant CMP is found using (25), with
∆t′0 = ∆t′1 = ∆t′RM:

r′CMP,eq = r′CoP + (1− 2w′)τ ′hipêτ × êz (37)

The final location of the instantaneous capture
point can then be computed using (36):

r′ic(2∆t′RM) = [r′ic(0)− r′CMP,eq]e
2∆t′RM + r′CMP,eq.

Using (37), this can be rewritten as

r′ic(2∆t′RM) = [r′ic(0)− r′CMP∗
]e2∆t′RM + r′CoP (38)

where

r′CMP∗
= r′CoP +∆r′CMP∗

, (39a)

∆r′CMP∗
= v′τ ′hipêτ × êz, (39b)

v′ = (1− 2w′)(1− e−2∆t′RM) (39c)

= 1− 2e−∆t′RM + e−2∆t′RM . (39d)

The vector ∆r′CMP∗
expresses the influence of the

hip torque profile on the instantaneous capture point
motion. The scalar v′ can be shown to monotonically
increase from 0 to 1 for ∆t′RM > 0.

Equation (38) shows that the norm of ∆r′CMP∗

must be maximized to gain a maximal effect of the
hip torque profile on the final instantaneous capture
point location. It can be shown that

‖∆r′CMP∗
‖max = ‖∆r′CMP∗

‖τ ′

hip
=τ ′

hip,max
. (40)

That is, even though increasing hip torque τ ′hip re-
duces the allowed torque duration ∆t′RM according to
(32), the linear term in (39b) outweighs the reduced
value of v′.

7.5 Capturability

The results from Section 7.4 will now be used to in-
vestigate capturability.

7.5.1 0-Step capturability

With a reaction mass, the model can be 0-step cap-
turable even if the instantaneous capture point is not
initially located inside the base of support. Rather,
the requirement for 0-step capturability is that the in-
stantaneous capture point should be inside the base
of support after the application of the torque profile.
To determine which states are 0-step capturable, we
examine a boundary case for which the instantaneous
capture point can only just be pushed from outside
the base of support back to its edge (see Figure 10).
For this boundary case, it is best to place the CoP

as close to the initial instantaneous capture point as
possible, thus minimizing its rate of divergence. As
the instantaneous capture point needs to be pushed
back to the boundary of the base of support and the
optimal CoP location is the closest point on that
boundary, we have r′ic(2∆t′RM) = r′CoP. The hip
torque profile should always be applied as soon as
possible to be most effective, since waiting longer sim-
ply results in an initial instantaneous capture point
location that is farther removed from the foot. Us-
ing this information together with (39a) and (38), we
obtain

r′CoP = [r′ic(0)− r′CoP −∆r′CMP∗
]e2∆t′RM + r′CoP

∴ ‖r′ic(0)− r′CoP‖max = ‖∆r′CMP∗
‖max

for the boundary case. Since the hip torque may be
exerted in any direction and the CoP may be any-
where inside the base of support, the system is 0-step
capturable in the general case if and only if the ini-
tial distance between the instantaneous capture point
and the base of support is smaller than or equal to
‖∆r′CMP∗

‖max.

7.5.2 N-Step capturability

For N -step capturability, we restrict the analysis to
states in which a step has just been taken, the foot
is optimally oriented, and the reaction mass starts in
the upright position.

For these states, the strategy that brings the model
to a stop in as few steps as possible consists of step-
ping as soon as possible, choosing the CoP location as
close as possible to the initial instantaneous capture

18



r
ankle

r
max

a)

b)

r
CMP

r
ic
(0)

||ΔrCMP*
||

max

||ΔrCMP
||

max

r
CoP 

r
CMP,eq

||ΔrCMP
||

max

r
CoP 

= r
ic
(2Δt

RM
)r

ic
(Δt

RM
)

r
CMP

r
CMP,eq

Figure 10: Instantaneous capture point motion dur-
ing the hip torque profile, for the boundary case de-
scribed in Section 7.5.1. a) t ∈ [0,∆tRM): during the
first half of the hip torque profile, the CMP maxi-
mally pushes the instantaneous capture point inside
the base of support. b) t ∈ [∆tRM, 2∆tRM]: during
the ‘payback phase’, the CMP must be placed in the
opposite direction to stop the spinning motion of the
reaction mass. The net effect is that the instanta-
neous capture point ends up on the boundary of the
base of support at 2∆t′RM, exactly at the CoP. Note
that the figure shows a special case where the foot is
optimally oriented.

point and lunging as soon and as hard as possible
in the direction of the initial instantaneous capture
point.
While this strategy is being executed, r′ic, r′CoP,

r′CMP, and r′ankle are all on the same line due to op-
timal orientation of the foot (as in Figure 10). The
requirement for 0-step capturability can thus be sim-
plified for these states and written in terms of the
distance to the contact reference point r′ankle as

‖r′ic(0)− r′ankle‖ ≤ r′max + ‖∆r′CMP∗
‖max

= d′0.
(41)

The limit of capturability for N = 1 is calculated
as follows. At the end of the torque profile, the in-
stantaneous capture point location is determined by
(38). The motion of the instantaneous capture point
between the end of the torque profile and the min-

imum swing time is governed by (36). Composing
these equations results in the instantaneous capture
point location at the minimum step time:

r′ic(∆t′s)− r′CoP = (r′ic(0)− r′CMP∗
)e∆t′s (42)

Using the definitions of r′CoP and r′CMP∗
, the fact

that all points involved lie on the same line, and max-
imizing the influence of the hip torque profile by using
‖∆r′CMP∗

‖ = ‖∆r′CMP∗
‖max, we have

‖r′ic(∆t′s)− r′CoP‖ = ‖r
′

ic(∆t′s)− r′ankle‖ − r′max,

‖r′ic(0)− r′CMP∗
‖ =

‖r′ic(0)− r′ankle‖ − (r′max + ‖∆r′CMP∗
‖max).

We can use this in combination with (42) to find

‖r′ic(∆t′s)− r′ankle‖ = ‖r
′

ic(0)− r′ankle‖ e
∆t′s

− (r′max + ‖∆r′CMP∗
‖max)e

∆t′s + r′max (43)

Since usage of the reaction mass is no longer avail-
able after the first step is taken, the model is essen-
tially reduced to the model presented in Section 6, so
the requirement for 1-step capturability is that the in-
stantaneous capture point is located inside the base
of support right after the first step is taken. Stepping
in the direction of the instantaneous capture point re-
duces its distance to the ankle by at most l′max, and
after the step the instantaneous capture point should
be at most r′max away from the ankle to be 0-step
capturable. The criterion for 1-step capturability is
therefore

‖r′ic(∆t′s)− r′ankle‖ ≤ l′max + r′max.

Using (43), this becomes

‖r′ic(0)− r′ankle‖ ≤ l′maxe
−∆t′s + r′max

+ ‖∆r′CMP∗
‖max = d′1 (44)

For both 0-step and 1-step capturability, we see
that the margin that is gained by the addition of the
reaction mass is ‖∆r′CMP∗

‖max, compared to (26a).
Recursively applying the above derivations shows
that this trend continues for all N , so that

d′N = (l′max − r′max + d′N−1)e
−∆t′s

+ r′max + ‖∆r′CMP∗
‖max , N ≥ 1

(45a)
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d′
∞

= l′max

e−∆t′s

1− e−∆t′s
+ r′max+ ‖∆r′CMP∗

‖max . (45b)

7.6 Capture Regions

The N -step capture regions for the 3D-LIPM with
finite-sized foot and reaction mass are shown in Fig-
ure 11 and are derived as follows.

7.6.1 Possible instantaneous capture point
locations at earliest possible step time

Similar to the previous models, the first step to find-
ing the capture regions is to find the set of possible
future instantaneous capture point locations at time
∆t′s. The difference that the reaction mass makes is
found by rewriting (38) as

r′ic(∆t′s) = r′ic(∆t′s)|τ ′

hip
=0 −∆r′CMP∗

e∆t′s (46)

where r′ic(∆t′s)|τ ′

hip
=0 is the instantaneous capture

point location at ∆t′s when no hip torque is applied,
that is, when ∆r′CMP∗

= 0, for which the model re-
duces to the model without reaction mass. Taking
the hip torque limit into account results in

∥
∥
∥r′ic(∆t′s)|τ ′

hip
=0 − r′ic(∆t′s)

∥
∥
∥ ≤ δ

where
δ = ‖∆r′CMP∗

‖max e
∆t′s .

Therefore, the set of possible instantaneous capture
point locations at time ∆t′s consists of all points that
lie at most δ away from possible instantaneous cap-
ture point locations at ∆t′s for the model without
reaction mass (see Section 6.6.1).

7.6.2 Possible instantaneous capture point
locations after the earliest possible step
time

After the application of the hip torque profile, the
CMP will coincide with the CoP, and the instanta-
neous capture point will move on a line through itself
and the CoP. Bounds on reachable instantaneous cap-
ture point locations are therefore found exactly as in
Section 6.6.2, by constructing lines of sight (shown

as the dashed lines in Figure 11) from the base of
support to the set of possible instantaneous capture
point locations at ∆t′s.

7.6.3 Nested regions

Finally, we can construct capture regions exactly as
in Section 6.6.3. After the first step is taken, no hip
torque is applied anymore and the model essentially
reduces to the 3D-LIPM with finite-sized foot. We
should hence construct nested regions around the set
of possible future instantaneous capture point loca-
tions using the values of d′N for the LIPM without
reaction mass, i.e., those calculated using (26a), not
the ones from (45a). The effect of the reaction mass
is already incorporated in the set of possible instanta-
neous capture point locations at the earliest possible
step time.

8 Capturability Comparison

For all three models, we determined which states in a
subset of state space are N -step capturable, and de-
rived descriptions of the N -step capture regions. The
N -step capture regions of Figure 6, 8 and 11 clearly
showed that an increase in the number of possible
stabilizing mechanisms leads to an increase in cap-
ture region size. This result implies that there is
more freedom to choose foot placements that keep
the model capturable, or we could say that the ‘level
of capturability’ increases.

For a specific state, the area of the N -step capture
region can be used as a measure of capturability. We
call this the N -step capturability margin. This met-
ric expresses how close a specific state of a system
is to not being N -step capturable. It also gives an
indication of the input deviations and disturbances
that are allowed while executing a given evolution.
A small size of the ∞-step capture region, for ex-
ample, indicates that a small disturbance will likely
make the legged system fall.

In the previous sections, we graphically depicted
the influence of the various model parameters on the
∞-step capture region for a given initial state. Figure
12 combines these results and displays the size of the
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Figure 11: Top view of the 3D-LIPM with finite-sized
foot and reaction mass, with a schematic representa-
tion of the N -step capture regions. The figure is an
extension of Figure 8: state parameters rankle, r and
ṙ are identical. We have omitted labels that were
already shown in Figure 8 to avoid cluttering. The
geometric construction is as follows. 1) find region
A as described in Figure 8 and find region B by off-
setting region A by δ; 2) use the lines of sight from
the base of support to find region C; 3) find the cap-
ture regions by offsetting region C by the values of
dN from (26a). For this figure, τhip,max is set to 0.5
and θmax = 1/8, which results in a total lunge time
(2∆tRM,max) of 1.

three ∞-step capture regions. Parameters were set
to estimated anthropomorphic values, as presented in
Appendix B. For the selected initial state, the addi-
tion of a finite-sized foot caused the ∞-step captura-
bility margin to increase by 160%. Another increase
of 30% was found for the addition of the reaction
mass.

Instead of considering a specific state, we can also
consider the capturability of a model in general.
The d∞ capturability level, which was computed for
all three models, gives an indication of the overall
legged-system stability and allows a comparison. In

+
 fin

ite-sized foot + reaction mass

+ finite-sized foot

point foot

0.62 m2

1.65 m22.21 m2

Figure 12: Superimposed ∞-step capture regions of
all three models, as previously presented in Figure 6,
8 and 11. The sizes of the ∞-step capture regions,
i.e. the ∞-step capturability margins, are shown.

terms of the original physical quantities, d∞ for the
3D-LIPM with finite-sized foot and reaction mass is
expressed as

d∞ = lmax
e−ω0∆ts

1− e−ω0∆ts
︸ ︷︷ ︸

3D-LIPM, Section 5

+ rmax
︸︷︷︸

3D-LIPM,Section 6

+
τhip,max

mω2
0z0

[1− 2e−ω0∆tRM,max + e−2ω0∆tRM,max ]

︸ ︷︷ ︸

3D-LIPM, Section 7

.

(47)

For the model with point foot, d∞ = 0.431 us-
ing anthropometric parameters. Adding a finite-sized
base of support results in d∞ = 0.631, and an addi-
tional reaction mass results in d∞ = 0.664.

9 Discussion

9.1 Simple Models

To analyze capturability for the three presented walk-
ing models, we made extensive use of the instanta-
neous capture point, which is determined only by
the CoM position and velocity. This gave us a
dimensionally-reduced description of the dynamics of
the three models. We showed how this resulted in rel-
atively simple and comprehensible expressions, and
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enabled calculation and visualization of capture re-
gions and viable-capture basins.
The three models revealed the relation between the

location of the point foot, the CoP and the CMP in
the analysis of capturability. Despite time variant
inputs, the dynamics of the instantaneous capture
point remains easy to predict for all three models: the
instantaneous capture point diverges away from the
CMP along a straight line at a velocity proportional
to the distance to the CMP. The CMP reduces to the
CoP if no reaction mass is present or actuated. The
CoP reduces to the point foot location if the base of
support is infinitesimally small.
The LIPM with point foot suggests that in order

to remain capturable, the foot should be placed suf-
ficiently quickly in the direction of the instantaneous
capture point. This simple stepping strategy was
used to create a variety of stable locomotion patterns
in simulation [45,62] and was also found to be a good
predictor of stable foot placement locations in the
analysis of human walking [15,18,30,53].
The analysis for the LIPM with finite-sized foot in-

troduced the equivalent constant CoP, which greatly
simplifies the analysis of the presented models. This
equivalent constant CoP is a useful analysis tool and
can also be applied to robot control, as demonstrated
recently [9].
The LIPM with finite-sized foot and reaction mass

showed that lunging as soon as possible in the direc-
tion of the instantaneous capture point maximizes the
level of capturability. We conjecture that bang-bang
control achieves the maximal influence on instanta-
neous capture point motion if lunging is constrained
by angle and torque limits. Note that in general it is
not straightforward to relate the effect of the angular
momentum generated by the simple reaction mass to
the effect generated by all individual links of a com-
plex multibody system [25,36]. However, this simple
model still demonstrates the conceptual contribution
of angular momentum to the stability of locomotion.
The influence of each stabilizing mechanism on

the capturability of each model was demonstrated
by (47). The values of d∞ obtained for human pa-
rameters suggest that, not surprisingly, the ability
to perform rapid steps is most important to remain
capturable. This suggestion is also expressed by the

metric being most sensitive to changes in minimum
step time. A variation in minimum step time can
be compensated by another stabilizing mechanism to
retain the same level of capturability. However, a
10% increase in step duration already requires a 17%
longer step or a 30% longer foot. For humans, se-
lection of the appropriate step speed and length may
be a trade-off between the required muscle strength
to perform a quick step [49, 52] and the perceived
level of stability or safety of the selected step length
[21,26,56].

The use of the three presented simple models as
a representation of legged locomotion has a number
of limitations. The models discard many aspects of
legged locomotion. Height variations of the CoM dur-
ing legged locomotion were not considered. Internal
forces generated by lunging or swing leg dynamics
were discarded. Slippage or losses at the change of
support were not considered. The existence of a dou-
ble support phase in case of walking was also not
taken into account. Consequently, using these sim-
ple models to approximate the capturability of a real
robot will lead to discrepancies between the approx-
imated and true values.

Furthermore, the limitations on the stabilizing con-
trol inputs were modeled simplistically. For example,
consider the limitations on the stepping performance
of the model. Stepping speed was constrained by en-
forcing a constant minimum step time, independent
of the step location. Step location was constrained by
limiting the maximum step length, irrespective of the
current CoM position or direction of motion. The ex-
pressions for capturability in this paper rely strongly
on these simplistically modeled limitations.

We see an advantage in the simplicity of the pre-
sented models however. Comparable studies demon-
strated that making the models even slightly more
complex can result in expressions that are less com-
prehensible and require numerical methods to be
solved [43, 59]. This decreases understanding and
increases the computational burden. Although the
models are very elementary, they are still useful for
the analysis and control of legged locomotion.
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9.2 Robustness Metrics

We introduced the N -step capturability margin,
which expresses the level of capturability for a single
state and takes both the position and velocity of the
CoM into account. Human subject studies already
demonstrated that the CoM position and velocity in
relation to the base of support is a good indicator
of the ability to maintain balance and the number of
steps required to do so [2,20,26,37,38]. Hof et al. [16]
were the first to formally define the distance between
the instantaneous capture point (which these authors
call the ‘extrapolated CoM’) and the base of support
as a ‘margin of stability’. We see an advantage to us-
ing our metrics, since they take the effects and limits
of the stabilizing control inputs (foot placement, an-
kle torque and hip torque) into account.

9.3 More Complex Models

Although we were able to perform a complete cap-
turability analysis for three simple models, it remains
an open issue to find a more generally applicable an-
alytical method, or even a numerical algorithm. A
possible numerical algorithm could start with a small
set of states that are known to be captured, such as
default standing positions. This set can then be ex-
panded by finding initial states in its neighborhood
for which there exist evolutions that reach the set
and contain no steps. Subsequently, sets of N -step
capturable states can be found recursively by search-
ing for states from which it is possible to reach an
(N − 1)-step capturable state in a single step. While
this algorithm is conceptually simple, it is likely com-
putationally prohibitive for a complex system. In ad-
dition, including the full state of the system requires
knowledge of all relevant environment information,
such as the ground profile and contact characteris-
tics. Encoding the entire environment for all time
is prohibitive in general. Also note that for a sys-
tem with regions of chaotic dynamics, the captura-
bility may be uncomputable, as determining whether
a state is in an N -step viable-capture basin may be
undecidable [48].

9.4 Capturability for a Specific Con-

trol System

The capturability analysis presented in this part took
both the dynamics and actuation limits of the legged
system into account, while no specific control law
was assumed a priori. This approach allows us to
make some strong conclusions concerning capturabil-
ity. For example, if there is no∞-step capture region,
then it is impossible to make the legged system come
to a stop without falling, no matter what control law
is used. Another approach could be to assume an
existing controller and determine capturability given
that controller. We can also assume a partial con-
troller, such as one that provides balance and swing
leg control and takes a target step location as an
input. Such a controller might have internal state,
which must be incorporated into the robot state x,
but the range of actuator inputs to consider can be
reduced, simplifying capturability analysis of the par-
tially controlled system. We have used this approach
to greatly reduce the actuation dimensionality of a
lower body humanoid, admitting a machine learning
solution for finding 1-step capture regions in simula-
tion [46]. We also use such a parameterized controller
for the robot in Part 2.

9.5 Capturability and Viability

Preventing a fall is important for legged locomotion.
A maximally robust control system would prevent
falls for all states in which preventing a fall is possi-
ble. However, designing such a control system may
be impractical. Instead, we design stabilizing control
systems using techniques and analysis tools which
prevent falls for a subset of the theoretically possi-
ble states. We believe that focusing on preventing
falls over a set of N -step capturable states will lead
to robust control systems and that as N increases
the states which are subsequently considered become
less and less common and relevant. In addition, it
is likely that analysis and control is computationally
less complex for small N than for large N .

We hypothesize that nearly all human legged loco-
motion takes place in a 3-step viable capture basin
and that all 3D bipedal robot locomotion demon-
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strated to date likely falls in a 2-step viable capture
basin. Therefore, considering N -step capturability
instead of viability focuses on the states from which
it is the least difficult to avoid a fall. For large N ,
it may be best to just take the fall and switch to
an emergency falling controller to protect the legged
system and surrounding environment.

9.6 Future Work

While the simple gait models presented in this part all
pertain to bipedal walking, the concepts introduced
in this paper can be applied to a wide range of walk-
ing and running legged systems, with any number of
legs. One main area of future work is to generate
walking and running models of increased complexity,
develop algorithms for determining their capturabil-
ity, and use the results to improve the robustness of
legged robots. For humanoid walking robots, we are
currently investigating models that incorporate un-
even terrain, and consider the use of arms for pushing
on walls and grabbing handrails in order to increase
robustness.

10 Conclusion

In this paper we introduced and defined N -step cap-
turability, and demonstrated capturability analysis
on three simple gait models. The main strength
of capturability analysis lies in the explicit focus on
avoiding a fall in a global sense, while considering the
computationally simpler issue of the ability to come
to a stop in a given number of steps.

By projecting N -step capturable states to the
ground using contact reference points, we can gen-
erate capture regions which define appropriate foot
placement, explicitly providing practical control in-
formation and leading to the N -step capturability
margin, a useful robustness metric.

In Part 2 we will show that the exact solutions
to the simple models in this part can be successfully
used as approximations for control of a lower body
humanoid.

A Index to Multimedia Exten-

sions

See Table 1 for a description of the multimedia con-
tent attached to this paper.

Table 1: Index to multimedia Extensions
Extension Media Type Description
1 Code Matlab GUI demonstrating N-

step capture regions.

B Anthropomorphic Model

Parameters

We estimated anthropomorphic model parameters
for the 3D-LIPM with finite-sized foot and reaction
mass, see Table 2. Mass and length parameters are
based on a typical human 1.75 m tall and with a mass
of 70 kg. Gait parameters are based on experimental
studies on human trip recovery.

Table 2: Estimates of anthropomorphic model pa-
rameters.
Parameter Symbol Value Units Ref.
Step length lmax 0.7 m [10,39]
Minimum step time ∆ts 0.3 s [10,39]
Ankle to toe length rmax 0.2 m [60]
CoM height z0 0.95 m [60]
HAT segment max. angle θmax 0.5 rad [39,54]
Moment of inertia J 8 kg m2 [60]
of HAT w.r.t. body CoM
Body mass m 70 kg [60]
Hip torque τhip,max 100 Nm [61]
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falls: the contribution of arm movements to bal-
ance recovery after tripping. Exp. Brain Res.,
201(4):689–699, Apr. 2010.

[41] M. B. Popovic, A. Goswami, and H. M. Herr.
Ground Reference Points in Legged Locomotion:
Definitions, Biological Trajectories and Control
Implications. Int. J. Robot. Res., 24(12):1013–
1032, 2005.

[42] J. E. Pratt, J. Carff, S. V. Drakunov, and
A. Goswami. Capture Point: A Step toward
Humanoid Push Recovery. In Proc. 2006 IEEE-
RAS Int. Conf. Humanoid Rob., pages 200–207.
IEEE, Dec. 2006.

[43] J. E. Pratt and S. V. Drakunov. Derivation and
Application of a Conserved Orbital Energy for
the Inverted Pendulum Bipedal Walking Model.
In Proc. 2007 IEEE Int. Conf. Robot. Automat.,
2007.

[44] J. E. Pratt and B. T. Krupp. Design of a bipedal
walking robot. In Proc. 2008 SPIE, volume
69621, 2008.

[45] J. E. Pratt and R. Tedrake. Velocity-based
stability margins for fast bipedal walking. In
M. Diehl and K. Mombaur, editors, Fast Mo-
tions in Biomechanics and Robotics, volume 340
of Lecture Notes in Control and Information
Sciences, chapter 14, pages 299–324. Springer
Berlin Heidelberg, 2006.

[46] J. R. Rebula, F. Cañas, J. E. Pratt, and
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