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Capturability-Based Analysis and Control of
Legged Locomotion, Part 1:

Concepts and Definitions
John Rebula, Twan Koolen, Tomas de Boer, Jerry Pratt

Abstract—

This three-part paper discusses the analysis and control of
legged locomotion in terms of N -step capturability: the ability
of a legged system to come to a stop without falling by taking N

or fewer steps. We consider this ability to be crucial to legged
locomotion and a useful, yet not overly restrictive criterion for
stability.

Part 1 lays the theoretical foundation for this approach.
Formal definitions of N -step capturability and related terms
are given, and general disturbance robustness metrics based on
capturability are proposed. In Part 2, we will use the theoretical
framework developed in the current part to analyze N -step
capturability for three simple gait models. Exact results from
simplified models can be applied as approximations to analyze
more complex models and real robots. Part 3 describes how the
results for the simple models were used to control a complex
lower body humanoid robot with two six degree of freedom legs.

Index Terms—

Capture point, Robot performance measure, Gait stability
measure, Viability, Legged robots, Capturability.

I. INTRODUCTION

PREVENTING falls is essential in legged locomotion.

A fall can be energetically costly and dangerous for a

legged system and other agents. Healthy humans are able to

avoid falling in almost all conditions experienced in everyday

life. While many legged robots can currently walk, run, and

dance without falling, these tasks are usually performed in a

controlled environment. Unexpected perturbations will easily

topple most current bipedal robots. The ability of legged robots

to avoid falling must be significantly improved before they can

find utility in complex environments.

Measuring how close a legged system is to falling can pro-

vide useful insight into controller design. However, effectively

quantifying closeness to falling is challenging. For traditional

control systems, stability can be analyzed using measures such

as eigenvalues, phase margins or loop gain margins. However,

legged locomotion is generally characterized by non-linear

dynamics, under-actuation, possibly non-periodic motions, and
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a combination of continuous and discrete dynamics. These

properties limit the relevance of traditional analysis and control

techniques to legged locomotion.

Existing stability measures for legged locomotion such as

the Zero Moment Point stability criterion may be readily

computed but only apply to specific classes of trajectories [1],

[2]. On the other hand, more general techniques, such as the

Viability Margin [3], have been proposed but are difficult to

compute, limiting their usefulness. We propose the analysis

of legged locomotion based on capturability, which offers

measures applicable to mostly general motions, may be readily

approximated, and are useful in designing controllers that

prevent falls.

Instead of identifying states and actions that will not lead to

a fall, we will consider states and actions that allow the system

to eventually come to a stop. We argue that such states and

actions are conceptually easier to identify and serve as a useful

conservative subset of the states and actions that will not lead

to a fall. Furthermore, we propose that the number of steps

required to come to a stop may be used to measure how close

the legged system is to falling.

Central in our approach is the concept of capturability,

or more formally N -step capturability, which we define as

the ability of a legged system to come to a stop without

falling by taking N steps or fewer, given its dynamics and

actuation limits. We consider this ability to be crucial to

legged locomotion because it specifies a useful criterion for

fall avoidance, applicable to a wide range of legged locomotion

scenarios. Divided over three parts, we will elaborate on

definitions related to N -step capturability, how to approximate

it, and its usefulness in the analysis and control of legged

locomotion.

While other stability analysis and control techniques implic-

itly provide indicators of the ability of a system to avoid a fall,

they often require significant assumptions and limitations. The

advantage of capturability analysis is that it does not assume

a periodic limit cycle, nor does it require a specific control

system design. Instead, it takes the ability to eventually come

to a stop as a basis for analysis and control. This basis may not

be appropriate for certain classes of legged systems such as

purely passive dynamic walkers, but it is applicable in nearly

any situation that a practical legged system may find itself in.

The concept of capturability is applicable to locomotion over

rough terrain with impassable regions, grasping end effectors,

crawling, brachiating, and break dancing.

0000–0000/00$00.00 c© 2007 IEEE
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Both preventing a fall and coming to a stop require adequate

foot placement. Foot placement plays a critical role in the

evolution of a legged system as a result of the ground reaction

force constraints that are typical to legged locomotion. The

surface of a foot can only exert unilateral pressure on the

environment, and the ratio of shear stress to normal stress is

limited by friction. Therefore, the overall interaction forces

and torques between the ground and the legged system are

constrained by the location of the feet. With non-grasping feet

on flat ground, these constraints can be summarized by stating

that the center of pressure on the ground must lie within the

convex hull of the support feet and the ground reaction force

vector must lie inside the friction cone. With more complex

ground interaction, like grasping, the constraints are more

complex. Since foot placement is critical to preventing a fall,

we will focus on it in this paper.

Outline

In Part 1, we introduce the theoretical framework. We

define concepts required to analyze the capturability of legged

systems and present an example scenario to illustrate the

definitions. In addition, we present a metric for stability, based

on the available step locations that bring a system to a stop. In

this part, we keep the presented framework general so that it

is applicable to a wide range of legged locomotion scenarios.

In parts 2 and 3 we will demonstrate the usefulness of the

capturability framework by applying it to periodic and non-

periodic bipedal walking on relatively easy terrain.

We conjecture that determining the ability of a legged

robot or animal to come to a stop is a very challenging

task in general. Simplified models of walking can be used to

approximate capturability of more complex models. As we will

show in Part 2, N -step capturability can be calculated exactly

for simple models, such as a Linear Inverted Pendulum [4],

[5], with added finite-sized feet and upper body momentum.

These solutions can then be used as approximations in more

complex models or in real legged robots. In Part 3, we will

show that these approximate solutions are very useful for

controlling humanoid balance, push recovery, and walking.

The remainder of this part is structured as follows. Section

II provides a survey of relevant literature. Section III contains

definitions of the various concepts that constitute the proposed

capturability framework. In Section IV, we provide a number

of quantitative robustness metrics based on these definitions.

Finally, a discussion is provided in Section V.

II. BACKGROUND

The question “how stable is a given legged system?” has

been the subject of much research and debate, in both robotics

and biomechanics. We will now present previous work at-

tempting to answer this question, including previous work on

capturability.

The Zero Moment Point (ZMP) is often used as an aid in

control development, with the constraint that it must remain

in the interior of the base of support of a legged robot. A

common ZMP control method is to maintain the ZMP along

a precomputed reference trajectory [6]. During walking, the

error between the actual and desired ZMP can be used as a

measure of the error of the current state of the robot [7]. The

repeatability of the gait can also be used as an error measure

[6]. One drawback to following a precomputed trajectory is

the inability of the robot to recover from a large unexpected

push. Further work has expanded the ZMP method to include

step placement adjustment in reaction to disturbances [8], [9],

but there is no measure of the ability of the robot to reactively

avoid a fall when following a given preplanned ZMP trajectory.

In addition, the ZMP requires significant modification to apply

to non-flat terrain [3] or dynamic gait with a foot that rotates

on the ground.

Poincaré maps have been used to measure the local stability

of periodic gaits, and to induce periodic gaits of real robots

based on reference trajectories [10]. Based on Poincaré Map

analysis, the Gait Sensitivity Norm [2] provides a measure of

robustness for Limit Cycle Walkers [11] and has been shown

to correlate well with the disturbance rejection capabilities

of simulated planar walkers. The Gait Sensitivity Norm is

calculated as the sensitivity of a given gait measure, such as

step time, to a given disturbance type, such as a step down in

terrain, using a simulated model or experimental data. Another

Poincaré map method based on Floquet multipliers has been

used to analyze the stability of human walking gaits [12].

However, Poincaré map analysis assumes cyclic gait to yield

a measure of stability. In addition, it requires a linearization

of walking at a given point in the gait cycle, which limits the

applicability of the method to large disturbances between steps

where the linearization fails to capture essential dynamics of

the motion [12].

Poincaré map analysis has also been applied to the case of

passive Limit Cycle Walkers under stochastic environmental

perturbations [13], without linearizing the system around the

fixed point, yielding a probabilistic basin of attraction. The sta-

bility of a walker is described with a mean first passage time,

which is the expected number of steps before failure, given a

set of statistics for the stochastic environmental disturbance.

However, this method assumes an approximately periodic gait,

and does not apply to large general disturbances such as a

significant push. Poincaré map analysis has been extended to

control a walker in acyclic desired gaits [14], by applying

linear control based on a continuous family of Poincaré maps

along the entire trajectory. This control method can provide a

measure of robustness about the desired trajectory, but it does

not consider the robustness of the desired trajectory itself.

The concepts of Virtual Constraints and Hybrid Zero Dy-

namics have been used to obtain and prove asymptotic stability

of periodic motions for walking robots [15]. Introducing

Virtual Constraints reduces the dimensionality of the walking

system under consideration by choosing a single desired gait,

allowing a tractable stability analysis. However, if actuator

limitations render the robot incapable of maintaining the

Virtual Constraints after a large perturbation, it is possible a

fall could be avoided only by changing the desired trajectory

to alter foot placement and use of angular momentum (see

Part 2).

The Foot Placement Estimator, like the present work, con-

siders the footstep location to be of primary importance and
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can be used both to control and to analyze bipedal systems

[16]. For a simple planar biped that maintains a rigid A-

frame configuration, the Foot Placement Estimator demarcates

the range of foot placement locations that will result in a

statically standing system. This approach is quite similar to

ours, though it is unclear how to extend this method to more

general systems.

Wieber uses the concept of Viability theory [17] to reason

about the subset of state space in which the legged system must

be maintained to avoid falling in the general case. He shows a

method of analyzing the Lyapunov stability of standing on

non-flat terrain given a balance control law. However, the

standing assumption precludes the use of this method in walk-

ing, and it provides no information on choosing step locations

to avoid falling. We also adopt Viability theory in capturability

analysis, and explicitly compute acceptable regions to step. We

will not, however, provide a Lyapunov stability analysis, as we

do not assume a controller or associated Lyapunov function.

In previous work, we have implicitly used the concept of

capturability to develop the notion of capture points, the places

on the ground to step that will allow a legged robot to come

to a stop. We have used capture points to control various

simulated and real legged robots. Some simulation models

closely match the simplified models which we used to estimate

capture points, [18]. In these models, nearly exact control

was achieved (modulo numeric round-off and slight variations

between the simulation and simplified model), validating the

simplified models and capture point calculations. We have

used capture points based on simple models to control more

complex models and a simulated 12 degree of freedom (DoF)

humanoid robot to design controllers that balance, recover

from pushes, and walk across randomly placed stepping stones

[19], [20]. Some of these capture point-based control methods

were also implemented on a real 12 DoF robot [21]. We

will extend the concept of capture points, applying the theory

to general legged systems, considering multiple steps and

providing a more complete analysis of the ability of a legged

system to come to a stop.

III. DEFINITIONS

This section presents definitions for the concepts that consti-

tute the capturability framework. We illustrate these concepts

with an example scenario.

A. Example Scenario

Fig. 1 depicts a situation which will be used to illustrate the

theoretical framework to be developed in this section.

In the example, a person is about to cross a pond that

has some stepping stones in it. Before starting to walk, the

person can avoid falling without taking a step. In addition,

there are a few stones that the person can step to without

falling. The person starts stepping to one of the stones. At the

beginning of the first swing phase, it will be possible for the

person to change his mind and step to one of the other stones.

However, part way through the swing phase, the person will

be committed to stepping to the chosen stone to avoid a fall.

For moderate and slow speed walking, the person will have
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Fig. 1. An example scenario involving legged locomotion. A person is
walking across stepping stones in a pond. The person wishes to avoid falling
into the pond or onto the ground. It is acceptable, however, to maintain balance
by placing a hand on the nearby tree. To define this notion of falling, we
have specified allowable contact in terms of robot and ground contact areas
(labeled).

the option of either coming to a stop after the first step, or

taking a step to another stone while maintaining his walking

speed. This option of stopping without taking another step

may cease to be available at some point in the execution of

the next swing phase.

Suppose that the person slips and momentarily loses his

balance. Whereas the person could previously choose from

several stones to step to next, he must now step to a specific

stone in order to prevent a fall. The person may need to lunge

his upper body or windmill his arms to regain balance. In

addition, the person may choose to steady himself against a

tree at the edge of a pond using a hand. If no combination of

stones, trees, and body lunging options is available to prevent

a fall, then the person will find himself in the pond.

We aim to introduce a framework to more precisely describe

this scenario, as well as a capturability margin that will

describe how close the person is to falling.

B. Hybrid Dynamic Systems and Viability

Before defining capturability for a legged system we will

consider the more general concept of viability of a hybrid

dynamic system, as developed in [17] and introduced in the

field of legged locomotion in [3], [22].

Definition (Hybrid Dynamic System) Let X (the state

space) and U (the control space) be finite-dimensional spaces.

A hybrid dynamic system is a system which has continuous

flow dynamics described by

ẋ(t) = f(x(t),u(t)) (1a)

u(t) ∈ U(x(t)) (1b)

and discrete jump dynamics described by

hi(x) = 0 ⇒ x+ = gi(x−) i ∈ I ⊂ N (2)

Here, x(t) ∈ X is the state of the system and u(t) is the sys-

tem’s control input, which is confined to the state-dependent

set of allowable control inputs U(x(t)) ⊂ U . The vector field
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f desribes the flow dynamics. When the system state x− lies

on a switching surface defined by hi(x−) = 0, discrete jump

dynamics gi map the state to x+ instantaneously.

A subset of the switching surfaces will be selected as the

stepping surfaces of the hybrid dynamic system, defined by

the index set J ⊂ I .

An evolution associated with the system is a solution to

flow dynamics (1a) and jump dynamics (2) for some input

satisfying (1b).

For the example of the person crossing a pond, the person

can be modeled as a hybrid dynamic system. The state x(t)
contains all the state variables that are needed to determine

the current and future evolution of the system, together with

the control inputs. The control inputs u(t) are the low level

muscle signals. We will model the dynamics of the person,

f(x(t),u(t)), as the dynamics of the person’s body, including

the mechanical linkages and muscle dynamics. The discrete

switching surfaces model the change in the flow dynamics

when a step is taken or when the knee locks.

Examples of evolutions include standing still, taking a step,

taking several steps, and falling into the pond. Clearly some

evolutions are more desirable than others. We will use the term

viable to describe those that avoid certain failed states.

Definition (Viable) Let X be the state space of a hybrid

dynamic system and let Xfailed ⊂ X be the set of failed states.

An evolution x(·) is viable on [0, tf ] if for all t ∈ [0, tf ],
x(t) ∈ X \ Xfailed. An evolution is globally viable if it is

viable on [0,∞].

A subset A of state space X is said to be locally viable

(or to enjoy the local viability property) if for any initial state

x0 ∈ A, there exists at least one evolution that is viable on

[0, tf ], for some tf > 0. It is said to be (globally) viable if

we can take tf = ∞.

A dynamic system in state x0 is locally viable if {x0} is

locally viable, and (globally) viable if {x0} is globally viable.

For the person crossing a pond, viable evolutions include

quiet standing and running across the stepping stones. See Fig.

2 for a graphical representation.

Definition (Viability kernel) The viability kernel is the set

of all initial states x0 ∈ X \ Xfailed for which at least one

evolution starting at x0 is globally viable.

The viability kernel [17] defines the safe subset of state

space in which the dynamic system must operate to maintain

the ability to prevent failure (see Fig. 3). Using a measure

of distance from the current state to the edge of the viability

kernel has been proposed as a robustness metric, though one

which is very difficult to compute in general [3]. Also, it is

unclear how to define a dynamically relevant distance in state

space. Therefore, we propose a capturability analysis, which

considers the ability to eventually come to a stop, leading

to a capturability metric that is simple to calculate for simple

models (Part 2). Results from these simple models are effective

when analyzing complex robots (Part 3).

X
failed

X

equilibrium point

N-step evolutionN-step evolution, cyclic

State space 

Failed states

Fig. 2. A representation of the state space for a hybrid dynamic system.
Several evolutions are shown, including trajectories that lead to failed states.
Note that two different evolutions may share the same initial state if the
controls u(t) are chosen differently. Adapted from [3].

C. Capturability

The viability kernel fully defines all states from which failed

states can be avoided. Here we consider a more restricted but

important subset of states: those which require a finite number

of crossings of hybrid switching surfaces to avoid failing. We

will refer to those states as capturable states.

Definition (N -step evolution) An N -step evolution is an

evolution that contains at most N crossings of the stepping

surfaces hj(x) = 0 for some j ∈ J .

Definition (N -step capturability) A state x0 is N -step

capturable, for N ∈ N, if there exists at least one globally

viable N -step evolution starting at x0. The N -step viable-

capture basin is the set of all N -step capturable states. The

0-step viable-capture basin will also be referred to as the set

of captured states and a hybrid dynamic system in the 0-step

viable-capture basin basin will be referred to as captured.

By induction, if follows that for M ≥ 0 and N > M ,

there exists a viable (N −M)-step evolution that starts in the

N -step viable-capture basin and reaches the M -step viable-

capture basin. A system that is N -step capturable can reach a

captured state in N steps or fewer.

We see that capturability is a stricter constraint than via-

bility, since the system has to be able to avoid failure with

no more than N crossings of hybrid switching surfaces. We

believe capturability analysis is typically computationally sim-

pler than viability analysis, since one only has to consider the

flow dynamics, and not the switching surfaces, to determine

0-step capturable states. Then to determine the 1-step viable-

capture basin, one can determine the states that can reach the

0-step viable-capture basin through a single step. This process

can be repeated recursively. The N -step viable-capture basin

will be the set of states that can reach the (N−1)-step viable-

capture basin in a single step.

For small N , computing N -step capturability may be much

easier than computing viability in general. In addition, the

N -step viable-capture basin can be approximated by finding
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Viability kernel

X
failed

X

impossible evolution

Fig. 3. A representation of the viability kernel for a hybrid dynamic system,
extended from Fig. 2. The viability kernel contains all states in which it is
possible to avoid a failed state forever, so that all states outside the viability
kernel inevitably lead to a failed state. It is impossible for an evolution to
cross into the viability kernel (impossible evolution shown).

states that are easily determined to be 0-step capturable (such

as fixed points or 0-step limit cycles) and recursing out to find

states that can reach that set of states in a single crossing of

a hybrid switching surface.

D. Legged Systems

The above definitions were general to hybrid dynamic sys-

tems. We now make definitions specific to legged systems that

will fit them into the above framework. In order to properly

define relevant concepts such as falling and stepping, we need

to define when contact between sets of particles occurs.

Definition (Contact) Let W denote the set of all particles in

a three-dimensional Euclidean space R3. Let p : (W,X) → R
3

be a mapping from particles in W and states in X to particle

positions in R
3. Let A ⊂ W and B ⊂ W be two sets of

particles, and let x be the state of the robot. We define contact

between A and B in state x as

contact(A,B,x) ⇔ inf
a∈A
b∈B

‖p(a,x)− p(b,x)‖ = 0

Examples of contact for the person in state x(t) crossing

a pond include a foot, C1, resting on a stepping stone, G1,

denoted as contact(C1, G1,x(t)) (Fig. 1).

Definition (Legged System) A legged system is a hybrid

dynamic system augmented by:

• a set of legged system particles R ⊂ W , whose positions

in R
3 at time t depend only on x(t);

• an indexed family of sets of legged system particles called

the legged system contact areas, {Cm}m∈M , where M

is the set of index values, and ∀m ∈ M,Cm ⊂ R;

• an indexed family of sets of non-legged system parti-

cles called the ground contact areas, {Gm}m∈M , where

∀m ∈ M,Gm ⊂ W \R;

• a set of particles K that are neither part of the legged

system nor of a ground contact area, K ∩ R = K ∩
(∪m∈MGm) = ∅, called the keep out region;

• a single particle in each legged system contact area,

selected as the contact reference point.

• The stepping surfaces are defined to be reached when a

legged system contact area Cm comes into contact with

its corresponding ground contact area Gm. For a legged

system undergoing a valid evolution x(t) over the interval

[t0, tf ], with a t∗, t0 < t∗ < tf , the stepping surfaces are

∀m ∈ M,hm(x(t∗)) = 0 ⇔

¬ contact(Cm,Gm,x(t∗
−
)) ∧ contact(Cm, Gm,x(t∗+))

We define a step as the discrete event occuring at t∗,

when the state lies on a stepping surface.

The set of particles R of the example person consists of the

body and clothing of the person. In our example, depicted in

Fig. 1 we define four disjoint legged system contact areas for

the person. C1 and C2 correspond to the soles of each foot,

and C3 and C4 correspond to the hands. Two ground contact

areas are defined, G1, which consists of the top surfaces of the

stones and the area around the pond, and G2, which consists

of the surface of a tree beside the pond. We will specify the

keep out region for the person crossing the pond to be the set

of particles comprising the water of the pond.

Any point can be selected as the contact reference point

in each legged system contact area. Contact reference points

provide a convenient way of referring to the position of a

contact area. Example choices might be the center of the foot,

or a likely initial point of contact. For the example person, we

will choose the contact reference points to be points on the

bottom surface of each heel.

For the example person, a step occurs at the instant a foot

contacts a stepping stone after swing. However, a rocking

motion that alternately lifts the heel and toe of the same foot

off of a stepping stone would not be considered stepping, since

at least one point of the foot would maintain contact with the

stepping stone at all times. However, lifting one of the feet off

of a stepping stone and placing it back down onto a stepping

stone would result in a step at the instant of foot contact.

Likewise, placing a hand onto a tree would constitute a step.

E. Failed states

The set of failed states for a legged system can be specified

as follows. Using the definitions above, we begin by defining a

subset of state space in which the legged system is considered

to have fallen.

Definition (Fallen states): Consider a legged system that

has a state space X , and a set of particles R. Let {C1, C2, . . . }
denote the legged system contact areas corresponding to the

legged system and let C denote their union. Similarly, let

{G1, G2, . . . } denote the associated ground contact areas and

let G denote their union. Furthermore, let K be the legged

system’s keep out region.

The set of fallen states for this legged system, Xfallen, is the

set of states for which there is contact between either:

• the legged system and the keep out region;

• any part of the legged system that is not part of a legged

system contact area and the ground;
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Viability kernel

Captured states 

1-step viable-capture basin

∞-step viable-capture basin

X
captured

X
failed

X

Fig. 4. A representation of the viable-capture basins for a legged system,
extended from Fig. 3. Several N -step viable-capture basins are shown,
including N = 1 and ∞. The boundary between two N -step viable-capture
basins is a stepping surface. The ∞-step viable-capture basin approximates
the viability kernel. States in the 0-step viable-capture basin, referred to
as captured states, can be fixed points and infinite length 0-step evolutions
(possibly a limit cycle).

• a legged system contact area and any ground contact area

that is not associated with that legged system contact area.

More precisely,

Xfallen = {x ∈ X | contact(R,K,x)∨

contact(R \ C,G,x)∨

∃i | contact(Ci, G \Gi,x)}

The set of fallen states includes states in which a stepping

stone is contacted with a hand and states in which any part

of the body touches the water. In addition to fallen states,

there may be other undesirable states that would be damaging

to a legged system. The fallen states, plus the undesirable

states make up the failed states Xfailed. Undesirable states for

a person might include those describing hyperextension of a

joint or dangerously high contact velocities.

F. Viability and Capturability for a Legged System

Suppose the person in our example is standing and balanc-

ing and does not need to take another step to avoid a fall.

Then that person would be captured. If the person is walking

slowly and can stop in a single step, then he would be 1-step

capturable. If he was running quickly then he might require 3

steps in order to come to a stop and would therefore be 3-step

capturable.

For N > 0, the N -step viable-capture basin is equivalent

to the set of initial states x0 for which at least one 1-step

evolution starting at x0 is viable and it reaches the (N−1)-step

viable-capture basin in finite time. This allows us to answer

questions of capturability iteratively, as shown in Part 2 for

several simple models of gait.

Being able to eventually come to a stop is not an absolute

requirement of avoiding a fall since the ∞-step viable-capture

basin is a subset of the viability kernel. However, we argue

that for typical legged systems, the additional requirement of

being able to eventually come to a captured state has only

minor implications, so that the difference between the ∞-step

viable-capture basin and the viability kernel is ‘small’. When

considering normal human locomotion, it is hard to imagine a

state in which a human can avoid falling down, but cannot

eventually come to a captured state. One class of notable

exceptions is purely passive dynamic walking robots, where

walking persists in an infinite limit cycle with no possibility

of reaching a captured state.

Fig. 4 shows a representation of a state space segmented into

failed states, the viability kernel, the ∞-step viable-capture

basin, and captured states, along with several evolutions that

are viable and several that are not viable.

G. Capture Regions

While the viability kernel and the N -step viable-capture

basin describe the state space in which a controller should

maintain the robot, we will now define a subdivision of Eu-

clidean space into capture regions, which demarcate desirable

places to step. These capture regions will prove useful in

finding control laws for a robot.

Definition (N -step capture point) Let x0 be the current

state of a legged system. A point r is an N -step capture point

for this legged system if and only if there exists at least one

viable N -step evolution starting at x0 and ending in a captured

state, in which a contact reference point is placed at r at the

time of the first step in the evolution.

Definition (N -step capture region) The N -step capture

region is the set of all N -step capture points.

The N -step capture region describes positions in Euclidean

space that are suitable points for a legged system to place the

contact reference point to achieve a captured state in N steps

or fewer. Therefore, the N -step capture region describes all

of the desired positions that a control system should target as

swing locations. If the example person is constrained to contact

the ground heel first, with the contact reference point on the

heel, the N -step capture regions will be two dimensional areas

on the ground (see Fig. 5).

IV. ROBUSTNESS METRICS BASED ON CAPTURE REGIONS

We now introduce the capturability margin, which attempts

to answer the question ”how robust is a given legged system?”

Definition (N -step capturability margin) An N -step cap-

turability margin of a legged system in state x(t) is a measure

of the size of the N -step capture region, such as surface

area. The ∞-step capturability margin is referred to as the

capturability margin for short.

For a simple legged system which always lands with the

contact reference point on the ground, such as the models

considered in Part 2, the ∞-step capture regions will be two

dimensional surfaces on the ground. Therefore, the area of

the two dimensional ∞-step capture region provides a useful

capturability margin. This same measure is used in Part 3

to approximate the capturability margin of a real robot. The
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Normalized N-step capturability margin

Running on

stepping stones

0

d) c) b)  a) 

N-step capture regions
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N = 1 
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N > 1 

determined by 
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Fig. 5. a) A graphical representation of N -step capture regions for a human in a captured state, quiet stance. b) Smaller size N -step capture regions for the
case of running compared to quiet stance. This corresponds to a smaller capturability margin. c) An even smaller capturability margin for the case of running
on stepping stones. d) For all three cases, a representation of the magnitude of the normalized capturability margin: the capturability margin divided by the
legged system capturability. The latter is equal in all three cases since we consider the same system.

capturability margin accounts for limited footholds availability

naturally (see Fig. 5).

In the case of three dimensional N -step capture regions,

such as when considering brachiation, the surface area of the

N -step capture region may serve as a useful capturability

margin as it can grow with the range of acceptable hand

configurations at contact.

The capturability margin gives an idea of the foot placement

accuracy and precision required to avoid a fall. In addition, a

non-dimensional representation of the capturability margin can

be calculated by normalizing it to a reference configuration,

such as standing on flat ground.

Definition (Legged system capturability) The legged sys-

tem capturability is the capturability margin of a legged system

in a user defined base state configuration

Definition (Normalized capturability margin) The cap-

turability margin of the legged system in the current state

divided by the legged system capturability.

V. DISCUSSION

We argue that maintaining viability is a fundamental task

of legged control, ensuring that the system can avoid falling.

We considered a slightly smaller subset of viable states, the

capturable states, from which the system can avoid falling

using only a finite number of steps. Finally, we presented

N -step capture regions, subsets of Euclidean space, which

provide a low dimensional indicator of capturability. This

dimensionality reduction from m system states to 3 Euclidean

dimensions is a result of using only a single particle on the

legged system to generate a capture region, and can be thought

of as a slice of the state space at the step, projected into

Euclidean space. The dimensionality reduction in calculating

N -step capture regions results in a loss of information, so

capture regions do not completely describe capturability of a

state as they do not specify the evolutions that lead to captured

states. However, capture regions specify where a legged system

should step to avoid falling, and provide a convenient way to

quantify and visualize capturability.

A. Advantages of Capturability

The capturability margin and capture regions include several

features making them useful for analysis and control. For

example, the capturability margin tracks the system throughout

a step, so a poor controller could result in the shrinking or loss

of the N -step capture regions for the smallest existing N . The

affects of a distrubance could likewise be described in changes

to the capture regions before and after the disturbance. In ad-

dition, the capturability margin gives a measure of the largest

allowable disturbance without falling; the largest allowable

distrubance is simply the smallest disturbance resulting in a

capturability margin of 0.

B. Computability of Capturability

Computing capturability can be conceptually easy in prac-

tice. One simple algorithm would be to start with a small

set of states that are known to be captured, such as default

standing positions. Then for points in the neighborhood of

this set search for short evolutions that reach this set. For any

that are found, grow the set. For any state that can reach a set

of N -step capturable points in a single step, add it to the set

of (N − 1)-step capturable points.

While this algorithm is conceptually simple, it is likely

computationally prohibitive for a complex legged system.

In addition, including the full state of the system requires

knowledge of all relevant environment information, such as

the ground profile and contact characteristics. Encoding the

entire environment for all time is prohibitive in general. Also

note that for a system with regions of chaotic dynamics, the

capturability may be uncomputable as determining whether

some states are in the viable-capture basin may be undecidable

[23].

To determine if a given state is capturable requires finding

an evolution starting from that state that reaches a captured

state. But to know if a state is captured requires verifying

that a 0-step evolution exists for t → ∞. Two evolutions

that have this property are fixed points and infinite length

evolutions (possibly 0-step limit cycles). We can find fixed

points by finding some actuation u(t) ∈ U(x(t)) such that

ẋ(t) = 0. We can find 0-step limit cycles by finding a state

and actuation trajectory such that no steps are taken, no failed

states are reached, and x(t +∆t) = x(t). We could also use
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a Lyapunov-like analysis to show that a given volume of state

space contains captured states without requiring them to be

fixed points or part of a limit cycle. For very complex systems

it may be impossible to consider infinite length evolutions.

However, in such cases we could make approximations and

find 0-step evolutions that are viable for a sufficiently long

time such that for all practical purposes, we can consider it

captured.

Although capturability may be computationally intractable

to compute for a general robot, we have found that computing

capturability for a simple model of a complex machine can

provide useful insight for analysis and control. As we show

in Part 2, capture regions are readily calculated for simple

models of walking based on the Linear Inverted Pendulum

model. The results from these models can be applied to more

complicated machines to determine appropriate step locations

to avoid falls, as we show in Part 3.

C. Capturability for a Given Controller

In this part we discussed capturability for all possible con-

trol inputs. Another approach would be to assume an existing

controller and determine capturability given that controller. In

order to simplify capturability analysis and control we can also

assume a partial controller, such as a controller that provides

balance and swing leg control, and takes a target step location

as an input. Such a controller might have internal state, which

must be incorporated into the robot state x(t), but the range

of actuator inputs to consider might be more limited, easing

capturability analysis of the partially controlled system. We

have used this approach to reduce the actuation dimensionality

of calculating 1-step capture regions of a complex lower body

humanoid from 12 to 3, admitting a machine learning solution

in simulation [20]. We also use such a parameterized controller

for the complex robot in Part 3.

D. Marginal Capturability

Passive dynamic walking models [24] can walk forever

and lack the ability to come to a stop. In fact, an infinitely

repeatable gait in the viability kernel has been found for a

simulated 3D passive walking model that has no captured

states [25]. The capturability margin for a passive dynamic

walker in a limit cycle is zero; since no actuation is possible,

no actuation exists to bring the robot to a captured state.

The concept of capturability therefore is not informative when

considering the local robustness of a purely passive dynamic

walker. However, with sufficient actuation, capturability based

analysis and control applies to a limit cycle walker based on

a passive dynamic walker.

E. Efficiency, Smoothness, and Other Considerations

We believe that capturability is one important factor in

achieving safe legged locomotion, but it provides little in-

formation about other potentially important considerations

such as energetic efficiency, actuation smoothness, speed, or

accurate limb placement. The capturability margin may be best

used as one indicator of an effective evolution, in conjunction

with other measures to account for efficiency or other task

specific requirements. For example, an energy sensitive task

may benefit from a controller designed to maximize a weighted

sum of energy efficiency and capturability in the spirit of linear

quadratic regulation.

F. Application of Viability Theory

Viability theory in general [26] offers interesting control re-

sults, assuming f(x(t),u(t)) is convex for all u(t) ∈ U(x(t)).
In particular, if a viability kernel is known, it is possible to

compute viable controls based on a contingent cone that points

inward at each point on the margins of the viability kernel.

Based on this analysis, acceptable control can be calculated to

maintain viability, using a simple strategy such as slow control,

which employs minimal input magnitudes, or heavy control,

which changes the control inputs as slowly as possible. If a

viability kernel is further known to be compact and convex,

viability theory states that there is an equilibrium point in the

viability kernel, where f(x(t),u(t)) = 0.

The application of these results of viability theory require

knowledge of a viability kernel for a particular robot, as well

as certain conditions of convexity and compactness. While

we have not explicitly investigated these properties for any

particular robot dynamics in this paper, we believe that this

may be an effective approach to designing the control of

legged systems. In particular, calculation of viability kernels

and associated controllers for the simple walking systems such

as those presented in Part 2 might provide useful insight into

controller design for more complex robots, as we show with

capture regions in Part 3.

G. Scenario-specific Definitions

The generality of capturability analysis requires several

scenario-specific user definitions as described in section III-D,

and the choice of these definitions will impact the capture

regions and associated capturability margins. As a result, the

capturability margin of a legged system may not be directly

comparable to the capturability margin of another legged

system, or even the same system with different allowable con-

tact regions. However, with careful definitions, capturability

margins can quantify the benefits of adding control capabilities

to a model, as we show in Part 2.

H. N -Step Capturability is a Relevant Approximation to Via-

bility

If the primary objective of a control system is to assure

failed states are avoided, then the primary objective of control

system design should be to achieve viability over a large and

relevant set of theoretically viable states. For reasonable N ,

we believe N -step capturability analysis focuses on a large

number of relevant states, without disregarding many of the

theoretically viable states.

It may be beneficial to consider small N since analysis and

control will be computationally less complex than for large

N , and an analysis for large N focuses on uncommon and

likely irrelevant states.To illustrate this point, consider a human
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walking normally. It is hard to imagine a state in which the

human can avoid falling, but will require more than 5 steps

to stop. In fact, we hypothesize that nearly all human legged

locomotion is in a 3-step viable capture basin and that all

3D bipedal robot locomotion demonstrated to date likely falls

in a 2-step viable capture basin. Therefore, considering N -

step capturability instead of full viability focuses on the least

difficult states from which to avoid falling. For large N , it

may be best to just take the fall and switch to an emergency

falling controller to protect the legged system and surrounding

environment. On the other hand, the ∞-step capture region

also includes useful information as it specifies where not to

step.

VI. CONCLUSION

Capturability analysis provides a unified and practical ap-

proach to analysis and control of legged systems. The concepts

introduced in this paper apply to a wide range of legged

systems, with any number of legs, including those with grasp-

ing end effectors. There are no assumptions of flat terrain,

so unlike ZMP approaches, capturability analysis applies to

rough terrain. The main strength of capturability analysis lies

in the explicit focus on avoiding a fall in a global sense,

instead of relying on indicators of local stability or small

disturbance robustness. Furthermore, in addition to providing

information on how close the robot is to falling, capturability

analysis generates capture regions (Section III), which define

appropriate foot placement for a given robot state, explicitly

providing practical control information.
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Capturability-Based Analysis and Control of
Legged Locomotion, Part 2:

Application to Three Simple Gait Models
Twan Koolen, Tomas de Boer, John Rebula, Ambarish Goswami, Jerry Pratt

Abstract—This three-part paper discusses the analysis and
control of legged locomotion in terms of N -step capturability:
the ability of a legged system to come to a stop without falling by
taking N or fewer steps. We consider this ability to be crucial to
legged locomotion and a useful, yet not overly restrictive criterion
for stability.

Part 1 introduced our theoretical framework for assessing N -
step capturability. In the current part, we use this framework to
analyze three simple models of legged locomotion. All models
are based on the 3D Linear Inverted Pendulum Model. The
first model relies solely on point foot step location to maintain
balance, the second model adds a finite-sized foot, and the third
model additionally incorporates a reaction mass, enabling the
use of centroidal angular momentum. We analyze how these
three mechanisms influence N -step capturability, for N up to
and including infinity. Part 3 will show that these results can be
used to control a complex humanoid robot.

Index Terms—

Capture point, Simplified gait models, Linear inverted pendu-
lum model, Bipedal robots, Gait stability measure, Capturability.

I. INTRODUCTION

HUMANS are very adept at preventing falls during loco-

motion. We aim to integrate this remarkable ability in

legged robots to enable their practical use in everyday envi-

ronments. We propose to analyze the problem of disturbance

rejection in terms of N -step capturability: the ability to come

to a stop without falling by taking N steps or fewer.

In Part 1 of this three-part paper, N -step capturability was

characterized using two concepts1:

1) N -step viable-capture basin: the set of states in which

a hybrid dynamic system is N -step capturable; and

2) N -step capture region: the set of points to which a

legged system in a given state can step to become

(N−1)-step capturable, i.e., the set of all N -step capture

points.
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1See Part 1 for formal definitions.

Note that the N -step viable-capture basin specifies N -step

capturability in terms of state space, whereas the N -step

capture region does so in terms of step locations. In Part 1, we

argued that viable-capture basins are more fundamental than

capture regions, but that capture regions are more practical

for designing control laws, since they directly provide useful

information about where to step to prevent a fall.

Computing viable-capture basins and capture regions for

a complex legged robot can be a challenging task. We are

not aware of any better way to complete this task for a

general robot than using computationally intensive model

based methods, such as dynamic programming over the entire

state and action space.

However, some linear models of legged locomotion permit

simple and insightful ways of analyzing capturability. In this

part of our three-part paper, we present three models for which

it is possible to find viable-capture basins and capture regions

in closed form. The results can be used as approximations

for more complex legged systems and prove useful in their

control, as we will demonstrate in Part 3 for a bipedal robot

that has two 6-degree-of-freedom legs.

All three models presented are based on the 3D Linear In-

verted Pendulum Model (3D-LIPM) [1], [2], which comprises

a single point mass maintained on a plane by a variable-length

leg link. The complexity of the presented models increases

incrementally. To each subsequent model, another stabilizing

mechanism is added. These mechanisms are generally con-

sidered fundamental in dealing with disturbances, both in the

biomechanics and robotics literature [3]–[8].

The first model has a point foot. It relies solely on foot

placement to come to a stop. The second model is obtained

by adding a a finite-sized foot and ankle actuation to the

first model, enabling modulation of the Center of Pressure

(CoP). The third model extends the second by the addition

of a reaction mass and hip actuation, enabling the human-like

use of rapid trunk [3], [9] or arm motions [10], [11].

For each model, we assess N -step capturability for a subset

of state space and compute N -step capture regions for N up

to and including infinity. We compare results for these three

models using two metrics. The first metric is the maximum

distance between the foot’s contact reference point and the

instantaneous capture point (to be defined in Section II-D) for

which the legged system is capturable. The second metric is

the area of the ∞-step capture region for a given state. We will

show that both metrics increase in magnitude as the number

0000–0000/00$00.00 c© 2007 IEEE
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of stabilizing mechanisms added to the 3D-LIPM increases.

Furthermore, based on the incremental construction of the

models, we will show the contribution of foot placement, CoP

modulation, and angular momentum to capturability.

To illustrate the results obtained in this research, a Matlab

graphical user interface (GUI) was created that allows the user

to manipulate the control inputs for all models described in

this paper, while the N -step capture regions are dynamically

updated. The GUI is available online with the paper.

The remainder of this part is structured as follows. Section

II presents the first model, the 3D-LIPM with point foot. The

second model, called the 3D-LIPM with finite-sized foot, is

presented in Section III, followed by the 3D-LIPM with finite-

sized foot and reaction mass in Section IV. The models are

compared in terms of capturability in Section V. Finally, the

results are discussed in Section VI.

II. 3D-LIPM WITH POINT FOOT

The 3D Linear Inverted Pendulum Model, described by

Kajita et al. [1], [2] and depicted in Fig. 1, comprises a

point mass at the end of a telescoping massless mechanism

(representing the leg), which is in contact with the ground. The

point mass is kept on a horizontal plane by suitable generalized

forces in the mechanism. Torques may be exerted at the base

of the pendulum. For this first model, however, we set all

torques at the base to zero. Hence, the base of the pendulum

can be seen as a point foot. Foot position changes, which occur

when a step is taken, are assumed instantaneous, and have no

instantaneous effect on the position and velocity of the point

mass.

Following the capture point framework introduced in Part

1, we consider the 3D-LIPM with point foot to be a legged

system. The system’s dynamics are derived in Section II-A. Its

control input is the point foot position, which we will denote

rankle. We define a time-varying set of allowable values for

this control input, described in Section II-B. The point foot

is the only legged system contact area, and its corresponding

ground contact area consists of all particles on the plane at

z = 0. There is no keep out region. Changing the location of

the point foot is considered taking a step. Since the point mass

is unable to touch the ground and there is no keep out region,

there are no fallen states. Moreover, the set of failed states is

also defined to be empty. The point rankle will be the contact

reference point for all models in this paper.

A. Equations of Motion

The equations of motion for the body mass are

mr̈ = f +mg (1)

where m is the mass, r =
(
x y z

)T
is the position of the

center of mass (CoM), expressed in an inertial frame, f =
(
fx fy fz

)T
is the actuator force acting on the point mass

and g =
(
0 0 −g

)T
is the gravitational acceleration vector.

A moment balance for the massless link shows that

− (r − rankle)× f = 0 (2)

ê
x

ê
y

ê
z

g

r
ankle

z
0

Pr

f

r

m

Fig. 1. Schematic representation of the 3D-LIPM with point foot. The model
comprises a point foot at position rankle, a point mass at position r with
mass m and a massless telescoping leg link with an actuator that exerts a
force f on the point mass that keeps it at constant height z0. The projection
matrix P projects the point mass location onto the xy-plane. The gravitational
acceleration vector is g.

where rankle =
(
xankle yankle 0

)T
is the location of the

ankle.

If ż = 0 initially, the point mass will stay at z = z0 if

z̈ = 0. Using (1), we find fz = mg. This can be substituted

into (2) to find the forces fx and fy ,

fx = mω2
0(x − xankle)

fy = mω2
0(y − yankle)

where ω0 =
√

g

z0
is the reciprocal of the time constant for the

3D-LIPM.

The equations of motion, (1), can now be rewritten as

r̈ = ω2
0(Pr − rankle) (3)

where P =
(

1 0 0
0 1 0
0 0 0

)

projects r onto the xy-plane.

Note that the equations of motion are linear. This linearity is

what makes the model valuable as an analysis and design tool,

as it allows us to make closed form predictions. In addition,

the equations are decoupled and represent the same dynamics

in the x- and y-directions. Each of the first two rows of

(3) describes a separate 2D-LIPM with point foot. Therefore,

results obtained for the 2D model can readily be extended to

the 3D model.

B. Allowable Control Inputs

We introduce two constraints on the stepping capabilities of

the model. First, we introduce an upper limit on step length,

i.e., the distance between subsequent ankle locations. This

maximum step length is denoted lmax and is assumed to be

constant; it does not depend on the CoM location r. Second,

we introduce a lower limit to the time between ankle location

changes, ∆ts,min, which models swing leg dynamics.

We define the following times and time intervals:

• ts,prev: time at which the previous step was taken;

• t: current time;

• ∆ts = t− ts,prev: time since the previous step;
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• ∆ts,min: minimum time between steps.

Furthermore, we define G as the set of points that make up the

ground. The set of allowable control inputs is then formally

written as

Uankle =

{

{rankle}, ∆ts < ∆ts,min

{p ∈ G | ‖p− rankle‖ ≤ lmax}, otherwise.
(4)

That is, the new foot position must be the same as the current

foot position if the minimum step time has not yet passed.

Otherwise the new foot position may be chosen anywhere

within the disk of radius lmax and center rankle.

C. Dimensional Analysis

We perform a dimensional analysis to reduce the number of

variables involved and to simplify subsequent derivations. Let

us define dimensionless point mass position r′, ankle (point

foot) position r′ankle and time t′ as2

r′ =
r

z0
r′ankle =

rankle

z0
t′ = ω0t.

Throughout this paper, the dimensionless counterparts of all

positions and lengths will be obtained by dividing by z0,

and times and time intervals will be nondimensionalized by

multiplying by ω0.

The dimensionless point mass position can be differentiated

with respect to dimensionless time to obtain dimensionless

velocity ṙ′ and acceleration r̈′:

ṙ′ =
d

dt′
r′ =

ṙ

ω0z0

r̈′ =
d

dt′
ṙ′ =

r̈

ω2
0z0

=
r̈

g
.

Using these dimensionless quantities, the equations of motion,

(3), become

r̈′ = Pr′ − r′ankle. (5)

Further derivations will be simplified by the absence of ω0 in

this equation, as compared to (3).

D. Instantaneous Capture Point

As a first step toward examining N -step capturability, we

now introduce the instantaneous capture point. For the 3D-

LIPM with point foot, it is the point on the ground that enables

the system to come to a stop if it were to instantaneously

place and maintain its point foot there. Although its definition

is motivated by the current model, it will also be useful in

the analysis of the other models presented in this part, and

we consider it an important quantity to monitor even for more

complex, real, legged systems.

Note that the instantaneous capture point is not necessarily

a capture point. According to the definitions given in Part 1,

capture points must be reachable, considering the dynamics

and actuation limits, while the instantaneous capture point does

not take into account the step time or step length constraints

as defined in Section II-B.

2All dimensionless quantities will be marked with a prime.

The instantaneous capture point can be computed from

energy considerations. For a given constant foot position, we

can interpret the first two rows of (5) as the descriptions of two

decoupled mass-spring systems, each with mass and negative

stiffness of unit magnitude. Dimensionless orbital energies [1],

[2], E′

LIP,x and E′

LIP,y , are then defined as the Hamiltonians

of these systems:

E′

LIP,x =
1

2
ẋ′2 −

1

2
(x′ − x′

ankle)
2 (6a)

E′

LIP,y =
1

2
ẏ′2 −

1

2
(y′ − y′ankle)

2. (6b)

Since Hamiltonians are conserved quantities, so are the orbital

energies.

The orbital energy for a direction determines the behavior of

the 3D-LIPM in that direction when the CoM is moving toward

the foot. Considering the x′-direction for example, three cases

of interest arise:

1) E′

LIP,x > 0. The orbital energy is sufficient to let x′

reach x′

ankle, after which x′ continues to accelerate away

from x′

ankle.

2) E′

LIP,x < 0. x′ reverses direction before x′ reaches x′

ankle.

3) E′

LIP,x = 0. x′ comes to a rest exactly at x′

ankle.

We can solve for a foot location that results in either desired

orbital energies or, equivalently, a desired velocity vector at

a given value of r′ [1], [2]. To determine the instantaneous

capture point, we are interested in the foot placement required

to obtain zero orbital energy in each direction. Solving (6)

for r′ankle and choosing the solution for which the point mass

moves toward the point foot shows that the dimensionless

version of the instantaneous capture point [12] is

r′ic = Pr′ + ṙ′ (7)

or, in terms of the original physical quantities:

ric = Pr +
ṙ

ω0

. (8)

This quantity was independently described by Hof et al.

[13]–[15] and named the Extrapolated Center of Mass. It was

shown to have significant ties to balancing and walking in

human test subjects.

E. Instantaneous Capture Point Dynamics

If the point foot is not instantaneously placed at the instanta-

neous capture point, the instantaneous capture point will move.

We will now analyze this motion. The results of this analysis

are depicted graphically in Fig. 2. The dynamics that describe

the motion of the instantaneous capture point on the ground

can be derived by reformulating the dimensionless equations

of motion in state space form. The state space model is based

on the x′-dynamics only (i.e., the first row of (5), a 2D-LIPM),

but the derivations can readily be extended to both directions,

as noted in Section II-A. The first row of (5) is rewritten in

state space form as
(

ẋ′

ẍ′

)

=

(

0 1

1 0

)

︸ ︷︷ ︸

A

(

x′

ẋ′

)

+

(

0

−1

)

︸ ︷︷ ︸

B

x′

ankle. (9)
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The state matrix A has eigenvalues

λ1,2 = ±1

and corresponding eigenvectors

V =
(
v1 v2

)
=

1

2

(

1 1

1 −1

)

.

The eigendata show that there is a saddle point with one

stable and one unstable eigenvector. The state matrix can be

diagonalized using the similarity transformation T = V−1,

which results in the new state vector
(

x′

1

x′

2

)

=

(

1 1

1 −1

)

︸ ︷︷ ︸

T

(

x′

ẋ′

)

. (10)

The new state x′

1 is identical to the instantaneous capture point

x′

ic, and x′

2 is the point reflection of the instantaneous capture

point across the projection of the point mass onto the ground.

The diagonalized state space model is
(

ẋ′

1

ẋ′

2

)

=

(

1 0

0 −1

)

︸ ︷︷ ︸

TAT−1

(

x′

1

x′

2

)

+

(

−1

1

)

︸ ︷︷ ︸

TB

x′

ankle. (11)

The diagonal state matrix TAT−1 shows that the model’s

instantaneous capture point dynamics are first order. State

x′

1 = x′

ic corresponds to the unstable eigenvalue +1 and is

thus of primary interest in stabilizing the system.

These derivations can be repeated for the y′-direction, so

that the first row of (11) can be extended to

ṙ′ic = r′ic − r′ankle. (12)

This derivation proves the following Theorem:

Theorem 1: The instantaneous capture point moves on the

line through the point foot and itself, away from the point foot,

at a velocity proportional to its distance from the point foot.

As the instantaneous capture point moves away from the

foot, its velocity increases exponentially. Fig. 2 shows the

motion of both the instantaneous capture point and the point

mass when the point foot is kept fixed. Note that the projection

of the point mass onto the xy-plane describes a hyperbolic

curve, as shown in [2].

An explicit formulation of the instantaneous capture point

trajectory for a fixed foot position is found by solving (12):

r′ic(∆t′) = [r′ic(0)− r′ankle]e
∆t′ + r′ankle. (13)

This equation will prove useful, both in determining whether

a state is N -step capturable and in computing N -step capture

regions.

F. Capturability

The instantaneous capture point is now used to determine

N -step capturability for the 3D-LIPM with point foot in state

space. N -step capturability can be described using N -step

viable-capture basins. Computing these viable-capture basins

requires us to examine all of state space and determine which

ê
y

ê
x

r
ankle

r

.
r

.
r
ic

r
ic

Fig. 2. Top view of the 3D-LIPM with point foot for a given initial state at
time t. By adding the CoM velocity vector ṙ (divided by ω0, see (8)) to the
projected CoM position Pr, we find the instantaneous capture point location
ric. The future trajectories of the point mass and the instantaneous capture
point are along the dotted lines for a constant foot location rankle. For this
figure, Pr = [−0.4, 0.4, 0], ṙ = [0.7,−0.3, 0], rankle = [0, 0, 0], and model
parameters z0, m and g are all set to unit magnitude.

states are N -step capturable. Although this process is possible,

in this paper we will only examine a part of state space that

we consider interesting. The reasons for this choice are brevity

and clarity of presentation and because only these parts of

the state space need to be considered to compute the N -step

capture regions and the capturability measures proposed in

the introduction. For the current model in particular, we will

only consider those states for which the legged system has

just taken a step. The step time will be marked as time zero:

t′ = t′s,prev = 0.
For the 3D-LIPM with point foot, N -step capturability at

t′ = t′s,prev can be fully described in terms of the initial distance

between the contact reference point (the point foot) and the

instantaneous capture point, ‖r′ic(0)− r′ankle‖. The maximum

distance for which the state is still N -step capturable will be

denoted d′N . Fig. 3 shows an evolution that captures the legged

system in the minimum number of steps and the values of d′N
for five values of N . The procedure for computing d′N will

now be given.
The requirement for 0-step capturability may be readily

determined: the definition of the instantaneous capture point

shows that the legged system is 0-step capturable if and only

if the instantaneous capture point coincides with the point

foot location. The requirement for 0-step capturability is thus

‖r′ic(0)− r′ankle‖ ≤ d′0, with d′0 = 0 for this model.
For higher N , the goal is to reach an (N−1)-step capturable

state using a 1-step evolution. This is only possible if the

distance between the foot and the instantaneous capture point,

evaluated at the earliest possible step time (∆ts,min) is such that

there exists a step of allowable length that makes the legged

system (N − 1)-step capturable:
∥
∥r′ic(∆t′s,min)− r′ankle

∥
∥− l′max ≤ d′N−1. (14)

Using (13), this can be rewritten as

‖r′ic(0)− r′ankle‖ ≤ (d′N−1 + l′max)e
−∆t′s,min = d′N (15)

which leads to a recursive expression for d′N :

d′N = (d′N−1 + l′max)e
−∆t′s,min , d′0 = 0. (16)

The maximum distance for N -step capturability, d′N , follows

a converging geometric series:

d′N+1 − d′N = (d′N − d′N−1)e
−∆t′s,min , ∀N ≥ 1.
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Fig. 3. N -step capturability for the 3D-LIPM with point foot, characterized
using the values of d′

N
(shown for N ∈ {0 . . . 3,∞}). d′

N
is the maximum

distance between the instantaneous capture point and the contact reference
point, evaluated at step time, for which the legged system is N -step capturable.
The contact reference point is rankle, the ankle (point foot) position. An
example initial state at ts,prev is shown, which lies within the 3-step viable-
capture basin. Note that this state is different from the state depicted in Fig. 2.
Because the initial state corresponding to ts,prev is not 1-step capturable, the
distance between the ankle and instantaneous capture point at ts,prev+∆ts,min

is larger than lmax. A first step of length lmax towards the instantaneous capture
point results in a discrete jump in the distance between the instantaneous
capture point and the ankle. A second step is required to make the state 1-
step capturable, and a third step is required to reach a captured state. For this
figure, ∆ts,min and lmax are set to unit magnitude.

The ratio of the geometric series, e−∆t′s,min , can be inter-

preted as a measure of the mobility of the legged system.

The ratio is a dimensionless quantity that takes a value

in the interval [0, 1) if the minimum step time is strictly

positive. Hence, the series d′N converges. Moreover, notice

that being allowed to take more steps to come to a stop suffers

from diminishing returns. The nature of the series allows the

requirement for ∞-step capturability to be computed in closed

form:

d′
∞

= d′0 +

∞∑

N=0

[
d′N+1 − d′N

]
(17a)

= l′max

e−∆t′s,min

1− e−∆t′s,min

(17b)

since d′0 = 0 for the 3D-LIPM with point foot. The obtained

values of d′N will be used to determine N -step capture regions.

G. Capture Regions

The N -step capture regions for the 3D-LIPM with point foot

are shown in Fig. 4 for an example state. How these regions

are computed is described next.

The legged system will come to a stop if it puts its CoP onto

the instantaneous capture point by stepping there. However,

stepping is only possible after the minimum step time has

passed. Hence, we first determine the set of possible future

instantaneous capture point locations that satisfy the minimum

step time constraint. The point in this set that is closest to

the foot is the (future) instantaneous capture point location

evaluated at the earliest possible step time, ric(ts,prev+∆ts,min).
This point is found using (13). If no step is taken, then the

instantaneous capture point will just keep moving farther away

from the point foot, as shown by Theorem 1. Therefore, the

set of possible future instantaneous capture point locations is
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Fig. 4. Top view of the 3D-LIPM with point foot and N -step capture
regions, for the same state as shown in Fig. 2. Additional to the information
in Fig. 2, this figure gives a schematic representation of the N -step capture
regions for N ∈ {1 . . . 4,∞}. Before the first step, the instantaneous capture
point ric will move away from the point foot, rankle, on the dashed line. The
instantaneous capture point location at the earliest time at which a step may be
taken, ric(ts,prev +∆ts,min), is depicted by a small circle. The set of possible
future instantaneous capture point locations for which the minimum step time
has passed is the ray starting at the small circle and pointing along the dashed
line, away from the point foot. An N -step capture region is then found using
this ray and the value of dN−1: all points within a distance of dN−1 to the
ray are N -step capture points, as long as they lie inside the maximum step
length circle, which has radius lmax. For this figure, model parameters ∆ts,min

and lmax are set to unit magnitude.

a ray starting at ric(ts,prev +∆ts,min) which points away from

rankle (see Section II-E).
N -step capture regions for N ∈ [1,∞] can now be found

using this ray and the expression for d′N in (16). After taking

a single step to an N -step capture point, the legged system’s

state should be (N − 1)-step capturable. Step locations that

put the legged system in such a state are readily found using

(16): all points within a distance of d′N−1 to a possible

future instantaneous capture point are N -step capture points,

provided that the legged system can reach those points given

the maximum step length constraint.3 This results in the nested

regions depicted in Fig. 4.
Note that finding the 1-step capture region is especially

simple. Since d′0 = 0, the step of finding points with distance

d′N−1 to the ray simply results in the ray itself. The 1-step

capture region is then the part of the ray that is inside the

maximum step length circle.

III. 3D-LIPM WITH FINITE-SIZED FOOT

In this section, we extend the 3D-LIPM with point foot by

making the foot size finite. The finite-sized foot articulates

with the leg at a 2-DoF ankle joint, and is assumed massless.

At the ankle, torques may be applied in the pitch and roll

directions. However, the torques are limited in such a way that

the foot does not start to rotate with respect to the ground. The

foot orientation (which is the yaw direction, rotation about the

z-axis) may be chosen arbitrarily when a step is taken. The

model is shown in Fig. 5.

3A point that cannot be reached can never be an N -step capture point.
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A. Equations of Motion

Only slight modifications to the derivation of the equations

of motion for the 3D-LIPM are necessary. Equation (1)

also applies to this model. Adding controllable ankle torques

τankle,x and τankle,y and a reaction torque τankle,z changes the

moment balance of the massless leg link, (2), to

− (r − rankle)× f + τ ankle = 0 (18)

where τ ankle =
(
τankle,x τankle,y τankle,z

)T
is the ankle

torque and rankle is now the projection of the ankle joint onto

the ground.

As before, fz = mg due to the model constraint z̈ = 0,

and we find the actuator forces fx, fy and the reaction torque

τankle,z from (18):

fx = mω2
0(x − xankle) +

τankle,y

z0

fy = mω2
0(y − yankle)−

τankle,x

z0

τankle,z = −
τankle,x

z0
(x − xankle)−

τankle,y

z0
(y − yankle).

The equations of motion can then be derived by substituting

this into (1), resulting in

r̈ = ω2
0(Pr − rCoP) (19)

where

rCoP = rankle −
1

mg






τankle,y

−τankle,x

0




 = rankle −

τ ankle × êz

mg

is the location of the CoP. This follows readily from a moment

balance for the foot, considering that the ankle torques are

such that the foot does not rotate with respect to the ground,

by model definition.

Comparing (19) to (3) clearly shows that the dynamics are

essentially unchanged. The only difference is that it is now

possible to displace the CoP without taking a step. Hence, the

results of Section II-E are still valid if rankle is replaced by

rCoP.

The dynamics of our 3D-LIPM with finite-sized foot are the

same as those of the original 3D-LIPM by Kajita et al. [2],

where the 3D-LIPM’s virtual inputs are interpreted as ankle

torques, expressed in a ground-fixed frame.

B. Allowable Control Inputs

The allowable control inputs as defined for the 3D-LIPM

with point foot in Section II-B also apply to the 3D-LIPM with

finite-sized foot4. We augment these allowable control inputs

by specifying limits on the ankle torques. The allowable ankle

torques are easiest to describe in terms of their resulting CoP

location, i.e., as rCoP ∈ UCoP.

We define the base of support B(t) as the (time-varying)

set of points on the ground where the CoP may be set

instantaneously by applying suitable ankle torques, without

taking a step. The base of support coincides with the convex

4Note that the ankle location is still used as the reference point for
determining step length.

ê
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Fig. 5. The 3D-LIPM with finite-sized foot. The 3D-LIPM with point foot
(Fig. 1) is extended with a a finite-sized foot and the ability to apply ankle
torques τ ankle to obtain the 3D-LIPM with finite-sized foot.

hull of the points on the ground that are in contact with the

foot. To fulfill the requirement that the foot must not rotate,

the CoP location, which keeps the foot in static equilibrium

(i.e., the Foot Rotation Indicator [16]), must not leave the base

of support. Mathematically, this requirement gives:

UCoP = B(t). (20)

The foot orientation may be chosen without restriction when

a step is taken.

C. Dimensional Analysis

In addition to the dimensionless quantities defined for the

3D-LIPM with point foot in Section II-C, we define dimen-

sionless ankle torque τ
′

ankle as

τ
′

ankle =
τ ankle

mω2
0z

2
0

.

The dimensionless counterpart of the CoP is then

r′CoP =
rCoP

z0
= r′ankle − τ

′

ankle × êz

and the equations of motion reduce to

r̈′ = Pr′ − r′CoP. (21)

D. Equivalent Constant CoP

To find the capture region for this model, the effect of a

time-varying CoP must be investigated.

Suppose a time-varying CoP causes the instantaneous cap-

ture point to move from an initial position to a final position

in a certain time interval. The equivalent constant CoP is the

point where the CoP could have been held constant, while that

CoP would still move the instantaneous capture point from the

initial position to the final position in the same time interval.5

We can use (13) to compute the equivalent constant CoP as

r′CoP,eq =
r′ic(∆t′)− r′ic(0)e

∆t′

1− e∆t′
(22)

5The equivalent constant CoP is only equivalent in terms of instantaneous
capture point position and not necessarily in terms of other parts of the state.
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Let us now examine the equivalent constant CoP for a

discrete CoP change. Suppose the CoP is initially located at

r′CoP,0, and is kept there for ∆t′0. Subsequently, it is changed to

r′CoP,1 and kept there for ∆t′1. The final instantaneous capture

point position is found by applying (13) twice:

r′ic(∆t′0) = [r′ic(0)− r′CoP,0]e
∆t′

0 + r′CoP,0

r′ic(∆t′0 +∆t′1) = [r′ic(∆t′0)− r′CoP,1]e
∆t′

1 + r′CoP,1

(23)

Solving (22) and (23) for r′CoP,eq (with ∆t′ = ∆t′0 +∆t′1),

we find

r′CoP,eq = (1− w)r′CoP,0 + wr′CoP,1 (24)

where

w =
e∆t′

1 − 1

e∆t′
0
+∆t′

1 − 1

The scalar w lies in the interval [0, 1] because both ∆t′0
and ∆t′1 are nonnegative. The equivalent constant CoP is

thus a weighted average of the two individual CoPs, where

the weighting factors depend only on the time intervals. This

statement can be generalized to any number of CoP changes

and, in the limit, even to continuously varying CoPs, thus

proving the following Theorem:

Theorem 2: For the 3D-LIPM with finite-sized foot, the

equivalent constant CoP is a weighted average of the CoP as

a function of time.

The time-varying CoP must always be inside the base of

support, which is a convex set. By definition, a weighted

average of elements of a convex set must also be in the convex

set. Therefore:

Corollary 1: If the base of support of the 3D-LIPM with

finite-sized foot is constant, then the equivalent constant CoP

for any realizable instantaneous capture point trajectory lies

within the base of support.

Theorem 2 and Corollary 1 greatly simplify the analysis

of capturability and capture regions, since only constant CoP

positions within the base of support have to be considered in

our subsequent derivations.

Equation (24) reveals some interesting properties of com-

puting the equivalent constant CoP for a piecewise constant

CoP trajectory:

• distributivity over addition: adding a constant offset to the

individual CoP locations results in an equivalent constant

CoP that is offset by the same amount;

• associativity: when computing the equivalent constant

CoP for a sequence of three individual CoP locations, the

order of evaluation of the composition does not matter;

• non-commutativity: when computing an equivalent con-

stant CoP for a sequence of individual CoP locations, the

order of the sequence being composed does matter.

E. Capturability

The concepts of instantaneous capture point and equivalent

constant CoP are now used to determine capturability for

the 3D-LIPM with finite-sized foot. We first analyze 0-step

capturability.

We are allowed to replace point foot position by CoP in

Theorem 1 because the dynamics are essentially the same.

Hence, the instantaneous capture point diverges away from

the CoP. Since the base of support is a convex set and is

assumed to not change without taking a step, a Corollary of

that Theorem is:

Corollary 2: Once the instantaneous capture point of the

3D-LIPM with finite-sized foot is outside the base of support,

it is impossible to move it back inside without taking a step.

Since a captured state can only be reached when the CoP

can be made to coincide with the instantaneous capture point,

Corollary 2 provides us with a test of whether a state is 0-step

capturable:

Corollary 3: The 3D-LIPM with finite-sized foot is 0-step

capturable if and only if the instantaneous capture point is

inside the base of support.

For higher N , capturability is analyzed in much the same

way as for the 3D-LIPM with point foot. Like before, we will

not compute complete N -step viable-capture basins. For this

model we restrict the analysis to states at which a step has

just been taken, for the same reasons as mentioned in Section

II-F, and for which the foot is optimally oriented, which will

be defined below. For these states, capturability can again be

expressed in terms of the distance ‖r′ic(0)− r′ankle‖, just like

in Section II-F.

The strategy that brings the legged system to a halt in as

few steps as possible comprises stepping as soon as possible in

the direction of the instantaneous capture point, with the foot

optimally oriented and the CoP always maintained as close to

the instantaneous capture point as possible. With “optimally

oriented” we mean that the distance between the border of

the base of support and the instantaneous capture point is

minimized, given a fixed ankle location. This means that the

CoP is located at a point on the edge of the base of support

that has the greatest distance to the ankle and will be closest to

the instantaneous capture point. The greatest distance between

the ankle and the edge of the base of support will be denoted

rmax and is normalized as r′max = rmax/z0.

Due to the assumption of optimal foot orientation, the re-

quirement for 0-step capturability becomes ‖r′ic(0)− r′ankle‖ ≤
d′0, with d′0 = r′max. Similar to Section II-F, we start at (14)

and arrive at formulas for d′N and d′
∞

:

d′N = (l′max − r′max + d′N−1)e
−∆t′s,min + r′max, ∀N ≥ 1 (25)

d′
∞

= l′max

e−∆t′s,min

1− e−∆t′s,min

+ r′max. (26)

It is seen that the difference between d′
∞

for the model

with point foot and d′
∞

for the model with finite-sized foot is

simply the normalized maximum distance between the contact

reference point and the edge of the foot, r′max.

F. Capture Regions

The N -step capture regions for the 3D-LIPM with finite-

sized foot are shown in Fig. 6.

The first step in computing N -step capture regions is again

to find the set of all points where the instantaneous capture

point can be after the minimum step time has passed. Equation

(12) shows that the instantaneous capture point can only be

pushed in certain directions: the set of possible instantaneous
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Fig. 6. Top view of the 3D-LIPM with finite-sized foot, with a schematic
representation of the N -step capture regions. The figure is an extension of Fig.
4: state parameters rankle, r and ṙ are identical. We have omitted labels that
were already shown in Fig. 4 to avoid cluttering. CoP locations 1 and 3 are just
in line of sight of ric(t) and determine to which locations the instantaneous
capture point may be directed by CoP modulation (dashed lines). CoP location
2 is closest to ric(t) and results in the closest possible instantaneous capture
point at minimum step time, ric(ts,prev+∆ts,min). The near boundary of the set
of all possible instantaneous capture point locations at minimum step time is a
scaled point reflection of the base of support across the instantaneous capture
point, as demonstrated by example CoP locations 1 to 3 and corresponding
capture point locations 1 to 3. To obtain the N -step capture regions, the
locations of all possible instantaneous capture points bounded by ∆ts,min are
surrounded by bands of width d′

N
, given by (25). For this figure, rmax = 0.2.

capture point locations is bounded by the ‘lines of sight’ from

the instantaneous capture point to the base of support (shown

as dashed lines in Fig. 6), resulting in a wedge-shaped region.

The effect of the minimum step time constraint is again

evaluated by considering where the instantaneous capture point

can be located at the minimum step time if the CoP may be

placed anywhere inside the base of support. Theorem 2 and

Corollary 1 reveal that only constant CoP positions within the

base of support need to be considered. The near boundary

of the set of possible instantaneous capture point locations is

found by evaluating (13) as before, using CoP locations that

lie along the part of the boundary of the base of support that

‘can be seen’ from the instantaneous capture point. The near

boundary turns out to be a scaled point reflection of this part

of the base of support across the instantaneous capture point.

The scaling factor depends on the minimum step time only.

To find N -step capture regions, we follow the same proce-

dure as in Section II-G, i.e., we create nested regions around

the set of possible instantaneous capture point locations. This

time, the greatest allowed distance to the possible instanta-

neous capture point locations is computed using (25). This

method assumes that the foot will be oriented optimally when

the step is taken. Note that for this model, d′0 = r′max > 0. Of

course, points that are outside the maximum step length circle

need to be discarded.

ê
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ê
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ê
z

g
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τ
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Fig. 7. The 3D-LIPM with finite-sized foot and reaction mass. The 3D-LIPM
with finite-sized foot (Fig. 5) is extended with a non-zero mass moment of
inertia tensor J and the ability to apply hip torques τ hip to obtain the 3D-
LIPM with finite-sized foot and reaction mass.

IV. 3D-LIPM WITH FINITE-SIZED FOOT

AND REACTION MASS

We now extend the 3D-LIPM with finite-sized foot by

modeling not just a point ‘body’ mass at the end of the leg, but

a rigid body possessing a non-zero mass moment of inertia.

Actuators in the hip can exert torques on this reaction mass

in all directions, enabling lunging motions in 3D. The model,

depicted in Fig. 7, is a 3D version of the Linear Inverted

Pendulum plus Flywheel Model presented in [17]. It can also

be considered a linear version of the Reaction Mass Pendulum

[18] with a constant mass moment of inertia.

To make the analysis tractable, we specify several con-

straints. We place limits on the allowable angles of the reaction

mass. At the start of our analysis, we assume that all angles

and angular velocities are zero. Hip torques can be used to

accelerate the reaction mass, followed by decelerating torques

to prevent the reaction mass from exceeding angle limits.

Furthermore, we assume that the robot can only lunge once, in

only one direction, similar to a human using a single impulsive

lunging response in an attempt to regain balance after a severe

perturbation. Besides angle limits, we place limits on the

allowable hip torque. The hip torque component around the z-

axis is determined by the requirement of no yaw of the reaction

mass. This requirement makes the equations of motion linear.

For the horizontal torque components, we assume a bang-bang

input profile, as used in [6], [19]. We require that the execution

time of the profile is less than the minimum step time.

A. Equations of Motion

The equations of motion for the reaction mass are

mr̈ = f +mg (27a)

Jω̇ = τ hip − ω × (Jω) (27b)

where ω =
(
ωx ωy ωz

)T
is the angular velocity vector

of the upper body, expressed in the inertial reference frame,

τ hip =
(
τhip,x τhip,y τhip,z

)T
is the hip torque vector, J is

the mass moment of inertia in the body-fixed frame, and m,

r, f and g are as defined in Section II-A.
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Assuming that ωz = 0, that τhip,z is such that ω̇z = 0, and

that J is diagonal, (27b) can be rewritten as

Jxxω̇x = τhip,x

Jyyω̇y = τhip,y

0 = τhip,z + (Jxx − Jyy)ωxωy.

This last equation specifies the hip torque about the z-axis that

is required to keep the reaction mass from yawing. Note that

no hip torque about the z-axis is required if Jxx = Jyy .

The moment balance for the massless leg link is

− (r − rankle)× f − τ hip + τ ankle = 0. (28)

Keeping the mass at z = z0 means that fz = mg, as before.

This fact and (28) can be used to find the reaction forces fx
and fy , and the ankle torque τankle,z:

fx = mω2
0(x − xCoP)−

τhip,y

z0

fy = mω2
0(y − yCoP) +

τhip,x

z0

τankle,z =
τhip,x − τankle,x

z0
(x− xankle)

+
τhip,y − τankle,y

z0
(y − yankle) + τhip,z.

We can now rewrite (27) to obtain the equations of motion,

r̈ = ω2
0(Pr − rCMP) (29a)

ω̇ = J−1Pτ hip (29b)

where r, ω0 and P are as defined in Section II-A, and

rCMP = rCoP +
1

mg






τhip,y

−τhip,x

0




 = rCoP +

τ hip × êz

mg
(30)

is the Centroidal Moment Pivot (CMP) as defined in [20].

Here we have used the fact that the CoP is equal to the Zero

Moment Point when the ground is flat and horizontal [20].

The equations of motion are again linear. Note the similarity

to the equations of motion for the previous models, which

allows us to reuse most results obtained for the previous

models.

B. Allowable Control Inputs

The actuation limits of the 3D-LIPM with finite-sized foot

are extended to include the hip torque profile. The set of

allowable hip torque profiles is the set of bang-bang torque

profiles for which the torque and angle limits are not exceeded

at any time.

A hip torque τhip is first applied in the direction of the unit

vector êτ for a time interval ∆t1, then in the opposite direction

for ∆t2, and the torque is zero afterwards. Since the angle limit

may not be exceeded at any time, the reaction mass angular

velocity after the hip torque profile must be zero. Since the

reaction mass angular velocity is also zero before the start of

the torque profile, we define the reaction mass torque time

interval ∆tRM, as ∆tRM = ∆t1 = ∆t2. The torque profile is

thus

τ hip = τhipêτ [u(t)− 2u(t−∆tRM) + u(t− 2∆tRM)] (31)

where u(·) is the Heaviside step function.

For a 2D version of the presented model, [6] and [17]

have shown that the time interval has a maximum value

∆tRM,max =
√
Jθmax/τhip,max, given the scalar mass moment

of inertia J , the angle limit θmax with respect to vertical and hip

torque limit τhip,max. The appropriate scalar inertia value for the

model presented here can be obtained from the mass moment

of inertia tensor and the torque direction as J = êT
τ
Jêτ .

C. Dimensional Analysis

Additional dimensionless quantities are needed to nondi-

mensionalize the equations of motion. We define the dimen-

sionless mass moment of inertia J′, angular velocity ω
′, and

hip torque τ
′

hip as

J′ =
J

mz20
ω

′ =
J′
ω

ω0

τ
′

hip =
τ hip

mω2
0z

2
0

.

Like the dimensionless CoM position, the dimensionless

angular velocity ω
′ is differentiated with respect to dimen-

sionless time t′ to obtain dimensionless angular acceleration:

ω̇
′ =

d

dt′
ω

′ =
J′
ω̇

ω2
0

.

The dimensionless version of the CMP is

r′CMP =
rCMP

z0
= r′CoP + τ

′

hip × ê′z. (32)

These quantities can be used to rewrite the equations of

motion, (29), as

r̈′ = Pr′ − r′CMP (33a)

ω̇
′ = Pτ

′

hip. (33b)

D. Effect of the hip torque profile

To analyze capturability, we first examine how the hip

torque profile influences the instantaneous capture point mo-

tion. We will determine the instantaneous capture point loca-

tion after the application of the torque profile, i.e., at the final

time t′f = 2∆t′RM, given its location at t′ = 0 and the torque

profile (31).

As noted in Section IV-A, the instantaneous capture point

dynamics are described by (12) with r′ankle replaced by r′CMP.

To find the final location of the instantaneous capture point

given a time-variant hip torque, we transform (12) into the

Laplace domain:6

r̃′ic(s) =
r′ic(0)− r̃′CMP(s)

s− 1
. (34)

The CMP motion of (32) translates to the Laplace domain

as

r̃′CMP(s) =
r′CoP

s
+ τ̃

′

hip(s)× ê′z (35)

6Variables in the Laplace domain are marked with a tilde: ·̃.
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The hip torque profile, (31), is given by

τ̃
′

hip(s) =
τ ′hipê

′

τ

s
[1− 2e−∆t′RMs + e−2∆t′RMs] (36)

We can now substitute (35) and (36) into (34) to find

r̃′ic(s). Taking the inverse Laplace transform and evaluating

the resulting function of time at the final time t′f results in the

desired expression for the final instantaneous capture point

location:

r′ic(t
′

f) = {r′ic(0)− r′CoP −∆r′RM}et
′

f + r′CoP (37)

where

∆r′RM = τ ′hip(ê
′

τ
× ê′z)[1− 2e−∆t′RM + e−2∆t′RM ] (38)

expresses the contribution of using the reaction mass to the

final location of the instantaneous capture point. The require-

ment for 0-step capturability may be readily determined now

that the effect of the torque profile on the instantaneous capture

point location is known.

E. Capturability

With a reaction mass, the legged system can be 0-step cap-

turable even if the instantaneous capture point is not initially

located inside the base of support. In fact, the requirement

for 0-step capturability is that the instantaneous capture point

should be inside the base of support after the application of the

torque profile. The goal will thus be to push the instantaneous

capture point inside the base of support using suitable ankle

and hip torques.

We examine a case, called the boundary case, for which

the instantaneous capture point can only just be pushed from

outside of the base of support to the edge of the base of

support. Ankle torques should be such that the CoP is placed

as close to the instantaneous capture point as possible to

minimize the rate of diversion of the instantaneous capture

point away from the base of support. Hip torques should be

such that they maximally influence the final location of the

instantaneous capture point. From (38), we see that this is

achieved when lunging as hard as possible and as long as

possible in the direction of the instantaneous capture point.

The maximum distance over which the instantaneous capture

point can be changed due to lunging is

∥
∥∆r′RM,max

∥
∥ =

∥
∥
∥∆r′RM|

∆t′RM=∆t′RM,max,τ
′

hip=τ ′

hip,max

∥
∥
∥ . (39)

Since the CoP position will be the closest point to the

instantaneous capture point within the base of support, it is

also the position where the instantaneous capture point should

end up at t′f: ric(t
′

f) = r′CoP. Therefore, the requirement for

reaching a captured state in the boundary case is:

‖r′ic(0)− r′CoP‖ =
∥
∥∆r′RM,max

∥
∥ . (40)

The distance
∥
∥∆r′RM,max

∥
∥ acts as an upper boundary for 0-

step capturability: the legged system is 0-step capturable if the

distance between the initial instantaneous capture point and the

base of support is smaller than or equal to this distance.

For N -step capturability, we restrict the analysis to initial

states in which a step has just been taken, the foot is optimally

oriented, and the reaction mass is in the upright position with

zero angular velocity. For these initial states, the requirement

for 0-step capturability can be written in terms of distance to

the contact reference point rankle as

‖r′ic(0)− r′ankle‖ ≤ r′max +
∥
∥∆r′RM,max

∥
∥ = d′0. (41)

The limits of capturability for higher N are calculated

similarly to those in Section II-F and Section III-E. As

mentioned before, we assume that the hip torque profile can

only be applied once. It should be applied as soon as possible

to be most effective, since waiting longer simply results in

an initial instantaneous capture point location that is farther

removed from the foot. After execution of the torque profile,

the model essentially reduces to the 3D-LIPM with finite-sized

foot, as the CMP coincides with the CoP. Our assumption

was that the execution time of the torque profile is less than

the minimum step time. Hence, only the first step that this

model takes is different when compared to the previous model.

As such, the requirement for N -step capturability is that the

distance
∥
∥r′ic(∆t′s,min)− r′ankle

∥
∥, is less than d′N−1 + l′max for

the model without a reaction mass, i.e., according to (25). For

clarity, we will relabel the d′N for the 3D-LIPM with finite-

sized foot as d̄′N .

The distance
∥
∥r′ic(∆t′s,min)− r′ankle

∥
∥ is readily obtained by

substituting the optimal hip torque profile, CoP placement, and

stepping strategy in (37):

∥
∥r′ic(∆t′s,min)− r′ankle

∥
∥ = r′max

+ {‖r′ic(0)− r′ankle‖ − r′max −
∥
∥∆r′RM,max

∥
∥}e∆t′s,min . (42)

Noting that the left hand side and hence the right hand side

must be less than or equal to d̄′N−1 + l′max, we find that the

requirement on the initial distance is ‖r′ic(0)− r′ankle‖ ≤ d′N ,

with

d′N = (l′max−r′max+d̄′N−1)e
−∆ts,min+r′max+

∥
∥∆r′RM,max

∥
∥ (43)

for all N ≥ 1. Comparing these results with the results of

Section III-E, we see that the relation between the d′N for the

current model and the d̄′N for the model without a reaction

mass is:

d′N = d̄′N +
∥
∥∆r′RM,max

∥
∥ , ∀N (44)

which shows that
∥
∥∆r′RM,max

∥
∥ is the margin that is gained by

adding a reaction mass.

F. Capture regions

The N -step capture regions for the 3D-LIPM with finite-

sized foot and reaction mass are shown in Fig. 8.

Similar to the previous models, the first step to finding

the capture regions is to find the set of possible future

instantaneous capture point locations. This problem can be

solved using (37). Comparing (37) to (13), we can rewrite

(37) as

r′ic(t
′

f) = r′ic(t
′

f)|τ ′

hip=0
−∆r′RMet

′

f (45)

where r′ic(t
′

f)|τ ′

hip=0
is the instantaneous capture point location

at t′f when no hip torque is applied. The difference due to

the use of the reaction mass is bounded as
∥
∥
∥∆r′RMet

′

f

∥
∥
∥ ≤
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Fig. 8. Top view of the 3D-LIPM with finite-sized foot and reaction mass,
with a schematic representation of the N -step capture regions. The figure
is an extension of Fig. 6: state parameters rankle, r and ṙ are identical. We
have omitted labels that were already shown in Fig. 6 to avoid cluttering. The
1-step capture region is constructed using all possible instantaneous capture
point locations of the 3D-LIPM with finite-sized foot (Fig. 6). One of these
possible instantaneous capture point locations is indicated by the dot on the
solid line inside the 1-step capture region. Using the reaction mass, all possible
instantaneous capture point locations can be offset over distance ‖∆rRM,max‖.
For this figure, τmax is set to 0.5 and θmax = 1/8, which results in a total
lunge time (2∆tRM,max) of 1.

∥
∥∆r′RM,max

∥
∥ et

′

f , and may have any direction. Therefore, the set

of possible instantaneous capture point locations at the specific

time t′f consists of all points that lie at most ‖∆rRM,max‖ from

possible instantaneous capture point locations at t′f for the

model without reaction mass. Since we assume that after t′f
no hip torque is applied, the CMP coincides with the CoP

for time greater than t′f, and the instantaneous capture point

will move on a line through itself and the CoP. Bounds on

reachable instantaneous capture point locations are therefore

found in a manner similar to that given in Section III-F, by

constructing lines of sight from the base of support to the

set of possible instantaneous capture point locations at t′f (the

dashed lines in Fig. 8). The near boundary is determined by

the minimum step time constraint in conjunction with (45).

Finally, we can construct capture regions exactly as in

Section III-F. After the first step is taken, no hip torque is

applied anymore and the model essentially reduces to the

3D-LIPM with finite-sized foot. We should hence construct

nested regions around the set of possible future instantaneous

capture point locations using the d′N for that model, i.e., those

calculated using (25), not the ones from (44).

V. CAPTURABILITY COMPARISON

For all three models, we determined which states in a subset

of state space are N -step capturable, and derived descriptions

of the N -step capture regions. The N -step capture regions of

Fig. 4, 6 and 8 clearly showed that an increase in the number

of possible stabilizing mechanisms leads to an increase in

region size. This result implies that there is more freedom to

choose foot placements that keep the legged system capturable,

or we could say that the ‘level of capturability’ increases.

To express this level of capturability in a more formal and

quantitative manner, we introduce two capturability metrics

that apply specifically to the models presented in this part:

1) Let x be the state of a legged system. The legged

system’s capturability margin is the area of the ∞-step

capture region in state x.

2) Let K be a subset of a legged system’s state space

X , and let C(K) denote the subset of K that is

capturable. For each capturable initial state x ∈ C(K),
we can compute the distance between the instantaneous

capture point and the contact reference point. The d∞
capturability level of the legged system with respect to

K is defined as the largest such distance over all states

x ∈ C(K).

The first metric was first mentioned in Part 1. Since the ∞-

step capture region region is two-dimensional for the models

in this part, we have chosen the area as a measure of its

size. The first metric expresses how close a specific state of

a legged system is to not being capturable. It also gives an

indication of the input deviations and disturbances that are

allowed while executing a given evolution. A small size of

the ∞-step capture region, for example, indicates that there is

little room for disturbances.

In the previous sections, we graphically depicted the influ-

ence of the various model parameters on the ∞-step capture

region for a given initial state. Fig. 9 combines these results

and displays the size of the three ∞-step capture regions. For

the selected initial state, the addition of a finite-sized foot

caused the metric to increase by 260%. Another increase of

130% was found for the addition of the reaction mass.

Expressions for the dimensionless version of the d∞ cap-

turability level, d′
∞

, were derived for all three models, where

the subset of state space K for each model is as specified in

Sections II-F, III-E and IV-E respectively. Since it considers

a set of states K instead of just a single state, it gives an

indication of the overall legged-system stability and allows

for comparison between different legged systems. In terms of

the original physical quantities, d∞ for the 3D-LIPM with

finite-sized foot is expressed as

d∞ = lmax
e−ω0∆ts,min

1− e−ω0∆ts,min

︸ ︷︷ ︸

3D-LIPM, Section II

+ rmax
︸︷︷︸

3D-LIPM, Section III

+

τ hip,max

mω2
0z0

[1− 2e−ω0∆tRM,max + e−2ω0∆tRM,max ]

︸ ︷︷ ︸

3D-LIPM, Section IV

. (46)

VI. DISCUSSION AND FUTURE WORK

To analyze capturability, we defined the instantaneous cap-

ture point, which is determined only by the CoM position and

velocity. This gave us a dimensionally-reduced description of

the dynamics of three walking models. We showed how this

resulted in relatively simple and comprehensible expressions,

and enabled calculation and visualization of capture regions
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Fig. 9. Three superimposed ∞-step capture regions of all three models as
previously presented in Fig. 4, 6 and 8. The size of each ∞-step capture
region is shown.

and viable-capture basins. We will comment on how these

expressions and regions are useful in the analysis and control

of legged locomotion.

A. Insights gained from the presented models

The point foot model showed that the velocity of the

instantaneous capture point is directed away from the foot. It

was shown to be proportional to the distance to the foot and to

incresae exponentially with time. This suggests that in order

to remain capturable, the foot should be placed sufficiently

quickly in the direction of the instantaneous capture point.

This simple stepping strategy was used to create a variety of

stable locomotion patterns in simulation [12], [21] and was

also found to be a good predictor of stable foot placement

locations in the analysis of human walking [15], [22]–[24].
The model with finite-sized foot demonstrated how CoP

modulation can change the location and velocity of the in-

stantaneous capture point. This property can be used, for

example, to change the walking direction. The expression for

an equivalent constant CoP enabled the definition of a fixed

CoP location that results in an identical instantaneous capture

point as given by a time-variant CoP location. We showed

how this can further reduce the complexity of a capturability

analysis.
The model with finite-sized foot and reaction mass showed

that lunging as soon as possible in the direction of the

instantaneous capture point maximally increases the level

of capturability. We believe that, if lunging is constrained

by angle and torque limits, bang-bang control achieves the

optimal effect. This reasoning implies that the acceleration

time interval and deceleration time interval of the reaction

mass should be maximized and equal. Note that in general

it is not straightforward to relate the effect of the angular

momentum generated by the simple reaction mass to the effect

generated by all individual links of a complex multibody

system [18], [25]. However, we were able to demonstrate

the conceptual contribution of angular momentum to the

stability of locomotion, represented mathematically by (46)

and graphically by Fig. 9.
The three models also revealed the relation between the

location of the point foot, the CoP and the CMP in the analysis

of capturability. Despite time variant inputs, the dynamics of

the instantaneous capture point remains easy to predict for all

three models: the instantaneous capture point diverges away

from the CMP along a straight line at a velocity proportional

to the distance to the CMP. The CMP reduces to the CoP if

no reaction mass is present or actuated. The CoP reduces to

the point foot location if the base of support is infinitesimally

small.
Furthermore, the models are not only valuable for the

analysis and control of walking, but also for example for

regaining upright balance after a perturbation. For such a

situation, we can approximate the limits of 0-step capturability

for a particular robot, and determine appropriate step locations,

ankle torques and hip torques to recover postural equilibrium.

B. Limitations of the presented models

The use of these models as a representation of legged

locomotion has a number of limitations.
The models discard many aspects of legged locomotion.

Height variations of the CoM during legged locomotion were

not considered. Internal forces generated by lunging or swing

leg dynamics were discarded. Slippage or losses at the change

of support were not considered. The existence of a double

stance phase in case of walking was also not taken into

account. Consequently, using these simple models to approxi-

mate the capturability of a real robot will lead to discrepancies

between the approximated and true values.
Furthermore, the limitations on the stabilizing control inputs

were modeled simplistically. For example, consider the lim-

itations on the stepping performance of the model. Stepping

speed was constrained by enforcing a constant minimum step

time, independent of the step location. Step location was

constrained by limiting the maximum step length, irrespective

of the current CoM position or direction of motion. The

expressions for capturability in this paper rely strongly on

these simplistically modeled limitations.
We see an advantage in the simplicity of the presented

models however. Comparable studies demonstrated that even

slightly more complex models can result in expressions that

are less comprehensible and require complex numerical meth-

ods to be solved [26], [27]. This decreases understanding and

increases the computational burden. Although the models are

very elementary, they are still useful for the analysis and

control of legged locomotion. From a viewpoint of analysis,

the models exposed fundamental principles of locomotion:

the basic influence of the stabilizing mechanisms on N -step

capturability was clearly demonstrated. Control algorithms can

be based on the results obtained for the simple models. We

can use the models offline, where the results serve as a starting

point for a learning algorithm [28]. Or we can use the models

online, where the models serve as an integral part of the

control algorithm of a complex robot. Although the models

give approximations, the results can be sufficient for control

purposes, as we will demonstrate in Part 3.

C. Insights gained from capturability analysis

For each model, we chose a subset of the state space and

examined which states in that subset are capturable. These
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results were used to compute N -step capture regions for N
up to and including ∞. The instantaneous capture point, which

combines the CoM position and velocity, was of great use in

the capturability analysis.
Our analysis of capturability took both the dynamics and

actuation limits of the legged system into account, while no

specific control law was assumed a priori. This approach

allows us to make some strong conclusions concerning cap-

turability. For example, if there is no ∞-step capture region,

then it is impossible to make the legged system come to a stop

without falling, no matter what control law is used.
We also introduced two capturability metrics that enable

a quantitative comparison between models. The capturability

margin expresses the level of capturability in a single state,

whereas the d∞ capturability level is based on a subset of

state space. Human subject studies already demonstrated that

the CoM position and velocity in relation to the base of support

is a good indicator of the ability to maintain balance and

the number of steps required to do so [29]–[33]. Hof et al.

[13] were the first to formally define the distance between

the instantaneous capture point (which these authors call the

‘extrapolated CoM’) and the base of support as a ‘margin of

stability’. We see an advantage to using our metrics, since they

take the effects and limits of the stabilizing control inputs (foot

location, ankle torque and hip torque) into account.
The influence of each stabilizing mechanism on captura-

bility was demonstrated; see (46). As an application of cap-

turability analysis, we estimated its implications for human

locomotion. Based on estimates for anthropomorphic model

parameters (see Appendix), the d∞ capturability level has a

magnitude of 0.7 meters. The contribution of the foot length to

the d∞ capturability level is about 25%, and the contribution

of lunging is about 10%. This suggest that, not surprisingly,

the ability to perform rapid steps is most important to remain

capturable. This suggestion is also expressed by the metric

being most sensitive to changes in minimum step time. A

variation in minimum step time can be compensated by

another stabilizing mechanism to retain the same level of

capturability. However, a 10% increase in step duration already

requires a 17% longer step or a 30% longer foot. For humans,

selection of the appropriate step speed and length may be a

trade-off between the required muscle strength to perform a

quick step [34], [35] and the perceived level of stability or

safety of the selected step length [31], [36], [37].

D. Limitations of the capturability analysis

The presented method of analyzing capturability has pro-

vided a great deal of insight, but it directly applies to only a

small class of models. For example, it is not straightforward

to apply this analysis to models with non-linear dynamics,

since the analysis depends heavily on the linear and first

order dynamics of the instantaneous capture point. Because of

linearity, capture regions could be computed using geometric

relations. Computing capture regions for non-linear models

is computationally much more expensive [28] and remains

a topic for future research. Another unexplored area is the

consideration of keep out regions in the computation of capture

regions.

As noted, we have not computed complete viable-capture

basins, because the computation of the N -step capture regions

and the presented capturability metrics does not require this

information. Instead, we have only considered a subset of the

state space of each model, to simplify the analysis. Complete

knowledge of the viable-capture regions would however still

be useful.

Plots of the capture regions, such as presented in Fig. 4, 6

and 8, do not directly give information about which actions

should be taken to come to a stop using a given capture point.

However, the underlying analysis that allowed us to construct

these plots does provide that information. Moreover, the plots

themselves can be used to exclude stepping locations that will

inevitably lead to a fall.

We chose to define the d∞ capturability level, described in

Section V, with respect to a subset of state space, denoted

K. There seems to be no completely unambiguous choice

of K that results in a fair comparison between the different

models, which each have different state spaces. One could

argue that, for each model, K should be the model’s entire

state space. However, that choice would make the value of the

metric for the 3D-LIPM with finite-sized foot and reaction

mass unrealistically high. For that model, the value of the

metric, i.e., the largest distance between the contact reference

point and the instantaneous capture point for which the legged

system is capturable, would correspond to an initial state in

which the legged system leans all the way back from the

instantaneous capture point, prepared to lunge as long as

possible in its direction. Such a state is rarely encountered in

a realistic scenario. This line of reasoning leads to our choice

of K as the set of states for which the reaction mass angle is

zero.

We feel that the analysis of the simple models presented

in this part of our three-part paper can play an important

role in the future development of more versatile, stable and

natural robot motions. We have already used these models

to design foot planning algorithms and to synthesize robot

balance-recovery strategies in response to a push, which will

be described in detail in Part 3.

APPENDIX

We estimated anthropomorphic model parameters for the

3D-LIPM with finite size foot and reaction mass, see Table I.

Mass and length parameters are based on a typical human 1.75

m tall and with a mass of 70 kg. Gait parameters are based

on experimental studies on human trip recovery.

TABLE I
ESTIMATES OF ANTHROPOMORPHIC MODEL PARAMETERS.

Parameter Symbol Value Units Ref.
Step length lmax 0.7 m [38], [39]
Time between steps ∆ts,min 0.3 s [38], [39]
Ankle to toe length rmax 0.2 m [40]
CoM height z0 0.95 m [40]
HAT segment max. angle θmax 0.5 rad [9], [38]
Moment of inertia J 8 kg m2 [40]
of HAT w.r.t. body CoM
Body mass m 70 kg [40]
Hip torque τmax 100 Nm [41]
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Application to M2V2, a Lower Body Humanoid
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Abstract—This three-part paper discusses the analysis and
control of legged locomotion in terms of N -step capturability:
the ability of a legged system to come to a stop without falling by
taking N or fewer steps. We consider this ability to be crucial to
legged locomotion and a useful, yet not overly restrictive criterion
for stability.

Part 1 provided theoretical background on capturability. Part
2 showed how to obtain capture regions and control sequences
from simplified gait models. In Part 3, we describe an algorithm
that uses these results as approximations to control a complex
humanoid robot. This algorithm was tested using M2V2, a
3D force-controlled humanoid robot with 12 actuated degrees
of freedom in the legs, both in simulation and in real-world
experiments. Two control tasks were defined: 1) balancing on
one leg and stepping to regain balance when necessary, and 2)
walking. While performing the balancing task, the real robot was
able to recover from forward and sideways pushes of up to 21
Ns. The simulated version of the robot was able to recover from
sideways pushes of up to 15 Ns while walking, and walked across
randomly placed stepping stones.

Index Terms—

Capture point, Motion control, Balance control, Bipedal
robots, Push Recovery, Capturability

I. INTRODUCTION

Making humanoid robots useful in complex environments

requires attaining good disturbance rejection properties while

performing other tasks, such as walking. Current robots have

not sufficiently demonstrated these properties. In Part 1, we

proposed to approach this problem using the concept of

capturability, roughly defined as the ability to come to a stop.

Part 2 provided a capturability analysis of three simplified gait

models, which allowed insight into the contributions of three

different stabilizing mechanisms to capturability: stepping,

ankle control and lunging. This part presents capturability-

based control algorithms for balancing and walking while

being robust to pushes and unexpected ground variations.

These control algorithms were implemented on M2V2, a 12
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degree of freedom force controlled 3D lower body humanoid

robot.

In the presented control algorithms, we make use of the

concepts derived in the previous parts of this three-part pa-

per, such as the instantaneous capture point and the 1-step

capture region, which are approximated using the 3D Linear

Inverted Pendulum Model (3D-LIPM) with finite-sized foot, as

described in Part 2. Parts 1 and 2 also introduced the capture

margin, which will be used in the current part to evaluate the

performance of the presented control algorithms.

To date, we have achieved push recovery during one-

legged balancing on the real robot. In simulation, we have

also achieved push recovery while walking and walking over

stepping stones. These experimental results demonstrate that

capturability-based control using simplified dynamic models

may be useful in developing bipedal walking control algo-

rithms that are robust to disturbances. While performing one-

legged balancing, the real M2V2 was able to recover from

forward and sideways pushes of up to 21 Ns. The simulated

version of the robot was able to recover from sideways pushes

of up to 15 Ns while walking without stepping stones.

The remainder of this part is structured as follows. Section II

presents related literature. In Section III we describe the M2V2

robot. Section IV describes the simulation environment for the

robot. In Section V we describe the control tasks that we are

interested in achieving with the robot. Section VI describes

some of the control concepts that we employ in developing

control algorithms. Section VII presents implementation de-

tails of our control algorithms. Section VIII presents results.

Finally, in Section IX we discuss capturability-based analysis

and control and suggest future work.

II. BACKGROUND

The literature on control algorithms for humanoid robots is

extensive. Here we provide a brief survey of some widely used

control techniques and focus on their disturbance rejection

properties.

a) ZMP-based trajectory tracking control: The Zero

Moment Point (ZMP) is the point about which the resultant

ground reaction torque has no horizontal component [1]. ZMP-

based trajectory tracking control usually encompasses choos-

ing a desired ZMP trajectory based on available footholds and

desired gait properties, and calculating the center of mass

0000–0000/00$00.00 c© 2007 IEEE
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(CoM) motion that results in that ZMP trajectory [2], [3].

It is widely used in legged robot control since maintaining

the ZMP strictly inside the support polygon at all times

guarantees that it is physically possible to track the reference

joint trajectories using conventional control tools. The distance

from the ZMP to the edge of the support polygon can be used

as a measure of robustness. Modifying the reference ZMP

trajectory online has also been explored, including both small

local ZMP changes and larger step placement changes [4].

Another ZMP control approach treats the ZMP as a control

input, which is manipulated to produce a desired motion of the

CoM. For example, central pattern generators have been used

to calculate the reference ZMP trajectory to produce walking

[5].

Typical ZMP-based gait generation techniques cannot be

used to generate gaits for which the stance foot rolls from heel

to toe, as observed in fast human walking, since the ZMP is

undefined when the robot rotates about an edge of the support

polygon [1]. Also, the reference joint trajectories themselves

might lead the robot to a fall by design, even if the ZMP is

kept inside the support polygon at all times. Hence, the ZMP

criterion is not a necessary condition to avoid falling [6]. In

addition, the ZMP criterion is not applicable to non-flat terrain

[7]. Most importantly for the present work, ZMP analysis does

not answer the crucial question of where to step to recover

from large disturbances.

b) Passive Dynamics Based Control: Another approach

to walking control explicitly relies upon the passive behavior

of the robot’s mechanical components. Simple walking has

been demonstrated for purely passive devices walking down a

slope [8] [9]. Adding limited actuation to machines designed

for passive walking can yield a controlled, efficient gait [10].

Rejection of small disturbances has been shown for planar

walkers under limited control [11], [12], as well as locally

stable gaits with purely reflexive control [13]. A major focus

of our current work is the ability to recover from disturbances

large enough to require significant actuation, so we cannot rely

on passive dynamics alone to avoid falling.

c) Hybrid Zero dynamics: Another approach to locomo-

tion control identifies relationships between the degrees of

freedom of a robot that lead to a steady gait [14]. These rela-

tionships are then enforced by a feedback controller, yielding

a locally stable, periodic gait. This method has been shown to

reject small disturbances to terrain [15] [16]. More recently,

this method has been used to generate three dimensional

walking [17]. However, it requires off-line computation of a

repetitive gait, and therefore it currently has no mechanism for

explicitly handling rough terrain with impassable areas. Also,

it is still unclear how a robot using this method will handle

large pushes that significantly disturb the state of the machine

from the preplanned gait.

d) Compliant Strategies for Force Controllable Robots:

Force controllable robots have lead to the development of

compliant, full body control strategies. Virtual Model Control

and other intuitive control strategies were used on the 2D

walking robot Spring Flamingo [18]. Coros et al. [19] combine

several control techniques, including Jacobian transpose, joint

PD, and gravity compensation control with step planning

based on an inverted pendulum model to obtain a walking

controller that works for a range of simulated characters while

performing secondary tasks. Stephens and Atkeson [20] intro-

duced an algorithm that combines joint PD control, Virtual

Model Control and Dynamic Balance Force Control, an inverse

dynamics approach based on the contact forces obtained from

a CoM planner. Hyon et al. achieved disturbance rejection

using a passivity-based controller [21], later complemented

by CoM control using a Dynamic Balancer [22].

Compliant strategies can enhance the robustness of a walk-

ing algorithm since they focus on interaction forces with the

environment in order to achieve higher level goals, instead of

relying on high gain position control and extremely accurate

ground models to achieve perfect kinematic trajectories. The

presented work utilizes compliant control strategies, and ex-

tends some of the control strategies from previous work [18]

to 3D.

III. DESCRIPTION OF M2V2 ROBOT

M2V2 (Fig. 1) is a twelve degree of freedom lower-body

humanoid [23]. See Appendix A for the joint layout and

inertia parameters. It is a second generation redesign of M2,

a robot developed at the MIT Leg Laboratory [24], [25].

Each degree of freedom is driven by a force controllable

Series Elastic Actuator (SEA) [26], [27]. These actuators use

a spring in series between the drive train and the load. By

measuring the spring deflection, the force of the actuator

can be measured. Using a feedback controller, the actuator

force can be accurately and quickly controlled. For M2V2,

each actuator can produce a force of up to 1.3 kN, with a

smallest resolvable force of approximately 4.4 N, giving it a

300 : 1 dynamic range. The force controllable bandwidth of

each actuator is approximately 40 Hz.

M2V2 has two U.S. Digital EM1-0-500 linear encoders and

LIN-500 encoder strips at each Series Elastic Actuator, one

to measure position and one to measure spring deflection.

Onboard computation is provided by a PC104 with a dual

core Pentium-M processor. Sensor reading is done by several

AccesIO 104-Quad8 encoder input boards. Desired current is

output as a PWM signal through two Real Time Devices 6816

PWM boards. Body orientation and angular rate is measured

using a MicroStrain 3DM-GX3-25 inertial measurement unit.

Current control is provided through twelve Copley Controls

Accelnet module ACM-180-20 amplifiers. The PC104, I/O

cards, and current amplifiers are all located in the body of

the robot. In addition, a custom designed push stick equipped

with a digital Loadstar ILoad Pro load cell was constructed for

measuring pushing forces applied to the robot. This load cell

is connected to to the robot to eliminate data synchronization

issues, but the control algorithm does not have access to its

output.

IV. SIMULATION ENVIRONMENT

We have developed a simulation model of M2V2 using the

Yobotics Simulation Construction Set software package [28].

This software package allows for rigid body dynamic modeling

and simulation using the Articulated Body Algorithm [29],
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Fig. 1. M2V2, a twelve degree of freedom lower-body humanoid robot. The
robot uses twelve identical Series Elastic Actuators in each of its joints. There
are three degrees of freedom at each hip, one at each knee, and two at each
ankle.

[30] and a fourth order Runge-Kutta integrator. The integration

step size we use is 0.1 milliseconds. Ground contact is

simulated by attaching ground contact points to locations on

the feet and modeling the ground as a surface via a function

from location to height and surface normal. Ground contact

forces are determined using spring-damper ground models

(penalty-based methods).

Pushing disturbances are modeled as high intensity impulse

forces of constant magnitude for a short duration. The force

is applied to the midpoint between the hip joints. Stepping

stones are modeled as polygons.

Our software architecture (see Fig. 2) is designed to have a

common control algorithm that is used both in simulation and

on the real robot. The only differences between the simulation

and the real robot are the source of the raw sensor data and

the destination of the desired motor currents. The control

algorithm threads run at the same rate for the simulation as

they do in the real robot. By having the exact same code

base for the simulation and the real robot, we eliminate the

effort and bugs that are typical when porting from a simulation

environment to real hardware.

The simulated sensors include noise and discretization error.

The actuators are simulated as low pass filters to simulate the

bandwidth of the Series Elastic Actuators and have maximum

output force limits.

Despite efforts to minimize the differences between the sim-

ulated and real robots, there is lingering discrepancy between

simulated and real motion. To address this problem, additional

tuning on the real robot is required before an algorithm that

generates performs well in simulation can also perform well

in real experiments.

hardware sensors simulated sensors

raw sensor data

sensor processor

processed sensor data

hardware actuators simulated actuators

desired motor currents

output processor

desired joint torques

Control

Algorithm

Fig. 2. High level overview of the software architecture. The majority of the
software runs both in simulation and on the real robot, eliminating the need
to maintain separate versions, and allowing for significant development and
testing in simulation.

V. CONTROL TASKS

The controller was designed for two separate control tasks:

1) balancing on one leg and 2) walking. These tasks require

slightly different implementations of some of the modules in

the controller, although the main control algorithm is the same.

A. Balancing

Balancing on one leg (subsequently called ‘balancing’)

entails going from a double support configuration to single

support, and remaining in single support for as long as

possible. If the robot is significantly perturbed while in single

support, it will need to take a step in order to prevent a

fall. Possible disturbances include moderate size pushes and,

to a lesser extent, sensor and actuator imperfections. Pushes

of a magnitude requiring the robot to take a step will be

assumed to have a direction that does not require a cross-

over step. For example, if the robot is balancing on its

left leg, then significant pushes could be directed forward,

backward or to the right, but not to the left. This task was

chosen as a precursor to walking because it is challenging

and requires good foot placement, while it is not as hard

as walking due to the lack of the requirement of sustained

forward progression. To date we have achieved balancing on

the real robot, recovering from forward and sideways pushes

up to 21 Ns.

B. Walking

The second control task is to walk, with the same external

disturbances as listed for the balancing task. The walking task

requires the robot to move forward and manage slow changes

in desired walking direction. In addition, the controller should

be able to handle keep out regions, i.e. regions on the ground

that the robot cannot step to. To date, walking on flat ground

without pushes has been achieved on the real robot. Walking in

the presence of pushes up to 15 Ns and walking over stepping

stones have been achieved in simulation.
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VI. CONTROL CONCEPTS

This section describes some of the key concepts we use in

our control strategies, regardless of the particular control task,

namely 1) capturability-based control using an approximate

model, 2) force control and 3) Virtual Model Control.

A. Capturability-based Control using an Approximate Model

We consider bipedal locomotion to be an inherently robust

control problem, which does not require great accuracy in

controller design. This motivates our use of an approximate

model. Out of the three simplified gait models described in

Part 2, we have chosen to use the 3D-LIPM with finite-sized

foot for approximations. See Section IX-A for the motivation

for this choice. A full capturability analysis for this model was

presented in Part 2, and its results are used to great effect in the

presented controller. In particular, we base our control strategy

on the instantaneous capture point and the approximated 1-step

capture region. Although no guarantees on capturability can be

made for the robot using this approximation, we have found

that it works well in practice.

Considering the 3D-LIPM with finite-sized foot, the instan-

taneous capture point is the point on the ground where the

Center of Pressure (CoP) should be placed instantaneously and

maintained in order to come to a rest with the CoM directly

above the CoP. We do not specify a desired CoM trajectory;

instead, desired instantaneous capture point paths are used as

a basis for control. The linear dynamics of the instantaneous

capture point allows us to find a desired CoP location within

the base of support that ‘pushes’ the instantaneous capture

point along the desired path.

For the balancing task, we determine whether taking a step

is necessary based on whether the instantaneous capture point

has left the base of support (Corollary 2 in Part 2, [31]). For

both locomotion tasks described in this part, the controller will

attempt to step to a desired step location in the 1-step capture

region. If the robot is significantly disturbed in mid-swing, the

desired step location will be adjusted so that it always lies in

the 1-step capture region. Section IX-B provides a discussion

on why we chose to base the controller on the 1-step capture

region, as opposed to using an N -step capture region with

N > 1.

B. Force Control

Force controllable actuators are very useful for controlling

a biped to walk smoothly and naturally. These actuators allow

for compliant control methods that are forgiving to external

forces and unknown terrain. Traditionally, many humanoid

robots use high-gain position control to track prescribed joint

trajectories using non-backdrivable actuators. This approach

typically requires near perfect knowledge of the terrain, a

near perfect dynamic model of the robot, and no external

forces. When pushed or encountering unexpected terrain, these

robots may no longer be able to follow the prescribed joint

trajectories, and either a new trajectory must be computed on

the fly, or the robot falls.1

Our control approach avoids the use of desired joint tra-

jectories, especially for the stance leg. Instead, we use low-

impedance feedback controllers that control the fundamental

aspects of walking (foot placement and body height, orienta-

tion and speed), rather than attempting to rigidly control each

degree of freedom. Force control provides some robustness to

rough terrain since the exact foot/ground contact configuration

is less important than the interaction forces between the

feet and the ground. In addition, force controllable actuators

simplify control of the CoP location, and allow compliant

control techniques, such as Virtual Model Control.

C. Virtual Model Control

Virtual Model Control is a tool that allows a designer

to control a robot by choosing virtual components, such as

springs and dampers, to intuitively achieve task goals [18],

[32]–[35]. Once these components are chosen, the kinematic

model of the system and additional user defined constraints

allow direct calculation of the joint actuation required to

simulate the effect of the desired components.

For example, in previous work on Spring Turkey, a planar

walking robot with 4 actuated degrees of freedom, we de-

composed the requirements of walking and designed simple

virtual components to achieve each one [18]. CoM height

was maintained by a virtual vertical spring-damper “granny

walker” and forward travel was achieved with a virtual “track

bunny” with constant forward velocity connected to the robot’s

body by a virtual horizontal damper. The joint actuation was

calculated using the transpose of a Jacobian that spans the

joints between two virtually controlled points. While kinematic

singularities remove degrees of freedom from the possible

actuation, the joint torques for the remaining degrees of

freedom can still be calculated. Similar techniques were used

in the control of Spring Flamingo, a planar walker with 6

actuated degrees of freedom. Virtual Model Control is used

in the control of M2V2 to maintain CoM height and body

orientation, and to achieve approximate CoP control.

VII. CONTROLLER IMPLEMENTATION

We now present a detailed description of the balancing

and walking controller. The controller’s input is comprised

of joint angles and angular velocities, and the orientation and

orientation rates of the upper body. The controller’s output

is comprised of desired torques at each joint. The controller

roughly consists of five parts:

1) the state machine, which keeps track of the gait phase

and acts as a supervisory system that calls the appropri-

ate lower level routines (Section VII-A).

2) the capture region calculator, which determines the in-

stantaneous capture point and the 1-step capture region

(Section VII-B).

1Trajectory tracking bipedal robots may use compliant foot pads, force
sensors, and real time modification of ankle trajectories in order to control
the CoP location. This technique essentially converts the ankle actuators to
lower impedance force controllable actuators.
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step
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C

processed sensor data
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Sub-controller
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Fig. 3. High level overview of the control architecture. Arrows represent data
flow. Arrows that point to the edge of a block signify that the corresponding
information is available to all subblocks. The state machine produces the
controller state s. The capture region calculator approximates the 1-step
capture region C, represented as a 2D convex polygon on the ground. The
desired footstep calculator uses the capture region to compute a step location
rstep and orientation Rstep. The swing sub-controller computes torques for
the swing leg if the robot is in a single support state. It also produces a
wrench Wcomp that the stance sub-controller uses to compensate the swing
motion. The stance sub-controller computes the torques for both legs in double
support, or just the stance leg in single support.

3) the desired footstep calculator, which determines where

to step to next (Section VII-C).

4) the swing sub-controller, which computes the torques for

the swing leg joints, if any (Section VII-D).

5) the stance sub-controller, which computes the torques

for the stance leg joints (Section VII-E);

See Fig. 3 for a high level overview of the control architec-

ture. The same state machine structure is used for both control

tasks (balancing and walking), but with different control

actions and transition conditions for each task. These control

actions and transition conditions are defined by the swing

sub-controller and the stance sub-controller. While these sub-

controllers are different for each task, they reuse many of the

underlying control modules. The desired footstep calculator is

also task-specific.

The capture region calculator is task independent and is

the module most linked with capturability-based analysis and

control. This module may also be useful in other legged

robot control architectures and with other walking control

techniques.

A. State Machine

The state machine structure, shown in Fig. 4, is based on

the gait phases that a single leg goes through during human

walking, as described in the biomechanics literature [36]. See

Fig. 5 for a graphical depiction of these gait phases. The gait

phases can roughly be grouped into stance phases and swing

phases. Below we provide a short description of each gait

phase. See [36] for more detailed descriptions.

1) Stance phases: During loading response, the shock of

initial ground contact is absorbed by bending the knee and

using the heel as a rocker. The leg is loaded, while the trunk

is kept upright. Once the opposite leg is lifted, the robot

stop in double support

transfer to L support

processed sensor data

s 

L loading - R pre-swing

L early stance - R initial swing

L late stance - R mid swing

L terminal stance - R terminal swing

transfer to R support

R loading - L pre-swing

R early stance - L initial swing

R late stance - L mid swing

R terminal stance - L terminal swing

State Machine

Fig. 4. The state machine, which produces the controller state s. Blocks
represent states and dashed lines represent available state transitions. When
the control algorithm is started, the robot is in the ‘stop in double support’
state.

transitions into mid stance, in which the CoM moves forward

over the stance foot as the leg is straightened. The robot

transfers into terminal stance when the CoM is aligned over

the forefoot. During this state, the heel rises and the knee is

first straightened further and then begins to flex slightly.

2) Swing phases: When the opposite leg makes contact

with the ground, the robot transitions into pre-swing. The leg

is unloaded and bent more in preparation of the swing phase.

Initial swing begins as the foot lifts off the floor. Foot clearance

is achieved and the leg is swung forward. When the swinging

limb is opposite the stance limb, the robot enters mid swing.

The hip is flexed further and the knee is allowed to extend in

response to gravity. Finally, the robot transitions into terminal

swing, in which the knee is extended as limb advancement is

completed.

Transitions between gait phases for the right leg are directly

coupled to those for the left leg. The states shown in Fig. 4

were hence created by combining one gait phase for the left

leg and one gait phase for the right leg, e.g. ‘left early stance

- right initial swing’. In addition to the eight walking states,

there is also a state in which the robot is stopped in double

support and states in which weight is transferred to one leg,

allowing the robot to start from a stop.

While this state machine is based on walking, it is easily

adapted to one-legged balance, through appropriate selection

of control actions in each state and transition conditions

between states.

B. Capture Region Calculator

Below is a step-by-step description of how we approximate

the 1-step capture region, C. This description is based on Part

2, using the 3D-LIPM with finite-sized foot. It assumes that

the ground is flat, but that it may contain keep-out regions.

We assume that the support polygon, the reachable region

of the swing leg, and the available foothold regions are all

represented as polygons.

• Determine the convex support polygon on the ground.
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Loading Response Early Mid Stance Late Mid Stance Terminal Stance Initial Swing Mid Swing Terminal SwingPre-Swing

Fig. 5. The phases of gait upon which the state machine for the walking task is based. The labels correspond to the phase of the highlighted right leg.
Adapted from [36], which describes the phases of gait for human walking.

• Determine the reachable region of the swing leg as a set

of polygons on the ground.

• Determine the available foothold region as a set of

polygons on the ground.

• Given the CoM position, and CoM velocity, determine

the instantaneous capture point.

• If the instantaneous capture point is inside the convex

support polygon, then the 1-step capture region is the

entire reachable region of the foot intersected with the

available foothold region.

• Otherwise, find the set of vertices visible from the instan-

taneous capture point, from the subset of support polygon

vertices. A visible vertex is one in which a line segment

can be drawn from the instantaneous capture point to

the visible vertex without intersecting the interior of the

support polygon.

• From the set of visible vertices, find the two line of sight

vertices. These are the furthest outside vertices and have

the property that a ray from the instantaneous capture

point through a line of sight vertex would not intersect

the interior of the support polygon.

• For each visible vertex, find a corresponding projected

point, such that if the CoP where placed at the visible

vertex, the instantaneous capture point would move from

its current location to the projected point after the mini-

mum swing time remaining.

• For each of the two line of sight vertices, find a capture

region boundary ray by forming a ray from the line

of sight vertex and through the projection point, and

removing the line segment from the line of sight vertex

to the projection point.

• Form the “unlimited foothold and reach capture region”

by combining the projection points and the two capture

region boundary rays, and then enlarge this region to

account for the size of the swing foot.

• Form the “unlimited foothold capture region” by inter-

secting the unlimited foothold and reach capture region

with the reachable region of the swing leg.

• Form the approximated capture region by intersecting

the unlimited foothold capture region with the available

foothold region.

C. Desired Footstep Calculator

The desired footstep calculator (see Fig. 6) determines a

desired footstep, consisting of the desired position of the swing

ankle rstep and orientation of the swing foot Rstep at the end

of the upcoming step. The desired position and orientation are

expressed in a frame fixed to the supporting foot. Because

footstep planning depends greatly on the control task, we

have created two separate implementations of this module: one

for the balancing task and another for the walking task. The

general pattern used for both implementations is to choose a

good initial footstep (rstep,init,Rstep,init) at the start of the swing

phase and adjust it during the swing phase if necessary, e.g. if

the robot is significantly perturbed, to obtain the final output

(rstep,Rstep).

1) Balancing: The desired footstep calculator for the bal-

ancing task is very rudimentary. The initial desired step loca-

tion is computed using a fixed distance along a ray that starts

at the centroid of the support foot and points in the direction

of the instantaneous capture point. The initial orientation is

chosen to be the same as the stance foot orientation and

is never adjusted. The direction in which the robot steps is

adjusted according to changes in instantaneous capture point

location during the first 0.1s after the instantaneous capture

point has left the foot polygon. After that it remains fixed for

the remainder of swing.

2) Walking: A desired footstep for the walking task should

be chosen in such a way that forward progression is made,

while the robot maintains 1-step capturability. The initial step

length is determined to match a desired walking velocity while

the initial step width is set to a constant value. On flat ground,

the step height is set to zero but may be changed to any feasible

desired value when necessary, for instance to climb a slope.

Footstep yaw is set equal to the desired walking direction.

Footstep pitch and roll are set to zero on flat ground but

may be used to walk on rough terrain to reduce the need for

compliance in the joint. More details on the initial footstep

calculation will be published in [37]. If the initial desired

step location ceases to be well within the capture region at

any instant during the swing phase, an adjusted desired step

location is computed by projecting the initial location inside

the 1-step capture region by a margin. The orientation is not
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Fig. 6. General behavior of both implementations of the desired footstep
calculator. The step location calculator determines the desired position rstep

and orientation Rstep of the foot for the upcoming step. Solid lines represent
data flow and dash-dotted lines represent flow of control. The numbers 1 and
2 signify order of evaluation.

adjusted.

D. Swing Sub-controller

The task of the swing sub-controller (see Fig. 7) is to

compute the desired torques for the swing leg joints. It can be

considered fairly conventional, except for the fact that it can

handle changes in the desired step location, obtained from

the desired step location calculator, on the fly. It contains a

trajectory generator for the position and orientation of the

swing foot, which is used to compute desired joint angles,

velocities and accelerations through inverse kinematics. The

trajectory is tracked using inverse dynamics, augmented by

PD position control in joint space.

1) Trajectory generation: To allow for changes in step

location in reaction to external disturbances, it should be

possible to dynamically update the swing foot trajectory, even

in mid-swing. We have chosen to use a simple second order

dynamic system which determines the desired linear position

xd ∈ R
3 and velocity ẋd of the ankle of the swing foot at

each control time step by integrating an appropriately chosen

desired acceleration ẍd. Initial values for xd and ẋd are set

equal to the actual position and velocity of the swing foot

ankle.

The dynamic system goes through three phases: take-off,

cruise, and landing. Limits are placed on the magnitudes of

acceleration and velocity, and we specify a clearance height

and a take-off and landing slope. During the take-off phase, the

desired acceleration ẍd is chosen to have maximal magnitude

until the velocity limit is reached, and be directed at the current

desired step location rstep, while moving upwards using the

specified take-off slope. Once the minimum clearance height

is reached, the dynamic system transitions into the cruise

phase, in which ẍd is chosen to maintain constant height

while still adjusting for changes in the desired step location.

The transition into the landing phase takes place based on the

landing slope, and the desired position decelerates maximally

while the height is gradually reduced according to the landing

slope.

For the orientation trajectory of the swing foot, we use a

simple interpolation between the measured orientation at the

Swing Sub-controller
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joint level

PD control
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Fig. 7. Swing sub-controller. A real-time trajectory generator computes the
desired position, linear velocity and acceleration (xd, ẋd, ẍd respectively), as
well as the desired orientation, angular velocity and angular acceleration (Rd,
ωd, ω̇d respectively), expressed in world frame. Inverse kinematics is used
to translate this trajectory from Euclidean space to desired joint positions,
velocities and accelerations (qd, q̇d and q̈d respectively). This information
is used by an inverse dynamics algorithm, which computes pin joint torques
τ id and an upper body compensation wrench Wcomp, used by the stance sub-
controller. The output τ PD of a joint-space PD controller is added to τ ID to
obtain the swing leg joint torques.

start of the swing phase and the desired final foot orientation,

Rstep. The interpolation parameter is obtained from a quintic

spline starting and ending with zero velocity and acceleration,

and is not dynamically updated.

2) Position control: The desired position and orientation at

every control time step are used to compute the corresponding

joint angles using inverse kinematics. The desired linear and

angular velocity and acceleration of the swing foot specify cor-

responding desired joint velocities and accelerations through

the inverse of the swing leg Jacobian.

An inverse dynamics algorithm [38], augmented by PD

position control in joint space is used to compute the desired

torques for the swing leg joints. Problems due to the singular-

ity that occurs when the knee is stretched are circumvented by

gradually scaling the desired joint velocities and accelerations

back to zero (pure damping) based on the value of the Jacobian

determinant. We omit the stance leg joints in computing the

inverse dynamics. The desired spatial acceleration of the upper

body is set to zero. In addition to the torques across the swing

leg pin joints, the inverse dynamics algorithm also returns a

wrench that should be exerted across the ‘floating joint’ that

connects the upper body to the world in order to achieve the

desired zero spatial acceleration. This wrench will be used in

the stance sub-controller as a feed-forward term to compensate

the swing leg torques and reduce upper body oscillations.

Previously, we have also implemented a Virtual Model

Control-based swing sub-controller, but the current implemen-

tation outperformed the Virtual Model Control implementation

in terms of accuracy and swing speed, which we consider to be

key ingredients for dynamic walking and push recovery. Future

work will include swing techniques that are less dependent on

joint space tracking.
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E. Stance Sub-controller

The stance sub-controller controls balance by computing

desired torques for the stance leg(s). The goals of the stance

sub-controller are to control 1) instantaneous capture point

location, 2) upper body orientation, and 3) upper body height.

It does so by first computing a desired wrench on the upper

body that satisfies these control goals, and then using Jacobian

transpose control to find desired leg torques that realize this

desired wrench. The stance sub-controller is an implementa-

tion of Virtual Model Control. It consists of multiple control

modules, as shown in Fig. 8. The following sections will

describe these modules in more detail.

1) Instantaneous Capture Point Control Module: The goal

of the instantaneous capture point control module is to regulate

the location of the instantaneous capture point by determining

the desired position of the CoP. This control module switches

between two modes of operation, depending on whether the

instantaneous capture point is inside the support polygon.

When the instantaneous capture point is inside the support

polygon, a desired instantaneous capture point is determined

as a function of the state and the control task. For the balancing

task, the desired instantaneous capture point coincides with

the centroid of the support polygon during the double support

state. When the robot is commanded to start balancing on

one leg, the desired instantaneous capture point is moved to

the centroid of the upcoming support foot, where it remains as

long as the robot is able to maintain its balance without taking

a step. This location maximizes robustness against external

disturbances from unknown directions. For the walking task,

the desired instantaneous capture point is located near the toes

of the leading foot during the double support states, promoting

forward motion. At the start of the swing phase, the desired

capture point is moved outside the stance foot in the direction

of the upcoming step location.

Given the current location of the instantaneous capture

point, ric, and the desired location ric,des, a simple proportional

control law with an added feed forward term is used to obtain

the tentative location of the desired CoP, r̄CoP,des:

r̄CoP,des = ric + kic(ric − ric,des) (1)

where kic is the proportional gain. This proportional control

law is motivated by the linear instantaneous capture point

dynamics for the 3D-LIPM with finite-sized foot described

in Part 2. The tentative desired CoP r̄CoP,des is then projected

onto the edge of the support polygon if it lies outside to obtain

the final output rCoP,des.
2

When the instantaneous capture point is not inside the

support polygon (i.e. when the robot is pushed significantly or

after the instantaneous capture point has been driven outside

the stance foot polygon during the walking task), it is not

possible to track a desired location, since the instantaneous

capture point will always exponentially diverge away from the

stance foot. We therefore only control the direction in which

2In practice, we use a slightly smaller version of the support polygon when
projecting the tentative desired CoP, in order to prevent the feet from tipping
at times when this is not desired. This is necessary because of unmodeled
dynamics, inability to perfectly track the desired CoP, and model uncertainty.

orientation
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Fig. 8. Stance sub-controller. The instantaneous capture point control module
computes the desired CoP rCoP,des within the base of support. This desired
CoP is used by the virtual toe point calculator to compute leg support fractions
(w0, w1) and virtual toe points (rvtp,0, rvtp,1), which determine each leg’s
contribution to supporting the upper body. The orientation and height upper
body control modules determine the torque τ and the z-component of the
force fz to be exerted on the upper body. In single support, these modules
use the swing leg compensation wrench Wcomp to compensate swing leg
motion. Finally, the virtual support actuator control module computes joint
torques for the stance legs which result in the desired virtual toe points, leg
strengths, upper body torque and force.

it moves away from the foot. This is done by specifying a

guide line, along which the instantaneous capture point should

move. The guide line is defined by the final location of the

desired CoP before the capture point moves outside the support

polygon, and the desired step location. Finally, the desired

CoP is computed by finding the intersection of the stance foot

polygon and a virtual control line, which is parallel to the

guide line as shown in Fig. 9a. The distance d(·, ·) between

the guide line Lg and the control line Lc is determined as

d(Lg, Lc) = kicd(Lg, ric). (2)

2) Virtual Toe Point Calculator: The virtual toe point

calculator uses the desired CoP to compute the leg support

fractions and a virtual toe point [27] for each leg.

The leg support fractions are two scalars, denoted w0 and

w1, in the interval [0, 1] that sum to one, and describe which

fraction of the desired wrench on the upper body is to be

exerted by each stance leg. Virtual toe points are similar to

the centers of pressure for each foot, except that a virtual toe

point is a commanded quantity, not a measured one, and is

only based on a static analysis. The virtual toe point on a foot

is the point about which no torque is commanded. Details

on how the virtual toe points are used are given in Section

VII-E5. Controlling virtual toe point locations and leg support

fractions results in approximate control of the overall CoP of

the robot.

In single support, the virtual toe point for the stance leg

is placed at the location of the desired CoP and the leg is

assigned a leg support fraction of 1. In double support, we

use a heuristic based on geometric relations to determine a

virtual toe point rvtp,i, for foot i ∈ {0, 1} in such a way that

the desired CoP and both virtual toe points lie on one line, as
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Fig. 9. Schematic overhead view of the robot, showing the workings of
the stance subcontroller. a) Typical situation during single support when the
instantaneous capture point has left the foot. A guide line, Lg , along which the
instantaneous capture point should move, is computed based on the planned
step location. The distance between the guide line and a parallel control line,
Lc, is determined using (2). The desired CoP is chosen as the intersection of
the control line and the support polygon. Since there is only one support leg,
the locations of the virtual toe point and desired CoP are identical. b) Typical
situation during double support. The desired CoP is chosen so that it pushes
the instantaneous capture point towards its desired location, typically set to the
inside of the future stance foot. Line A intersects rCoP,des and its orientation
is gradually morphed from that of line S1 to that of line S2. Virtual toe points
rvtp,0 and rvtp,1 are then computed using geometric relations as shown in the
figure.

explained in Fig. 9b. The distance between these points and

the overall desired CoP determines the leg support fraction:

wi =
d(rCoP,des, rvtp,1−i)

d(rvtp,0, rvtp,1)
(3)

Support is typically gradually transferred from one leg to

the other in double support, corresponding to continuously

changing leg support fractions.

3) Upper Body Height Control Module: The upper body

height control module determines the vertical force part, fz , of

the desired wrench on the upper body, and controls the upper

body height. In double support, the force is set to a constant

value that slightly overcompensates the estimated gravitational

force acting on the entire robot, simulating a virtual constant

force spring. In single support, the force is set to the sum

of the weight of the stance leg and the z-component of the

force from the swing leg compensation wrench Wcomp, thus

cancelling out some of the dynamic effects due to the swing

leg motion.

4) Upper Body Orientation Control Module: The upper

body orientation control module determines the torque part,

τ , of the desired upper body wrench, and is used to control

the orientation of the upper body with respect to the world (as

perceived by the inertial measurement unit). The desired pitch

of the upper body is constant and set to zero. Both the desired

yaw and the desired roll depend on the gait phase and state of

the support leg. Yawing and rolling are used in order to obtain

a longer reach for the swing leg and to make the gait look more

humanlike. In addition, the desired yaw also depends on the

desired walking direction. The x, y and z components of the

desired upper body torque are computed using PD control on

the roll, pitch and yaw corresponding to the rotation matrix

that describes the orientation of the actual upper body with

respect to the desired orientation, respectively. This PD control

scheme can be viewed as a set of virtual torsional springs and

dampers. In single support, the torque part from the swing

leg compensation wrench Wcomp is added to the result, to

compensate the swing leg motion.
5) Virtual Support Actuator Control Module: The upper

body height- and orientation control modules provide a partial

desired wrench on the upper body, consisting of the z-

component of the force, fz , and the torque τ , expressed in an

upper body-fixed frame. The virtual support actuator control

module distributes this partial wrench over the support leg(s)

using the leg support fractions wi as weighting factors:

fz,i = wifz i ∈ {0, 1}

τ i = wiτ
(4)

where fz,i and τ i are the z-component of the force and the

torque to be exerted by leg i, respectively. We aim to compute

a complete wrench Wi for each leg, where

Wi =

(

fi

τ i

)

with
fi = (fx,i, fy,i, fz,i)

T

τ i = (τx,i, τy,i, τz,i)
T
.

(5)

The remaining x- and y-components of the wrenches for

each leg are computed using the virtual toe points. For leg i,
joint torques that realize the wrench Wi will then be computed

using Jacobian transpose control.
The virtual toe point constraint, which states that no torque

should be commanded about the horizontal axes at the virtual

toe point, can be enforced as follows. We consider the virtual

toe point for a foot to be the intersection of the axes of

two virtual pin joints, located on the sole of the foot. Their

orthogonal axes of rotation lie in the plane of the foot. The

virtual pin joints do not exist on the real robot, but provide a

simple way of computing the x- and y-components of the force

on the upper body that satisfy the virtual toe point constraint:

the torques across these joints should be zero. The virtual pin

joints come after the real joints of the robot in the kinematic

chain from upper body to foot. Their rotation angles are set to

zero, but their location on the foot changes in time, depending

on the location of the virtual toe point. We use τ vtp,i ∈ R
2 to

denote the vector of virtual joint torques exerted at the virtual

pin joints. Considering stance leg i, a static analysis results in

τ vtp,i = J
T
vtp,iWi. (6)

In this equation, Jvtp,i ∈ R
6×2 is the Jacobian that maps the

joint velocities of the virtual pin joints to the twist of the foot

with respect to a virtual body attached ‘after’ the virtual pin

joints in the kinematic chain, expressed in an upper body-fixed

frame.
Splitting the Jacobian Jvtp,i into a 2×2 block Jvtp,i,2×2 and

a 4× 2 block Jvtp,i,4×2 and using (5), we can rewrite (6) as

τ vtp,i = J
T
vtp,i,2×2

(

fx,i

fy,i

)

+ J
T
vtp,i,4×2

(

fz,i

τ i

)

(7)

We require that the torques at a leg’s virtual toe point be

zero. We can then solve (7) to find the values of fx,i and fy,i:
(

fx,i

fy,i

)

= −J
−T
vtp,2×2

J
T
vtp,2×4

(

fz

τ i

)

(8)
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Now that fx,i and fy,i are also known, we know the

complete wrench Wi to be exerted on the upper body by

stance leg i, and we can use a different Jacobian, Jleg,i ∈ R
6×6

to find the joint torques τ leg,i:

τ leg,i = J
T
leg,iWi (9)

where Jleg,i maps the joint velocities of the real joints of

leg i to the twist of the upper body with respect to the foot,

expressed in the upper body-fixed frame.

Computing fx,i and fy,i based on virtual toe points instead

of specifying these forces directly has as an advantage that

virtual toe points are closely related to the CoP, which plays

a major role in the instantaneous capture point dynamics

described in Part 2. This relation to the CoP also means that

limits due to the finite-sized support polygon are easier to take

into account. We simply make sure that each foot’s virtual toe

point lies inside its convex polygon.

VIII. RESULTS

This section presents results obtained for both the balancing

task and the walking task. Balancing and walking without

pushes was achieved on the real M2V2 robot. Walking while

recovering from pushes and walking over stepping stones was

achieved on the simulated M2V2 robot. Note that figures are

labeled either [REAL] if the data is from the real robot or

[SIM] if from the simulated robot. A video of results from both

real-world experiments and simulations is available online

with the paper.

In this section, we use a slightly modified version of the

capturability margin introduced in Parts 1 and 2. Instead of

using the area of the ∞-step capture region, we use the area

of the 1-step capture region. The reason for this is that the

entire algorithm is based on 1-step capturability.

A. Balancing task

On the real M2V2 robot we achieved balancing on one leg

and recovering from sideways and forward pushes. Fig. 10

shows time-elaspsed images of M2V2 recovering from a push.

Fig. 11 shows the norm of the disturbance force, as recorded

from the push stick, and the capture margin, measured as the

area of the approximated 1-step capture region. We see that

the robot was able to recover from pushes of approximately

21 Ns.

B. Walking task

On the real M2V2 robot we achieved flat ground walk-

ing without disturbances. On the simulated M2V2 robot we

achieved walking while recovering from pushes and walking

over stepping stones.

Fig. 12 shows time elapsed images of M2V2 walking on flat

ground. For this walk, the robot uses a constant step length and

width. During the walk, the capture region is computed, but

since there are no pushes, the robot does not have to change

where it steps.

Fig. 13 through 16 show plots of a single data set obtained

from simulation for walking on flat ground while recovering

Fig. 10. [REAL] M2V2 recovering from a push while standing on one leg.
Images are from left to right starting at the top left.
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Fig. 11. [REAL] Norm of disturbance force and capture margin of M2V2
recovering from a push while standing on one leg. The capture margin is not
shown after transition to the ‘stop in double support’ state (gray area) to avoid
cluttering.

from pushes. Three different pushes to the left occur at approx-

imately 4, 8.5, and 13 seconds. These pushes are modeled as

forces applied to the midpoint between the hip joints and are

300 N in magnitude for a duration of 0.05 seconds in various

directions. This corresponds to an impulse of 15 Ns. Note

that pushes were to the left while the left foot was swinging.

Pushes to the opposite side would require either a cross-over

step or two quick steps, both of which are more difficult to

achieve and an area of future work.

Fig. 13 shows side and overhead views of the robot. Each

time a push occurs, the robot steps to the left to recover from

the push. Also plotted in the overhead view are the CoM path

and the paths of each ankle.

Fig. 14 shows a time-lapsed overhead view of the robot. In

the first two frames the capture region is quite large during

the beginning of swing. The robot gets pushed between the

second and third frame, decreasing the size of the capture

region and requiring the robot to choose a different place to

step. In frames 3-6 the robot steps further to the left than
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Fig. 12. [REAL] M2V2 robot walking on flat ground. Images are from left
to right starting at the top left. In this walk, the robot uses a constant step
length and width. The algorithm used is very close to that described in this
paper, but slightly older. We are currently working on getting the robot to
walk using the exact algorithm described in this paper, but are delayed due
to hardware issues.

a)

b) desired heading

Fig. 13. [SIM] Schematic view of the robot as it is walking while being
pushed laterally on every second step. Both a) and b) show the same data.
a) Side view. Actual trajectories of the ankles as simulated are shown. b)

Overhead view. Actual ankle trajectories connect the sequence of footprints
for each foot. The actual instantaneous capture point trajectory is shown, zig-
zagging between the feet.

originally intended, landing in the 1-step capture region, and

successfully recovering from the push.

Fig. 15 shows the sideways pushes applied to the M2V2

simulation, and the resulting change in velocity while recov-

ering to pushes during walking. Since the pushes were mostly

to the side, the change in lateral velocity is more prominent

than forward velocity. After each push we see that the robot

recovers with one step.

Fig. 16 shows the 1-step capture margin during walking of

stance
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r
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t = 0.00 t = 0.12 t = 0.24

t = 0.36 t = 0.48 t = 0.60

Fig. 14. [SIM] Time-lapse overhead view of the robot during the walking
task, showing one step. The robot is perturbed laterally at the start of the
step (t = 0.00). In addition to the location of both feet, the figure shows the
capture region C, the initial step location rstep,init, the adjusted step location
rstep and the instantaneous capture point ric.
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Fig. 15. [SIM] Lateral velocity and disturbances of the M2V2 simulation
while recovering from pushes during walking. After each push, we see a
change in the velocity up to 0.44 m/s, which then recovers during the next
couple steps.
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Fig. 16. [SIM] Capture margin during walking while recovering from pushes.
The capture margin is not shown in double support phases (gray areas) to avoid
cluttering. After each push, the 1-step capture margin significantly decreases
showing that the robot is in danger of falling. After each recovery step, the
capture margin recovers. Note that during double support and periods during
single support when the instantaneous capture point is inside the support
polygon the capture margin is not plotted since any reachable point is in
the 1-step capture region when the robot is in a captured state.

the M2V2 simulation while recovering from pushes. We see

that the capture margin significantly decreases after each of the

3 pushes, corresponding to the decrease in area of the capture

region as seen in Fig. 14.

Walking over various stepping stones was achieved on the

simulated M2V2 robot. Fig. 17 shows an example of walking

over stepping stones that are clustered in groups of three. For
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Fig. 17. [SIM] M2V2 walking over stepping stones that are clustered in
groups of three. Snapshots are taken at 1.5 second intervals.

stepping stones, the robot was given exact knowledge of the

stones. The capture region was computed in the same way as

with no stepping stones, and then intersected with the available

stepping stones. To ensure that the entire foot rested on each

stone, the stepping stones were first “shrunken” based on the

size of the foot. However, due to inaccuracies in swing, the

foot would sometimes slightly overhang the edge of a stone.

IX. DISCUSSION AND FUTURE WORK

A. Using Simple Models for Complex Robots

In this part we used the 3D-LIPM with finite-sized foot,

described in Part 2, in order to estimate the 1-step capture

region, which was then used to help control walking in a

complex 3D lower body humanoid. This simple model was

sufficient for controlling balancing on one foot, walking, and

recovering from pushes while walking. The simplified model

was sufficient for several reasons:

• The model accounts for the dynamics of the CoM with

respect to the CoP, which are the key dynamics of

walking. Other things, like internal angular momentum

play a less critical role.

• The model allows for the use of feet, and the modulation

of the CoP in real time. This adds robustness, as opposed

to an algorithm that predetermines a CoP trajectory.

• The 1-step capture region tends to be fairly large for

moderate speed walking with M2V2 parameters, so there

is a large degree of robustness to modeling errors.

In this part, none of the control algorithms utilized angular

momentum of the upper body. As we start to address more

challenging tasks, like walking over rough terrain and over

narrow beams, we will likely need to use more complex

models for computing capture regions and developing control

startegies. In Part 2, we analyzed the 3D-LIPM with finite

sized foot and reaction mass. This model should be useful

in control when upper body angular momentum is used to

prevent falling. In future work we will use this model and will

investigate other strategies for using multi-joint upper body

angular momentum in walking and disturbance recovery.

B. 1-Step Versus N-Step Capture Regions

In this part we developed controllers that always step into

the 1-step capture region. This is overly cautious in general,

and it seems as though very fast walking requires periods when

the legged system is only 2-step, or perhaps even only 3-step

capturable. However, M2V2 currently has a long swing time,

making the 2-step capture region not much larger than the

1-step capture region.

For M2V2, the falling time constant is 1/ω0 =
√

z0/g ≈
0.32 seconds, where g = 9.81 is the gravitational acceleration

and z0 ≈ 1.0 is the CoM height. The minimum step time,

∆ts,min for M2V2 is currently approximately 0.6 seconds. The

geometric ratio governing the diminishing returns for the N -

step capture region as N increases is exp(−
√

z0/g∆ts,min) ≈
0.15 (see (16) in Part 2). This means that the radius of the 2-

step capture region is only about 15% larger than the radius

of the 1-step capture region. Therefore, there is not much

to be gained in considering 2-step capturability over 1-step

capturability with M2V2, until we can get the robot to swing

its leg more quickly.

With human walking, on the other hand, minimum swing

time is approximately 0.3 seconds. This gives a geometric

ratio of approximately 0.4. Hence, the 2-step capture region

for human walking should be relatively large, and even 3-

step capturability should be considered. However, for human

walking, diminishing returns leave little to gain for considering

beyond 3-step capturability.

C. Capture Margin

We presented an experimental evaluation of a modified

version of the capture margin, introduced in Parts 1 and 2,

where we used the area of the 1-step capture region instead

of the area of the ∞-step capture region. Fig. 11 and Fig. 16

showed a significant decrease in this capture margin when the

robot was perturbed, as expected. For both the balancing task

and the walking task, the capture margin recovered completely

after taking one step.

According to the theoretical considerations presented in Part

1, the capture margin should never increase unless a step is

taken or an external force is exerted on the robot. Any other

increases in capture margin are due to modeling errors, sensor

noise and lack of exact knowledge about when the swing foot

hits the ground.

D. Machine Learning

In addition to improving our models, we can apply machine

learning in order to improve performance, either through

improving estimates of the capture region or by directly

improving control policies. In previous work [39] we showed

how the balancing task could be improved by learning where

to step after a push. Each time a simulated robot was pushed,

it attempted to regain balance in a single step. Whenever the

step was unsuccessful, a memory was updated to improve

where the robot would step if encountering similar states. This

memory was initialized using the Linear Inverted Pendulum

Model. After a few hundred pushes and learning trials the

robot significantly improved its ability to regain balance. Using

machine learning to improve walking on M2V2 are two areas

for future work.
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E. Uneven Ground

All of the models presented in Part 2 and all of the control

algorithms presented in Part 3 assumed flat ground, perhaps

with keeep-out regions. We have done some preliminary

simulations with moderate slopes and relatively small steps

and so far it appears that the same models are applicable to

these types of terrain. However, for large slopes and steps

and very rough ground the models will likely need to be

expanded and further control strategies developed. In addition

we still need to develop capturabilty-based models and control

strategies for situations where hands can push against walls

or hold handrails, or where feet can be different slopes to

get more interesting ground contact interaction. In these cases

concepts like force closure will need to be used rather than

just using the CoP on a flat ground.

F. Controlling Velocity versus Coming to a Stop

Capturability measures the ability of a legged system to

come to a stop in N steps or fewer. However, we are not

usually interested in coming to a stop, but rather maintaining

an approximate average speed. In the M2V2 controller we do

that by selecting parameters that define how control actions are

taken and transition conditions occur, based on functions of the

instantaneous capture point and the 1-step capture region. For

example, during single support the stance leg CoP is moved

to compel the instantaneous capture point to follow a guide

line towards the next desired place to step. This modulates the

desired CoP perpendicularly to the guide line. To control the

velocity of the robot, the desired CoP can be moved along the

other axis. To speed up, the desired CoP can be place further

back. To slow down, it can be placed more forward. So even

though capturability is based on the ability to come to a stop,

using tools based on capturability do not require the legged

system to come to a stop, but instead can be used for such

things as controlling velocity.

G. Pushes Requiring Cross Over Steps

In this study, we only considered pushes during single

support, which did not require a “cross over” step, i.e., when

the robot was supported by its left leg, we never pushed

the robot to the left. Cross over steps are challenging for a

number of reasons. The swinging leg needs to make sure to

not contact the support leg. In order to do that, the path of

the leg may be longer, requiring longer swing time. Also, the

length of the step will be smaller than the leg can swing to the

outside. An alternative is to quickly step straight down with

the currently swinging leg and then quickly swing the other

leg to prevent a fall. This two step recovery strategy requires

extra time to execute and for significant pushes will likely only

be successful for robots with a relatively quick swing time, on

the order of how fast humans can swing their legs.

H. Virtual Toe Points and Center of Pressure

In the presented control system, the desired CoP is used dur-

ing control. However, the actual CoP is not exactly achieved.

Instead, we use “virtual toe points”, which can be interpreted

as the attachment points of virtual actuators on the feet. The

difference between the virtual toe point and the actual CoP

on a foot is typically small. During single support if the

vertical force of the virtual actuator equals the weight of the

robot and the vertical acceleration is zero, then the two points

will be theoretically identical. In simulation, the two points

always remain close (within a few cm) during single support.

During double support, there can be a large error between

the desired and actual CoP, particularly when one of the legs

loses kinematic range. For example, if the robot is far enough

forward that the hind leg is completely straight, and the desired

CoP is on the heel of the hind leg, then the virtual actuator on

the hind leg will have a large force and its virtual toe point

will be back on the heel. However, since the leg is straight,

the actual joint torques that the virtual actuator produces will

be low, and the CoP will be much more forward than desired.

One way to get a better match between the desired and

actual CoP is to keep the knees of the robot bent to avoid

losing kinematic range. However, we wish to avoid that

solution since human walking does not rely on bent knees and

because it requires unnecessarily high torques at the knees.

Another solution, which we will investigate in future work, is

to use toe off on the rear leg to better control the CoP during

double support. Currently some toe off occurs at the end of

the stride, but it is simply the result of the dynamics of the

walk, rather than used as a control mechanism.

I. Trajectory Tracking During Swing

In order to swing as fast as possible and as accurately as

possible, we are currently using traditional high-gain trajectory

tracking techniques on the swing leg. However, we believe

that swing can be performed in a more compliant manner and

that for the most part the swing can be determined mostly

by the passive pendulum dynamics of the leg. Determining

swing strategies that allow for fast and accurate steps while

exploiting the natural dynamics of the leg is an area of future

work.

J. Difficulties with Real Hardware

Despite efforts to make the simulation accurately model the

real robot, it is still typically the case that performance in the

simulation is better than performance on the real robot. Here

we identify a few of the difficulties in making a real robot that

make this so.

The algorithm presented, as well as most feedback control

algorithms for bipedal walking, rely on a good estimation of

the CoM location and velocity, particularly in the horizontal

plane. Getting such an estimate on a real robot is difficult for

several reasons.

Knowing the CoM projection on the ground requires know-

ing which way is down. A small error in the perceived

orientation of the body can result in a significant error in the

CoM projection. For example, if the CoM is at 1 meter and

there is a 0.01 radian error in the body orientation, that will

result in a 1 cm error of the CoM on the ground. For 3D robots,

orientation is typically done through an inertial measurement
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unit (IMU), and therefore having a good IMU and related

sensor processing is important.

Using kinematics through the leg to estimate the CoM

velocity has the problem that one must assume that the foot is

not moving. However, if the foot is slipping this will make the

CoM seem to be moving in the opposite direction. Integrating

an accelerometer to estimate velocity has the problem of

accumulating errors. For M2V2 we have used a combination

of kinematics and accelerometers. We have not yet determined

how accurately we are estimating the CoM velocity, but

we believe we can do much better and therefore improve

performance on the real robot.

In this paper we showed how foot placement can be used to

regain balance after a push. Doing so requires a fast swing that

is accurate enough that the foot ends up landing in the capture

region. However, due to the use of very compliant Series

Elastic Actuators, we have been having difficulty quickly and

accurately swinging the leg. The SEAs do a really good job

allowing for compliant control, but they make traditional high-

gain trajectory tracking challenging. We believe that we can

achieve the same good compliant control characteristics of

the actuators and better tracking by increasing the stiffness

of our series springs. In addition we are investigating other

improvements to the M2V2 hardware which will make swing

quicker and more accurate. Based on capturability analysis,

we believe that improving swing is a key improvement that

can be made to improve the performance of a bipedal walking

robot.

K. Application to Other Robots

We believe that capturability concepts can be applied to

the analysis and control of other legged systems. Estimating

capture regions and determining capturability-based robustness

metrics should be possible with all legged systems. While we

advocate compliant force control for legged robots, most of the

techniques described in this paper should also apply to high-

gain trajectory tracking robots. Stepping strategies that take

into account the capture region should be applicable to any

robot that can change where it steps on-the-fly. Directing the

instantaneous capture point along a line should be applicable to

any robot that can control its CoP location on the ground. We

are currently expanding the algorithms presented in this paper

and working toward there application on several different

humanoid robot platforms.

APPENDIX

ROBOT PARAMETERS

Table I shows the joint layout and inertia parameters of

M2V2. Each row represents a joint and its associated rigid

body. We use a coordinate system in which x is forward, y is

to the left, and z is up. Note that the bottom 6 rows represent

the left leg joints and masses (marked with the letter ‘L’). The

right leg is a mirror image of the left leg, and thus is identical

to the left leg except for the y values, which are all the additive

inverse. For Pin-type joints, the letter following “Pin” refers

to the rotational axis that the joint is aligned with.
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