
Capture and Maintenance
of

Constraints in Engineering Design

A thesis presented for the degree of

Doctor of Philosophy

at the University of Aberdeen

by

Suraj Ajit

(B. E. Computer Science and Engineering, Bangalore University, India)

Department of Computing Science

University of Aberdeen

United Kingdom

2009

i

Abstract

The Designers’ Workbench is a system, developed by previous research to support

designers in large organizations, such as Rolls-Royce, to ensure that the design is

consistent with the specification for the particular design, as well as with the company’s

design rule book(s). The evolving design is described against a jet engine ontology.

Design rules are expressed as constraints over the domain ontology. To capture the

constraint information, a domain expert (design engineer) has to work with the

knowledge engineer to identify the constraints, and it is then the task of the knowledge

engineer to encode these into the Workbench’s knowledge base. This is an error-prone

and time-consuming task. It is highly desirable to relieve the knowledge engineer of

this task, and so this thesis proposes a novel approach to facilitate domain experts in

capturing and maintaining constraints. The approach has been embodied by developing

a system, ConEditor that facilitates domain experts in combining selected entities from

the domain ontology with keywords and operators of a constraint language to form a

constraint expression. Further, this thesis reports that in order to appropriately apply,

maintain and reuse constraints, it is important to know the assumptions and context in

which each constraint is applicable. This is referred to as the “application condition”

and this forms a part of the rationale associated with the constraint. The central

hypothesis of this thesis is that an explicit representation of constraints together with

the corresponding application conditions and the appropriate domain ontology can be

used to support the maintenance of constraints. The thesis investigates two domains,

initially the kite domain and then part of a more demanding Rolls-Royce domain (jet

engine design). Four main types of refinement rules that use the associated application

conditions and domain ontology to support the maintenance of constraints are

proposed. The refinement rules have been implemented in ConEditor and the extended

system is known as ConEditor+. With the help of ConEditor+, the thesis demonstrates

that an explicit representation of application conditions together with the corresponding

constraints and the domain ontology can be used to detect inconsistencies, redundancy,

subsumption and fusion, reduce the number of spurious inconsistencies and prevent the

identification of inappropriate refinements of redundancy, subsumption and fusion

between pairs of constraints.

ii

Notes
Parts of the research work reported in this thesis have been published previously in:

Book Chapter:

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and

Maintenance of Engineering Design Constraints, Advanced Knowledge
Technologies (Selected Papers 2005), Nigel Shadbolt and Yannis Kalfoglou
(ed), pages 309-322.

Journals:

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2008): Constraint

Capture and Maintenance in Engineering Design, Journal of Artificial

Intelligence in Engineering Design and Manufacturing (AIEDAM), Special
Issue on Design Rationales, Rob Bracewell and Janet Burge (ed), Volume 22,
Issue No. 4, pages 325-343.

 Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2008): The role of ontologies

in creating & maintaining corporate knowledge: a case study from the aero
industry, Journal of Applied Ontology, Roberta Cuel and Roberta Ferrario (ed),
Volume 3, Issue No. 3, pages 151-172.

Conferences/Workshops:

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K: ConEditor+ (2007):

Capture and Maintenance of Constraints in Engineering Design, Rose Dieng
and Nada Matta (ed), IJCAI-07 Workshop on "Knowledge Management &

Organizational Memories", Hyderabad, India, pages 6-11.

 Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2006): The role of ontologies
in creating & maintaining corporate knowledge: a case study from the aero
industry, Roberta Cuel and Roberta Ferrario (ed), FOMI-06 Workshop

Proceedings, Laboratory for Applied Ontology, Trento, Italy.

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and
Maintenance of Engineering Design Constraints, Proceedings of the 2nd AKT

Doctoral Symposium, January 2006, Aberdeen, pages 4-13.

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and
Maintenance of Engineering Design Constraints, The Twenty-fifth SGAI
International Conference on Innovative Techniques and Applications of
Artificial Intelligence, CD Proceedings of AI 2005, Cambridge, UK.

 Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Acquisition

and Maintenance of Constraints in Engineering Design, Third International
Conference on Knowledge Capture, Proceedings of KCAP 2005, Banff,
Canada, pages 173-174.

iii

 Ajit, S, Sleeman, D, Fowler, D.W. and Knott, D (2004): ConEditor: Tool to
Input and Maintain Constraints, 14th International Conference on Engineering
Knowledge in the Age of the Semantic Web, Proceedings of EKAW 2004,
Northampton, UK, pages 466 - 468.

iv

Declaration

I declare that this thesis has been composed by myself and describes my own work. It

has not been accepted in any previous application for a degree. All sources of

knowledge have been specifically acknowledged.

Suraj Ajit
27th May, 2009

Department of Computing Science
University of Aberdeen
Aberdeen
United Kingdom

v

Acknowledgement

This work is supported under the EPSRC’s grant number GR/N15764, and the

Advanced Knowledge Technologies Interdisciplinary Research Collaboration, which

comprises of the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the

Open University.

I would like to thank Mr. David Knott (Head of Design Technology), Dr.

Michael Moss and other people at the Rolls-Royce plc, Derby, UK for all their support.

In particular, I would like to specially thank Mr. Colin Cadas (Head of Knowledge

Management) and Mr. Stephen Docherty in the Transmission and Structures division

of Rolls-Royce plc, Derby, UK for all the important discussions and contributions,

relevant to the work reported in this thesis.

This thesis would not have been possible without the support of my colleagues,

friends and family. In particular, I would like to thank my supervisor Professor Derek

Sleeman for providing me the opportunity to do a PhD. I deeply appreciate his

continuous support, encouragement and guidance over the years. I would like to thank

Dr. David Fowler for all his support. I am grateful to Dr. Wamberto Vasconcelos and

Professor Peter Gray for reviewing parts of my research work and giving me useful

comments. I have received support from my former colleague Dr. Kit Hui and am

extremely grateful to him for providing the translator that converts CoLan into CIF. I

would like to thank all the subjects involved in the evaluation of ConEditor+ for taking

part and contributing. I would also like to thank my examiners (both internal and

external) for their constructive comments in improving the thesis.

Lastly (but not in any way least), on a personal note, I would like to thank my

parents and sister for their love and support.

vi

Contents

ABSTRACT i

NOTES ii

DECLARATION iv

ACKNOWLEDGEMENT v

CONTENTS vi

1 INTRODUCTION 1

1.1 Knowledge Management 1

1.1.1 Ontologies and the Semantic Web 3

1.2 Engineering Design 5

1.2.1 Designers’ Workbench 6

1.3 Problem Description and Motivation 7

1.4 Research Aims and Hypotheses 9

1.5 Thesis Overview 11

1.6 Thesis Structure 12

2 LITERATURE REVIEW 15

2.1 Knowledge Acquisition 16

2.1.1 Interviewing 19

2.1.2 Protocol Analysis 20

2.1.3 Document Analysis 20

2.1.4 Card Sorting 21

2.1.5 Construct Elicitation (Repertory Grid) 21

2.1.6 Laddering 22

2.1.7 Use of Computer-assisted/Computer-based Tools 23

2.1.8 Discussion 27

vii

Contents

2.2 Knowledge Engineering Methodologies 27

2.2.1 Role Limiting Methods (RLM) 28

2.2.1.1 Generic Tasks and Task Structures (GT) 29

2.2.1.2 Overview of RLMs and GTs 30

2.2.2 The PROTÉGÉ Approaches 31

2.2.3 The CommonKADS Approach 33

2.2.4 The MIKE Approach 35

2.2.5 The MOKA Approach 36

2.2.6 Discussion 39

2.3 Knowledge Maintenance 40

2.3.1 Verification and Validation 42

2.3.2 Knowledge Refinement 44

2.3.3 Discussion 46

2.4 Engineering Design 47

2.4.1 Constraints in Engineering Design 47

2.4.2 Concurrent Engineering and Integrated Product Teams 54

2.4.3 Design Rationales 59

2.4.4 Discussion 67

2.5 Summary 70

3 CAPTURE AND MAINTENANCE OF CONSTRAINTS
IN ENGINEERING DESIGN: A PROPOSAL 72

3.1 Introduction to the Designers’ Workbench 72

3.1.1 Functionality of Designers’ Workbench 76

3.1.2 Capturing the knowledge in the design rule book(s) 80

3.2 A Proposed Approach to the Capture of Constraints 80

3.3 Maintenance of Constraints in Engineering Design 82

3.4 A Proposed Approach to the Maintenance of Constraints 85

viii

Contents

3.5 Summary 88

4 CONEDITOR 90

4.1 Overview of CoLan 90

4.2 ConEditor’s GUI 92

4.3 Functionality of ConEditor 96

4.4 Conversion of OWL ontology into Daplex Schema 97

4.5 XML Constraint Interchange Format (CIF) 99

4.6 Summary 104

5 VERIFICATION AND REFINEMENT OF
CONSTRAINTS 105

5.1 Analysis of the Kite Domain 105

5.2 Knowledge Refinement Rules 109

5.2.1 Redundancy 109

5.2.2 Subsumption 110

5.2.3 Inconsistency 112

5.2.4 Fusion 113

5.3 Formal Notation and Logical Proof 116

5.3.1 Redundancy 117

5.3.2 Subsumption 119

5.3.3 Inconsistency 123

5.3.4 Fusion 124

5.4 Summary 128

6 CONEDITOR+ 129

6.1 Evolution from ConEditor to ConEditor+ 129

6.2 ConEditor+’s GUI 131

6.3 Functionality of ConEditor+ 134

6.4 Algorithm 136

ix

Contents

6.5 CIF Interpretation by ConEditor+ 139

6.6 Summary 148

7 EVALUATION 150

7.1 Preliminary Evaluation 151

7.1.1 Overview of Results 153

7.2 Experiments using ConEditor+ 154

7.3 Extension/Evaluation of Jet Engine Ontology and Maintenance of a 173
More complex set of constraints

7.4 Summary 176

8 CONCLUSIONS AND FUTURE WORK 179

8.1 Research Contributions 179

8.2 Limitations 182

8.3 Future Work 184

BIBLIOGRAPHY 188

APPENDIX A Equations and Constraints in Kite Design 203

APPENDIX B Evaluation of ConEditor+-Questionnaire 209

APPENDIX C Annotated Walkthrough of Capturing
a constraint Using ConEditor+ 210

APPENDIX D Scanned copies of the Questionnaires that
were answered by subjects during
Evaluation of ConEditor+ 219

APPENDIX E Sample Refinements of Constraints and
Application Conditions by ConEditor+ in
the Rolls-Royce domain 229

xi

List of Figures

Figure 2-1. Laddering Method 22

Figure 2-2. A screenshot of the English-based method editor used here to
acquire problem solving knowledge to compute the time to
transport an item in a ship

26

Figure 2-3. The Protégé Approaches 31

Figure 2-4. The MIKE Approach 35

Figure 2-5. KRUST Refinement System 44

Figure 2-6. Summary of a survey of Design Rationale systems 61

Figure 2-7. An example of a rationale generated by KLAUS4 62

Figure 2-8. An example of DRed document capturing the design rationale
of an aero-engine internal gearbox

64

Figure 2-9. The use of Design Rationale in the design process by InfoRat 66

Figure 3-1. A screenshot of the Designers’ Workbench 73

Figure 3-2. The class hierarchy of a simple configuration ontology 74

Figure 3-3. A bolted joint 74

Figure 3-4. A configuration of the bolted joint in Figure 3-3 described using
an ontology

75

Figure 3-5. Closeups of the Designers’ Workbench’s panels 77

Figure 3-6. Constraint as expressed in the design rule book 79

Figure 4-1. Examples of CoLan constraints from different application
domains

91

Figure 4-2. A screenshot of ConEditor’s GUI 93

Figure 4-3. A screenshot showing constraints expressed in tables
using ConEditor

94

Figure 4-4. Process flow within ConEditor 96

Figure 4-5. Framework of ConEditor and Designers’ Workbench 97

Figure 4-6. (a) Modelling using multiple inheritance 98

xii

Figure 4-6. (b) Modelling without using multiple inheritance 98

Figure 4-7. P/FDM Daplex definitions for entity and property metaclasses 100

Figure 4-8. RDF Schema definitions for the objmet and entmet classes 101

Figure 4-9. RDF Schema definitions relating to the ‘setmem’ metaclass 102

Figure 4-10. XML-CIF fragment corresponding to the CoLan fragment
(p in pc)

103

Figure 5-1. Basic parts of a flat diamond kite 106

Figure 5-2. The Kite Domain ontology developed in Protégé 108

Figure 6-1. A screenshot of ConEditor+’s GUI 130

Figure 6-2. Taxonomy Panel of ConEditor+ 133

Figure 6-3. Framework of ConEditor+ and Designers’ Workbench 135

Figure 6-4. A screenshot of ConEditor+ showing subsumption between
a pair of constraints

138

Figure 6-5. Constraints in RDF make references to the CIF language
definition and the domain ontology in OWL

139

Figure 7-1. Constraint as expressed in the design rule book 152

Figure 7-2. Graph showing results of an experiment to evaluate usability
of ConEditor+

163

Figure 7-3. Graph showing average refinement time taken by ConEditor+
versus number of constraints in KB

171

Figure 7-4. Extended/Evaluated Jet Engine Ontology of a part of the
Rolls-Royce domain in Protégé

173

Figure 8-1. Proposed System Architecture 184

Figure 9-1. A screenshot of ConEditor+ showing inconsistency between
constraints

232

xiii

List of Tables

Table 7-1. Time taken by ConEditor+ to detect inconsistencies and
refinements for various KB sizes 170

xiv

List of Acronyms & Abbreviations

AI Artificial Intelligence
AKT Advanced Knowledge Technologies
API Application Programming Interface
Auto Automatic
CAD Computer Aided Design
CIF Constraint Interchange Format
CommonKADS Common Knowledge Acquisition and Design support
CRLM Configurable Role Limiting Method
CVO Constraint Version Object
DEC Digital Equipment Corporation
DFX Design for X
DR Design Rationale
DRed Design Rationale editor
DTI Department of Trade and Industry
FO Feature Oriented
FOL First Order Logic
GT Generic Task
GUI Graphical User Interface
HCI Human-Computer Interaction
HVAC Heat, Ventilation and Air Conditioning
ICARE Illustration, Constraint, Activity, Rule, Entity
ID Identification Number
IDA Institute for Defence Analysis
IPD Integrated Product Development
IPAS Integrated Products and Services
JDS Joint Design Standards (specific to Rolls-Royce)
KA Knowledge Acquisition
KB Knowledge Base
KBE Knowledge Based Engineering
KBS Knowledge Based System
KE Knowledge Engineering
MAKE Maintenance Assistance for Knowledge Engineers
MOKA Methodology and Tools Oriented to Knowledge Based

Engineering Applications
OKBC Open Knowledge Base Connectivity
OWL Web Ontology Language
PO Process Oriented
PSM Problem Solving Method
RDF Resource Description Framework
RDQL RDF Query Language
RLM Role Limiting Method
UI User Intervention
UK United Kingdom
UML Unified Modelling Language
W3C World Wide Web Consortium

Chapter 1

1

Introduction

‘Knowledge Management is the Major Enabler of

Enterprise Performance.’

- Karl Wiig

This thesis presents original research in the field of knowledge management with

engineering design as an application domain. The research proposes a novel approach

to facilitate domain experts in capturing and maintaining constraints in engineering

design. The thesis further embodies this approach with the design and construction of a

system. This chapter provides a background on the topics relevant to this thesis,

describes the motivation for the research work, outlines the research questions and also

provides an overview of the thesis. The chapter is organised as follows: Section

1.1 provides a background to knowledge management including ontologies and the

semantic web. Section 1.2 introduces engineering design, and describes a system

developed by previous research (Fowler et al., 2004) to support engineering designers

in large organisations such as Rolls-Royce. Section 1.3 describes the motivation for the

research work reported in this thesis. Section 1.4 outlines the research questions that the

thesis aims to address. Section 1.5 provides an overview of the thesis. The chapter

concludes with Section 1.6 describing the thesis structure.

1.1 Knowledge Management

We live in a world where there has been an explosion of data, information and

knowledge. However, knowledge is only of value when it can be used effectively and

efficiently. The management of knowledge is increasingly being recognised as a key

element in the organization of companies and institutions (Dieng et al., 1999; Dieng &

Corby, 2000). The forms of knowledge have grown in terms of both complexity and

applications. People often work for a number of employers during their lifetime. Loss

2

Chapter 1: Introduction

of knowledge can be a major factor in reducing an organisation’s productivity and

effectiveness. Organisations have experienced many changes to the way they operate.

The nature of work has changed enormously with the shift from an industrial economy

(where commercial products were the main business focus) to a knowledge economy

(where service and expertise are the main business outcomes) (Debowski, 2006). The

shift in focus from products to services has encouraged greater recognition of the

importance of the knowledge held within an organisation. Knowledge management is

concerned with the acquisition, modelling, use, reuse, retrieval, publishing and

maintenance of knowledge. Knowledge engineering techniques have been known to

bring significant benefits to knowledge management (Preece et al., 2001). More details

of the various knowledge engineering techniques can be found in Chapter 2.

The challenges relevant in the context of this thesis are knowledge acquisition

and maintenance. Knowledge acquisition is about extracting knowledge from sources

of expertise and transferring it to a knowledge base (KB). Knowledge acquisition is

well known to be a “critical bottleneck” in expert system development. The traditional

approach to knowledge acquisition is mainly an interaction process involving the

domain expert and knowledge engineer. This approach can be laborious, time-

consuming and error-prone, especially if the knowledge engineer is unfamiliar with the

domain. The challenge here is to develop tools and methodologies that facilitate domain

experts in capturing and maintaining knowledge. In other words, the challenge is to

eliminate or minimize the role of a knowledge engineer.

Knowledge maintenance is concerned with the process of controlling change in

a knowledge-based system. Knowledge maintenance normally involves the following

activities:

 Verification and validation of knowledge based systems: Verification and

validation of the content of knowledge repositories is at the heart of knowledge

maintenance. Verification is a process of ensuring that the knowledge base is

consistent and complete within itself. Validation is the process of determining

if a KBS meets its users’ requirements (Meseguer & Preece, 1995).

3

Chapter 1: Introduction

 Updating/refining of knowledge bases: The challenge is to keep the knowledge

repository functional and consistent. This may involve the regular

updating/refining of content as it changes (e.g., as price lists are revised).

Updating/refinement of KBs can make them inconsistent and further they can

accumulate redundant knowledge. It is important to discard the redundant

knowledge and make sure that the KB remains consistent.

 Dealing with the obsolescence of knowledge: Certain sections of the knowledge

may be based on assumptions/conditions, which later become untrue. One has

to identify and shelve/remove such sections, when necessary. This may involve

a deeper analysis of the knowledge content. Some content has a considerable

longevity, while other knowledge dates very quickly. If a repository of

knowledge is to remain active over a period of time, it is essential to know which

(and when) parts of the knowledge base must be discarded.

1.1.1 Ontologies and the Semantic Web

An ontology is a core element in knowledge management. The word ontology has been

taken from Philosophy, where it is used to describe the existence of beings in the world

and referred to as the theory of existence. The most commonly used definition of

ontology in Artificial Intelligence (AI) is that of Gruber (1993): “An ontology is an

explicit specification of a conceptualization”. Borst (1997) and Borst et al. (1997)

slightly modified Gruber’s definition saying that: “Ontologies are defined as a formal

specification of a shared conceptualization.” Both the above definitions have been

explained by Studer et al. (1998) as: “A ‘conceptualisation’ refers to an abstract model

of some phenomenon in the world by having identified the relevant concepts of that

phenomenon. ‘Explicit’ means that the type of concepts used, and the constraints on

their use are explicitly defined. ‘Formal’ refers to the fact that the ontology should be

machine readable, which excludes natural language. ‘Shared’ reflects the notion that an

ontology captures consensual knowledge, that is, it is not private to some individual,

but accepted by a group.”

Large organizations are more likely to face the problem of integrating

heterogeneous and distributed information expressing the specificity of the sub-

4

Chapter 1: Introduction

communities which, altogether constitute the organization itself (Sanghee et al., 2008).

The integration problem is due to the lack of shared and globally consistent

terminologies. Ontologies facilitate knowledge sharing and reuse by providing a

commonly agreed domain model. The main differences between an ontology and a

database schema, as listed in Fensel (2004) are:

 A language for defining ontologies is syntactically and semantically richer

than common approaches for databases.

 The information that is described by an ontology consists of semi-structured

natural language texts and not tabular information.

 An ontology must be a shared and consensual terminology because it is used

for information sharing and exchange.

 An ontology provides a domain theory and not the structure of a data

container.

Ontologies provide the backbone technology for the semantic web (Fensel, 2004). The

semantic web is an evolving extension of the world wide web in which web content can

be expressed in a form that can be understood, interpreted and used by computers to

find, share and integrate information more easily (Berners-Lee et al., 2001; Shadbolt et

al., 2006). According to the World Wide Web Consortium (W3C)1, the semantic web

is about two things: “It is about common formats for integration and combination of

data drawn from diverse sources. It is also about language for recording how the data

relates to real world objects. That allows a person, or a machine, to start off in one

database, and then move through an unending set of databases which are connected not

by wires but by being about the same thing.”

The main uses of ontologies and semantic web technologies can be summarized as

follows:

 To enable integration of heterogeneous data sources. A common task is to

pose queries that require data from more than one source.

1 http://www.w3.org/2001/sw/. Accessed online on 12 May 2008.

http://www.w3.org/2001/sw/

5

Chapter 1: Introduction

 To ensure people and software agents have a shared understanding of the

terms and relationships used in a domain.

 To annotate documents and other resources with terms from the ontology, and

then to use these annotations to retrieve documents. Using the structure of the

ontology, documents that are related to those originally sought can be explored.

For example, a document may be about one engine part, and by using the

ontology, documents about parts that are similar to, or adjacent to, that part may

be found.

 To allow reasoning to take place (deduce new statements that were not

explicitly stated) and reveal inconsistencies in the data.

 To enable reuse of domain knowledge.

 To make domain assumptions explicit.

 To separate domain knowledge from the operational knowledge.

Ontologies are now in widespread use as a means of formalizing domain knowledge in

a way that makes it accessible, shareable and reusable (Darlington & Culley, 2008). The

research work reported in this thesis uses ontologies and semantic web technologies for

knowledge management in engineering design. Engineering design is used as an

application domain and this topic is discussed in the next section.

1.2 Engineering Design

“Knowledge management has been identified as one of the key enabling technologies

for distributed engineering enterprises in the 21st Century. Central to the application and

exploitation of knowledge in engineering is the engineering design process” (McMahon

et al., 2004). Engineering Design is constraint-oriented and much of the design process

involves the recognition, formulation and satisfaction of constraints (Serrano &

Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a rule that a successful

design must satisfy. Constraints are continually being added, removed and modified

throughout the development of a new product.

Engineering design is an important phase in product development that is known

to have a significant impact on the life cycle characteristics (e.g. cost, reliability) of the

product (Newnes et al., 2008; Salonen et al., 2008). Design begins with a functional

specification of the desired product: a description of properties and

6

Chapter 1: Introduction

conditions that the product should satisfy (i.e. constraints). Engineering designers

typically have to find a configuration of parts that implements a particular function. To

assist them, most organizations have built up a large number of design rules and

standards, usually held as large volumes of text. Designers must try to ensure that their

configurations satisfy these constraints, but it is easy to overlook some. Novice

designers may have a hard task in finding and appreciating relevant constraints.

Additionally, in a collaborative environment, where many designers are working on

subsections of a common component, it is common for changes made by one designer

to affect the options available to another, and for this to go unnoticed until much later,

thus causing expensive and time-consuming redesigns. It would clearly be useful to

have some way of automating the design checking process, so that all applicable

constraints are checked, without the designer having to manually initiate a search and

check if all the constraints are satisfied. Hence previous research has developed a

system known as the Designers’ Workbench (Fowler et al., 2004) to support

engineering designers in large organisations such as Rolls-Royce. The following section

introduces the Designers’ Workbench.

1.2.1 Designers’ Workbench

The Designers’ Workbench uses an ontology to describe elements in a configuration

task. Configurations are composed of features, which can be geometric or non-

geometric, physical or abstract. The design rules are expressed as constraints over the

ontology. The system allows the designers to build a configuration, and to check that

all the constraints hold. In a real engineering situation, there may be many thousands of

constraints, which means that it is easy to overlook some of them. Constraints are often

defined generically, in that they apply to particular types of sub-configurations of

features, rather than to specific features. Therefore, it is not necessary to have any actual

features specified in the design before defining a constraint. For example, one may need

to define a constraint that applies to all pairs of neighbouring features such that if one

feature is made of copper and the other feature is made of zincalume® steel then the

features are incompatible2. This constraint could be added without any knowledge that

such a pair of features exists in a design. Constraint checking becomes

2 http://www.bluescopesteel.com.au/go/howto/avoid-incompatible-metals. Accessed online on 7 May 2009.

http://www.bluescopesteel.com.au/go/howto/avoid-incompatible-metals

7

Chapter 1: Introduction

a process of finding such sub-configurations by posing a query and checking that they

satisfy the constraints.

The system has been implemented so that the human designer is free to use his

or her engineering expertise to override constraints that are not deemed applicable to

the current situation. A graphical user interface (GUI) enables the designer to import a

drawing, annotate it with features, assign property values, and perform constraint

checks. When a constraint is violated, the designer is presented with a list of features

involved in the violation and a link to the source document that contains the design rule.

The reader is encouraged to read Section 3.1 in this thesis and Fowler et al. (2004) for

a more detailed description of the Designers’ Workbench. The issues concerning

acquisition and maintenance of knowledge (design rules) for systems such as the

Designers’ Workbench are the main topics of this thesis. The problems faced by the

Designers’ Workbench have been the motivation for the research work reported in this

thesis and the following section describes this in some detail.

1.3 Problem Description and Motivation

The motivation for this thesis has been largely inspired by the observation of problems

faced by the Designers’ Workbench (Fowler et al., 2004), developed to support

designers in large organizations, such as Rolls-Royce, by ensuring that the design is

consistent with the specification for the particular design, as well as with the company’s

design rule book(s). The process of acquiring design rules for the Designers’

Workbench’s KB consists of the following phases:

(i) A domain expert (design engineer) works with a knowledge engineer to

identify the design rules.

(ii) The knowledge engineer encodes the constraints in the Designers’

Workbench’s KB as a query in RDQL (RDF Query language) (Seaborne,

2004), and a predicate in Sicstus3 Prolog.

3 Swedish Institute of Computer Science, version 3.10, Accessed online on 29 May 2008 at
http://www.sics.se/sicstus/

http://www.sics.se/sicstus/

8

Chapter 1: Introduction

This process is laborious, error-prone and time-consuming. As design rules are

described succinctly in the design rule book(s), a non-expert in the field finds it very

difficult to understand the context and formulate constraints directly from the design

rule book(s), and so a design engineer has to help the knowledge engineer in the process.

It is highly desirable to relieve the knowledge engineer of this task and to facilitate

domain experts themselves inputting design rules into the Designers’ Workbench’s KB.

It would be useful if a new constraint could be formulated in an intuitive way, by

selecting classes and properties from the ontology, and somehow combining them using

a predefined set of operators. This would enable designers to have control over the

definition and refinement of constraints, and presumably, to be able to have greater trust

in the results of constraint checks. This thesis proposes a novel approach to facilitate

domain experts in capturing and maintaining constraints. The approach involves the use

of a graphical interface to facilitate domain experts in selecting classes and properties

from the appropriate domain ontology and combining them with predefined keywords

and operators from a high–level constraint language to form a constraint. The approach

has been embodied by developing a system known as ConEditor (Ajit et al., 2004; Ajit

et al., 2005a, 2005b, 2005c; Ajit et al., 2006). The thesis provides a detailed description

of the adopted approach and the implemented system, ConEditor, in Chapters 3 and 4.

The engineering design process has an iterative nature as designed artefacts

often develop through a series of changes before a final solution is achieved. A common

problem encountered during the design process is that of constraint evolution, which

may involve the identification of new constraints or the modification or removal of

existing constraints. The reasons for such changes include development in the design

and manufacturing technology, changes to improve performance and changes to reduce

development time and costs. The evolutionary nature of constraints establishes the need

to constantly update, revise, and maintain them. Maintenance of constraints involves

various issues/problems. An overview of the issues and problems encountered during

maintenance is provided below:

The constraints formulated by experts are generally applicable only in particular

contexts, as the constraint may be based on specific assumptions. These contexts and

assumptions are often implicit to the expert who formulates them and are not well

documented or represented explicitly. When the experts who have formulated the

constraints leave the company or become unavailable, it becomes extremely

9

Chapter 1: Introduction

difficult for other experts to maintain the knowledge base. One needs to identify all the

constraints that require modification and make sure that all the constraints are applied

in the right contexts. After making any change(s) to the KB, one has to make sure the

KB is consistent. In addition, constant addition/revision of constraints can result in

considerable redundancy in the KB. It is important to prevent/remove such

redundancies as part of the maintenance of the KB. Maintenance is an important task

that can be both complicated and expensive (Barker & O'Connor, 1989).

In order to reduce/overcome the various maintenance issues/problems, the thesis

proposes a methodology and incorporates it into ConEditor to support the maintenance

of constraints. The methodology involves: (i) the capture of the context in which a

constraint is applicable as an application condition (Ajit et al., 2008a; Sleeman et al.,

2008) together with the constraint in a machine-interpretable format and (ii) the use of

the application condition together with the constraint and the domain ontology to

support the maintenance of constraints. The thesis proposes four main types of

knowledge refinement rules to detect redundancy, subsumption, inconsistency and

fusion between pairs of constraints using the associated application conditions and

domain ontology. The term “application condition” is used throughout the thesis to refer

to the context and underlying assumptions associated with a constraint. The application

conditions form a part of the rationales associated with the constraint. Further

discussion of application conditions with examples, the proposed methodology,

knowledge refinement rules and the support provided for the maintenance of constraints

can be found in Chapters 3, 5 and 6. The following section describes the research aims

and hypotheses of the research work.

1.4 Research Aims and Hypotheses

One of the aims of the knowledge engineering community has been to

minimize/eliminate the role of a knowledge engineer. “Enabling domain experts to

maintain the knowledge in a knowledge-based system has long been an objective of the

knowledge engineering community” (Bultman et al., 2000b). This thesis identifies a

situation where it is highly desirable to eliminate the knowledge engineer from doing a

laborious, error-prone and time-consuming task. The thesis aims to explore how the

design and construction of a system can facilitate domain experts in capturing and

maintaining constraints. Further, the thesis reports that, in order to appropriately

10

Chapter 1: Introduction

apply, maintain and reuse constraints, it is important to capture the context in which a

constraint is applicable in a machine- interpretable format. The thesis hypothesises that

this context information, referred to as application conditions, together with the

corresponding constraints and the domain ontology can be used to support the

maintenance of constraints. Maintenance of constraints includes (i) detecting

inconsistencies, redundancy, subsumption and fusion (ii) reducing the number of

spurious inconsistencies and (iii) preventing the identification of inappropriate

refinements of redundancy, subsumption and fusion, between pairs of constraints. It is

also important to ensure that the speed of the system for realistic tasks is viable for

domain experts to use. Hence, the main research aims and hypotheses of the thesis can

be posed as the following research questions:

Research Question I:

1. Examine whether it is possible to design and construct a system to facilitate

(domain) experts in capturing and maintaining constraints in engineering

design. This question can be detailed into the following smaller questions:

a) Can (domain) experts successfully perform the allocated tasks within

acceptable time limits?

b) Did the (domain) experts perform the tasks accurately? What kind of

mistakes did they make? Can the system’s GUI be modified to eliminate

or minimize these errors?

c) How easy and intuitive did (domain) experts find the system to use?

d) Is the speed of the system on realistic tasks viable for (domain) experts

to use?

Research Question II:

2. Examine whether capturing application conditions associated with constraints,

in a machine-interpretable format can provide significant benefits to the

maintenance of constraints in engineering design. In particular, can an explicit

representation of application conditions together with the corresponding

constraints and the domain ontology be used to:

a) Detect inconsistencies, redundancy, subsumption and fusion,

11

Chapter 1: Introduction

b) Reduce the number of spurious inconsistencies, and

c) Prevent the identification of inappropriate refinements of redundancy,

subsumption and fusion between pairs of constraints?

The next section provides an overview of the research work reported in this thesis.

1.5 Thesis Overview

The context for the research work reported in this thesis is the Designers’ Workbench

system that has been developed by previous research to support designers in large

organisations, such as Rolls-Royce, to ensure that the design is consistent with the

specification for the particular design, as well as with the company’s design rule

book(s). The knowledge engineering process to capture and maintain constraints for the

Designers’ Workbench is tedious, error-prone and time-consuming. It is highly

desirable to relieve the knowledge engineer from the above task. The thesis proposes a

novel approach to facilitate domain experts in capturing and maintaining constraints in

engineering design. The thesis embodies the proposed approach with the design and

construction of a system known as ConEditor. ConEditor facilitates basic maintenance

by enabling domain experts to detect and resolve syntax errors, edit, delete and store

constraints. The thesis reports on a preliminary evaluation of ConEditor conducted at

Rolls-Royce. Further, the thesis reports that in order to appropriately apply, maintain

and reuse constraints, it is important to capture the underlying assumptions and context

in which each constraint is applicable. These assumptions and context are referred to as

the “application conditions”. The application conditions form a part of the rationales

associated with a constraint. The thesis proposes an approach to capture the use these

application conditions in a machine-interpretable format together with the domain

ontology to support the maintenance of constraints.

The thesis analyses the kite design domain and proposes four main types of

refinement rules to detect inconsistencies, subsumption, redundancy and fusion

between pairs of constraints using application conditions and the domain ontology. The

refinement rules have been proved to be logically sound. The thesis extends ConEditor

to implement the proposed refinement rules and provide additional support to the

maintenance of constraints. The extended system that was developed to provide

additional support for maintenance became known as ConEditor+. The central

12

Chapter 1: Introduction

hypothesis of the thesis is that an explicit representation (machine-interpretable format)

of application conditions together with the corresponding constraints and the domain

ontology can be used to support the maintenance of constraints. Supporting the

maintenance of constraints includes detecting inconsistencies, subsumption,

redundancy and fusion, reducing the number of spurious inconsistencies, and

preventing the identification of inappropriate refinements of subsumption, redundancy

and fusion between pairs of constraints. The thesis reports on experiments, usability and

scalability studies that apply ConEditor+ to support the capture and maintenance of

constraints from a kite design KB. The usability studies demonstrate that ConEditor+

can facilitate domain experts in capturing and maintaining constraints in engineering

design. The scalability studies demonstrate that the speed of ConEditor+ on realistic

tasks is viable for domain experts to use. Further, the thesis investigates part of the

Rolls-Royce domain, and demonstrates that the proposed approach can be applied to a

more complex KB consisting of real world design constraints. The logical proofs of

refinement rules together with the results of experiments in the kite domain and part of

the Rolls-Royce domain demonstrate that an explicit representation (machine-

interpretable format) of application conditions together with the corresponding

constraints and the domain ontology can be used in: i) detecting inconsistencies,

subsumption, redundancy and fusion, ii) reducing the number of spurious

inconsistencies, and iii) preventing the identification of inappropriate refinements of

subsumption, redundancy and fusion between pairs of constraints.

1.6 Thesis Structure

Theses usually adopt a structure in which they first provide background material to the

field(s) of research, i.e., a literature review, and then explain the main problems/issues

tackled, before presenting, discussing and evaluating the proposed solution or new

approach. This thesis is no exception.

Chapter 1 provides a background to knowledge management including

ontologies and the semantic web. This chapter introduces engineering design and

describes the motivation for the research work reported in this thesis. The research aims

and the hypotheses of the research work are then outlined. The chapter concludes by

providing an overview of the thesis and its structure.

13

Chapter 1: Introduction

Chapter 2 provides a literature review of the principal fields relevant to this

thesis. The review highlights some of the key issues in knowledge acquisition,

knowledge engineering methodologies, knowledge maintenance (including

verification, validation and refinement), constraints and engineering design. In addition,

it provides a brief overview of some of the prominent systems that have been developed

in these areas over the last couple of decades. The strengths and limitations of systems

that have helped motivate the research work reported in this thesis have been indicated

wherever appropriate. Finally, the chapter concludes by summarizing the key points

from the literature review.

Chapter 3 presents a proposal for the research work reported in this thesis. The

chapter starts by describing the Designers’ Workbench and the problems faced in the

capture of constraints for this system. The chapter then outlines the proposed approach

to facilitate domain experts in capturing and maintaining constraints. Further, the

chapter describes the issues/problems faced during the maintenance of constraints in an

engineering design environment. The chapter outlines the proposed approach to support

the maintenance of constraints. The chapter concludes with a summary.

Chapter 4 describes the design, implementation and functionality of ConEditor.

The chapter presents an overview of the constraint representation languages (CoLan

and CIF) used by ConEditor. The chapter also describes the principles involved in

converting the domain ontology in OWL into a Daplex Schema and converting CoLan

into CIF. The chapter concludes with a summary.

Chapter 5 introduces the concept of an application condition associated with a

constraint. The chapter analyses the kite domain and describes how the application

conditions together with the constraints and the corresponding domain ontology can be

used to support the maintenance of constraints. Four main types of knowledge

refinement rules are described with examples from the kite design KB. Further, the

refinement rules are expressed in a formal notation (first order logic), and it is proved

that they are logically sound. The chapter concludes with a summary.

Chapter 6 describes the design, implementation and functionality of

ConEditor+. The chapter highlights the main changes made in extending ConEditor to

ConEditor+. The chapter outlines the algorithm used by ConEditor+ to support the

maintenance of constraints. The chapter also describes how ConEditor+ interprets the

constraints in CIF to support maintenance. The chapter concludes with a summary.

14

Chapter 1: Introduction

Chapter 7 describes the evaluations performed during the research work. The

chapter reports on a preliminary evaluation performed using ConEditor at Rolls- Royce.

The chapter then describes experiments, usability and scalability studies conducted in

the kite domain using ConEditor+ together with a discussion of the results obtained.

The chapter concludes by describing the application of the proposed approach to part

of the more complex Rolls-Royce domain together with the results obtained. The

chapter concludes with a summary.

Chapter 8 provides an overview of the results and research contributions of this

thesis. It also discusses some limitations of the work. The chapter concludes by

presenting possible directions for future work and the significance of the major

contributions.

Additionally, there are five appendices. Appendix A presents a list of the

constraints obtained from the kite domain together with explanations of the

corresponding rationales and application conditions. Appendix B lists the questionnaire

that was used to evaluate the usability of ConEditor+. Appendix C presents an annotated

walkthrough of constraint capture using screenshots of ConEditor+. Appendix D

contains scanned copies of questionnaires that were answered by subjects during the

evaluation of ConEditor+. Appendix E presents sample refinements of constraints and

application conditions by ConEditor+ in the Rolls-Royce domain.

15

Chapter 2

Literature Review

‘The important thing is not to stop

questioning.’

- Albert Einstein

This chapter presents a literature review of the principal fields relevant to the research

work reported in this thesis. The review on knowledge acquisition, engineering and

maintenance mainly provides a background and sets the context for the research work

reported in the thesis. The sections on constraints in engineering design and design

rationales present a review of literature that is more closely relevant to the work reported

in the thesis. The chapter is divided into five main sections: Section 2.1 introduces the

field of knowledge acquisition, including the various approaches to knowledge

acquisition and a brief description of some of the tools developed to support knowledge

acquisition. Section 2.2 reviews some of the prominent knowledge engineering

methodologies developed over the years. Section 2.3 provides background information

on knowledge maintenance with an overview of work done on verification and

validation of KBS, and in the area of knowledge refinement. Section 2.4 provides

background information on engineering design, and provides an overview of work done

in the areas of constraints in engineering design, concurrent engineering and integrated

product teams, and design rationales. A discussion of the key points of the review is

provided at the end of each main section. Section 2.5 summarizes the literature review

presented in this chapter. A brief introduction to knowledge engineering is provided

below.

Knowledge Engineering is a field within Artificial Intelligence that refers to the

building, maintenance and development of knowledge-based systems (KBSs). Initially,

early descriptions of knowledge-based systems claimed that they consist of a

knowledge base (usually a set of rules) and an inference engine that executed the rules

by forward or backward chaining. This simple structure failed to distinguish the roles

of different kinds of knowledge in a KBS, such as defining terms, expressing domain

16

Chapter 2: Literature Review

facts, and supporting inference and problem solving. This confounding of different

kinds of knowledge resulted in poorly structured knowledge-based systems and made

them difficult to understand and maintain. It became clear that one needs to separate

out the different kinds of knowledge in KBSs. A knowledge-based system essentially

consists of two main components, a knowledge base and a problem-solving method

(PSM).

MYCIN is one of the earliest knowledge-based systems that were developed in

the early 1970s at Stanford University to diagnose infectious blood diseases. Its KB

comprised of approximately 400 rules relating possible conditions to associated

interpretations. MYCIN was highly domain specific and it became difficult to adapt the

system for related diagnostic applications. This led to a domain independent version of

MYCIN, known as the EMYCIN. EMYCIN allowed the inference engine of MYCIN

to be applied to new problem domains and provided an environment for building and

debugging knowledge bases. Subsequently, the notion of identifying the general

problem solving ability in a domain of expertise was introduced by Hayes- Roth et al.

(1983).

Clancey’s (1985) identification of heuristic classification as the method

underlying MYCIN KBS and the analysis of a number of knowledge-based systems led

to the discovery of several general-purpose problem-solving components. Considerable

emphasis has been placed on the development of knowledge-based systems from

sharable and reusable, knowledge components. The development of this type of

knowledge-based system requires a knowledge-engineering process where the

developer selects, adapts, or constructs an appropriate problem solver, and supplies the

system with the knowledge it needs to operate (Puerta & Eriksson, 1996). The two

central activities in this type of development are the engineering of reusable

components, and the acquisition of domain knowledge. Knowledge Engineering also

involves the process of maintaining a KBS after it has been developed. Maintenance of

a KBS involves verification, validation and refinement of knowledge. More details

follow in subsequent sections of this chapter.

2.1 Knowledge Acquisition

Knowledge Acquisition is a field that deals with approaches to capture expert

knowledge, specifically for use in knowledge-based systems. A difficulty that became

17

Chapter 2: Literature Review

prominent during the development of MYCIN, and subsequent complex knowledge-

based systems, was the extraction of the necessary knowledge from the human experts

in the relevant fields. Knowledge Acquisition can be defined as follows:

‘The transfer and transformation of potential problem solving expertise from some

knowledge source to a program.’ (Buchanan et al., 1983).

Knowledge Acquisition may involve a wide range of sources such as human

experts, documents, the World Wide Web, etc. Knowledge Acquisition is referred to as

Knowledge Elicitation when the source of the knowledge acquired is specifically a

human expert. The traditional approach to Knowledge Acquisition involves the

following phases:

 Knowledge Engineer learns about the domain: Terminology (Glossary and

Structured Glossary) and the dominant problem solving approaches.

 Domain Expert gets a top-level view of Expert Systems technology.

 Domain Expert solves tasks in the presence of the Knowledge Engineer; then

the Knowledge Engineer solves same/similar tasks and is corrected (if required)

by the Domain Expert.

 Knowledge Engineer encodes knowledge in an Expert System shell and then

does gross debugging of the knowledge base.

 Knowledge Engineer and Domain Expert together use the Expert System to

solve demanding tasks; debugging and modifying the knowledge base if

necessary.

Early attempts to acquire knowledge in this way proved to be so time-consuming and

intellectually demanding that knowledge acquisition was labelled the “bottleneck” in

building knowledge-based systems (Feigenbaum, 1977). The reasons that can make

knowledge acquisition unsuccessful include:

 Miscommunication between the knowledge engineer and the domain expert can

make knowledge acquisition an error-prone process. This can happen especially

when a knowledge engineer is unfamiliar with the domain or when the domain

is too specialised for a knowledge engineer to understand.

18

Chapter 2: Literature Review

 It is not always possible to transfer a domain expert’s knowledge directly to a

system because the respective representations are too dissimilar. In addition, the

facts and principles underlying many domains of interest cannot easily be

encoded in the precise mathematical/logical way that is necessary for

subsequent processing and inference by a machine.

 Human problem solving expertise often relies on ‘common sense’ knowledge

about the everyday world. Such knowledge is so deeply rooted in our

experiences as humans that we may not even realise what we know, or what

knowledge we are using in our reasoning. The existence of this tacit knowledge

can make the knowledge acquisition task formidable.

 The form of questions can affect the answers given by the experts.

 The domain expert may be busy and hence unwilling to cooperate with the

knowledge engineer.

There are various methods that can be used for Knowledge Acquisition. These

methods can be classified in many ways depending on:

(i) the type of knowledge that is acquired, whether it is procedural or conceptual

(e.g., problem solving strategy, classification).

(ii) the type of interaction with the expert (Burge, 1998): Direct methods involve

directly questioning or observing a domain expert performing the job (e.g.,

interviewing). Indirect methods are those where the needed information is

not requested directly. Instead, the knowledge acquisition session is

analysed to obtain the needed information. (e.g., repertory grid).

(iii) whether knowledge is acquired “manually” or with the help of computer-

based tools (e.g., SALT, MORE).

(iv) whether it is uncontrived or contrived (White, 2000): An uncontrived

method seeks to observe an expert during problem solving without

interfering in the problem solving process. In a contrived method, the

knowledge engineer interacts directly with the domain expert, and can

therefore steer the knowledge acquisition process towards topics of

particular interest.

19

Chapter 2: Literature Review

The type of method chosen can have an effect on the knowledge that is acquired. For

example, adopting an indirect method can sometimes obtain additional information than

that provided by direct methods. There are many reasons why an indirect method might

produce more information. One reason is that the indirect method may end up probing

aspects of the problem that the knowledge engineer did not anticipate, and may not have

asked in the direct KA session. Another reason is that some subjects are not as verbal

as other subjects are and are unlikely to give full and detailed answers to direct

questions. A third reason is that some knowledge may be implicit. Implicit knowledge

is knowledge that was either learned implicitly and cannot be expressed explicitly, or

that was once explicit but has become implicit over time as the domain expert has used

it repeatedly and it became “automatic” (Berry, 1987).

The behaviour of the knowledge engineer can also play a significant part in the

effectiveness of the acquisition exercise, and can even harm the experiment by

introducing an unwanted bias. For example, when interviewing a domain expert, the

language used by the knowledge engineer can carry connotations, which influence the

domain expert’s answers. For example, consider the question, do you get headaches

frequently, and if so how often? as opposed to do you get headaches occasionally, and

if so how often?

When choosing a method, there should clearly be a good match between the

type of knowledge required and the type generally produced by the method. For

example, can the proposed method elicit class hierarchies, causal knowledge, examples,

constraints, facts, goals, explanations, justifications, preferences, procedures, or

relations? Cordingley (1989) states that although interviewing (see section 2.1.1) is a

good technique for eliciting conceptual structures, facts, and causal knowledge, its

efficacy for eliciting rules and assessments of weight of evidence is questionable.

Similarly, the repertory grid method (see section 2.1.5) is good for eliciting conceptual

structures, rules and weights of evidence, but bad for eliciting causal knowledge,

procedures, and an expert’s problem solving strategy. A brief review of some KA

methods is given below:

2.1.1 Interviewing

An interview of the domain expert by the knowledge engineer is a common knowledge

acquisition technique. There are several different types of interview

20

Chapter 2: Literature Review

(Diaper, 1989). In an unstructured interview, the knowledge engineer asks probing

questions and records the responses. The style of interviewing is flexible, so that the

domain expert’s reaction can be pursued if the direction looks fruitful. One alternative

is a focussed interview, which concentrates on a single aspect of problem solving, and

covers it in great depth. Another approach is a structured interview, in which the

knowledge engineer keeps strictly to an agenda, and prepares for the interview with a

list of specific questions.

2.1.2 Protocol Analysis

Protocol Analysis (Ericsson & Simon, 1984) involves asking the expert to perform a

task while "thinking aloud." The intent is to capture both the actions performed and the

mental process used to determine these actions. As with all the direct methods, the

success of the protocol analysis depends on the ability of the experts to describe why

they are making their decisions. In some cases, the experts may not remember why they

do things a certain way. In many cases, the verbalised thoughts will only be a subset of

the actual knowledge used to perform the task. One method used to augment this

information is Interruption Analysis (Olson & Reuter, 1987). For this method, the

knowledge engineer interrupts the expert at critical points in the task to ask questions

about why he/she performed a particular action.

2.1.3 Document Analysis

Document analysis involves gathering information from existing documentation. This

may or may not involve interaction with a human expert to confirm or enhance this

information. Some document analysis techniques, particularly those that involve a

human expert, can be classified as direct. Others, such as collecting artefacts of

performance, such as documents or notes, in order to determine how an expert organises

or processes information are classified as indirect (Cordingley, 1989). This method has

been adopted by systems such as the Designers’ Workbench (Chapter 3 of this thesis)

to acquire design knowledge (rules).

21

Chapter 2: Literature Review

2.1.4 Card Sorting

Card Sorting is a specialised indirect method, used for eliciting further knowledge about

a pre-selected set of concepts. When sorting, each concept of interest is described on a

card (the card consists of a picture, name of a concept or a short description), and the

domain expert is asked to divide the pack of cards into separate, but meaningful, piles.

The knowledge engineer records the separation and asks the domain expert to explain

it. Then the process is repeated, and the domain expert is requested to provide a further

consistent separation. This continues until the domain expert can think of no more ways

to separate the concepts. Often, sorting acquires knowledge about classes, properties

and priorities. For example, if the task was sorting pictures of different types of houses,

a subject might sort them into groups “brick”, “stone”, “wood”, etc., with the criterion

being “main material of construction.” The second time, the subject might divide the

cards into groups called “one”, “two”, and “three,” with the criterion being “number of

floors in each building.”

2.1.5 Construct Elicitation (Repertory Grid)

Construct Elicitation methods are used to obtain information about how the expert

discriminates between entities in the problem domain. The most commonly used

construct elimination method is Repertory Grid Analysis. The repertory grid is an

indirect method based on personal construct theory (Kelly, 1955). In this method, the

domain expert is presented with a list of domain entities and is asked to describe the

similarities and differences between them. These similarities and differences are

analysed to derive the important attributes of the entities. After completing the initial

list of attributes, the knowledge engineer works with the domain expert to assign ratings

to each entity/attribute pair. In some cases, attributes are rated as present/not present for

each entity, in others a scale is used where the attribute is ranked by the degree to which

it is present. The ratings are arranged in the form of a grid/matrix and subsequently

analyzed for any existing correlations. Numerical values in cells will allow more

complex numerical/statistical analysis to be done. The type of information acquired by

this elicitation method may be classification, dependencies/relationships or evaluation.

22

Chapter 2: Literature Review

2.1.6 Laddering

Laddering was first introduced by Hinkle (1965), a clinical psychologist, in order to

model the concepts and beliefs of people by an unambiguous and systematic approach.

Laddering is a structured questioning method (indirect method), enabling a hierarchy

of concepts to be established (Corbridge et al., 1994). The knowledge engineer starts

with a so-called seed concept and poses questions such that the domain expert justifies

the position of the concept in a hierarchy, and at the same time offers further knowledge.

For example, given the concept Apple, one might ask ‘Can you give examples that

belong to the concept Apple?’ This should acquire concepts that are lower in the

hierarchy (e.g. Cox, Gala). It is also possible to acquire concepts at the same level in

the hierarchy by asking for alternatives, e.g., ‘What alternative concepts are there that

are similar to the concept Apple?’ Concepts higher in the hierarchy may be obtained by

asking for commonalities, e.g., ‘What have Banana, Apple and Orange got in common?’

An example of knowledge acquired using the laddering method is shown in Figure 2.1.

Figure 2.1: Laddering Method

23

Chapter 2: Literature Review

2.1.7 Use of Computer-assisted/Computer-based tools

KA methods can be error-prone, laborious and time-consuming when applied manually.

Additionally the acquired knowledge has to be encoded into a computer- based system.

Hence, some of the KA methods (e.g., repertory grid) have been incorporated directly

into computer programs with the aim of minimizing the role of a knowledge engineer.

ETS and AQUINAS (expanded version of ETS), both computerised extensions of the

repertory grid method, have been used to derive ‘hundreds’ of small and medium-sized

knowledge-based systems in Boeing (Boose & Bradshaw, 1999) . Researchers have

also concentrated on harnessing the synergy of the different KA methods by building a

computerised workbench. One of the first was a research prototype called ProtoKEW

(Reichgelt & Shadbolt, 1992). This was subsequently re-implemented and has been

marketed as a commercial product, called PC-PACK4 (Goodall, 1996; Milton et al.,

1999; Milton, 2007, 2008). It contains a suite of integrated tools that allows the user to

create, inspect and edit XML knowledge bases. Each tool provides a different way of

viewing the knowledge base. The latest version is PCPACK5 and consists of the

following five acquisition and modelling tools, and five specialised tools:

Acquisition and Modelling Tools:

Protocol Tool – allows the marking up of interview transcripts, notes and

documentation (protocols) to identify and classify knowledge elements to be added to

the KB.

Ladder Tool – facilitates the creation of hierarchies of knowledge elements such as

concepts, attributes, processes and requirements.

Diagram Tool – allows the user to construct compact networks of relations between

knowledge elements such as process maps, concept maps and state-transition diagrams.

Matrix Tool –allows grids to be created and edited that show relations and attributes of

knowledge elements.

Annotation Tool – allows sophisticated annotations to be created using dynamic html,

which include automatically generated hyperlinks to other resources in the KB.

Specialised Tools:

Admin Tool – used to access and manage KBs.

4 www.epistemics.co.uk. Accessed online on 16 May 2008.

http://www.epistemics.co.uk/

24

Chapter 2: Literature Review

Publisher Tool – allows creation of websites using a template driven approach.

Diagram Template Tool – used to create templates for use in the Diagram Tool.

Equation Editor – used to create equations for use in the Annotation tool.

Tool Launcher – is a wizard tool allowing easy access to other tools.

PCPACK supports knowledge engineering methodologies such as

CommonKADS and MOKA (Milton, 2008). These knowledge engineering

methodologies are discussed in the next section. Other examples of computer-based

tools include tools driven by PSMs: SALT, S-SALT, MORE, MOLE, OPAL, a

grammar-driven tool known as COCKATOO, and a KA tool that generates expectations

to develop PSMs, known as EMeD of the EXPECT framework. Tools driven by PSMs

such as SALT, S-SALT, MORE, MOLE, etc, use a knowledge engineering

methodology called Role-Limiting Methods that is explained in section

2.2.1. A brief review of some of the computer-based KA tools is given below:

MORE: MORE (Kahn et al., 1985) is a system that acquires diagnostically significant

knowledge from domain experts by formulating a number of questions. MORE uses a

model-theoretic approach to the acquisition of diagnostic knowledge. It uses a

qualitative model of causal relations together with a theory of how causal knowledge

can be used to achieve more accurate diagnostic conclusions to guide the interview

process.

MOLE: MOLE (Eshelman et al., 1988) is a successor of MORE. It uses a method of

heuristic classification known as the Cover-and-Differentiate problem solving method,

which makes several heuristic assumptions and constructs an initial knowledge base

with the help of domain expert(s). Subsequent interactive problem solving detects errors

in the KB, suggests remedies to the domain expert and makes the required changes to

the KB. An important aim of MOLE is to minimise the number of questions a domain

expert is asked, by making intelligent guesses.

SALT: SALT (Marcus & McDermott, 1989) is a knowledge acquisition tool that uses

the Propose-and Revise problem solving method. In essence, three generic roles may

be identified for Propose-and-Revise (Studer et al., 1998):

• ''design extensions'' refer to knowledge for proposing a new value for a design

parameter, (a way of upgrading an existing entity)

25

Chapter 2: Literature Review

• ''constraints'' provide knowledge restricting the admissible values for

parameters, and

• ''fixes'' make potential remedies available for specific constraint violations.

For each type of role, a fixed menu (or schema) is presented to the domain expert to be

filled out.

OPAL: OPAL (Musen et al., 1988) is a custom-tailored KA tool which is driven by a

problem solving method known as skeletal plan refinement. OPAL allows medical

specialists to enter and review cancer treatment plans for use by an expert system called

ONCOCIN (Shortliffe et al., 1981) that provides therapy advice to physicians who take

care of cancer patients. The cancer therapy task model has been built into OPAL, and

OPAL’s user interface primarily consists of graphical forms that facilitate instantiation

of the task model.

COCKATOO: COCKATOO (White & Sleeman, 2001) is a grammar-driven KA tool

that uses constraint technology to acquire knowledge from the domain experts. The

advantages of this approach include: (i) It provides concise specifications of tasks that

are more readable and save development time (ii) The required properties of each user

input can be checked at acquisition time rather than prior to problem solving or at

problem solving time. (iii) It provides a reactive user interface where the choice of a

particular value for one input might narrow the options for another.

EXPECT: EXPECT (Kim & Gil, 1999) provides a framework to develop KA tools.

EXPECT uses dependencies between factual knowledge and PSMs to find related

pieces of knowledge in their KBS and create expectations from them. To give an

example of these expectations, suppose that the user is building a KBS for a

configuration task that finds constraint violations, and then applies fixes to them. When

the user defines a new constraint, the KA tool has the expectation that the user will

specify possible fixes for cases when the constraint is violated, and helps the user do

so. EMeD (EXPECT Method Developer) is a KA tool that uses such expectations to

support users to develop PSMs.

26

Chapter 2: Literature Review

Figure 2.2: A screenshot of the English-based method editor used here to acquire problem

solving knowledge to compute the time to transport an item in a ship

Source: Kim & Gil (1999)

An English-based Method Editor (Blythe & Ramachandran, 1999; Blythe et al., 2001)

has been developed to help a user modify and add problem-solving knowledge to

existing KBs. The value of the tool lies in the fact that the user need not understand the

syntax of the expert system to make modifications. Two main steps are involved in this

approach: Firstly, the problem solving knowledge is converted into an English- like

structured text fragment and presented to the user. Secondly, selectable parts of the text

are modified by choosing among alternatives that are also presented to the user via an

English paraphrase.

A central theme of this KA research has been how KA tools can exploit

Interdependency Models that relate individual components of the knowledge base in

order to develop expectations of what users need to add next. A screenshot of the

27

Chapter 2: Literature Review

English-based Method Editor is shown in Figure 2.2. Figure 2.2 shows an English-

based front end that describes the method to compute the time to transport an item in a

ship, by dividing the distance to travel by the speed of the ship. The user can alter the

method by selecting a part of the sentence (“speed of the ship”) and choosing from a

set of alternatives provided (shown in the second window from the bottom).

2.1.8 Discussion

Knowledge Acquisition is a critical phase within Knowledge Engineering. The quality

(correctness) of the knowledge acquired affects the performance of a KBS. There are

various methods that can be used for knowledge acquisition, including manual and

computer-assisted tools. There is no single best method for knowledge acquisition. The

type of method to be adopted for knowledge acquisition depends on the type of

knowledge being acquired. Knowledge Acquisition is referred to as Knowledge

Elicitation when the source of knowledge acquired is specifically a human expert.

Several methods and tools have been developed with the aim to either minimize or

eliminate the role of a knowledge engineer in the Knowledge Acquisition process. The

underlying assumption here is that minimizing or eliminating the role of a knowledge

engineer would make the Knowledge Acquisition process less error-prone and less

time-consuming. The Designers’ Workbench uses the KA method of Document

Analysis involving a knowledge engineer to acquire design rules. This thesis presents a

novel approach to relieve the knowledge engineer from doing the error-prone and time-

consuming task of acquiring design rules (expressed as constraints) in the context of the

Designers’ Workbench. The thesis embodies the proposed approach with the design and

construction of a system that has been developed to facilitate domain experts in

capturing and maintaining constraints in engineering design. More details about the

proposed approach and the developed system can be found in Chapter 3.

2.2 Knowledge Engineering Methodologies

Several methodologies and tools have been developed over the years to efficiently

support all the phases of knowledge engineering. A brief review of some of the

knowledge engineering methodologies is given below:

28

Chapter 2: Literature Review

2.2.1 Role-Limiting Methods (RLM)

Role-Limiting Methods (Marcus, 1988) was one of the first attempts to support the

development of KBSs by exploiting the notion of a reusable problem-solving method

(PSM), where a PSM is a model of KBS problem solving behaviour (also known as the

inference system). Examples of PSMs are Cover-and-Differentiate (for solving

diagnostic tasks) (Marcus, 1988) and Propose-and-Revise (for parametric design tasks)

(Marcus & McDermott, 1989). The RLM approach can be characterized as a shell

approach. Such a shell comes with an implementation of a specific PSM and thus can

only be used to solve a task for which the PSM is appropriate. The given PSM also

defines the generic roles that knowledge can play during the problem solving process.

Strong Points:

From the characterization of the PSM (Propose-and-Revise) for SALT, one can see that

the PSM is described in generic, domain independent terms. Thus, the PSM may be

used for solving design tasks in different domains by specifying the required domain

knowledge for the different predefined generic knowledge roles. For example, S-SALT

(Leo, 1995) is an enhancement of SALT system and implements the Propose-and-

Revise problem solving method. S-SALT has been successfully applied to solve the

VT-Sisyphus-II problem, an elevator configuration task that is used in the knowledge

acquisition community as a benchmark. With S-SALT, the domain expert uses a form-

oriented user interface for entering domain specific design extensions. That is, the

generic terminology of the knowledge roles, which is defined by object and relation

types, is instantiated with VT-Sisyphus-II specific instances.

Weak Points:

A problem faced with RLMs is how to determine whether a specific task may be solved

by a given RLM. Such task analysis is crucial. Moreover, RLMs have a fixed structure

and do not provide a good basis when a particular task can only be solved by a

combination of several PSMs. The problem-solving strategy is fixed and cannot be

adapted or augmented. In order to overcome this inflexibility of RLMs, the concept of

configurable RLMs (CRLMs) was developed. CRLMs (Poeck & Gappa, 1993; Fensel

& Poeck, 1994) exploit the idea that a complex PSM may be decomposed into several

29

Chapter 2: Literature Review

subtasks. Each of these subtasks may be solved by selecting a method from a predefined

set of different methods within the CRLM framework. CRLM provides this kind of

flexibility but still comes with a fixed set of knowledge types. Further, there are no clear

examples of where CRLM-developed systems have been used to solve complex (real-

world) tasks.

2.2.1.1 Generic Tasks and Task Structures

The knowledge engineering literature has identified a number of problem types (Hayes-

Roth et al., 1983; Clancey, 1985) such as diagnosis, design etc. and identified for each

problem type a number of problem solving methods (PSMs). Following the work of

Hayes-Roth and Clancey, the notion of a Generic Task (GT) (Chandrasekaran, 1986)

evolved. GTs can be viewed as building blocks that can be reused for the construction

of different KBSs. The basic idea of GTs may be characterized as follows

(Chandrasekaran, 1986; Studer et al., 1998) :

• A GT is associated with a generic description of its input and output.

• A GT comes with a fixed set of knowledge types specifying the structure of

domain knowledge needed to solve a task.

• A GT includes a fixed problem solving strategy specifying the inference steps

the strategy is composed of and the sequence in which these steps have to be

carried out.

Strong Points:

GTs provided a larger vocabulary of task-related terms, and additionally, related the

knowledge to how it was going to be used. The task-view provided important points of

leverage in the generation of explanations of problem solving. The GTs also appeared

to have computational advantages.

Weak Points:

The GT approach is based on the hypothesis that the structure and representation of

domain knowledge is completely determined by its use (Bylander & Chandrasekaran,

1987). Analysis of the GT approach in more detail led to identification of two main

disadvantages (Chandrasekaran et al., 1992):

30

Chapter 2: Literature Review

• No clear distinctions exist between the notion of a task and the notion of the

PSM used to solve the task, since each GT includes a pre-determined problem

solving strategy.

• The complexities of the proposed GTs are very different, i.e. the appropriate

levels of granularity for the building blocks are not clear.

Based on this insight into the disadvantages of the notion of a GT, the so called Task

Structure approach was proposed (Chandrasekaran et al., 1992). The Task Structure

approach makes a clear distinction between a task, which is used to refer to a type of

problem, and a method, which is a way to accomplish a task. In that way a task

structure may be defined as follows: a task is associated with a set of alternative

methods suitable for solving the task. Each method may be decomposed into several

subtasks. The decomposition structure is refined to a level where elementary subtasks

can be directly solved by using available knowledge. This basic notion of task, PSM

and the decomposition structure are perspectives that are shared among most of the

knowledge engineering methodologies in recent years.

2.2.1.2 Overview of RLMs and GTs

RLMs are methods that strongly guide knowledge collection and encoding

(McDermott, 1988). They specify the roles various types of knowledge play in the

operation of each method. The major difference between the role-limiting method

approach and most of the other approaches is the requirement that a RLM be

completely specified (i.e., that all tasks and subtasks be pre-specified down to the

level of primitive operations). A problem faced with RLMs is how to determine

whether a specific task may be solved by a given RLM. Such task analysis is crucial.

A GT defines a task of general utility (such as classification), a method for doing the

task and the kinds of knowledge needed by the method. Complex tasks are

decomposed into generic tasks and the required knowledge is directly described for

any domain in which the task is performed. GTs grouped both task and method

together with each task having a pre-determined problem solving strategy. The Task

Structure approach was then proposed that makes a clear distinction between a task

and a method.

31

Chapter 2: Literature Review

2.2.2 The PROTÉGÉ Approaches

Figure 2.3: The Protégé Approaches

Source: Hengl (2004)

The Protégé approach has evolved over the years (Grosso et al., 1999). Figure 2.3

illustrates the evolution of Protégé approaches. Protégé was developed with the aim to

reduce the knowledge-acquisition bottleneck by minimizing the role of the knowledge

engineer in constructing knowledge bases. This was achieved by using task-specific

knowledge to generate and customize knowledge acquisition tools. The original Protégé

was then modified to explicitly separate the problem-solving method from the domain

knowledge. This led to the Protégé-II approach. The Protege-II approach (Puerta et al.,

1992; Musen et al., 1993; Rothenfluh et al., 1994; Eriksson et al.,

32

Chapter 2: Literature Review

1995b; Gennari et al., 1995; Rothenfluh et al., 1996) aimed at supporting the

development of KBSs by the reuse of PSMs and ontologies. In addition, Protege-II laid

emphasis on the generation of custom-tailored knowledge acquisition tools from

ontologies (Eriksson & Musen, 1993; Eriksson et al., 1994; Eriksson et al., 1995a).

Protege-II relied on the task-method-decomposition structure as followed in Generic

Tasks and Task Structures. The Protégé-II approach introduced declarative mappings

to enable reuse of both ontologies and PSMs. Mapping relations could be formed to

connect the application and method ontologies. In addition, Protégé-II included the

“downhill flow” assumption of classes over instances. The assumption is that classes

were more durable than instances. It was expected that knowledge engineers would use

one tool to define classes and then domain experts would use a separate tool (KA tool)

to create and edit instances.

The Protégé-Win approach emerged later with the goals of:

(i) making knowledge bases more reusable and maintainable by splitting them into

modular components that can be included in one another.

(ii) making software tools more usable by porting them to a standard platform. Protégé

tools became executable in a Windows environment (earlier, they ran on NeXT

workstations). Protégé-Win became a useful tool for building models of small domains

and experimenting with various types of KBSs. However, it suffered from three

limitations:

a) the standard set of user-interface widgets was too limited for many envisioned users.

b) interoperability with other modelling frameworks was limited

c) flexibility was not enough for many domains.

The recent model adopted is that of Protégé-2000 (Grosso et al., 1999; Noy et

al., 2000). However, the most recent implementation (at the time of writing this thesis)

is Protégé 3.2.15. The goals here are to make knowledge bases reusable across

modelling frameworks by adopting standard representation languages and lay

groundwork for addressing scalability issues in knowledge engineering. Protégé-2000

adopts a new OKBC knowledge model that offers three major advantages of greater

expressivity, clean model-theoretic semantics and the possibility of reuse with

distributed ontology servers. Protégé-2000 provides support for modellers to

5 Protégé Ontology Editor and knowledge-base framework, version 3.2.1, Accessed online 02 July 2007 at
http://protege.stanford.edu/download/registered.html

http://protege.stanford.edu/download/registered.html

33

Chapter 2: Literature Review

customise and extend Protégé in task and domain specific ways. Protégé-2000 also

introduces the explicit notion of a project. Projects contain knowledge base and

configuration information.

A knowledge base is simply a collection of frames (it also contains things like

reified slots, facets and axioms). The configuration information contains description of

all the widgets that have been added to the project, information about the knowledge

base server being used and a list of all the projects that are included by the current

project. Protégé-2000 is highly customisable, and has recently been adapted to the new

world of semantic web by reusing its user interface, internal representation, and

framework (Noy et al., 2001). The most recent version of Protégé 3.2.1 supports the

Web Ontology Language (OWL) of the semantic web (Knublauch et al., 2004). Protégé

3.2.1 has been used to develop ontologies in OWL for use by the systems Designers’

Workbench and ConEditor/ConEditor+, that are described later in this thesis.

2.2.3 The CommonKADS Approach

CommonKADS (Common Knowledge Acquisition and Design Support) (Kingston,

1998; Schreiber et al., 2000; Bromby et al., 2003) is a methodology to support

structured knowledge engineering. It supports most aspects of a KBS development

project, such as:

 Project management

 Organisational analysis (including problem/opportunity identification)

 Knowledge acquisition (including initial project scoping)

 Knowledge analysis and modelling

 Capture of user requirements

 Analysis of system integration issues

 KBS design

CommonKADS provides a clear link to modern object-oriented development and uses

notations compatible with UML. CommonKADS consists of the following predefined

set of models:

34

Chapter 2: Literature Review

 Organization model: The organization model supports the analysis of the major

features of an organization. The deficiencies or problems faced by the current

business processes are identified with opportunities to improve these processes

by introducing KBSs.

 Task model: Tasks are the relevant subparts of a business process. The task

model analyzes the global task layout, its inputs and outputs, preconditions and

performance criteria, as well as needed resources and competencies.

 Agent model: The agent model specifies the capabilities of each agent involved

in the execution of the tasks at hand. In general, an agent can be a human or

some kind of software system.

 Knowledge model: The purpose of the knowledge model is to describe in detail

the types and structures of the knowledge used in performing a task. It provides

an implementation-independent description of the roles that different

knowledge components play in problem solving, in a way that is understandable

for humans. This makes the knowledge model an important vehicle for

communication with experts and users about the problem solving aspects of a

KBS.

 Communication model: Here the various interactions between the different

agents are specified. Among others, it specifies which type of information is

exchanged between the agents and which agent is initiating the interaction.

 Design model: The design model gives the technical system specification in

terms of architecture, implementation platform, software modules,

representational constructs and computational mechanisms needed to

implement the functions laid down in the knowledge and communication

models.

The Knowledge Model has three parts, each capturing a related group of knowledge

structures. Each part is called a knowledge category. The first category is the domain

knowledge; this category specifies the domain specific knowledge and information

types required to solve the task at hand. This includes a conceptualization of the domain

in a domain ontology, and a declarative theory of the required domain knowledge. The

second category is the inference knowledge. The inference knowledge describes the

basic inference steps to be made using the domain knowledge. The third category is the

task knowledge. Task knowledge describes what

35

Chapter 2: Literature Review

goal(s) an application pursues, and how these goals can be realized through

decomposition into subtasks and inferences. This “how” aspect includes a description

of the dynamic behaviour of tasks, i.e., their internal control.

2.2.4 The MIKE Approach

In MIKE (Model-based and Incremental Knowledge Engineering) (Fensel & Poeck,

1994; Landes, 1994; Studer et al., 1998), the entire development process is divided into

the following sub activities (Figure 2.4):

Figure 2.4: The MIKE Approach

Source: Studer et al. (1998)

Elicitation: Methods like structured interviews are used for acquiring informal

descriptions of the knowledge about the specific domain and the problem solving

processes. The resulting knowledge expressed in natural language is stored in so- called

knowledge protocols.

36

Chapter 2: Literature Review

Interpretation: During this phase, the knowledge structures identified in the knowledge

protocols are represented as the structure model. All structuring information in this

model, like the data dependencies between two inferences, is expressed in a fixed,

restricted language while the basic building blocks, e.g., the description of an inference,

are represented by unrestricted texts. The knowledge engineer and the expert can use

this representation to communicate with each other.

Formalization/Operationalization: The structure model is the foundation for the

formalization/operationalization process that results in the model of expertise known as

the KARL model. The KARL model has the same conceptual structure as the structure

model while the basic building blocks represented as natural language texts are now

expressed in the formal specification language KARL (Fensel et al., 1998). The formal

specification describes the functionality of the system precisely, yet abstracting from

implementation details.

Design: The Design phase is performed on the basis of the KARL model after it has

been evaluated with respect to the required functionality. This phase captures all the

functional as well as the non-functional requirements of the KBS. The non-functional

requirements include e.g., efficiency and maintainability, and the constraints imposed

by target software and hardware environments.

Implementation: This is the final phase in which the design model is implemented in

the target hardware and software environment to form the KBS.

2.2.5 The MOKA Approach

MOKA (Callot et al., 1999; Klein, 2000; Stokes, 2001) is a methodology that has been

developed for knowledge modelling in design and engineering. From a knowledge

modelling point of view, there are two key issues that have been identified in

knowledge-based design (Klein, 2000): First, there is a close interaction in design

between object level knowledge (components, structures, behaviours, functions, etc.)

and problem solving knowledge (transformations, constraint solving, search). Second,

control of problem solving and strategic reasoning is essential in design. This results in

two challenges of knowledge modelling in design (Klein, 2000): first, to develop

37

Chapter 2: Literature Review

general knowledge modelling schemes that are expressive, powerful and flexible

enough; and second, to adapt these model requirements to the special requirements of

design. This will also allow us to reduce the gap between “general AI” and AI in design

(Smithers, 1998).

Knowledge based engineering (KBE) is defined as the use of advanced software

techniques to capture and re-use product and process knowledge in an integrated way.

KBE systems differ from other knowledge-based systems mainly in terms of geometry

and the high degree of iteration within engineering design. The iteration here means

that building a design requires processing a little bit of knowledge in one area, then a

little in another, then maybe back to the original and so on and the process is far from

linear. The linking between the many parts of the process and, as a consequence, the

complicated linking with the product objects makes it difficult for a KBE (Stokes, 2001)

approach. This led to the development of the MOKA Approach (Methodology and tools

Oriented to Knowledge based engineering Applications). Rolls-Royce is currently

adopting the MOKA approach.

The main objectives of the MOKA project are:

 Reduce the lead times and associated costs of developing KBE applications by

20-25%

 Provide a consistent way of developing and maintaining KBE applications

 Develop a methodology that will form the basis of an international standard

 Provide software tools to support the methodology

MOKA consists of the following elements:

1. Lifecycle: A description of the lifecycle for a KBE application (whether new

or being modified) as a MOKA Route Map to guide you through the life cycle

is provided. The life cycle is described by means of the following six steps:

IDENTIFY – This step aims to investigate the business needs and to determine

the type of KBE system that might satisfy those needs.

JUSTIFY – This step involves the generation of a global Project Plan that is

used together with a business case to seek management approval for the steps

below.

38

Chapter 2: Literature Review

CAPTURE – This step aims to collect the domain knowledge in a raw form and

structure it into an informal model. Engineering design covers a wide variety of

knowledge including product specification, general constraints, conceptual

design knowledge, physical design knowledge, design rationales, and design

process knowledge.

FORMALIZE – This step builds a formal model in two distinct parts: the

product model and the design process model.

PACKAGE – This step involves translation of the formal model into code for a

working KBE system.

ACTIVATE – This step involves the distribution, installation and use of the

KBE application.

2. Representation: A means of representing the knowledge associated with the

application using text and graphics is provided. MOKA uses two layers of

representation. The first is designed to be very user-friendly and to represent the

many different ways in which engineers think about design. This first layer is

called the informal model. In this model, the knowledge is classified into five

types:

Illustrations – for recording past experiences, case histories, anecdotal

knowledge.

Constraints – restrictions on the objects or the attributes of an object.

Activities – the elements of the design process.

Rules – knowledge used to make choices between activities.

Entities – the objects that describe the product.

Each knowledge type has a specific template or form. The set of completed

forms, called ICARE (Illustration, Constraint, Activity, Rule, Entity) forms,

holds the knowledge description for the KBE application.

The second layer of representation is the formal model. The knowledge engineer

takes the knowledge from the linked ICARE forms and converts it into a UML-

style of representation known as MML (MOKA Modelling Language) (Brimble

& Sellini, 2000). The formal model has two key elements: the product model

and the design process model.

39

Chapter 2: Literature Review

3. Tool: A software tool known as “MOKA tool” that helps users apply the

representation and the route map is provided. The tool allows management of

the project and module details. It supports creation of both informal and formal

models. The tool avoids logical inconsistency when developing the product and

process models. The main functions managed by the tool are:

• Create, modify objects and navigate among the different models

(informal model and formal models for product and process)

• Provide different viewpoints and levels of details

• Generate a knowledge book

2.2.6 Discussion

The above sections have provided background information on the various knowledge

engineering methodologies. This thesis uses Protégé to develop ontologies in OWL for

use by systems, namely, Designers’ Workbench and ConEditor/ConEditor+. All the

knowledge engineering methodologies reviewed in Section 2.2 have placed

considerable emphasis on the development of KBSs from sharable and reusable

knowledge components using a structured process. The two central activities in this

type of development are the engineering of reusable components and the acquisition of

domain knowledge. The basic notions of the task, PSM and the decomposition structure

from the Task Structure approach have been adopted in recent methodologies such as

CommonKADS and MIKE. The entire development process is divided into phases with

clearly defined roles in each phase. MOKA has been developed specifically to develop

KBE systems in the field of engineering and design. KBE systems differ from KBSs

mainly in terms of geometry and the high degree of iteration within engineering design.

Rolls-Royce currently adopts the MOKA approach. The knowledge engineering

process does not end after one successfully builds a KBS or KBE system. One needs to

subsequently maintain the KBS or KBE system throughout its lifecycle. Knowledge

Maintenance is discussed further in the next section.

40

Chapter 2: Literature Review

2.3 Knowledge Maintenance

Knowledge Maintenance is concerned with controlling change in a KBS. “Knowledge

Maintenance is the process of reflecting over some knowledge-based system in order to

handle a new situation” (Menzies, 1999). This process involves updating/refining the

contents of the KB so that they are consistent with (a) a set of previously specified task-

solution pairs (b) constraints known about the task (c) domain theory/background

knowledge. The importance of knowledge maintenance is often underestimated. A brief

review of this field is given below.

The issues faced in KB maintenance within engineering were first raised by the

XCON6 configuration system at Digital Equipment Corporation (DEC). “Initially it was

assumed that knowledge-based systems could be maintained by simply adding new

elements or replacing existing elements. However this simplicity proved to be illusory

as indicated by the experience of R1/XCON” (Coenen, 1992). XCON (Soloway et al.,

1987; Barker & O'Connor, 1989; McDermott, 1993) is a rule-based expert system that

configures computer systems. XCON has a very large rule set and underwent constant

change (50% of the rules in XCON were changed each year). Given the large number

of rules that had complex conditional parts, it became quite difficult to update the rules

in the light of new product announcements; it was hard to know if one had found all the

rules that need changing. A new methodology called RIME was developed to help in

the maintenance of XCON. RIME’s philosophy is that complex rules need to be broken

down; in particular, multiple tasks need to be factored out and each task needs to be

made an explicit process. The objectives of these changes were to reduce the size and

complexity of an average rule, and hence better manage the increasing number of rules.

RIME’s impact was felt dramatically in the reimplementation of XCON. RIME

methodology aided the management of large quantities of rules. When adding new

rules, one can now more easily take advantage of existing rules, and thus knowledge

reuse results in a major productivity gain. Although the RIME methodology made it

easier to maintain, the company’s use of XCON was stopped in the early nineties.

Maintenance continued to be a major unsolved problem because of

6 known earlier as ‘R1’

41

Chapter 2: Literature Review

the sheer quantity of rules and their size. “It did the work of 75 people but it took 150

to maintain it” was a joke shared at Digital Equipment Corporation (DEC).

A lesson learnt from the XCON system is that: The XCON system did not

provide a clear separation between component knowledge and processing knowledge,

since constraints on components are often expressed in the production rules. Moreover,

it is not clear how a newly added rule would interact with the existing rules in the

absence of an explicit problem solving method (Frayman & Mittal, 1987).

Enabling a domain expert to maintain his own knowledge base in a knowledge-

based system has long been an ideal for the Knowledge Engineering community.

Bultman et al. (2000a) report their experience in trying to achieve this ideal in a

practical setting, by designing a maintenance tool for a KBS. The KBS considered is a

Company Classification System. The task of this KBS is to classify employers into one

of fifty-five sectors. Classification of an employer is necessary to determine the level

of various insurance contributions for the Dutch social security system, and is based on

the primary activity of the employer. Because of a lack of consistency in the

classifications various people made, and a decreasing number of experts available in

this domain, this KBS was built. The users of this KBS often report bugs and

shortcomings of the system and hence, a lot of maintenance is performed on the system.

The objective here is to develop a maintenance tool to help domain experts directly

implement the required changes in the system without repeated, time-consuming and

error-prone interaction with a knowledge engineer. The approach adopted here is to

provide domain experts with a conceptual model (comprising both task-model and

domain ontology of the system to be maintained) that is close enough to the concepts

familiar to them.

Coenen (1992) discusses a methodology for the maintenance of KBSs, which

consists of a number of distinct stages. Initially the need for maintenance is passed on

to the maintainers in the form of bug reports and change requests. Having established

that some maintenance is required, the next stage is to identify, from a global

perspective, the section of the KB that will require attention and determine the nature

of the maintenance action that will be required. Having determined the immediate

nature of the required action, the next stage is to identify, locally, the elements in the

KB that will also require attention as a result of the proposed change. The next stage is

to consider further maintenance actions required with respect to these elements. For

42

Chapter 2: Literature Review

example, the removal of a rule may require the modification of the rules that call it and

are called by it. The next stage is the implementation stage that should be carried out in

a consistent and sequential manner. The final stage is the testing phase where the

implemented changes are verified and validated. The above methodology was

developed as a result of work carried out on MAKE (Maintenance Assistance for

Knowledge Engineers) project that was concerned with the specification and

development of software tools to support knowledge-based system maintenance.

Coenen concludes that the field of KBS maintenance has been sorely neglected and that

this is the principal reason why KBSs have failed to gain the general acceptance that

was expected when they first came to prominence.

Qian et al. (2005) present principles and approaches for knowledge base

maintenance in an expert system. Development and implementation of maintenance

modules for the expert system for fault diagnosis of an industrial fluid catalytic cracking

unit are reported in detail. During the application of the expert system to fluid catalytic

cracking unit, new rules need to be added into the existing expert knowledge base from

time to time, according to the changes in operating conditions and other circumstances.

The new rules added could conflict with the existing rules. Hence, the new rules added

are verified and screened by an integrality verification module. Algorithms are

proposed for detection of inconsistencies, namely, contradiction, redundancy,

subsumption, circulation and reclusion. This improves the efficiency of the knowledge

base and ensures that the inference engine works properly and effectively. The

following two sub sections present a review of literature, specifically in the fields of

verification and validation, and knowledge refinement respectively.

2.3.1 Verification and Validation

Verification and Validation of KBs is at the heart of knowledge maintenance.

Knowledge-based systems (KBS) are being used in many application areas where their

failures can be costly because of the losses in services, property, or even life (Tsai et

al., 1999). To ensure their reliability and dependability, it is therefore important that

these systems are verified and validated before they are deployed. There is much

confusion about the distinction between Validation and Verification but the

conventional view is that Verification is a process aimed at demonstrating

43

Chapter 2: Literature Review

whether a system meets its specified requirements; this is often called "building

the system right". Validation is a process aimed at demonstrating whether a system

meets the user's true requirements; this is often called "building the right system"

(Meseguer & Preece, 1995). There have been several systems developed to verify and

validate rule-based systems. A brief review of work done in this area is given below:

ONCOCIN: The ONCOCIN Rule Checker (Suwa et al., 1982) can be considered as

the first verifier referenced in the literature. It detects the following issues in attribute-

value rule bases: conflict, redundancy, subsumption and missing rules. Rules are

grouped by their concluding attribute, forming a table for each group. Verification

issues are tested on each table, by static comparison of rules.

CHECK: The CHECK (Nguyen et al., 1985) system was developed to verify the

consistency and completeness of knowledge-based systems built using the Lockheed

Expert Systems development environment. In addition to conflicts, redundancy and

subsumption, the system detected unnecessary if-conditions, circular rules, illegal

attribute-values, unreachable conclusions, dead-end if-conditions and goals.

ONCOCIN Rule Checker and CHECK perform only a partial analysis of

inconsistency (conflict) and redundancy because they test these issues locally,

comparing static pair of rules and ignoring rule chaining. This problem was solved by

subsequent systems such as KB-REDUCER (Ginsberg, 1988) and COVADIS (Rousset,

1988). The KBs considered by all these systems were forward-chaining propositional

rule bases.

COVER: COVER (Preece et al., 1992) was another tool for verification of rule- based

systems that detected a wider range of anomalies. COVER carries out seven verification

checks: redundancy, conflict, subsumption, unsatisfiable conditions (rules that cannot

be fired, missing values), dead-end rules, circularity and missing rules. The rules had to

be written in, or converted to, a language based on first-order logic. The worst-case

complexity after theoretical analysis for rule checks is O(n2) for n rules, as every rule

in KB is compared against all other rules. This system was applied to many real world

KBs and it detected genuine and potentially serious faults in each

44

Chapter 2: Literature Review

KB to which it was applied. This system was extended to verifying multi-agent systems

and became known as COVERAGE (Preece, 1999).

2.3.2 Knowledge Refinement

One of the main aims of knowledge refinement is to improve the performance of an

imperfect (faulty) KB. There have been various tools developed to enable knowledge

refinement. Some examples are given below:

TEIRESIAS: TEIRESIAS (Davis, 1979) helped domain experts detect shortcomings

and also make refinements in the KB of one of the earliest expert systems, MYCIN

(Shortliffe, 1981). If the expert (physician) did not agree with the output (diagnosis) of

MYCIN, TEIRESIAS enabled the expert to identify the discrepancies by systematically

tracing the line of reasoning.

Figure 2.5: KRUST Refinement System

Source: Craw & Sleeman (1995)

45

Chapter 2: Literature Review

KRUST: KRUST (Craw & Sleeman, 1990, 1995) is an automated refinement system

for knowledge-based systems. The system is presented with a training case, where the

expert’s conclusion conflicts with the KBS’s conclusion. KRUST implements a set of

possible refinements to the KB so that the KBS now suggests the expert’s conclusion.

Various filters use evidence suggested by other task-solution pairs to remove ineffective

refinements. When KRUST terminates, the expert is usually given a single refined KB

that KRUST has judged to be the best. A flowchart showing the process in KRUST is

given in Figure 2.5. An important assumption is that the KB needs only minor

“tweaking” rather than a major overhaul.

STALKER: STALKER (Carbonara & Sleeman, 1999) is an extension of KRUST. It

has two major enhancements. Firstly, the refinement suggested has been augmented by

the introduction of inductive refinement operators. Secondly, the testing phase has been

greatly speeded up by using a Truth Maintenance System. STALKER was tested on

two real-world rule bases and proved to be 50 times faster than KRUST.

CONREF: CONREF (Winter et al., 1998) is a system that was developed to help

British Aerospace make efficient use of their inventory of fasteners. Constraint

satisfaction techniques are used to determine which fasteners are suitable for a particular

application, given a design KB. Additionally knowledge refinement techniques are used

to refine the KB, if the domain expert (an Airbus designer) disagrees with the retrieved

fasteners. The system is also able to generate reports, describing the frequency of

retrieval of specific fasteners and the contexts of their use.

TIGON: TIGON (Sleeman & Mitchell, 1996) is a system that helps in the diagnosis of

turbine faults by providing diagnostic information which helps an engineer detect the

nature and location of faults. The system consists of four co-operating subsystems

– a Learning Module which learns the fault detection and diagnosis models; a

Monitoring Module that monitors the turbine’s behaviour and detects when it is

behaving abnormally; a Diagnosis Module that tries to determine what is causing the

abnormality; and a Transformation Module that modifies the knowledge bases so that

they are applicable to further turbines. If any inconsistencies are reported by the system,

the expert is asked to suggest changes to the set of cases, the causal graph or the

descriptors in the data set.

46

Chapter 2: Literature Review

REFINER++: REFINER++ (Aiken & Sleeman, 2003) is a system that has been

developed to help domain experts classify data, and has largely been applied in the

medical domain. The domain expert is required to specify which category each case

belongs to; Refiner++ then infers a description for each of the categories and reports

inconsistencies that exist in the dataset. An inconsistency occurs when a case matches

a category other than the one to which the expert has assigned it. If inconsistencies have

been detected, the system suggests ways of dealing with the inconsistencies by refining

the dataset; however, it is the domain expert who selects the actual refinements to be

applied.

ReTAX++: ReTAX++ (Lam et al., 2005; Lam et al., 2008) is a system that has been

developed to help knowledge engineers browse and resolve inconsistencies present in

ontologies. The system uses graph-based algorithms to detect which relationships

among concepts cause inconsistencies and provides the knowledge engineer with

various options to correct them.

2.3.3 Discussion

The review of literature in the field of knowledge maintenance has reported on issues

faced during maintenance and also on some systems that have been developed to

support the verification, validation and refinement of rule-based systems. Verification,

validation and refinement are three important activities in knowledge maintenance. An

important lesson that can be learnt is that the initial phases of knowledge acquisition

and knowledge modelling in knowledge engineering have considerable effects on the

maintenance phase. This is particularly evident from the problems faced by the

R1/XCON configuration system. It is important to explicitly record the contexts in

which each rule is applicable, during the KA phase. Recording the contexts should help

identify all the rules that need to be updated during maintenance. This thesis investigates

how an explicit representation of contexts together with the engineering design rules

can help in the maintenance of a KB. Knowledge modelling also plays an important

role in the maintenance phase. As indicated in the R1/XCON system, if no clear

separation is provided between component knowledge and processing knowledge, it

can cause serious problems during the maintenance of a system.

47

Chapter 2: Literature Review

The following section provides a review of work in the field of engineering

design. The thesis has used engineering design as an application domain.

2.4 Engineering Design

In engineering design literature, three phases of design are generally identified:

conceptual design, embodiment design and detailed design (Pahl & Beitz, 1995;

O'Sullivan, 2002b; Ullman, 2003). During conceptual design, the designer searches for

a set of broad solutions to a design problem, each of which satisfies the fundamental

requirements for the desired product. The embodiment phase of design is traditionally

regarded as the phase in which an initial physical design is developed. This initial

physical design requires the determination of component arrangements, initial forms

and other part characteristics. The detailed phase of design is traditionally regarded as

the phase during which the final physical design is developed. The final physical design

requires the specification of every detail of the product in the form of engineering

drawings and production plans.

2.4.1 Constraints in Engineering Design

Most decisions in daily life involve considering some form of restriction on the choices

that are available. For example, the destination to which someone travels has a direct

impact on their choice of transport and route: some destinations may only be accessible

by air, while others can be reached using any mode of transport. Formulating decision

problems in terms of parameters and the restrictions that exist between them is an

intuitive approach to modelling them. These general restrictions can be referred to as

“constraints” (O'Sullivan, 2002b).

Engineering Design is constraint-oriented and much of the design process

involves the recognition, formulation and satisfaction of constraints (Serrano &

Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a design rule that needs

to be satisfied. Constraints are continually being added, deleted and modified

throughout the development of a new product. Design begins with a functional

specification of the desired product: a description of properties and conditions that the

product should satisfy (i.e. constraints). The original set of functional requirements are

augmented, changed and/or refined as the design solution evolves. The resulting

48

Chapter 2: Literature Review

constraint set may contain conflicting and/or unrealizable requirements. The

management of these constraints throughout the evolving design involving all the

phases is a non-trivial task. The constraints are often numerous, complex and

contradictory.

Particularly, in more complex designs, where form, function and physics

interact strongly, it is difficult to keep track of all relevant constraints and parameters,

and to understand the basic design relationships and tradeoffs. Constraint-based

approaches to supporting conceptual design have been reported in the literature for quite

a number of years (Gross et al., 1988; Serrano & Gossard, 1992; O'Sullivan, 2002b).

Effective tools for constraint management are of great importance in knowledge-based

systems for conceptual design. They provide designers with assistance during the early

stages of design. In addition, they will help close the gap between novice designers and

experienced designers. The interactive constraint-based approach presented in

O'Sullivan (2002b) is based upon an expressive and general technique for modelling:

the design knowledge which a designer can exploit during a design project; the life-

cycle environment which the final product faces; the design specification which defines

the set of requirements that the product must satisfy; and the structure of the various

schemes that are developed by the designer. A computational reasoning environment

based on constraint filtering (Bowen & Bahler, 1992; Bowen, 1997) is proposed as the

basis of an interactive conceptual design support tool. Using such a tool, the designer

can be assisted in developing and evaluating a set of schemes that satisfy the various

constraints that are imposed on the design. In particular, the designer can be assisted in

synthesising a number of alternative schemes for the required product. The consistency

of each scheme is constantly monitored, as is the consistency of each scheme with

respect to the design specification and the other schemes that have been developed.

There have been several constraint-based applications that involve constraint

solving during post-conceptual phases of design. The CADET system was developed

as a computer tool to support embodiment design (Thorton, 1996; Yao, 1996). CADET

consists of a generic database of components that can be used to develop a constraint-

based model of the geometry of the product being designed. The IDIOM system uses

constraint solving on geometric parameters for floor-planning (Lottaz et al., 1998).

SpaceSolver uses the notion of solution spaces, defined by sets of constraints on

continuous domains, as a basis for supporting interactive design (Lottaz

49

Chapter 2: Literature Review

et al., 2000). Many constraint-based systems reported in the literature have been

developed for supporting reasoning about purely geometric aspects of design for use

with CAD systems (Bhansali et al., 1996; Shimizu & Numao, 1997; Gao & Chou,

1998a, 1998b). These systems have been developed to address aspects of the design

process that are too specific to geometric CAD to be reviewed in depth here. However,

to solve constraints in design, representation of constraints still remains a challenge

facing the design engineers (Lin & Chen, 2002).

One of the first attempts to manage constraints for automation of computation

in engineering applications was the work done by Harry (1962) and Steward. Since then

there has been considerable amount of work done on the representation, use and

management of constraints including the development of rule-based systems. Rule-

based (expert) systems have been applied to assist in a variety of engineering design

tasks such as: design for VAX computer systems by Digital equipment Corporation

(this company was acquired in June 1998 by Compaq, which subsequently merged with

Hewlett-Packard in May 2002): R1—(McDermott, 1982); design system for small

computers: M1—(Brown & Chandrasekaran, 1985); design of VLSI circuits:

VEXED—(Mitchell et al., 1985); configuration of microcomputer systems:

COSSACK—(Frayman & Mittal, 1987); design of air cylinders: AIR-CYL—(Brown

& Chandrasekaran, 1989); design of facilities on construction sites: SightPlan—

(Tommelein et al., 1991); design of elevators: VT—(Marcus et al., 1992), design of

buildings: HI-RISE—(Maher, 1988); CONGEN—(Sriram, 1997); design of paper-

feeding mechanisms of photocopiers: PRIDE—(Koo et al., 1998), design of pneumatic

systems: PNEUDES—(Shin & Lee, 1998). Rule based systems have been shown to be

very difficult to maintain and in many cases had to be completely rewritten so as to

function in a production environment (Soloway et al., 1987).

Frayman & Mittal (1987) classified constraints into explicit constraints and

implicit constraints. Explicit constraints enumerate a set of possibilities to be selected

from, for example, the word processing package WRITER requires the operating

system DOS version 2.1 or 3.1. Implicit constraints do not contain explicit enumeration

of alternatives but contain enough information to reconstruct such a set of all currently

available components, for example, the word processing package WRITER requires the

operating system DOS version 2.1 or later versions. They pointed out that processing

of implicit constraints is more complicated than the

50

Chapter 2: Literature Review

processing of explicit constraints, but has benefits for the maintainability of the

system.

It became important to represent the defaults and preferences declaratively as

constraints, rather than encoding them in the procedural parts of the program (Borning

et al., 1989). In most cases, domain-oriented or method-oriented tools (in the form of

templates) were provided to capture constraints/rules from the domain experts. The cost

of developing such tools was high and became an issue, especially when their restricted

scope is taken into account (Eriksson et al., 1995a).

The use of constraint processing techniques for supporting configuration design

has been widely reported in the literature (Barker & O'Connor, 1989; Wielinga &

Schreiber, 1997; McGuinness & Wright, 1998b, 1998a; Sabin & Weigel, 1998;

Carnduff & Goonetillake, 2004). Configuration can be regarded as a special case of

engineering design. The key feature of configuration is that the product being designed

is assembled from a fixed set of predefined components that can only be connected in

predefined ways. The core of the configuration task is to select and arrange a collection

of parts in order to satisfy a particular specification. The growing interest in

configuration systems is reflected by the level of interest reported from industry. The

role of constraint-based configurators has been reported in a number of reviews (Sabin

& Weigel, 1998). The configuration problem can be naturally represented as a CSP. In

general, a configuration problem can be formulated as a CSP by regarding the design

elements as variables, the sets of predefined components as domains for each of the

design elements and the relationships that must exist between the design elements as

constraints.

Constraints can also be used to state the compatibility of particular arrangements

of components and connections. One of the earliest works in the field of constraint-

based support for configuration was based on dynamic constraint satisfaction (Mittal &

Falkenhainer, 1990). The key characteristic of dynamic constraint satisfaction problems

is that not all variables have to be assigned a value to solve the problem. Depending on

the value of particular variables, other variables and constraints may be introduced into

the network. Inspired by this approach, the use of constraint processing for

configuration problems in complex technical domains emerged (Haselbock &

Stumptner, 1993; Fleischanderl et al., 1998). The Designers’ Workbench mainly deals

with problems that lie in the domain of configuration (Fowler et al., 2004). The

Designers’ Workbench uses an ontology to represent

51

Chapter 2: Literature Review

elements in a configuration task. The Designers’ Workbench has concentrated on

checking that the constraints are satisfied by a configuration produced by a human

designer, rather than finding a solution. This has implications for tractability, in that

solving a CSP is a NP-complete problem, whereas checking a solution can be done in

polynomial time. The system has been implemented so that the human designer is free

to use his or her engineering expertise to override constraints that are not deemed

applicable to the current situation.

Description logics have been used to develop commercial configurators in

telecommunication and automotive industries (McGuinness & Wright, 1998b, 1998a;

Rychtyckyj & Reynolds, 2000). Concepts can be defined corresponding to the classes

of an ontology and individuals correspond to instances. Forward chaining rules can be

defined, which are associated with concepts but are applied only to individuals. These

rules are used to enforce constraints that are generic, i.e. defined on classes of objects,

rather than to specific individual objects. Description logics provide logical completion

of information and can detect any inconsistencies formed in the knowledge base.

However, description logics have limited expressive power.

Some of these description logic-based systems (Prose, DLMS) have been used

in industries since the 1990s. One such system is Ford’s Direct Labor Management

System in the very dynamic domain of process planning for vehicle assembly. The

maintainability of the systems can become very difficult over time due to changes in

the following areas: the external business environment, the processes and physical

concepts being modelled, and the underlying hardware and software architecture. The

experience of using DLMS indicated that user editing of the knowledge base has not

been very successful either from the user viewpoint or from the developer side. The

editing of the KB requires a deeper understanding of the knowledge representation

scheme than is needed for updating a spreadsheet or database. This necessitated the

creation of a complex user interface that many users found difficult to master. In

addition, most of the user changes to the system consisted of lexical information, which

required properties such as parts of speech to be specified. This was often done

incorrectly and introduced errors into the system. This meant that the developers had to

spend time reviewing and correcting user edits in order to catch these types of errors.

Other problems were caused by users adding misspelled terms, alternate spellings, and

different abbreviations for the same terminology. The process of checking this kind of

errors was manually intensive.

52

Chapter 2: Literature Review

Another approach to develop configurators was to combine constraints and

ontologies. Junker & Mailharro (2003) describe a system, ILOG Configurator, that

combines the power of description logic (to describe the parts used in a configuration),

with constraint programming (to solve the configuration problem). The description

logic uses classes that are either abstract or concrete. Concrete classes correspond to

actual parts (e.g., bolt) while abstract classes represent features (e.g., hole). Properties

are used to describe the instances of a class. Generic constraints can be defined in a

constraint language that allows numeric and symbolic constraints. To solve a

configuration problem, a description logic representation of the class hierarchy and the

constraints are converted into a constraint satisfaction problem. Laburthe (2003)

extends CSPs to cases where variables have domains that are taken from a hierarchy.

This differs from the approach of other systems such as the Designers’ Workbench,

ILOG (Junker & Mailharro, 2003) and Prose (McGuinness & Wright, 1998b, 1998a) in

that these systems are concerned with constraints over values of properties of instances.

Laburthe’s approach aims to find the entities in a hierarchy that will satisfy the

constraints.

Increased complexity and size of configurator knowledge bases can make the

user of a configuration system increasingly challenged to find the source of the problem

whenever it is not possible to produce a working configuration, i.e., the configuration

process is aborted. Ultimately, the cause of an abort is either an incorrect knowledge

base or unachievable requirements. Automated support of the debugging process of

such KBs is a necessary prerequisite for effective development of configurators.

Felfernig et al. (2004) show that this task can be achieved by consistency-based

diagnosis techniques. They basically employ model-based diagnosis techniques using

positive and negative examples for this purpose. This means that positive configuration

examples should be accepted by the configurator whereas negative examples should be

rejected. The examples therefore play a role much like what is called a test case in

software engineering, i.e. they provide an input such that the generated output can be

compared to the tester’s expectations. Once a test has failed, diagnosis can be used to

locate the parts of the KB responsible for the failure. Such parts will typically be

constraints that specify legal connections between components, or domain declarations

that limit legal assignments to attributes. These constraints and declarations, written as

logical sentences will serve as diagnosis components when the problem is mapped to

the model based diagnosis approach.

53

Chapter 2: Literature Review

A second type of situation where diagnosis can be used is the support of the

actual end user where the user’s requirements are not satisfied even though the

knowledge base is correct, e.g., because she/he placed unrealistic restrictions on the

system to be configured. An algorithm has been proposed for computing diagnoses. The

overall time for diagnosing a problem is split into time needed for consistency checking

(solution search for the configuration problem), time for conflict generation and

diagnosis time. The experimental results showed the suitability of the approach to

commercial configurator development environments. It has to be noted that systems

such as the Designers’ Workbench differ from the configurators used in the above

approach because Designers’ Workbench performs constraint checking and do not

involve constraint solving (solution search for the configuration problem). An

interesting outcome of their experiments is that in typical declarative configuration

knowledge bases, there are only few interdependencies among constraints, i.e. the size

of the minimal conflicts is typically very small (up to three or four constraints).

Goonetillake & Wikramanayake (2004) propose a framework for the

management of evolving constraints in a computerized engineering design

environment. The evolving constraints are embedded in a class definition. There is a

facility to incorporate constraint evolution. The framework is based on a Constraint

Version Object (CVO). Each CVO contains a set of integrity constraints. CVOs are

affected by (i) modification(s) to existing constraints (ii) introduction of new constraints

(iii) omission of previously used constraints (iv) any combination of (i) – (iii). A new

CVO (child) contains only the changes made to its parent CVO constraint set. There is

a mechanism in the child CVO to inherit constraints from the parent, redefine and alter

constraints that were already defined in the parent and leave out constraints defined in

the parent. Thus, a chain of CVOs is generated with the latest CVO usually becoming

the default CVO. This facilitates the maintenance of constraint evolution history.

Automatic validation is performed when a new CVO is produced. One can retrieve the

set of constraints applicable to a particular version. The versions are stored and managed

by a DBMS. Thus, the framework to manage the evolving constraints in an engineering

design environment is proposed. Constraints are updated and not overwritten when they

evolve. However, the framework has limited expressivity. One cannot express

declarative first-order logic quantified constraints and it is highly domain specific. A

considerable amount of work would have to be invested to adapt the framework to

another domain. No information about

54

Chapter 2: Literature Review

the context in which the constraints are applicable is recorded by the system. This could

lead to problems during maintenance and may result in inappropriate constraints being

applied. Also, there is no maintenance support provided to detect any conflicts,

redundancy or subsumption between constraints. The research work reported in this

thesis aims to address such problems.

2.4.2 Concurrent Engineering and Integrated Product Teams

Concurrent Engineering which is sometimes called Simultaneous Engineering or

Integrated Product Development (IPD) was defined by the Institute for Defense

Analysis (IDA) in its December 1988 report 'The Role of Concurrent Engineering in

Weapons System Acquisition” as

“Concurrent Engineering is a systematic approach to the integrated, concurrent design

of products and their related processes, including manufacture and support. This

approach is intended to cause the developers, from the outset, to consider all elements

of the product life cycle from conception through disposal, including quality, cost,

schedule and user requirements.” (Winner et al., 1988; Cleland, 2004)

Increasingly, it is being realised that success of product development in industry

requires integration between the various phases of the product life cycle. One of the key

aspects of this integration is that, during the design of an artefact, due consideration

should be given to facilitating the down-stream phases of the life cycle. This is

frequently known as “Design for X” (or DFX), where the X ranges over such issues as

manufacturability, serviceability, assembly and so on (Bowen, 2001). For example, the

design for manufacture (or DFM) is defined as establishing the shape of components to

allow for efficient, high-quality manufacture. For any component, many manufacturing

processes could be used in its manufacture. For each manufacturing process, there are

design guidelines that, if followed, result in consistent components and little waste. A

detailed literature survey conducted on the state of the art of the concurrent engineering

technique in automotive industry revealed that the technique is very powerful in

achieving successful products in the automotive industry (Sapuan et al., 2006). Sapuan

and his colleagues stated that the

55

Chapter 2: Literature Review

companies who adopted this technique have gained tremendous benefit in terms of

reduced time-to-market, low cost and improved quality.

Concurrent Engineering attempts to maximise the degree to which design

activities are performed in parallel. A number of researchers in the constraint processing

community have developed constraint-based technologies that support integrated

approaches to product development (Bowen & Bahler, 1992; Bowen, 2001; O'Sullivan,

2002a). The analogy between the computational concept of a constraint and the

concurrent engineering concept of mutually constraining influences between different

phases of the product life cycle suggests that constraint networks may be the right basis

on which to develop a generic architecture for software to support concurrent

engineering. Constraints can be used to express in an explicit way the mutual

restrictions exerted on each other by artefact functionality, component/material

properties, and life-cycle processes (Bowen, 2001).One of the critical issues that must

be addressed in supporting integrated design is the issue of conflict resolution and

negotiation. Constraint-based approaches to managing conflict in collaborative design

systems have been reported (Bahler et al., 1994; Haroud et al., 1995; Abdalla, 1997,

1998; Lottaz et al., 2000). Traditional conflict resolution techniques in constraint-based

models of the design process use backtracking and constraint relaxation.

The Designers’ Workbench has been developed with a view to support

concurrent engineering. In the Designers’ Workbench, a domain ontology can be used

to incorporate different aspects of a product life-cycle. Design rules are expressed as

constraints over a domain ontology. Typically, complex engineering artefacts are

designed by teams who may not be located in the same building or even city. Designers

in Rolls-Royce, as in many large organizations, work in teams. Thus, it is important

when a group of designers are working on aspects of a common project, that the

subcomponent designed by one designer is consistent with the overall specification, and

with those designed by other members of the team. Additionally, all designs have to be

consistent with the company’s design rule book(s). Making sure that these various

constraints are complied with is a complicated process and so the Designers’

Workbench seeks to support these activities. Constraint violations are reported to the

human designer together with a link to the source document describing the constraint.

The designer could then adjust the appropriate property values using the GUI to resolve

the constraint violations. The system has been implemented so that

56

Chapter 2: Literature Review

the human designer is free to use his or her engineering expertise to override constraints

that are not deemed applicable to the current situation (Fowler et al., 2004). Hence, the

main difference between Designers’ Workbench and other previously reviewed

constraint-based systems to support concurrent engineering is that Designers’

Workbench does not perform constraint solving or employ any conflict resolution

strategies. The Designers’ Workbench performs constraint checking, reports any

constraint violations and facilitates the human designer to resolve the constraint

violations.

Collaborative engineering design activities are influenced not only by the

technological factors, but also by the social interactions among various stakeholders

with different perspectives. An article by Lu & Cai (2001) describes a generic

collaborative design process model based on a socio-technical design framework that

is suitable to represent, analyse and evaluate the collaborative design activities. Lu and

Cai describe collaborative design process as a perspective evolution process. They

emphasise that while the technical decisions are dealing with “what” and “how”, the

social interaction, which is about “why” and “who” is indispensable to the negotiations

among the collaborative design decisions. They point out that most of the conflicts in

the collaborative design are caused by the discord among the stakeholders’

perspectives. Hence, in collaborative design processes, the influence of one’s decision

making in a specific domain to others’ decision making in different sub problems should

be represented, analysed and evaluated. They use Petri nets as topological process

representation tools and adapt them for collaborative design process modelling. A

methodology of design conflict management is developed with the design process

representation model. After that, a prototype collaborative design support system,

which is a computer implementation of the methodology, is discussed. Similarly, the

paper by Veeke et al. (2006) defines a conceptual interdisciplinary model that can be

used by all domains involved in the design of an industrial system. The model serves as

a common frame of reference to support communication and decision making by

different mono disciplinary approaches. The model is also used to record conditions,

decisions and assumptions that lead to the final design.

The article by Crowder et al. (2003) presents a future socio-technical scenario

to capture, share and reuse knowledge within the engineering design environment. In

the scenario, it is assumed that the technical elements of the future design

57

Chapter 2: Literature Review

environment have been embodied in an application termed KTfD (Knowledge Tools

for Designers). KTfD includes tools such as Tablet PCs with handwriting recognition

software and software to resolve sketches. KTfD also provides interfaces to specific

engineering packages. KTfD is able to access information including the full range of

office and data analysis tools from anywhere in the design office through the local

wireless network. The use of KTfD would increase accountability by making the input

of a designer visible to other designers and allow decisions to be traceable. However,

the presumption that all processes in the future should be based on IT systems was

strongly resisted during their discussions with designers. It was felt that there is a

preference for face-to-face interaction and social support, rather than using technology,

such as teleconferencing. One of the key issues for them was for any system to be

accurate and reliable. In addition, in many cases the designer may not fully understand

exactly what is required and therefore may not know what type of expertise or

information is required to resolve the problem. With a human based system, the

question and problem can be discussed and interpreted for the user, making it more

likely to proceed with maximum trust. Wallace & Ahmed (2003) and Aurisicchio et al.

(2006) have performed studies on how engineering designers obtain information. Two

main questions are addressed: how do designers currently obtain their information and

what is the best way to help novice designers obtain appropriate information. The

studies showed that documents were very seldom used as a source of design information

and for around 90% of information requests designers contacted another person. In

addition, novice designers were unaware of the strategies adopted by experienced

designers and failed to ask the right questions to the right people.

Recent work done by Fruchter et al. (2007) at Stanford present an integrated

framework that enables collaborative design exploration, knowledge reuse and decision

making. A working prototype, called CoMem-iRoom that leverages and integrates two

software environments, CoMem and iRoom is presented. CoMem (Fruchter & Demian,

2002) is a collaboration technology that facilitates context-based reuse of corporate

knowledge in a single-user setting for the architecture, engineering, construction teams

and individuals in the design process. CoMem allows for context based visualisation

and exploration of large hierarchical project databases. CoMem uses a map metaphor

for the overview. The area on the map allocated to each item is based on a measure of

how much knowledge this item encapsulates, that is, how

58

Chapter 2: Literature Review

richly annotated it is, how many times it is versioned, how much external data is linked

to it. Each item on the map is colour coded by a measure of relevance to the designer’s

current task. Currently, this relevance measure is based on textual analysis of the

corporate memory using the latent semantic indexing (LSI) algorithm (Landauer &

Dumais, 1995; Demian & Fruchter, 2005). The iRoom architecture (Johanson et al.,

2002) is a technology that enables communication between discipline-specific control

applications running on multiple machines. By making CoMem the nodal application

of the iRoom architecture, they extend the contextual visualisation and exploration

functionality provided by CoMem from a single-user to a multi-user interactive setting,

thereby enabling collaborative exploration in project group meetings and knowledge

reuse discussions.

Other recent work includes a general type net-based collaborative product

design support system called CoDesign Space system designed by Tian et al. (2007).

The system aims to satisfy the requirements of geographically dispersed collaborative

design by integrating several collaborative design support tools that can be used

independently. The several collaborative design support tools that can be integrated

include a collaborative virtual assembly tool, a collaborative viewing and markup tool,

a conflict-management tool, a visual document-management tool, a collaborative task

management tool and a collaborative design resource repository management tool. The

sharing and visualisation of product information are the foundation of Internet-based

collaborative design and manufacturing (Zhang et al., 2004). CoDesign Space uses

XML and VRML technologies to resolve the sharing and integration problem of

heterogeneous product model information. VRML is a language that enables

information sharing and integration among geometry models from heterogeneous CAD

systems. VRML is more suitable for transfer over the internet when compared to STEP

based CAD model files that are often very large. Collaborative work can also be realised

by the communication and management mechanism of agents (Cutkosky et al., 1993;

Anumba et al., 2001; Wu et al., 2006).

Ontologies are increasingly becoming important in the fields of intelligent

searching on the web, knowledge sharing, reuse and management. There has been an

increasing number of research projects applying ontological techniques in the context

of product development (Moore et al., 1999; Roche, 2000; Ciocoiu et al., 2001; Lin &

Harding, 2003; Lee et al., 2009). The paper by Cheung et al. (2006) reports on utilizing

ontologies to share manufacturing knowledge during product development in

59

Chapter 2: Literature Review

a collaborative and distributed manner. Ontologies are particularly useful in a

collaborative and distributed environment because they provide a shared and common

understanding (or agreed vocabulary) of a domain that can be communicated between

people and application systems. Apart from providing a common understanding,

Valarakos et al. (2004) states that ontologies can be used to facilitate dissemination and

reuse of information and knowledge. The research work reported in this thesis uses an

ontology to represent domain knowledge. Design rules are expressed as constraints over

the domain ontology. Inferencing over the domain ontology is done to detect various

refinements (inconsistency, subsumption, redundancy and fusion) between pairs of

consraints. Thus, ontologies play an important role in supporting the maintenance of

constraints. More details regarding the use of ontologies in supporting the maintenance

of constraints can be found in subsequent chapters of this thesis.

2.4.3 Design Rationales

A large amount of design information that is generated during design does not get

recorded in formal design documentation. Some of this information is often referred to

as design rationale, but can include any sort of knowledge of the who, what , when,

where, why, and how of design (Richter & Abowd, 1999). Rationale can include

assumptions made about the system, the alternatives considered and the reasoning

behind decisions. Some other definitions of design rationale from literature are as

follows:

“Design rationale means information that explains why an artefact is structured the way

that it is and has the behaviour that it has” (Conklin & Begeman, 1988)

“A design rationale is an explanation of how and why an artefact, or some portion of it,

is designed the way it is” (Gruber & Russell, 1991)

“A design rationale is a representation of the reasoning behind the design of an artefact”

(Shum & Hammond, 1994)

“Design rationale means statements of reasoning underlying the design process that

explain, derive and justify design decisions” (Fischer et al., 1995)

“Design rationales include not only the reasons behind a design decision but also the

justification for it, the other alternatives considered, the tradeoffs evaluated, and the

argumentation that led to the decision” (Lee, 1997)

60

Chapter 2: Literature Review

While all these definitions have their merits, Richter & Abowd (1999)’s

description covers all aspects of design rationale. The study of design rationale spans a

number of diverse disciplines, touching on concepts from research communities in

mechanical design, software engineering, artificial intelligence, civil engineering,

human factors and human-computer interaction research (Hu et al., 2000). It is

commonly accepted that the IBIS (Issue-Based Information System), proposed by Rittel

(1972) is the first formal presentation of design rationale (Shum, 1991). The initial IBIS

was based upon planning and social policy formulation problems. However, the demand

for a formal method of system analysis and design from the “software engineering” and

“human computer interaction” communities appeared to be driving much of the design

rationale research and its application since 1980s (Conklin & Burgess, 1991). It was

subsequently introduced into the engineering design community due to the demand for

computer support in engineering design (Guihua et al., 2002).

The paper by Clarkson & Hamilton (2000) discusses the need for computer

support in aerospace design. They propose a parameter-based model of design that has

been founded on the assumption that a design process can be constructed from a

predefined set of tasks. They have stressed the importance of capturing the implicit

knowledge that refers to the order in which the information is processed: “In developing

a knowledge-based system to support the engineer in aerospace design, the capture and

modelling of explicit knowledge is itself not sufficient. The context in which the

knowledge should be applied is of equal importance. A knowledge based system must

include not only the explicit knowledge required but also provide guidance on the order

in which the information is used.” (Clarkson & Hamilton, 2000).

Various tools have been developed to capture design rationales. This

information is valuable for design evaluation, reuse and maintenance. A brief review of

work done in the area of design rationales is given below:

Regli et al. (2000) provide a survey of recent research in the area of design

rationale. This survey has discussed design rationale systems from five perspectives:

knowledge representation, rationale capture, rationale retrieval, technical approach and

application domain. A number of recent design rationale systems, including IBIS,

JANUS, COMET, ADD and REMAP are analyzed. A table providing a summary of

61

Chapter 2: Literature Review

the description of some of these systems is shown in Figure 2.6. Issue-based

representation involves articulating issues as questions, with each issue followed by one

or more positions that respond to the issue.

Figure 2.6: Summary of a survey of Design Rationale systems

Source: Regli et al. (2000)

The capture methods are user-intervention (UI) (in which designers are required

to input or record the design discussions, decisions and reasoning themselves) and

secondly automatic (auto). The different retrieval mechanisms involve:

(a) navigation: allowing designers to explore design rationale by traversing from one

node to another through existing links.

(b) automatic triggering: detecting or monitoring certain conditions according to the

design context and retrieving design rationales automatically.

62

Chapter 2: Literature Review

(c) query-based: allowing designers to pose queries and retrieve the required design

rationales.

(d) hybrid: providing a combination of automatic triggering and navigation

mechanisms.

The two main approaches to building design rationale systems are:

(a) process-oriented (PO): emphasize the design rationale as a history of the design

process; design rationales are merely descriptive and generally informal; concerned

with the initial design stage, as design progresses from the requirements to a conceptual

design.

(b) feature-oriented (FO): representation of artefacts and the body of established rules

governing the design process; design rationales have a logical structure and are

generally formal; concerned with the detailed design stage, when the design process is

more constrained by the rules in the field or domain knowledge.

Figure 2.7: An example of a rationale generated by KLAUS4

[Source: Bowen (2001)]

63

Chapter 2: Literature Review

Garcia & Howard (1992) discussed design rationale approaches that divides the

process-oriented approach into two categories: action-based (e.g., RCF (Myers et al.,

2000)) and argumentation-based (e.g., DRed (Bracewell & Wallace, 2003; Aurisicchio

et al., 2006)). When focusing on each component or phase of the design process, the

former corresponds to how it is done, and the latter corresponds to why it is done. The

advantages and shortcomings of the different design rationale systems depend on the

trade off between ease of capture and the explanatory power of the rationale. Action-

based design rationales are easy to capture and do not require much intervention of the

designer while argumentation-based design rationales are difficult to capture.

Constraints can form a part of the rationales associated with the design decisions

taken by designers. A typical rationale is of the form: “A component X exists in the

design because of the need to satisfy constraint Y.” The ability to capture and use this

type of design rationale in concurrent engineering has been referred to as Design

Rationale Management by Bahler & Bowen (1992) and Bowen (2001), who describe a

constraint-based design advice system that generates machine-generated suggestions to

support coordination among multiple design engineers. An example of this type of

rationale is shown in Figure 2.7. The design advice system called KLAUS4 is written

in a generic language, Galileo2, to assist in the concurrent engineering design of printed

wiring boards. The system captures perspectives of several members of the design team,

including designers, manufacturing engineers, test engineers, and maintains a set of

dependency records to support negotiation between various members of a problem

solving team. The protocol for negotiation is based on identifying alternative ways in

which conflicts can be overcome and suggesting these alternatives to the parties

involved, the suggestions being ranked in accordance with the relative preferences

(priorities) of the constraints involved in the conflict. By choosing among the

suggestions offered, the designer can disable a particular constraint. Whenever a

designer disables a constraint other than the one he/she previously asserted, he/she is

required to enter a free-text rationale for his/her action, which is saved for possible use

in a design review.

Bracewell & Wallace (2003) and Aurisicchio et al. (2006) describe DRed

(Design Rationale editor), an IBIS-based software tool that allows designers to record

their design rationales at the time the design issues are being considered. DRed

64

Chapter 2: Literature Review

consists of a graphical structure to present the issues addressed, options considered and

associated arguments for and against each one. Figure 2.8 shows an example of a DRed

document capturing the design rationale of an aero-engine internal gearbox. The design

rationale is displayed in a document as a graph of nodes linked with directed arcs. The

user creates the nodes by choosing from a predefined set of element types including the

issue, answer, pro and con argument. Any element on a work plane can be linked

without restriction to any other, and any element can easily be converted from its

existing type to another. Each element type has a predefined set of statuses, signified

by changes in colour and geometry of the background shape or font style of the text.

There is only a single type of link, a unidirectional arrow, which represents a

dependency of some sort. The precise meaning of that dependency is inferred from the

types of the elements at each end of the arrow.

Figure 2.8: An example of DRed document capturing the design rationale of an aero-

engine internal gearbox

Source: Aurisicchio et al. (2006)

65

Chapter 2: Literature Review

RCF (Rationale Construction Framework) (Myers et al., 2000) acquires

rationale information automatically for the detailed design process without disrupting a

designer’s normal activities. The underlying approach involves monitoring designer

interactions with a commercial CAD tool to produce a process history. This history is

subsequently structured and interpreted, relative to a background theory of design that

enables explanation of certain aspects of the process. RCF extracts two different types

of rationale-related information. The first is a series of hierarchical abstractions of the

design history: what the designer did and when. In addition, RCF reasons about intent

as to why the designer performed certain actions. A set of design metaphors, which

describe temporally extended sets of designer operations that constitute meaningful

episodes of activity, drives the extraction of rationale related to designer intent. Design

metaphors provide the basis for inferring intent on the part of the designer by linking

observed activities to explanations for them. However, the authors report that automatic

generation of complete rationale for all aspects of a design is clearly infeasible.

Certainly, designers make many critical decisions and assumptions that are not explicit

in the designs or in the design process. The work reported by (Myers et al., 2000) seeks

to automate documentation of important but low level aspects of the design process in

a time and cost effective manner, thus freeing designers to focus their documentation

efforts on the more creative and unusual aspects of the design. Ideally, the methods

presented by them would be complemented by interactive rationale acquisition methods

that would enable designers to extend or correct automatically generated information.

Burge & Brown (2000) investigated the use of design rationales by building

InfoRat, a prototype system that draws inferences on a design’s rationale to detect

inconsistencies in the decisions made and to assess the impact of changes. The approach

can be described as follows: The process begins with a set of requirements for the

system being designed. These requirements are then mapped to goals and, if required

sub goals. Goals and sub-goals can then be satisfied by one or more alternatives. Each

alternative then maps to an artefact, or a requirement for the next design stage. The

rationale for each choice is represented as arguments, expressed as claims, for or against

each alternative. Figure 2.9 from Burge & Brown (2000) shows an overview of the use

of design rationale in the design process. The verification

66

Chapter 2: Literature Review

involves ensuring that the design is consistent and complete, i.e., all requirements

correspond to goals and all goals have selected alternatives.

Figure 2.9: The use of Design Rationale in the design process by InfoRat

Source: Burge & Brown (2000)

Design rationales are invaluable in the reuse of design information. Design reuse

can make an important contribution towards design efficiency (Sanghee et al., 2007).

Given the competitive pressures in business environments, the reuse of previous designs

has significant value for shorter delivery times and lower production costs. For

example, research has identified that up to 90% of all design activities are based on the

variants of existing designs (Fletcher & Gu, 2005). However, design information is

often difficult to retrieve (Sanghee et al., 2007). There is limited support in recognising

the existence of the reusable information and designers often do not attempt to reuse.

Sanghee et al. (2007) propose a task model based approach that systems could adopt to

suggest recommendations and aid reuse of past design information. They have used

DRed to demonstrate the approach. A task model is acquired by observing a designer’s

activities. The design rationales captured by DRed are represented as a directed graph

of elements. The elements are chosen from a predefined menu of types, at the core of

which are Issue (I), Answer (A), ProArgument (PA) and Con Argument (CA). Each

element is associated with a label that is a textual description in natural language. A

DRed path is the list of links starting from a specific element and finishing at a specific

element. In the context of a design process, the designer uses the DRed path for

exploring solutions for a given task. Such a DRed path is a task model and the

proposed approach recommends the

67

Chapter 2: Literature Review

next likely element that the designer will employ. The proposed approach recommends

using two strategies: (1) a DRed path similarity: The strategy examines the sequence in

which a current designer has invoked particular elements and uses this as a basis of

calculating the prediction of a new element. (2) Content similarity: the strategy uses

shallow Natural Language Processing (NLP) techniques to analyse the DRed document.

The NLP techniques include term identification, part-of-speech tagging and term

normalization. Terms are identified as words lying between two spaces including a full

stop. Although Sanghee et al. (2007)’s approach claims to improve design reuse by

assuming relevance between tasks and suggesting recommendations, the approach fails

to enable a system to understand and interpret the textual content of the rationales.

Representing rationales in a machine- interpretable format should enable a system in

making recommendations that are more accurate, detecting inconsistencies among

rationales and design decisions, etc.

Burge & Brown (2003) researched the benefits of reusing design rationales for

a large-scale maintenance task. They report that one of the chief difficulties in

maintaining a large system is knowing the reasons behind the choices made by the

developers during design and implementation. The presence of rationale would serve

as a “corporate memory” by capturing design information that would be lost if the

developers left the company or if they were inaccessible to the maintainers. Karensty

(1996) also showed the importance of reusing rationales, i.e. over 50% of designer’s

information needs are related to the questions that could be answered by reusing the

rationales. Thus, design rationale would enable both easier maintenance of artefacts

over their lifecycles and more effective reuse of designs by making it easier for

downstream engineers to understand how a design works (Myers et al., 2000). For

example, Brazier et al. (1997) present an example of stored rationale being used in the

redesign of a model passenger aircraft to accommodate changes in the overall design

requirements.

2.4.4 Discussion

Engineering design is constraint-oriented and constraint-based systems are applicable

in all phases of design. Constraints have been used to assist in a variety of engineering

design tasks including the development of rule-based systems. Maintainability of rule-

based systems in industries became very difficult because of the need to constantly

68

Chapter 2: Literature Review

make changes to the knowledge base. Since rules were encoded into the procedural

parts of the program, it was hard to determine which rules needed changing. Description

logic and ontology based systems have been used in industries, particularly in

configuration-based design tasks. These systems have made the maintenance task easier

when compared to rule-based systems. However, they are still faced with maintenance

issues. Constraint management systems have been developed mainly to detect conflicts

among constraints during constraint solving. In Designers’ Workbench, design rules are

expressed as constraints over the domain ontology. Designers’ Workbench performs

constraint checking instead of constraint solving. This has implications for tractability,

in that constraint solving is a NP-complete problem, whereas checking a solution can

be done in polynomial time. This thesis proposes a methodology and reports on a system

that has been developed to detect inconsistencies and suggest appropriate refinements

between pairs of constraints prior to constraint solving or constraint checking by

systems such as the Designers’ Workbench.

Concurrent Engineering and Integrated Product Development have become

increasingly important in the success of product development within industries. They

provide tremendous benefits in terms of reduced time-to-market, low cost, considering

the entire product lifecycle and improved quality. By considering the effects of all the

other phases in the product lifecycle such as manufacturing, maintenance, etc. during

the design phase, one can optimise the cost, quality and time of product development.

Collaborative design support systems play a key role in concurrent engineering. There

are different aspects to collaborative design such as conflict detection and resolution,

sharing, social interactions, integration and visualisation of information. The

approaches adopted to tackle these aspects include constraint-based, agent-based,

model-based and ontologies. Constraint-based systems are widely used and particularly

useful in collaborative design for conflict detection and resolution. Collaborative

engineering design activities are influenced not only by the technological factors, but

also by the social interactions among various stakeholders with different perspectives.

These perspectives of various stakeholders constitute a part of the design rationale. It is

important to capture these perspectives (rationales) of various stakeholders and analyse

them in concurrent engineering.

69

Chapter 2: Literature Review

The knowledge of the who, what, when, where, why, and how of design

constitute the design rationales. Rationale can include assumptions made about the

system, the alternatives considered and the reasoning behind decisions. Recording

design rationales is useful for both current and future designers. The process of

capturing design rationales supports the designer in clarifying decision-making. It may

also relieve the designer from the burden of retrospectively documenting the design at

the end of a task. Research has indicated that most of the design activities involve reuse

of previous design. Hence, capturing design rationales would be invaluable for future

designers. Although design rationales are useful, they are often extremely hard to

capture, mainly because the process is very intrusive and requires a lot of the designers’

time. Various design rationale systems have been developed to enable the capture of

rationales. The advantages and shortcomings of the different design rationale systems

depend on the trade off between ease of capture and the explanatory power of the

rationale. Action-based design rationales are easy to capture and do not require much

intervention from the designer while argumentation-based design rationales are difficult

to capture. However, argumentation-based design rationales provide more useful

explanation when compared to action-based rationales. Most design rationale systems

represent the rationales in a human readable format (natural language). Although the

information may have some structure, the information cannot be understood, interpreted

and used by systems to provide immediate benefits to the designers. In addition, design

rationale systems have not concentrated on capturing information pertaining to when a

particular section of the design knowledge is applicable. Design rationales are also often

difficult to retrieve and hence rarely used. This thesis investigates the capture of

information pertaining to when a particular constraint is applicable (referred as

application conditions). The thesis argues that it is important to concentrate on

representing design rationales (application conditions) in a machine-interpretable

format. This would enable systems to use the rationales and provide immediate benefits

to the designers by detecting inconsistencies and suggesting refinements among design

decisions taken by the designers. The immediate benefits provided by the system should

encourage designers to capture design rationales. In particular, the thesis investigates

how an explicit representation of rationales (referred to as application conditions)

together with the corresponding constraints and the domain ontology can be used to

support the maintenance of constraints in engineering design.

70

Chapter 2: Literature Review

2.5 Summary

This chapter provides a review of the work done in the area of knowledge acquisition,

the issues involved and the different types of tools that have been developed to support

knowledge acquisition. This is followed by a review of some of the prominent

knowledge engineering methodologies. Taken together, the review describes the

issues/problems faced by knowledge-based systems over the past few decades and how

the latest methodologies and tools have dramatically changed the way in which

knowledge-based systems are developed. Building knowledge-based systems now

focuses on reusing and adapting existing resources, rather than building them from

scratch. Moreover, the emphasis has been in facilitating domain experts to build and

maintain knowledge bases, and hence minimize or eliminate the role played by a

knowledge engineer. This thesis reports on the design and construction of a system that

has been developed to facilitate domain experts in capturing and maintaining constraints

in engineering design.

Further, the chapter reviews work done in the area of knowledge maintenance

that involves verification, validation and refinement of knowledge. This is followed by

a review of engineering design. Maintenance is a critical phase in knowledge

engineering that can be complex and time-consuming. It is important to explicitly

record the contexts in which each rule is applicable, during the KA phase. Recording

the contexts should help identify all the rules that need to be updated during

maintenance. This thesis investigates issues in maintenance by using engineering

design as an application domain.

Engineering design is constraint-oriented and involves the identification of new

constraints or the modification or deletion of existing constraints. The evolutionary

nature of constraints establishes the need to provide support for maintenance. Constraint

management systems have been developed mainly to detect conflicts among constraints

during constraint solving. It would be useful to develop tool(s) that can detect

inconsistencies among constraints prior to constraint solving, suggest appropriate

refinements and help in the maintenance of constraints.

Concurrent Engineering and Integrated Product Development have become

increasingly important within industries by providing tremendous benefits in terms of

reduced time-to-market, low cost, considering the entire product lifecycle and

71

Chapter 2: Literature Review

improved quality. Collaborative engineering design activities are influenced not only

by the technological factors, but also by the social interactions among various

stakeholders with different perspectives. The perspectives of various stakeholders

constitute a part of the design rationale. It is important to capture these perspectives

(rationales) and analyse them in concurrent engineering. Rationales can include

assumptions made about the system, the alternatives considered and the reasoning

behind decisions. Although design rationales are useful, they are often extremely hard

to capture, mainly because the process is very intrusive and requires considerable

amount of the designers’ time. This thesis investigates how an explicit representation

of rationales (referred to as application conditions) together with the corresponding

constraints and the domain ontology can be used to support the maintenance of

constraints in engineering design. More details about the investigation can be found in

subsequent chapters.

72

Chapter 3

Constraint Capture and Maintenance in
Engineering Design: A Proposal

‘Most of the effort in the software business goes

into the maintenance of code that already exists.’

- Wietse Venema

This chapter sets the scene for the research work reported in this thesis. The chapter is

divided into four main sections. Section 3.1 introduces the Designers’ Workbench, and

describes the problems encountered while capturing knowledge (design rules) for this

system. Section 3.2 describes the proposed approach to capturing constraints to address

the problems faced by systems such as the Designers’ Workbench. Section

3.3 describes the issues/problems faced during the maintenance of constraints in an

engineering design environment. Finally, Section 3.4 describes the proposed approach

to tackle the various issues/problems faced during the maintenance of constraints. The

chapter concludes by summarising the key points in Section 3.5.

3.1 Introduction to the Designers’ Workbench

Typically, complex engineering artefacts are designed by teams who may not be located

in the same building or even city. Designers in Rolls-Royce, as in many large

organizations, work in teams. Thus, it is important when a group of designers are

working on aspects of a common project, that the sub-component designed by one

designer is consistent with the overall specification, and with those designed by other

members of the team. Additionally, all designs have to be consistent with the company’s

design rule book(s). Making sure that these various constraints are complied with is a

complicated process, and so previous research has developed the Designers’

Workbench (Fowler et al., 2004) which seeks to support these activities.

73

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Figure 3.1: A screenshot of the Designers’ Workbench

The Designers’ Workbench (Figure 3.1) uses an ontology to describe elements

in a configuration task. The system supports human designers by checking that their

configurations satisfy both physical and organizational constraints. Configurations are

composed of features, which can be geometric or non-geometric, physical or abstract.

The following example from Fowler et al. (2004) illustrates the use of an ontology to

describe a configuration.

The class hierarchy of a simple ontology is shown in Figure 3.2. The concept

‘Feature’ is the root of that ontology. The concept ‘Feature’ is divided into ‘Concrete

feature’ (a physical sub-component) and ‘Abstract Feature’ (holes, temperature, etc.).

74

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Bolt

Figure 3.2: The class hierarchy of a simple configuration ontology

[Source: Fowler et al. (2004)]

Figure 3.3: A bolted joint

[Source: French et al. (1993)]

‘Concrete Feature’ is further divided into ‘Bolt’, ‘Nut’ and ‘Clamped Part’ while

‘Abstract Feature’ is divided into ‘Material’ and ‘Environmental Temperature’. ‘Self-

Self-locking nut

Clamped part Nut Environmental
temperature

Material

Concrete Feature Abstract Feature

Feature

75

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

locking Nut’ is a specific type of ‘Nut’. Figure 3.3 (above) shows a simple arrangement

of a bolted joint, subject to a particular environmental temperature and Figure 3.4

(below) shows a configuration of the bolted joint, described using an ontology.

Figure 3.4: A configuration of the bolted joint in Figure 3.3 described using an ontology

Constraints defined over this ontology (Figure 3.4) include:

 The value of the maximum operating temperature of the material of each

concrete feature must be greater than the prevailing environmental temperature;

 The length of the bolt in a bolted joint must exceed the sum of the thicknesses

of the clamped parts, plus the thickness of the nut. For simplicity, issues such

76

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

as tolerances of dimensions have been ignored. Tolerances and dimensions can

be dealt with, for example, by defining a ‘Measurement’ class with properties

‘dimension’ and ‘tolerance’ containing real values.

The first constraint above applies to all concrete features that have a ‘has_material’

property and an ‘environmental_temperature’ property defined. The second constraint

is more complicated, and applies to all bolts, nuts, and clamped parts that are parts of a

bolted joint.

3.1.1 Functionality of Designers’ Workbench

In the Designers' Workbench, the designer can select a feature class from the ontology

and create an instance of that class. The property values of the instance can then be

filled with: (i) datatype values by literals of the appropriate type, and (ii) object type

values by selecting an instance from a list of instances of the appropriate type.

Constraints are handled in a two stage process:

 Identify feature values that should be constrained;

 Formulate a tuple(s) of values for each set of feature values, and check

that the constraint is satisfied by these values.

The constraint processing uses RDQL to find the constrained features and values. After

using RDQL to extract the constrained features and values, Sicstus Prolog is used to

check that the constraints hold. For example, the RDQL query that locates features

affected by the material temperature constraint is:

SELECT ?arg1,?arg2 WHERE

(?feature,<dwOnto:has_material>,?mat),

(?mat,<dwOnto:max_operating_temp>,?arg1),

(?feature,<dwOnto:operating_temp>,?optemp),

(?optemp,<dwOnto:temperature>,?arg2)

USING dwOnto FOR <namespace>

77

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

The values of the returned variables ?arg1 and ?arg2 are the material’s maximum

operating temperature, and the environmental operating temperature, respectively. The

check that the values must satisfy is represented by the Sicstus predicate:

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-

EnvironTemp =< MaterialMaxTemp.

Using the values of ?arg1 and ?arg2, the predicate op_temp_limit(MaterialMaxTemp,

EnvironTemp) is formed, and checked. This process is repeated for each set of values

returned by the RDQL query, and for each constraint that has been specified.

Figure 3.5: Close-ups of the Designers' Workbench panels: the feature ontology
(left), and properties of selected feature (right)

[Source: Fowler et al. (2004)]

Additional features of the Designers’ Workbench are as follows:

(i) Graph-based display of configuration: A graphical user interface enables the

designer to import a drawing, annotate it with features, assign property values, and

perform constraint checks. The drawing is actually a visual aid i.e. the designer can

mark up an existing drawing or construct a configuration without a drawing. Features

can be selected from an ontology. Features that are added by the designer are shown

78

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

as labels overlaying the background drawing. Properties that connect features are

represented by arcs. Features can be selected, and their properties viewed and modified

using the table displayed beneath the ontology. Datatype properties are set by typing

values into the field, whereas object properties are set using a drop down list of values

representing the valid possibilities for the property. For example, if the property

has_bolt is specified to have range of class Bolt, the list will consist only of instances

of Bolt.

If a constraint is violated, the affected features are highlighted and a report is

generated. The report gives the designer a short description of the constraint that is

violated, the features affected by that violation, and a link to the source document that

contains the design rule. The designer can often resolve the violations by adjusting the

property values of the affected features. On selecting the affected feature from the

ontology, a table is displayed with the corresponding properties and values (as shown

in Figure 3.5). These property values can then be adjusted to resolve the constraint

violations.

(ii) Checking incomplete configurations: Before checking constraints, it is not

necessary to specify values for every defined property of each feature. Instead, the

designer can fill in values for whichever properties he or she desires, and request a

constraint check. The RDQL query will only return results for the features that have

sufficient values specified, so that only certain constraints will be checked. This allows

designers to operate in an exploratory way, defining small parts of a configuration,

checking them, and then gradually extending the configuration until it is complete.

(iii) Constraint rationales: Each constraint has an associated rationale (currently a short

text string, but which in future may have more structure), and an (optional) URI for a

source document explaining the rationale in more depth. When a constraint violation is

reported, the designer is presented with a list of the features involved in the violation,

the rationale, and the link that can be clicked on to read the source document. In this

way, the designer can learn more about the constraint, and decide if it is in fact

appropriate. As the constraint checking proceeds, an experienced designer may decide

to override the constraint.

79

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Figure 3.6: Constraint as expressed in a rule book

[Source: Joint Design Standards (JDS) No: 805.04, Rolls-Royce]

80

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

3.1.2 Capturing the knowledge in the design rule book(s)

As noted above, the Designers’ Workbench needs access to the various

constraints, including those inherent in the company’s design rule book(s). To capture

this information, a design engineer (domain expert) works with a knowledge engineer

to identify the constraints, and it is then the task of the knowledge engineer to encode

these into the Workbench’s KB as a query in RDQL, and a predicate in Sicstus

Prolog. This is a laborious, error-prone and time-consuming task. The constraints are

formulated succinctly in the design rule book(s) and hence a non-expert in the field

often finds it very difficult to understand the context and formulate constraints

directly from the design rule book, and so a design engineer has to help the

knowledge engineer in this process. An example of such a constraint is shown in

Figure 3.6. The design rule book(s) gives the description of constraints, in the form of

tables and figures in most cases.

3.2 A Proposed Approach to the Capture of Constraints

As noted in the previous section, there are many issues/problems faced when a

knowledge engineer seeks to capture knowledge from the design rule book(s) and

encodes them as constraints in the Designers’ Workbench.

The thesis’s proposed approach to the capture of constraints is to facilitate

domain experts in formulating a constraint by selecting classes and properties from the

domain ontology, and combining them with predefined keywords and operators from a

high-level constraint language. This should relieve the knowledge engineer from the

error-prone and time-consuming process of capturing constraints. This would also

enable designers to have greater control over the definition and refinement of

constraints, and presumably, to have greater trust in the results of the constraint

checking process. In order to embody the proposed approach, the thesis outlines the

following tasks:

 Development of a system comprising of the following components/features:

(i) A graphical user interface that enables a user to formulate a constraint by

means of a few mouse clicks. The graphical user interface contains the

following sub components:

81

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

a) A scrollable list of keywords from a high level constraint language.

b) A scrollable tree structure of classes and properties from the

domain ontology.

c) A tool bar containing appropriate arithmetic, logical and relational

operators.

d) A result panel to display the constraint being formulated and the

results of a syntax check.

The user formulates a constraint by selecting entities from (a), (b) and (c) for

display in the result panel.

(ii) Use a high-level constraint language with good expressivity to represent

the constraint.

(iii) Perform syntax checking of the formulated constraint.

(iv) Display details of any syntactical errors.

(v) Facilitate the user in editing a constraint, creating a table of constraints,

and reading/writing constraints from/to a text file.

(vi) Allocate each constraint with a unique identification number that also

denotes its version number.

(vii) Provide a search facility to retrieve constraints from the KB.

(viii) Convert the constraint into a standard (semantic web enabled) format

that enables other systems such as the Designers’ Workbench, constraint

solvers, agents, etc. to process the constraint.

 Perform a preliminary evaluation by demonstrating the system to domain

experts (Rolls-Royce design engineers).

 Run an experiment to evaluate the usability of the system.

More details on the system developed are provided in the subsequent chapter (Chapter

4). Information regarding the preliminary evaluation and experiments carried out are

82

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

provided in Chapter 7. The research question that the proposed approach aims to

address is as follows:

Research Question I:

 Examine whether it is possible to design and construct a system to facilitate

(domain) experts in capturing and maintaining constraints in engineering

design. This question can be detailed into the following smaller questions:

a) Can (domain) experts successfully perform the allocated tasks within

acceptable time limits?

b) Did the (domain) experts perform the tasks accurately? What kind of

mistakes did they make? Can the system’s GUI be modified to

eliminate or minimize these errors?

c) How easy and intuitive did (domain) experts find the system to use?

d) Is the speed of the system on realistic tasks viable for (domain)

experts to use?

The thesis aims to examine whether it is possible to design and construct a system to

facilitate domain experts in capturing and maintaining constraints in engineering

design. Systems such as the Designers’ Workbench should then be able to process these

constraints captured by the domain experts. This would eliminate the knowledge

engineer from the error-prone and time-consuming task of capturing design rules for

the Designers’ Workbench’s KB. The next two sections describe the issues/problems

faced during maintenance of these constraints and the proposed approach to address

these issues/problems.

3.3 Maintenance of Constraints in Engineering Design

The engineering design process has an iterative nature as designed artefacts often

develop through a series of changes before a final solution is achieved. A common

problem encountered during the design process is that of evolution, which may

83

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

involve the identification of new constraints or the modification or removal of existing

constraints. The reasons for such changes include developments in the technology,

changes to improve performance, and changes to reduce development time and costs.

Typically, maintenance involves various issues/problems:

 Original experts are unlikely to be available: The transient nature of modern

organizations and workforces, and the rapid flow of knowledge and experience

out of companies due to staff leaving, make it difficult for new designers to

effectively use stored design knowledge and subsequently to maintain it.

 Insufficient documentation provided: Some constraints may be applicable only

in particular contexts. These contexts are often implicit to the designer

formulating them but are not documented. In addition, many constraints will be

based on assumptions that may not be true later on. These assumptions are often

not made explicit.

 Maintenance is time-consuming and complex: Maintenance of constraints in an

engineering design environment is a complicated process and is very difficult to

do manually. Thus, there is a pressing need for tools to support maintenance of

this kind of knowledge.

 The evolutionary nature of constraints establishes the need to constantly update,

revise, and maintain them. One needs to identify the constraints that require

modification. In addition, one needs to make sure the knowledge base is

consistent after making a change.

Verification in KBSs plays a very important role. As we automate more processes, the

need for verification becomes even more critical. Many automated processes perform

incorrectly for a long time, as no person is responsible for checking the process (Hicks,

2003). Additionally, as the KB evolves, constant addition/revision of rules can result in

high levels of redundancy. It is important to prevent/minimize redundant rules in the

KB. Removing/reducing redundancy in a KB will make it easier to maintain the KB.

84

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Constraints are continually being added, deleted and modified throughout the

development of a new product. Design begins with a functional specification of the

desired product: a description of properties and conditions that the product should

satisfy (i.e. constraints). Constraints themselves form a rationale associated with the

design decisions taken by designers. A typical rationale is of the form: “A component

X exists in the design because of the need to satisfy constraint Y.” The ability to capture

and use this type of design rationale in concurrent engineering has been referred to as

Design Rationale Management by Bahler & Bowen (1992), who describe a constraint-

based design advice system that generates machine-generated suggestions to support

coordination among multiple design engineers. The Designers’ Workbench (Fowler et

al., 2004) provides similar functionality by checking if the design satisfies all the

relevant constraints, providing details of the violated constraints and enabling the

designers to resolve them.

Much research has been done to develop systems that capture and represent the

rationales associated with design knowledge. Design rationales considered so far refer

to the information containing either one or all of the following:

a) the reasons behind the design decisions taken (why a decision was taken).

b) the design alternatives considered and rejected with reasons for rejection.

c) how certain design actions are performed.

However, design rationale systems have not concentrated on capturing information

pertaining to when a particular section of the design knowledge is applicable.

Constraints may be formulated based on a number of assumptions and may be relevant

only in certain contexts. Designers often tend to assume “normal” situations (Brown,

2006). They tend to make assumptions about the match between the current design

situation and one where their chosen technique worked well before. They tend to make

abstractions across all the situations where particular techniques worked well before,

by assuming that some key detail is relevant or irrelevant. These assumptions are not

deliberate, but form the tacit knowledge underlying expert skill. In order to support

maintenance of design knowledge, it is important to make these assumptions visible.

One needs to find ways to capture the assumptions and contexts as part of the rationale

associated with a constraint. The thesis refers to this type of rationale as the application

conditions associated with a constraint (Ajit et al., 2008a; Sleeman et al.,

85

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

2008). A recent article by Hooey & Foyle (2007) reported on the requirements for

design rationale capture tool to support all the design phases of NASA’s complex

systems. They stressed the need to capture the assumptions and contexts as the rationale

for a given design element, particularly in the conceptual design phase. The paper

describes how this information is rarely captured in a systematic and usable format

because there are no tools that adequately facilitate and support the capture and use of

this critical information. An example quoted in the paper is: “The minimum volume for

the Crew Exploration Vehicle cockpit is based on an assumption of a specific crew

size”. The above example is a constraint together with its application condition. If a

design element or a constraint is modified, there is no easy way to propagate that change

to understand the implications and consequences of those changes.

Thus, it is important to capture information pertaining to when a particular

section of the design knowledge is applicable and enable systems to use this information

to support maintenance. This thesis proposes an approach to capture application

conditions associated with constraints and use these application conditions together

with the constraints and domain ontology to support the maintenance of constraints.

The next section (section 3.4) describes the proposed approach with an example.

3.4 A Proposed Approach to the Maintenance of Constraints

Due to restricted availability of Rolls-Royce designers’ time and because it is a simpler

domain, the kite domain was initially investigated to elicit equations and constraints

together with the corresponding application conditions. The sources referred to study

the kite domain include Yolen (1976), Streeter (1980), Eden (1998), AKA (2006),

CEKS (2006), Leigh (2006), Lords (2006) and Wardley (2006).

For a successful kite design, one has to make sure that the design complies with

all the appropriate rules/constraints. There are different types of constraints associated

with the design of a kite. The analysis of kite domain showed that several constraints

were applicable only to particular types of kites and under specific conditions.

Appendix A provides a list of equations and constraints elicited from the kite domain

together with the corresponding application conditions and sources..

86

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

The context in which a constraint is applicable is referred to as an application

condition in this thesis. Application conditions form a part of the rationales associated

with the constraint. Consider the following example of a constraint together with its

associated application condition:

Constraint7 – “The density of the cover material of the kite must be greater than 21.9

kilograms per square metre”

Application condition – “This is applicable only when there is a requirement to produce

low cost kites for beginners. Kites for experts use lighter materials that are of higher

quality and hence costlier.”

As shown in the example above, the application condition specifies the context

in which the constraint is applicable. Often, the information of application conditions is

implicit to the person who formulates the constraint. The assumptions/conditions on

which a constraint is based may no longer be true and in such cases, it becomes

necessary to deactivate or remove those constraints from the KB. Further, an application

condition may not be relevant to a particular design task. Hence, in order to apply

constraints appropriately and support maintenance, it is important to make the

application conditions explicit.

Although design rationales can provide a lot of information about the reasoning

involved in making a design decision, rationales are extremely hard to collect mainly

because the process is very intrusive and requires a lot of the designers’ time. Not much

work has been carried out on how this information can be used by machines. Although

the information may have some structure, the information cannot be understood,

interpreted and used by machines to provide immediate benefits to the designers.

Capturing large amounts of detailed rationales is not useful if it is never looked at again.

If rationales are useful to the designers, there is a greater incentive for designers to assist

in the capture of the information, particularly if the designer who is recording it can

immediately use the rationale. As Grudin (1996) and Brown (2006) have pointed out,

there cannot be a disparity between who invests effort in a groupware system, and who

benefits. No designer can be expected to altruistically enter quality design rationale

solely for the possible benefit of a possibly unknown person at an unknown point in the

future for an unknown task. There must be immediate value. In addition, knowing

how the information will be used provides

7 http://www.cuttingedgekites.com/faq.htm. Accessed on 28 June 2006.

http://www.cuttingedgekites.com/faq.htm

87

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

guidance about what information should be captured and how it should be represented.

Thus, it is important to concentrate on the use of such information. Representing

rationales in a machine-interpretable format would enable systems to immediately use

the rationales to detect inconsistencies, redundancy, subsumption, fusion and suggest

appropriate refinements between constraints.

The thesis hypothesises that an explicit representation of the context information

(referred to as application conditions) together with the corresponding constraints and

the domain ontology can be used to support the maintenance of constraints. In order to

tackle the various maintenance issues/problems effectively, the thesis’s proposed

approach can be summarized as follows:

 Capture the “context” in which a constraint is applicable, in a machine-

interpretable form, as an application condition and associate this information

(rationale) with the constraint.

 Use the application condition together with the constraint and the corresponding

domain ontology to support maintenance.

Maintenance of constraints includes (i) detecting inconsistencies, redundancy,

subsumption and fusion (ii) reducing the number of spurious inconsistencies and (iii)

preventing the identification of inappropriate refinements of redundancy, subsumption

and fusion, between pairs of constraints. More details regarding the proposed approach

to capture and use application conditions together with the corresponding constraints

and the domain ontology can be found in Chapter 5. The proposed approach should

encourage the designers to capture the application conditions together with the

constraints because the system can immediately use them to provide benefits to the

designers. If application conditions are useful to the designers, there is a greater

incentive for designers to assist in the capture of the information, particularly if the

designer who is recording it can immediately use the application condition. It is also

important to ensure that the speed of the system for realistic tasks is viable for domain

experts to use. The research question that the proposed approach aims to address is as

follows:

88

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Research Question II:

 Examine whether capturing application conditions associated with

constraints, in a machine-interpretable format can provide significant

benefits to the maintenance of constraints in engineering design. In

particular, can an explicit representation of application conditions together

with the corresponding constraints and the domain ontology be used to:

a) Detect inconsistencies, redundancy, subsumption and fusion,

b) Reduce the number of spurious inconsistencies, and

c) Prevent the identification of inappropriate refinements of

redundancy, subsumption and fusion between pairs of constraints?

Application conditions are captured in the same language as that of the

constraints. More details about the representation of these application conditions

together with the constraints are explained in Chapter 5. The thesis investigates the kite

design domain and proposes four main types of knowledge refinement rules, namely,

redundancy, subsumption, inconsistency and fusion. The rules make use of the

application condition together with the constraint and the domain ontology to detect

inconsistencies, suggest refinements (subsumption, redundancy and fusion), and hence

support the maintenance of constraints. In addition, the knowledge refinement rules are

expressed in a formal notation and it has been proved that they are logically sound. In

order to embody the proposed approach and implement the refinement rules, the thesis

outlines an algorithm and reports on a system developed to implement the algorithm.

More details regarding the outlined algorithm and the system developed can be found

in Chapter 6.

3.5 Summary

This chapter describes the proposal for the research work reported in this thesis. The

chapter provides a description of the Designers’ Workbench, a system developed by

previous research to support designers in large organizations, such as Rolls-Royce, to

ensure that the design is consistent with the specification for the particular design, as

well as with the company’s design rule book(s). The problems faced by the knowledge

engineer during the capture of constraints for the Designers’ Workbench

89

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

have motivated the author to propose an approach to facilitate domain experts

themselves in capturing and maintaining constraints. The proposed approach involves

providing an intuitive way to facilitate domain experts formulating a constraint by

selecting classes and properties from the domain ontology, and combining them with

predefined keywords and operators from a high-level constraint language. The tasks

that need to be done to embody the above approach have been outlined.

Further, the chapter describes the various issues/problems faced during

maintenance of constraints. The chapter reports that it is important to capture the context

in which a constraint is applicable and refers to this context as an application condition

associated with the constraint. The thesis hypothesises that an explicit representation of

application conditions together with the corresponding constraints and the domain

ontology can be used to support the maintenance of constraints. In particular, supporting

the maintenance of constraints refers to: (i) detecting inconsistencies, redundancy,

subsumption and fusion, (ii) reducing the number of spurious inconsistencies and (iii)

preventing the identification of inappropriate refinements of redundancy, subsumption

and fusion, between pairs of constraints. It is also hypothesised that the speed of the

system for realistic tasks is viable for domain experts to use. The following chapter

describes the design and construction of the system that has been developed to facilitate

domain experts in capturing and maintaining constraints in engineering design.

90

Chapter 4

ConEditor

‘The true creator is necessity,

who is the mother of invention.’

- Plato

This chapter describes the design, implementation and functionality of ConEditor. The

chapter also presents an overview of the constraint representation languages (CoLan

and CIF) used by ConEditor. The chapter is structured as follows: Section 4.1 provides

an overview of the high-level constraint language (CoLan) used for the research work

reported in this thesis. Parts of the description in Section 4.1 have been extracted from

Bassiliades & Gray (1995) and Gray et al. (2001). Section 4.2 describes the design of

ConEditor’s GUI. Section 4.3 describes the implementation and functionality of

ConEditor. Section 4.4 describes the principles involved in the conversion of OWL

ontology into a Daplex Schema. Section 4.5 provides an overview of the XML

Constraint Interchange Format used by ConEditor and the principles involved in

converting CoLan into CIF. Section 4.6 summarises the chapter.

4.1 Overview of CoLan

CoLan (Bassiliades & Gray, 1995; Gray et al., 2001) is a constraint language based on

an Object Data Model. Fully quantified constraints can be expressed in a very readable

form of first order logic, including functions, which can be computed over data values

expressed in the ER diagram (or UML class diagram). Hence, the underlying data model

is called the Functional Data Model (FDM). The FDM, P/FDM (Prolog/Functional Data

Model) is a semantic data model based on Shipman’s original data model (Shipman,

1981). The semantics of the objects referred to in CoLan constraints are described in

terms of this extended ER data model, which is of the kind in widespread use in UML

and in database schemas. CoLan has features of both

91

Chapter 4: ConEditor

first-order logic and functional programming, and is intended for scientists and

engineers to express constraints.

Figure 4.1: Examples of CoLan constraints from different application domains. The ER diagram
models the relationships between entity classes in the first constraint

[Source: Gray et al. (2001)]

Two example constraints from different application domains are shown in

Figure 4.1. An ER diagram that models the relationships between entity classes in the

first constraint is also shown. The first example shows a CoLan constraint on a

university database containing student records. The same constraint language is

applicable to the domain of protein structure modelling, as shown by the second

example restricting bond lengths. In the first example, a variable t ranges over the

entity type tutor that is populated with stored object instances. Each of these

instances may be related to instances of student entities through the relationship

advisee, which delivers a set of related entities as in an object-oriented language.

These entities can be restricted by the values of attributes such as grade. There are

also other entity types such as residue (representing parts of protein chains) which have

method functions for determining distances by computation. Thus, functions may also

represent a derived relationship, or method. The entity classes can form part of a subtype

hierarchy, in which case all properties and methods on the superclass are

92

Chapter 4: ConEditor

inherited by each subclass. Method definitions may be overridden, but not constraints.

This is significant for semantic web applications, since it means that information

represented in this way is not restricted to human inspection. It can be proof-checked

mechanically, transformed by symbol manipulation, or sent to a remote constraint

solver. Moreover, given a standardised interchange format, data and attached

constraints from multiple sources can be gathered together, checked for compatibility,

and used to derive new information. Because the P/FDM data model is an extended ER

model, it maps very easily onto the RDF schema specification.

CoLan is as expressive as the subset of first-order logic that is useful for

expressing integrity constraints: namely, range-restricted constraints. This class of

constraints includes those first-order logic expressions in which each variable is

constrained to be a member of some finite set of values. CoLan provides a precise

denotation for constraints but it does not force us to evaluate them as integrity checks.

The constraint expresses a formula of logic which is true when applied to all the

instances in a database, but it is also applicable to instances in a solution database which

is yet to be populated with constructed solutions by a solver process (Gray et al., 1999a;

Gray et al., 1999b). Here, it is behaving more like a specification than as an integrity

check. The power of this in the context of the semantic web is that constraints can be

passed as a form of mobile knowledge between agents and processes and they are no

longer tied to a piece of database software. For more details of P/FDM, CoLan and

related work, the reader is encouraged to visit www.csd.abdn.ac.uk/~pfdm or refer the

relevant technical papers that have been referenced above.

4.2 ConEditor’s GUI

ConEditor has been designed to facilitate domain experts in capturing and maintaining

constraints. A screenshot of ConEditor’s GUI is shown in Figure 4.2. A constraint

expression can be created by selecting entities from a domain ontology and combining

them with a pre-defined set of keywords and operators from the high-level constraint

language, CoLan. An example of a simple constraint expressed in CoLan, against the

domain ontology (a jet engine ontology) used by the Designers’ Workbench is as

follows:

http://www.csd.abdn.ac.uk/~pfdm

93

Chapter 4: ConEditor

constrain each f in ConcreteFeature

to have max_operating_temp(has_material(f)) >= operating_temp(f)

The above constraint states that for every instance of the class ConcreteFeature, the

value of the maximum operating temperature of its material must be greater than or

equal to the environmental operating temperature.

Figure 4.2: A screenshot of ConEditor’s GUI

ConEditor’s GUI essentially consists of five components, namely: (A) Keywords Panel,

(B) Taxonomy Panel, (C) Central Panel, (D) Tool Bar and (E) Result Panel. These

components provide the user with entities required to form a constraint

94

Chapter 4: ConEditor

expression. The user can then choose the appropriate entities by clicking the mouse and

so form a constraint expression. The process of formulating a constraint using

ConEditor is explained further by considering the example of the constraint reported

earlier in this section.

(A) Keywords Panel: This panel consists of a list of keywords from the CoLan

language. In the example considered, the keywords constrain each, in, to have

can be selected from this panel. Clicking the “Add” button in the panel appends

the selected keyword to the text area in the result panel.

Figure 4.3: A screenshot showing constraints expressed in tables using ConEditor

(B) Taxonomy Panel: The taxonomy panel displays all the top level classes (i.e.

classes having its parent as “Thing” in the OWL ontology) in the domain

ontology together with their subclasses, properties (both object and datatype),

and properties of the range classes of object properties and so on, as a taxonomy

in a tree structure. Each class or object property can be expanded by a double

mouse click to list all its subclasses and properties below it in the

95

Chapter 4: ConEditor

taxonomy. Nodes represented by letter ‘P’ denote properties of a class. Clicking

the “Add” button appends the selected node to the constraint expression being

formed in the result panel. In the example considered, the entities

ConcreteFeature, max_operating_temp, has_material, and operating_temp can

be selected from this panel.

(C) Central Panel: This panel has two sections, namely constants and functions. In

the constants section, two text fields are provided for inputting real and integer

constants. Clicking the “update” button appends the constant to the constraint

expression being formed. In the functions section, function buttons are provided

for editing the constraint expression, adding a constant, refreshing the panel and

creating a table. ConEditor provides a mechanism for inputting tables and

exporting entities from the taxonomy panel to the table using the “Export”

button. Figure 4.3 shows an example of constraints expressed in a table using

ConEditor.

(D) Tool Bar: The tool bar displays the operators (arithmetic, relational and logical)

and delimiters. A single mouse click on the selected operator will append it to

the text area in the result panel. In the example considered, the operator ‘>=’

and the delimiters ‘(’, ‘)’ can be selected from the tool bar.

(E) Result Panel: The result panel consists of a text area, displaying the constraint

expression formulated by the user. Edit/Style menus are provided, on right-

clicking the mouse in the result panel, which allow the user to undo/redo actions,

cut, copy, paste text, specify the font and size of the text.

The implementation and functionality of ConEditor is described in the following

section.

96

Chapter 4: ConEditor

4.3 Functionality of ConEditor

Figure 4.4: Process Flow within ConEditor

ConEditor has been developed in the Java programming language. The domain

ontology is represented in the Web Ontology Language (OWL) (McGuinness &

Harmelen, 2004) and has been developed using Protégé (Noy et al., 2000). The

ontology is parsed using Jena to extract classes and properties for display in the

taxonomy panel. Design rules are captured by the domain experts as CoLan constraints

over the domain ontology in OWL using ConEditor’s GUI. The domain ontology in

OWL is converted into a Daplex (Shipman, 1981) schema within ConEditor. This

conversion process is described in Section 4.4. ConEditor makes use of the Daplex

schema together with a Daplex compiler to verify the syntax of each constraint and

report any syntactical errors. Constraints that are syntactically correct are then

converted to a semantic web enabled XML Constraint Interchange Format (CIF) using

a translator developed by Gray et al. (2001). The translator makes use of the Daplex

schema for this conversion. An overview of the XML CIF format and the principles

involved in the conversion of CoLan to CIF are provided in Section 4.5. Hence, the

input to ConEditor is a CoLan constraint and the output is a constraint in CIF, provided

the constraint is syntactically correct. Any syntactic errors are reported to the user. The

process flow within ConEditor is as shown in Figure 4.4. The

97

Chapter 4: ConEditor

constraints in XML Constraint Interchange Format (CIF) are then converted into Sicstus

predicates and RDQL queries for processing by the Designers’ Workbench. Both

ConEditor and the Designers’ Workbench use the same domain ontology represented

in OWL. The framework of ConEditor and Designers’ Workbench is as shown in Figure

4.5.

Figure 4.5: Framework of ConEditor and Designers’ Workbench

4.4 Conversion of OWL ontology into Daplex Schema

ConEditor uses Jena (HP, 2004) to convert the domain ontology in OWL into an

appropriate Daplex schema. Jena provides a set of APIs to read, create and manipulate

ontologies. The Daplex schema is used by both the Daplex compiler and the CoLan to

CIF translator. A similar transformation program to convert a XML DTD specification

into Daplex schema has been implemented previously in Selpi (2004). This section

describes the representation of inheritance hierarchies in P/FDM and the principles

involved in conversion of OWL ontology into a Daplex Schema.

98

Chapter 4: ConEditor

Figure 4.6 (a): Modelling research staff who are also students using multiple inheritance

Figure 4.6 (b): Modelling research staff who are also students without using multiple inheritance

As in many semantic data models, entity classes in P/FDM may be arranged into

inheritance hierarchies so that functions defined at higher levels in the hierarchy may

be inherited by lower level classes. For example, one can abstract the common attributes

of the ‘teacher’ and ‘student’ classes into a ‘person’ class:

declare person ->> entity %Subclass declaration

declare surname(person) -> string %Function declaration

declare forename(person) -> string %Function declaration

99

Chapter 4: ConEditor

key_of person is surname, forename;

and can then make the original classes as subclasses of the ‘person’ class:

declare teacher ->> person % Subclass declaration

declare subject(teacher) -> string %Function declaration

declare student ->> person % Subclass declaration

declare age(student) ->> integer; %Function declaration

A key has been declared for the root class ‘person’. This ensures that the key is the same

for all classes in the hierarchy, and that is defined in terms of functions that are

inheritable by all classes in the hierarchy. Each class may have only one immediate

superclass, so multiple inheritance is not supported. On the other hand, OWL ontologies

support multiple inheritance. In practice, however, this is less of a restriction than might

be supposed, due to the way in which P/FDM handles subclasses. Unlike many other

data models, P/FDM supports overlapping subclasses, where an instance of a class may

simultaneously belong to any number of its subclasses. ConEditor uses Jena to parse an

OWL ontology and extract all the classes, subclasses, properties and their relations.

These relations are then represented in an appropriate Daplex schema. A class that is a

direct subclass of two or more parent classes is expressed as a subclass of the nearest

common superclass of the parent classes. For example, if ‘Research_Student’ is a

subclass of ‘Student’ and ‘Research_Staff’ as shown in Figure 4.6 (a) then

‘Research_Student’ is expressed as an immediate subclass of ‘Person’ as shown in

Figure 4.6 (b).

4.5 XML Constraint Interchange Format (CIF)

This section provides an overview of CIF and the principles involved in the conversion

of CoLan to CIF, as described in Gray et al. (2001).

XML-CIF is an open interchange format that supports a range of applications in

which information needs to be moved across a network with rich metalevel information

describing how the information can be used. XML-CIF is based on a well-established

semantic data model (P/FDM) with an associated expressive constraint language

(CoLan). To allow data instances to be transported across a network, the P/FDM data

model has been mapped to a RDF Schema. RDF Schema is the simplest and most

universal of the proposed semantic web data representations. To

10
0

Chapter 4: ConEditor

allow constraints to be transported across a network, CIF has been developed in the

form of a RDF Schema for CoLan. The basic design principles adopted are as follows:

 the CIF would need to be serialisable into XML, to make it maximally

portable and open;

 constraints should be represented as resources in RDF, so that RDF statements

can be made about the constraints themselves;

 there must be no modification to the existing RDF Schema specifications, so

that the CIF would be layered cleanly on top of RDF;

 it must be possible for constraints to refer to terms defined in any RDF

Schema, with such references made explicit.

Figure 4.7: P/FDM Daplex definitions for entity and property metaclasses

Source: Gray et al. (2001)

The entity-relational basis of both P/FDM data model and RDF makes it relatively

straightforward to map from the former to the latter. The RDF Schema for CIF has been

guided by the existing grammar for CoLan (Gray et al., 1999a) that relates

10
1

Chapter 4: ConEditor

constraints to entities, attributes and relationships present in the ER model. This

grammar serves as a metaschema for the CoLan constraints. The implementation of the

P/FDM semantic data model makes use of an ‘entmet’ class that holds information on

all entity classes, and a ‘propmet’ class that holds information on relationships

(functions), both stored and derived (Embury & Gray, 1995). The P/FDM Daplex

definitions of the ‘entmet’ and ‘propmet’ classes are shown in Figure 4.7, together with

their superclass ‘objmet’. The property ‘rdfname’ on the ‘entmet’ and ‘propmet’ classes

holds the unique URI for a RDF resource, and thus provides an explicit link to the RDF

Schema definition for the corresponding RDF Schema class or property. Thus,

constraints carry explicit relationships to the domain ontology (as represented by a RDF

Schema) for the terminology to which they refer.

Figure 4.8: RDF Schema definitions for the objmet and entmet classes

Source: Gray et al. (2001)

10
2

Chapter 4: ConEditor

Figure 4.8 shows the RDF Schema definitions corresponding to the Daplex

definitions of the ‘objmet’ and ‘entmet’ classes in Figure 4.7. It is worth noting that,

because properties in RDF are global, some of the original local P/FDM property names

must be renamed (for example, ‘entmet_rdfname’ in Figure 4.8 is renamed from

‘rdfname’ in Figure 4.7). The basic rules used when mapping the P/FDM declarations

to RDF Schema are as follows:

 A P/FDM class c defined as an ‘entity’ (declared as c->> entity) maps to an RDF

resource of type rdfs:Class (where rdfs is the namespace prefix for the RDF

Schema descriptions);

 A P/FDM class c declared to be a subtype of another class s (declared as c->>

s) maps to a RDF resource of type rdfs:Class, with an rdfs:subClassOf

property, the value of which is the class named s;

 A P/FDM function f declared on entities of class c, with result type r (declared

as f(c) -> r) maps to a RDF resource of type rdf:Property with a rdfs:domain of

c and a rdfs:range of r.

Figure 4.9: RDF Schema definitions relating to the ‘setmem’ metaclass

Source: Gray et al. (2001)

10
3

Chapter 4: ConEditor

A fundamental notion in CoLan is that a variable is always introduced in conjunction

with a set that it ranges over. Thus, terms such as ‘(p in pc)’ and ‘(e in employee)’ are

common, as in the example expressions:

(p in pc) such that name (p) = “xxx”

(e in employee) such that salary(e) > 5000 and age(e) < 50

This is represented in the syntax by the ‘setmem’ metaclass, while variables themselves

are described by the ‘variable’ class, both defined as shown in Figure 4.9. An instance

of the ‘variable’ class is a legal instance of an ‘expr’ class (representing an expression)

by virtue of a series of subclass relationships. An example XML-CIF fragment

corresponding to the CoLan fragment ‘(p in pc)’ is shown in Figure 4.10.

Figure 4.10: XML-CIF fragment corresponding to the CoLan fragment (p in pc)

Source: Gray et al. (2001)

In summary, the CIF RDF Schema serves the purpose of describing what are

called valid constraints, themselves expressed at an instance level in RDF. It combines

the information in a grammar, which is normally used by a syntax checker or a parser,

with information normally held in a database schema. It should be noted that the

metaschema makes a clean separation between the description of constraints (both

universal and existential) and expressions. Constraints and their boolean components

are a representation of first-order logic, with the usual connectives. Any

10
4

Chapter 4: ConEditor

knowledge source that uses FOL should be able to understand this. Expressions refer to

facts about entities, their subtypes, attributes and relationships, and is based on the

concepts of an ER model, which are very widely used. The ER model abstracts over

relational storage, flat files and object-oriented storage, following the principle of data

independence. It does not tie to any particular system, such as Oracle or P/FDM.

4.6 Summary

This chapter has described the design, implementation and functionality of ConEditor.

The chapter has also provided an overview of the constraint representation languages

used by ConEditor. CoLan is the high-level constraint language used by ConEditor to

capture constraints. A constraint expression can be created using ConEditor’s GUI by

selecting entities from a domain ontology and combining them with a pre-defined set

of keywords and operators from CoLan. The domain ontology in OWL is converted

into a Daplex Schema by ConEditor. The principles involved in the conversion have

been described in this chapter. The constraint captured in CoLan is checked for any

syntax errors by the Daplex compiler, which uses the Daplex schema. If there are no

errors in the constraint, it is converted into a semantic web enabled Constraint

Interchange Format using a translator, which also uses the Daplex schema. An overview

of the Constraint Interchange Format and the principles involved in the conversion of

CoLan to CIF has been described in this chapter. The following chapter describes the

verification and refinement of constraints captured by ConEditor.

105

Chapter 5

Verification and Refinement of Constraints

‘Logic is the technique by which

we add conviction to truth.’

- Jean de la Bruyere

This chapter introduces the concept of an application condition associated with a

constraint. The chapter analyses the kite domain and describes how the application

conditions together with the constraint and the corresponding domain ontology can be

used to support the maintenance of constraints. Four main types of knowledge

refinement rules are described with examples from the kite design KB. Further, the

refinement rules are expressed in a formal notation (in first order logic) and proved that

they are logically sound. The chapter is structured as follows: Section 5.1 provides an

analysis of the kite domain and introduces the concept of an application condition.

Section 5.2 describes the proposed refinement rules with examples. Section

5.3 provides a formal representation of the refinement rules in first-order logic

together with logical proofs. Section 5.4 provides a summary of the chapter.

5.1 Analysis of the Kite Domain

Due to restricted availability of Rolls-Royce designers’ time and because it is a

simpler domain, the kite domain was initially investigated. The sources referred to study

the kite domain include Yolen (1976), Streeter (1980), Eden (1998), AKA (2006),

CEKS (2006), Leigh (2006), Lords (2006) and Wardley (2006). There are different

types of constraints associated with the design of a kite. Several constraints are

applicable only to particular types of kites and under specific conditions The studies

helped elicit constraints and their application conditions to form a knowledge base for

the kite domain. Appendix A provides a list of equations and constraints elicited from

the kite domain together with the corresponding application conditions and sources.

106

Chapter 5: Verification and Refinement of Constraints

Figure 5.1: Basic Parts of a flat diamond kite

Consider the design of a flat diamond kite. Figure 5.1 shows this type of kite with its

basic parts labelled. There are various constraints involved in the design of a kite

depending on the type of kite, wind conditions, etc. For a successful design (design that

leads to a kite that can fly), one has to ensure that the appropriate constraints are

satisfied. A sample constraint with its application condition is given below in CoLan:

constrain each k in Kite

such that has_type(k) = “Flat” and has_shape(k) = “Diamond”

to have tail_length(has_tail(k)) = 7 * spine_length(has_spine(k))

The above constraint represented in first-order logic is :

 k [(Kite(k) ^ (has_type(k) = “Flat”) ^ (has_shape(k) = “Diamond”)) →

(tail_length(has_tail(k)) = 7 * spine_length(has_spine(k)))]

107

Chapter 5: Verification and Refinement of Constraints

The context in which a constraint is applicable is referred to as an application condition

in this thesis. The application condition states the condition when a particular constraint

is applicable and forms a part of the rationale associated with the constraint. In the

CoLan version of the above constraint, the application condition (in italics) is

introduced by the clause “such that”. The clause “such that” is already a part of CoLan

language and can be used to express conditional statements. The author aims to make

use of this clause “such that” to express an application condition associated with the

constraint. The above constraint states that “For every instance of the class Kite, when

the type of the kite is flat and shape of the kite is diamond, the length of the tail of the

kite needs to be seven times the length of the spine of the kite”. The phrase in italics

(above) is the application condition of the constraint.

In order to make it clearer, the thesis divides a constraint represented in CoLan

into three parts namely antecedent, application condition and consequent. Thus, a

constraint can be represented by the following general structure in CoLan:

constrain each x1 in C1

each x2 in C2 (Antecedent)

…………….

such that P1 (x1)

and/or P2 (x2) (Application Condition)

…………….

to have R1 (x1)

and/or R2 (x2) (Consequent)

…………….

where x1, x2 represent variables that belong to classes C1 and C2 respectively; P1 (x1),

P2 (x2) , R1 (x1), R2 (x2) represent properties.

Thus, the example constraint from the kite domain consists of:

Antecedent: constrain each k in Kite

Application condition: such that has_type(k) = “Flat”
and has_shape(k) =“Diamond”

Consequent: tail_length(has_tail(k)) = 7 * spine_length(has_spine(k))

108

Chapter 5: Verification and Refinement of Constraints

A constraint in CoLan, in general, can be represented by a first order-logic

sentence as:

S x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) → R(x1,….xn)]

where S is a sentence; x1,….xn are variables; C1,… Cn are classes and P(x1,….xn),

Pm(x1,….xn), R(x1,….xn) represent predicates/properties.

Figure 5.2: The Kite Domain ontology developed in Protégé

109

Chapter 5: Verification and Refinement of Constraints

A domain ontology for the kite domain was developed as part of the analysis. Figure

5.2 shows the kite domain ontology developed using the Protégé editor.

5.2 Knowledge Refinement Rules

The information inherent in an application condition can be used together with the

constraint and the associated domain ontology to support the maintenance of

constraints. The thesis proposes four main types of knowledge refinement rules namely,

redundancy, subsumption, inconsistency and fusion. The knowledge refinement rules

are described below with examples from the kite domain. A formal notation in first-

order logic for each knowledge refinement rule described below together with the

logical proof is provided in Section 5.3.

5.2.1 Redundancy

Redundancy occurs between constraints when all the components of a constraint

(antecedent, application condition and consequent) are equivalent to the corresponding

components of another constraint. There are three types of redundancy and each type is

described below with examples:

(a) Duplication

(i) constrain each c in ConventionalSledKite

such that has_level(c) = “beginner”

to have density(has_material(has_cover(c))) < 0.5

(ii) constrain each c in ConventionalSledKite

such that has_level(c) = “beginner”

to have density(has_material(has_cover(c))) < 0.5

By comparing the two constraints above, one can infer that the constraints (i) and (ii)

are identical.

110

Chapter 5: Verification and Refinement of Constraints

(b) Class Equivalence

(iii) constrain each c in ConventionalSledKite

such that has_level(c) = “beginner”

to have density(has_material(has_cover(c))) < 0.5

(iv) constrain each t in TraditionalSledKite

such that has_level(t) = “beginner”

to have density(has_material(has_cover(t))) < 0.5

If CoventionalSledKite is specified an equivalent class to TraditionalSledKite in the

domain ontology one can infer that, the constraint (iii) is equivalent to constraint (iv).

(c) Property Equivalence

(v) constrain each c in ConventionalSledKite

such that has_level(c) = “beginner”

to have density(has_material(has_cover(c))) < 0.5

(vi) constrain each c in ConventionalSledKite

such that has_class(c) = “beginner”

to have density(has_material(has_cover(c))) < 0.5

If has_level is an equivalent property to has_class in the domain ontology one can

infer that the constraint (v) is equivalent to constraint (vi).

The domain expert can be notified of all such redundancies and suggested by a

system that he/she considers eliminating this redundancy.

5.2.2 Subsumption

Subsumption occurs between a pair of constraints when one constraint “covers” all the

conditions of another constraint, i.e., constraint A subsumes constraint B iff constraint

B is contained in constraint A. More formally, constraint A subsumes constraint B iff

constraint A logically implies constraint B. An alternate way of

111

Chapter 5: Verification and Refinement of Constraints

defining constraint subsumption (more formally) is as follows: Let us assume that we

have a relation “satisfy(C, Sigma)” which holds if Sigma, a first-order substitution (of

the form X/t, where X is a variable and t is a term), assigns values to each variable in C

such that C holds. For instance, satisfy((20 < X < 40), {X/21}), …, satisfy((20 < X

< 40), {X/39}) all hold. This relation can be used to check if a substitution satisfies the

constraints and also to find all substitutions, one at a time. With this auxiliary

relationship, we can define constraint subsumption as: constraint A subsumes constraint

B if, and only if, for all Sigma such that satisfy(A, Sigma) holds, then satisfy(B, Sigma)

also holds. There are three types of subsumption and each type is described below with

examples:

(a) Subsumption via sub-class:

(vii) constrain each s in SledKite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s)) >= 15

(viii) constrain each c in ConventionalSledKite

such that has_size(c) = “standard”

to have kite_line_strength(has_kite_line(c)) >= 15

If ConventionalSledKite is a subclass of SledKite in the domain ontology one can infer

that the constraint (vii) subsumes constraint (viii). The domain expert can be notified of

this fact and suggested by a system that he/she considers removing or deactivating

constraint (viii).

(b) Subsumption via application condition

(ix) constrain each s in SledKite

such that has_size(s) = “standard” or has_size(s) = “large”

to have kite_line_strength(has_kite_line(s)) >= 15

112

Chapter 5: Verification and Refinement of Constraints

(x) constrain each s in SledKite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s)) >= 15

By comparing the two constraints above, one can infer that the constraint (ix) subsumes

constraint (x) because the application condition of constraint (ix) includes the

application condition of constraint (x). The domain expert can be notified of this fact

and suggested by a system that he/she considers removing or deactivating constraint

(x).

(c) Subsumption via conjunction

(xi) constrain each s in SledKite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s)) >= 15 and

has_cord_length(s) > 21

(xii) constrain each s in SledKite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s)) >= 15

Again, one can infer that the constraint (xi) subsumes constraint (xii) because the

consequent of constraint (xi) includes the consequent of constraint (xii). The domain

expert can be notified of this fact and suggested by a system that he/she considers

removing or deactivating constraint (xii).

5.2.3 Inconsistency/Contradiction

An inconsistency/contradiction occurs between a pair of constraints when the

consequent of one constraint contradicts (is inconsistent with) the consequent of another

constraint while the antecedents and application conditions are equivalent i.e.,

constraint A contradicts constraint B or vice-versa if the consequents of constraints A

and B cannot hold together.

113

Chapter 5: Verification and Refinement of Constraints

(xiii) constrain each k in Kite

such that has_type(k) = “stunt”

to have kite_line_strength(has_kite_line(k)) > 30

(xiv) constrain each k in Kite

such that has_type(k) = “stunt”

to have kite_line_strength(has_kite_line(k)) < 25

By comparing the two constraints above, one can infer that the constraint (xiii)

contradicts constraint (xiv). The domain expert can be notified of this fact and suggested

by a system that he/she takes an appropriate action (modify/delete) to resolve the

inconsistency.

5.2.4 Fusion

Fusion occurs between a pair of constraints when the two constraints can be combined

together and replaced with another constraint, i.e. two constraints A and B can be fused

together and replaced by a constraint C, iff constraint C implies constraint A and

constraint C implies constraint B. There are three types of fusion and each type is

described below with examples:

(a) Fusion via class

(xv) constrain each c in ConventionalSledKite

such that has_wind_condition(c) = “moderate”

to have has_bridle_attachment_angle(c) < 40

(xvi) constrain each m in ModernSledKite

such that has_wind_condition(m) = “moderate”

to have has_bridle_attachment_angle(m) < 40

If ConventionalSledKite and ModernSledKite are the only two subclasses of SledKite

in the domain ontology and if every instance of SledKite is an instance of either

114

Chapter 5: Verification and Refinement of Constraints

ConventionalSledKite or ModernSledKite then the constraints (xv) and (xvi) can be

fused together and replaced by the constraint (xvii) as follows:

(xvii) constrain each s in SledKite

such that has_wind_condition(s) = “moderate”

to have has_bridle_attachment_angle(s) < 40

(b) Fusion via application condition

(xviii) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

(xix) constrain each j in JapaneseKite

such that has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

The constraints above can be fused together by using “or” between the application

conditions, i.e., the constraints (xviii) and (xix) can be fused together and replaced by

the constraint (xx) as follows:

(xx) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong” or has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

(c) Fusion via conjunction

(xxi) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

(xxii) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong”

to have kite_line_strength(has_kite_line(j)) >= 15

115

Chapter 5: Verification and Refinement of Constraints

The constraints above can be fused together by using “and”, i.e., the constraints (xxi)

and (xxii) can be fused together and replaced by the constraint (xxiii) as follows:

(xxiii) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

and kite_line_strength(has_kite_line(j)) >= 15

In all the above cases of fusion, the domain expert can be notified of this fact and

suggested that he/she considers fusing constraints to reduce the size of the KB and

possibly make it easier to maintain.

In all the examples above, universally quantified constraints involving a single

variable have been considered for the sake of simplicity and also because they were

common in the kite domain KB. However, more complex first-order logic expressions

involving existential quantifiers or a combination of both existential and universal

quantifiers can also be expressed in CoLan.

Thus, four main types of knowledge refinement rules among constraint pairs

have been described with examples. All the refinement rules (except inconsistency)

have sub-types: (1) Redundancy: (a) duplication (b) class equivalence (c) property

equivalence (2) Subsumption: (a) via subclass (b) via application condition (c) via

conjunction (3) Inconsistency (4) Fusion: (a) via class (b) via application condition (c)

conjunction.

Knowledge refinement rules can be combined and applied together to a pair of

constraints, which require the application of multiple refinement operators. For an

example, consider the following constraints:

(E1) constrain each s in SledKite

such that has_type(s) = “stunt” or

has_wind_condition(s) = “strong”

to have kite_line_strength(has_kite_line(s)) > 30

(E2) constrain each c in ConventionalSledKite

such that has_type(c) = “stunt”

to have kite_line_strength(has_kite_line(c)) < 25

116

Chapter 5: Verification and Refinement of Constraints

Now, if ConventionalSledKite is a subclass of SledKite in the domain ontology, then

by comparing the constraints (E1) and (E2), one can infer that:

(a) The application condition of constraint (E2) is covered by the application

condition of constraint (E1).

(b) The consequent of constraint (E1) contradicts the consequent of constraint (E2).

Hence, one can infer that the constraint (E1) contradicts constraint (E2) and

makes the KB inconsistent. The domain expert can be notified of this fact and suggested

that he/she takes an appropriate action (modify/delete). In the example above, a

combination of the following knowledge refinement rules have been applied:

(a) Subsumption via subclass (b) Subsumption via application condition (c)

Inconsistency. The next section (Section 5.3) provides a formal notation for all the

above described knowledge refinement rules together with logical proofs.

5.3 Formal Notation and Logical Proof

Symbols:

OWL ontology classes: C1, D1, E1, …..,Cn, Dn, En.

OWL ontology properties/predicates as:

(i) Application Conditions - P, Q, P1, Q1, , Pm, Qm

(ii) Consequents: R, R1,… , Rn

Variables: x1, y1,z1, , xn, yn, zn

Sentences: S, S1 ,… . Sn

Logical Equivalence:

Logical Implication: →

Logical Biconditional: ↔

Integer variables: m, n = 1, 2,…

C1(x1), D1(x1), E1(x1), …..: x1 C1, x1 D1, x1 E1,……………

Predicates: P1(x1,….xn), Pm(x1,….xn), Q(x1,….xn),…………….

117

Chapter 5: Verification and Refinement of Constraints

Refinement Rules:

5.3.1 Redundancy

(a) Duplication

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1 (y1,….yn) …..^ Pm(y1,….yn)) → R(y1,….yn)]

Then

S1 S2.

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1 (y1,….yn) …..^ Pm(y1,….yn)) → R(y1,….yn)]

Goal: S1 S2

All the variables in a well-formed formula can be renamed consistently without altering

the semantics of the formula. This means that for any well-formed formula P(x) and

variable y that does not occur in P(x), we have x P(x) ↔ y P(y).

By using the above axiom and renaming S2, we have

S2 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

Hence we can conclude S1 S2.

118

Chapter 5: Verification and Refinement of Constraints

(b) Class Equivalence

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1(y1,….yn) …..^ Pm(y1,….yn)) → R(y1,….yn)]

and

[(Di owl:equivalentClass Ci) or (Di = Ci)], 1 i n hold

Then

S1 S2.

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1 (x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1 (y1,….yn) …..^ Pm(y1,….yn)) →

R(y1,….yn)]

and

[(Di owl:equivalentClass Ci) or (Di = Ci)], 1 i n hold (1)

Goal: S1 S2

We can replace D with C in S2 and C with D in S1. [Using (1)]

Hence we can get S2 from S1 and vice-versa. [x P(x) ↔ y P(y)]

Therefore S1 S2.

(c) Property Equivalence

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

119

Chapter 5: Verification and Refinement of Constraints

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ Q1(y1,….yn) ^ …..^ Qm(y1,….yn)) →

R2(y1,….yn)]

and

[(Pi owl:equivalentProperty Qi) or (Pi = Qi)] , 1 i m hold

and

[(R1 owl:equivalentProperty R2) or (R1 = R2)] hold

Then

S1 S2.

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ Q1(y1,….yn) ^ …..^ Qm(y1,….yn)) →

R2(y1,….yn)]

and

[(Pi owl:equivalentProperty Qi) or (Pi = Qi)] , 1 i m hold (2)

and

[(R1 owl:equivalentProperty R2) or (R1 = R2)] hold (3)

Goal: S1 S2

We can replace Q with P in S2 and P with Q in S1. [Using (2)]

Similarly, we can replace R2 with R1 in S2 and R1 with R2 in S1. [Using (3)]

Hence we can get S2 from S1 and vice-versa. [x P(x) ↔ y P(y)]

Therefore S1 S2.

5.3.2 Subsumption

(a) Subsumption via sub-class

If

S1 x1,….xn [(C1(x1) ^…..^ Cn(xn) ^ P1(x1, ….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

120

Chapter 5: Verification and Refinement of Constraints

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

and

[(Di owl:subClassOf Ci) or (Di = Ci)], 1 i n hold

Then

S1 subsumes S2 (i.e. S1 logically implies S2).

Proof:

Given:

S1 x1,….xn [(C1(x1) ^…..^ Cn(xn) ^ P1(x1, ….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

and

[(Di owl:subClassOf Ci) or (Di = Ci)], 1 i n hold

Goal: S1 subsumes S2 (i.e. S1 logically implies S2).

Converting S1 and S2 into clausal form by using Universal Elimination,

(P→Q) (¬P ˇ Q) and DeMorgan’s law, we have

S1 ¬C1(x1) ˇ …..ˇ ¬Cn(xn) ˇ ¬P1(x1,….xn) ˇ.....ˇ ¬Pm (x1,….xn) ˇ R (x1,….xn)

and

S2 ¬D1(y1) ˇ …..ˇ ¬Dn(yn) ˇ ¬P 1(y1,….yn) ˇ...... ˇ ¬Pm (y1,….yn) ˇ R (y1,….yn)

where xi and yi are any values (1 i n).

To prove S1 subsumes S2 , S1 holds.

Now [(Di owl:subClassOf Ci) or (Di = Ci)], 1 i n hold implies that all instances of

Di are also instances of Ci. Hence, Ci subsumes Di where 1 i n hold (i.e. whenever

the constraints in Ci hold the same constraints must also hold in Di).

Therefore, S1 subsumes S2 (i.e. S1 logically implies S2).

This can be explained further by considering the following example:

S1: The total number of wheels in Vehicles must be between 2 and 8 (inclusive).

If Car is a subclass of Vehicle in the ontology then whenever the constraints in S1 for

Vehicle hold then the same constraints must also hold for Car. Therefore the

121

Chapter 5: Verification and Refinement of Constraints

constraint stating that the total number of wheels must be between 2 and 8 (inclusive)

must hold for Car.

(b) Subsumption via application condition

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ ((P1(x1,….xn) ^ …..^ Pm(x1,….xn)) ˇ

Q(x1,….xn))) → R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

Then

S1 subsumes S2 (i.e. S1 logically implies S2).

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ ((P1(x1,….xn) ^ …..^ Pm(x1,….xn)) ˇ

Q(x1,….xn))) → R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

Goal: S1 subsumes S2 (i.e. S1 logically implies S2).

Converting S1 and S2 into clausal form by using Universal Elimination,

(P→Q) (¬P ˇ Q), Distributive law [A^ (BˇC) = (A^ B) ˇ (A^ C)] and DeMorgan’s

law,

we have

S1 ¬C1(x1) ˇ …..ˇ ¬Cn(xn) ˇ (¬P1 (x1,….xn) ^ ¬Q(x1,….xn)) ˇ ̌ (¬Pm (x1,….xn) ^

¬Q(x1,….xn)) ˇ R (x1,….xn)

and

S2 ¬C1(y1) ˇ …..ˇ ¬Cn(yn) ˇ ¬P 1 (y1,….yn) ˇ …..ˇ ¬Pm(y1,….yn) ˇ R(y1,….yn)

where xi and yi are any values (1 i n).

To prove S1 subsumes S2 , let us S1 holds.

Now (P ^ Q) → P.

122

Chapter 5: Verification and Refinement of Constraints

Therefore, S1 logically implies S2 (i.e. S1subsumes S2).

This can be explained further by considering the following example:

S1: If a Vehicle is either a Car or a Truck then the total number of wheels in it must be

between 2 and 8 (inclusive).

A disjunction (Car or Truck) is used in S1. Hence, whenever the consequent (i.e.

“total number of wheels must be between 2 and 8 (inclusive)”) in S1 for vehicle holds

then the constraint stating that the total number of wheels must be between 2 and 8

(inclusive) must also hold for both Car and Truck.

(c) Subsumption via conjunction

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

(R1(x1,….xn) ^ R2(x1,….xn))]

and

S2 y1,….yn [(C1(y1) ^…..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R1(y1,….yn)]

Then

S1 subsumes S2 (i.e. S1 logically implies S2).

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

(R1(x1,….xn) ^

R2(x1,….xn))]

and

S2 y1,….yn [(C1(y1) ^…..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R1(y1,….yn)]

Goal: S1 subsumes S2 (i.e. S1 logically implies S2).

Converting S1 and S2 into clausal form by using Universal Elimination,

(P→Q) (¬P ˇ Q) and DeMorgan’s law, we have

S1 ¬C1(x1) ˇ …..ˇ ¬Cn(xn) ˇ ¬P1 (x1,….xn) ˇ.....ˇ ¬Pm (x1,….xn) ˇ (R1(x1,….xn) ^

R2(x1,….xn))

123

Chapter 5: Verification and Refinement of Constraints

and

S2 ¬C1(y1) ˇ …..ˇ ¬Cn(yn) ˇ ¬P 1 (y1,….yn) ˇ...... ˇ ¬Pm (y1,….yn) ˇ R1 (y1,….yn)

where xi and yi are any values (1 i n).

To prove S1subsumes S2 , let us assume S1 holds.

Now, (P ^ Q) → P.

Therefore, S1 logically implies S2 (i.e. S1subsumes S2).

This can be explained further by considering the following example:

S1: All Cars must have 6 wheels and 4 doors.

A conjunction (6 wheels and 4 doors) is used in S1. Hence, whenever the

consequent (i.e. “must have 6 wheels and 4 doors”) for Cars in S1 hold then the

consequent of 6 wheels must hold in Car and the consequent of 4 doors must also hold

in Car.

5.3.3 Inconsistency

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R2(y1,….yn)]

and

 x1, y1, …, xn, yn R1 (x1,….xn) and R2 (y1,….yn) are inconsistent (i.e. the conditions

of both R1 and R2 cannot hold together).

Then

S1 and S2 are inconsistent (i.e. the conditions specified in the consequents of both S1

and S2 cannot hold together).

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

124

Chapter 5: Verification and Refinement of Constraints

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R2(y1,….yn)]

and

 x1, y1, …, xn, yn R1 (x1,….xn) and R2 (y1,….yn) are inconsistent (i.e. the conditions

of both R1 and R2 cannot hold together).

Goal: S1 and S2 are inconsistent (i.e. the conditions specified in the consequents of

both S1 and S2 cannot hold together).

Converting S1 and S2 into clausal form by using Universal Elimination,

(P→Q) (¬P ˇ Q) and DeMorgan’s law, we have

S1 ¬C1(x1) ˇ …..ˇ ¬Cn(xn) ˇ ¬P1(x1,….xn) ˇ.....ˇ ¬Pm (x1,….xn) ˇ R1(x1,….xn)

and

S2 ¬C1(y1) ˇ …..ˇ ¬Cn(yn) ˇ ¬P 1(y1,….yn) ˇ...... ˇ ¬Pm (y1,….yn) ˇ R2 (y1,….yn),

where xi and yi are any values (1 i n).

Now R1 (x1,….xn) and R2 (y1,….yn) are inconsistent (i.e. the conditions of both R1 and

R2 cannot hold together), where xi and yi are any values (1 i n).

Hence we can conclude that S1 and S2 are inconsistent (i.e. the conditions specified in

the consequents of both S1 and S2 cannot hold together).

5.3.4 Fusion

(a) Fusion via class

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

and

Ci U Di = Ei , 1 i n hold [i.e. Ci and Di are the only two subclasses of Ei in the

domain ontology and every instance of Ei is an instance of either Ci or Di]

Then

S1 and S2 can be replaced by S3 as follows:

125

Chapter 5: Verification and Refinement of Constraints

S3 z1, z2, ….zn [(E1 (z1) ^ …..^ En(zn) ^ P1(z1,….zn) ^ …..^ Pm(z1,….zn)) →

R(z1,….zn)]

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(D1(y1) ^ …..^ Dn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R(y1,….yn)]

and

Ci U Di = Ei , 1 i n hold [i.e. Ci and Di are the only two subclasses of Ei in the

domain ontology and every instance of Ei is an instance of either Ci or Di]

Goal: S1 and S2 can be replaced by S3 as follows:

S3 z1, z2, ….zn [(E1 (z1) ^ …..^ En(zn) ^ P1(z1,….zn) ^ …..^ Pm(z1,….zn)) →

R(z1,….zn)]

From the proof of 5.3.2(a), we can infer that S3 subsumes S1 (i.e. S3 logically implies

S1) and S3 subsumes S2 (i.e. S3 logically implies S2). Hence we can conclude that S1 and

S2 can be replaced by S3.

(b) Fusion via application condition

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ Q(y1,….yn)) → R(y1,….yn)]

Then

S1 and S2 can be replaced by S3 as follows:

S3 z1,….zn [(C1(z1) ^ …..^ Cn(xn) ^ ((P1(z1,….zn) ^ …..^ Pm(z1,….zn)) ˇ

Q(z1,….zn))) → R(z1,….zn)]

126

Chapter 5: Verification and Refinement of Constraints

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^ …..^ Cn(yn) ^ Q(y1,….yn)) → R(y1,….yn)]

Goal: S1 and S2 can be replaced by S3 as follows:

S3 z1,….zn [(C1(z1) ^ …..^ Cn(xn) ^ ((P1(z1,….zn) ^ …..^ Pm(z1,….zn)) ˇ

Q(z1,….zn))) → R(z1,….zn)]

From the proof of 5.3.2(b), we can infer that S3 subsumes S1 (i.e. S3 logically implies

S1) and S3 subsumes S2 (i.e. S3 logically implies S2). Hence we can conclude that S1 and

S2 can be replaced by S3.

(c) Fusion via conjunction

If

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^…..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R2(y1,….yn)]

Then

S1 and S2 can be replaced by S3 as follows:

S3 z1,….zn [(C1 (z1) ^…..^ Cn(zn
^ P1(z1,….zn) ^ …..^ Pm(z1,….zn)) → (R1(z1,….zn)

^ R2(z1,….zn))]

Proof:

Given:

S1 x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^ …..^ Pm(x1,….xn)) →

R1(x1,….xn)]

and

S2 y1,….yn [(C1(y1) ^…..^ Cn(yn) ^ P1(y1,….yn) ^ …..^ Pm(y1,….yn)) →

R2(y1,….yn)]

127

Chapter 5: Verification and Refinement of Constraints

Goal: S1 and S2 can be replaced by S3 as follows:

S3 z1,….zn [(C1 (z1) ^…..^ Cn(zn
^ P1(z1,….zn) ^ …..^ Pm(z1,….zn)) → (R1(z1,….zn)

^ R2(z1,….zn))]

From the proof of 5.3.2(c), we can infer that S3 subsumes S1 (i.e. S3 logically implies

S1) and S3 subsumes S2. (i.e. S3 logically implies S2). Hence we can conclude that S1

and S2 can be replaced by S3.

A formal notation for all the proposed refinement rules has been provided in this

section together with the logical proofs. Descriptions of these refinements with

corresponding examples of constraints were provided in the previous section. It has to

be noted that the units of all the numerical values have to be taken into account while

comparing constraints. For example, consider the following two constraints:

(i) constrain each c in ModernSledKite

such that has_level(c) = “expert”

to have density(has_material(has_cover(c))) > 0.5

(ii) constrain each t in ModernSledKite

such that has_level(t) = “expert”

to have density(has_material(has_cover(t))) < 0.5

One can infer that the constraints (i) and (ii) above contradict each other only after

considering the units of the numerical values in both constraints. If 0.5 specified in

constraint (i) refers to 0.5 kilogram per square metre and 0.5 specified in constraint

(ii) refers to 0.5 gram per square centimetre, then the constraints (i) and (ii) do not

contradict each other. Hence, it is important to consider the units in such cases before

making any inferences. Throughout this thesis, all the inferences made between

constraint pairs are based on the assumption that the numerical values in both the

constraints are specified using the same units. Organisations such as Rolls-Royce adopt

a uniform set of units as part of their design standards to specify all the measurements.

Moreover, in the methodology described in this thesis, the concepts and properties used

in the constraints are taken from the domain ontology. Hence, the units used for all the

measurements are to defined in the domain ontology, instead of explicitly specifying

them in each constraint. As part of the future work, the author

128

Chapter 5: Verification and Refinement of Constraints

plans to integrate the domain ontology with the engineering mathematics ontology

developed by Gruber & Olsen (1994) to incorporate physical dimensions, units of

measure, etc. and enhance the ability to ensure that there is consistency between the

units inherent in the constraints.

5.4 Summary

The chapter provides an analysis of the kite domain and introduces the concept of an

application condition associated with a constraint. Four main types of knowledge

refinement rules have been proposed in this chapter. The rules have been described with

examples from the kite domain. The rules detect redundancy, subsumption,

inconsistency/contradiction and fusion by comparing constraints together with the

corresponding application conditions and the domain ontology. With the help of an

example, a description of how knowledge refinement rules can be combined together

and applied to a pair of constraints has also been provided. A kite domain ontology has

been developed using Protégé. Constraints and application conditions have been

expressed, over the kite domain ontology in a high-level constraint language, namely,

CoLan. Further, all the proposed refinement rules have been expressed in predicate

calculus and proven to be logically sound. The importance of units associated with these

constraints has also been stressed. The next chapter describes the implementation of a

system that incorporates these refinement rules to support the maintenance of

constraints.

129

Chapter 6

ConEditor+

‘Knowledge is of no value unless you can put it

into practice.’

- Anton Chekhov

This chapter describes the design, implementation and functionality of ConEditor+.

ConEditor+ is an extended version of ConEditor. ConEditor was initially developed

mainly to facilitate domain experts themselves to capture constraints. ConEditor also

provided basic maintenance facilities to detect syntax errors between constraints, and

allows reading constraints from text files, editing the constraints and then writing them

to the same or new file. Following encouraging results from the preliminary evaluation

(described in Section 7.1, Chapter 7) of ConEditor, some changes were made to the

GUI and the system was extended to provide additional support for maintenance by

detecting inconsistencies, subsumption, redundancy, fusion between pairs of constraints

and suggesting appropriate refinements. The extended system became known as

ConEditor+.

The chapter is structured as follows: Section 6.1 highlights the main changes made

when extending ConEditor to ConEditor+. Section 6.2 describes the design of

ConEditor+’s GUI. Section 6.3 describes the implementation and functionality of

ConEditor+. Section 6.4 outlines the algorithm implemented by ConEditor+ to verify

and suggest refinements of constraints in CIF. Section 6.5 describes the interpretation

of CIF constraints by ConEditor+. Section 6.6 provides a summary of the chapter.

6.1 Evolution from ConEditor to ConEditor+

ConEditor+ is an extended version of ConEditor. The main changes made from

ConEditor to ConEditor+ can be summarised as follows:

(i) Extended support for maintenance: ConEditor only provided basic support

for maintenance that included detecting syntax errors between constraints,

130

Chapter 6: ConEditor+

reading constraints from text files, editing the constraints and then writing

them to the same or new file. In addition, ConEditor+ detects

inconsistencies, subsumption, redundancy, fusion between pairs of

constraints and suggests appropriate refinements to support maintenance.

ConEditor+ uses the CIF representation of constraints to interpret and

suggest the above refinements.

Figure 6.1: A screenshot of ConEditor+’s GUI

(ii) GUI modification (Figure 6.1): A few changes were made to the

ConEditor’s GUI. The layout was modified to enlarge the result panel. This

was done to improve the readability of the output given by ConEditor+. An

additional tab named “console” was created in the result panel to display the

output messages from ConEditor+. Other changes include the addition of

new components such as menu bar and a “Query” function button to enable

keyword-based search of constraints. The keywords panel and taxonomy

panel were added with new facilities to

131

Chapter 6: ConEditor+

improve the usability. Additionally, two modes, namely, “semi-auto” and

“auto” were introduced. All the components of ConEditor+ are explained

below.

The following section provides a detailed description of ConEditor+’s GUI.

6.2 ConEditor+’s GUI

ConEditor+’s GUI (Figure 6.1) essentially consists of six components, namely: (A)

Keywords Panel, (B) Menu Bar, (C) Functions Panel, (D) Taxonomy Panel, (E) Tool

Bar and (F) Result Panel. These components provide the user with entities required to

form a constraint expression. The user can then choose the appropriate entities by

clicking the mouse and so form a constraint expression. Appendix C presents an

annotated walkthrough of constraint capture using screenshots of ConEditor+. The

process of formulating a constraint using ConEditor+ is explained further by

considering the same example, reported earlier in Chapter 4 for ConEditor. It is assumed

that the consideration of the same example would make it easier for the reader to

recognise the changes made to ConEditor’s GUI. This example is stated below:

constrain each f in ConcreteFeature

to have max_operating_temp(has_material(f)) >= operating_temp(f)

The above constraint states that for every instance of the class ConcreteFeature, the

value of the maximum operating temperature of its material must be greater than or

equal to the environmental operating temperature. ConEditor+’s six components are

described below together with this example.

(A) Keywords Panel: The keywords panel consists of a list of keywords from the

CoLan language. In the example considered, the keywords constrain each, in,

to have can be expressed by selecting them from this panel. A single mouse

click on an entity appends it to the text area in the result panel. Alternatively,

clicking the “Add” button in the panel also appends it to the text area in the

result panel.

132

Chapter 6: ConEditor+

(B) Menu Bar: The menu bar contains a list of menus and submenus with operations

for loading, editing, deleting, searching and saving constraints, performing

syntax checks, creating tables and so on. It also contains an option to choose one

of the two modes, semi-auto and auto. ConEditor+ is set to auto mode by default.

The differences between the two modes are described later in this section.

(C) Functions Panel: The functions panel consists of six buttons (‘Erase’, ‘Create

Table’, ‘Submit’, ‘Query’, ‘Open’, ‘Save’) that can be clicked to perform some

of the frequently used operations from the menu bar. This is provided for easier

and quicker access as compared to the menu bar.

(D) Taxonomy Panel: The taxonomy panel lists all the top level classes (i.e. classes

having its parent as “Thing” in OWL ontology) in the domain ontology together

with their subclasses, properties (both object and datatype), and properties of

the range classes of object properties and so on, as a taxonomy. Each class or

object property can be expanded by a double mouse click to list all the

subclasses and properties below it in the taxonomy. Clicking the “Add” button

in the panel appends the selected entity (class or property) to the text area in the

result panel. In Figure 6.2, one can see the class ConcreteFeature together with

its properties has_coating, has_lubricant, has_material and so on. Now each

object property has a range class associated with it. For each object property, all

the properties of its range class are listed below it.

For example, in Figure 6.2, has_material is an object property having a

range class Material. A double mouse click on has_material displays all the

properties of Material class, i.e., contains, density, material_thickness,

max_operating_temp, name and so on. For the example constraint considered,

the entities ConcreteFeature, max_operating_temp, has_material,

operating_temp can be selected from this panel and added to the result panel by

clicking the “Add” button.

133

Chapter 6: ConEditor+

Figure 6.2: Taxonomy Panel of ConEditor+

(E) Tool Bar: The tool bar displays the operators (arithmetic, relational and logical)

and delimiters. In the example considered, the operator ‘>=’ and the delimiters

‘(’, ‘)’ can be selected from the tool bar. Again, a single mouse click on the

selected operator will append it to the text area in the result panel.

(F) Result Panel: The result panel consists of a text area, displaying the constraint

expression formulated by the user and any output messages (e.g., syntax error

message) from ConEditor+. This panel consists of two tabs: namely, the “Edit

Area” and the “Console” that displays the constraint expression formulated by

the user and the output messages from the system respectively.

There are two modes in ConEditor+, namely, auto and semi-auto. ConEditor+ is set to

auto mode by default. The differences between the two modes, auto and semi-auto are

now described with respect to Figure 6.2:

Auto Mode: When using the auto (default) mode, selecting the property

max_operating_temp and clicking the “Add” button appends

max_operating_temp(has_material()) to the text area in the result panel. This means

that when a property is chosen, the properties in the levels above it in the taxonomy

(has_material is chosen together with max_operating_temp) are automatically

134

Chapter 6: ConEditor+

appended to it. In addition, when using the auto mode, a combo-box listing all the

alphabets (‘a’ – ‘z’) appears automatically in each position where a variable needs to be

entered. In the example constraint considered above, combo-boxes appear in positions

of all the occurrences of variable ‘f’ in the constraint. The positions where variable ‘f’

occurs in the example constraint are listed as follows:

(i) Between ‘constrain each’ and ‘in’

(ii) Between ‘max_operating_temp(has_material(’ and ‘))’

(iii) Between ‘operating_temp(’ and ‘)’.

The user can then choose the appropriate variable required (‘f’ in the example

constraint) instead of typing it using the keyboard.

Semi-auto mode: When using the semi-auto mode, selecting the property and clicking

the “Add” button will append only that particular property to the text area in the result

panel. The properties above it in the taxonomy are not automatically appended.

Therefore, in the example considered, while using the semi-auto mode, selecting the

property max_operating_temp and clicking the “Add” button will append only

max_operating_temp to the result panel and not max_operating_temp(has_material(),

as in the case of auto mode. In addition, when using a semi-auto mode, all the variables

required in the constraint (‘f’ in the example constraint) need to be typed manually using

the keyboard. Combo-boxes do not appear automatically at the positions where a

variable needs to be entered.

The following section describes the functionality (including implementation) of

ConEditor+.

6.3 Functionality of ConEditor+

The framework of ConEditor+ and Designers’ Workbench is as shown in Figure 6.3.

The domain expert captures constraints in CoLan using ConEditor+. CoLan is

converted into a standard semantic web enabled XML Constraint Interchange Format

(CIF) using a translator. ConEditor+ processes the constraints in CIF to detect

inconsistencies, subsumption, redundancy and fusion and suggest appropriate

refinements between pairs of constraints. The processing of CIF by ConEditor+ to

detect inconsistencies, subsumption, redundancy and fusion and suggest appropriate

135

Chapter 6: ConEditor+

refinements between pairs of constraints is explained in Section 6.5. Interpretation of

CIF to support maintenance is the main difference between the frameworks of

ConEditor+ and ConEditor, as indicated by an arrow from CIF to ConEditor+ in Figure

6.3. The constraints in CIF are converted into Sicstus predicates and RDQL queries for

processing by the Designers’ Workbench. Both ConEditor+ and the Designers’

Workbench make use of the domain ontology represented in OWL. ConEditor+

converts the domain ontology in OWL into a Daplex schema that is used by both the

Daplex compiler and the CoLan to CIF translator to process constraints in CoLan.

Figure 6.3: Framework of ConEditor+ and Designers’ Workbench

When a constraint is modified and saved, ConEditor+ stores the modified

constraint as a new version together with the original (before modification) constraint.

The rationale for storing different versions of a constraint is to enable designers to study

the constraint evolution (Goonetillake & Wikramanayake, 2004). Each constraint is

allocated a unique identification number (ID) that also denotes its version number. For

example, the first constraint stored is allocated “ver_1_CoLanKiteList.txt_1”, the

second “ver_1_CoLanKiteList.txt_2”, etc. By default, ConEditor+ uses the latest

version of each constraint. The system provides

136

Chapter 6: ConEditor+

facilities to retrieve constraints using keyword-based searches e.g., search and retrieve

all the constraints containing the specified keyword(s) or the constraint associated with

a specified ID. Hence, an old version of a constraint can be retrieved through the

‘search’ mechanism.

6.4 Algorithm

The algorithm used by ConEditor+ to determine the order in which refinement rules are

applied, is outlined below. Consider a pair of constraints A and B. Let the antecedents

be represented by ANa and ANb, application conditions by ACa and ACb, consequents

by Ca and Cb for constraints A and B respectively.

Step 1: Check for redundancy (whether A is identical to B):

If ANa not equal/equivalent to ANb then go to step 2a.

If ACa not equal/equivalent to ACb then go to step 2a.

If Ca equal/equivalent to Cb then conclude redundancy, notify user (domain

expert), suggest refinement action(s) and exit.

Step 2a: Check for subsumption (whether A subsumes B):

If ANa not equal/equivalent/subsumes ANb then go to step 2b.

If ACa not equal/equivalent/subsumes ACb then go to step 2b.

If Ca equal/equivalent/subsumes Cb then conclude subsumption, notify user

(domain expert), suggest refinement action(s) and exit.

Step 2b: Check for subsumption (whether B subsumes A):

If ANb not equal/equivalent/subsumes ANa then go to step 3a.

If ACb not equal/equivalent/subsumes ACa then go to step 3a.

If Cb equal/equivalent/subsumes Ca then conclude subsumption, notify user

(domain expert), suggest refinement action(s) and exit.

Step 3a: Check for inconsistency (whether A contradicts B):

If ANa not equal/equivalent/subsumes ANb then go to step 3b.

If ACa not equal/equivalent/subsumes ACb then go to step 3b.

If Ca contradicts Cb then conclude inconsistency, notify user (domain

137

Chapter 6: ConEditor+

expert), suggest refinement action(s) and exit.

Step 3b: Check for inconsistency (continued):

If ANb not equal/equivalent/subsumes ANa then go to step 4a.

If ACb not equal/equivalent/subsumes ACa then go to step 4a.

If Ca contradicts Cb then conclude inconsistency, notify user (domain

expert), suggest refinement action(s) and exit.

Step 4a: Check for fusion (whether A and B can be fused):

If ANa not equal/equivalent to ANb then go to step 4c.

If ACa not equal/equivalent to ACb then go to step 4b.

Conclude that fusion is possible, notify user (domain expert), suggest

refinement action(s) and exit.

Step 4b: Check for fusion (continued):

If Ca not equal/equivalent to Cb then exit.

Conclude that fusion is possible, notify user (domain expert),

suggest refinement action(s) and exit.

Step 4c: Check for fusion (continued):

If ACa not equal/equivalent to ACb then exit.

If Ca not equal/equivalent to Cb then exit.

If ANa can be fused with ANb [using Rule 4 (a)] then conclude that fusion is

possible, notify user (domain expert), suggest refinement action(s) and exit.

ConEditor+ has also been developed in the Java programming language. The domain

ontology is represented in OWL and has been developed using Protégé. ConEditor+

captures constraints in the CoLan language that is based on the syntax of the Daplex

language (Shipman, 1981; Bassiliades & Gray, 1995). ConEditor+ uses a translator

developed by Gray et al. (2001) to convert CoLan to CIF. ConEditor+ also makes use

of a Daplex compiler to verify the syntax of the constraint in CoLan and report any

syntactic errors. The Daplex schema is used by both the Daplex compiler and the CoLan

to CIF translator. ConEditor+ interprets the constraints in CIF and applies the algorithm

outlined above to detect inconsistencies (contradictions) and to suggest

138

Chapter 6: ConEditor+

various ways to refine (fuse constraints, eliminate redundancies and subsumptions)

pairs of constraints. ConEditor+’s interpretation of constraints in CIF is described

further in Section 6.5.

When a new constraint is input (or submitted) into ConEditor+, it is first

checked for any syntax errors. If there are no syntax errors, the submitted constraint is

converted from CoLan into CIF. The CIF constraint is compared with every other CIF

constraint in the KB. ConEditor+ reports any inconsistency, redundancy, subsumption

or fusion found between the pairs of constraints. This results in a time complexity of

O(n). ConEditor+ can also read a KB (i.e., a list of constraints) and perform comparison

of all possible pairs of constraint expressions within the KB to detect inconsistencies

and suggest refinements. Comparison of all possible pairs of constraints results in the

time complexity of O(n2).

Figure 6.4: A screenshot of ConEditor+ showing subsumption between a pair of constraints

139

Chapter 6: ConEditor+

ConEditor+ compares constraints at the syntactical level, rather than comparing the

solution sets. So ConEditor+ is comparing pairs of constraints of the form e.g., P(x1,

x2) & Q(x1,x3,a) and P(x1, x2) & Q(x1,x3,b). By looking at the values of the constants

(a, b), the structure of the predicates (P, Q), and inferring the relationship between the

corresponding classes and properties in the domain ontology, ConEditor+ determines

whether there is an inconsistency, subsumption, redundancy or fusion. Further, in each

comparison, all the terms in one constraint are compared with all the corresponding

terms in another constraint. Hence, the complexity of each comparison is O(n2). Figure

6.4 shows a screenshot of ConEditor+ with a message to notify the domain expert about

subsumption between a pair of constraints.

Figure 6.5: Constraints in RDF make references to the CIF language definition and the domain

ontology in OWL

6.5 CIF Interpretation by ConEditor+

Section 4.5 in Chapter 4 provided an overview of CIF together with the principles

involved in the conversion of CoLan to CIF. This section describes how ConEditor+

interprets the constraints in CIF in order to apply the algorithm (in Section 6.4) and

suggest appropriate KB refinements. CIF constraints are encoded in RDF by defining

140

Chapter 6: ConEditor+

a RDF schema for the CIF language that is layered cleanly on top of RDF, serving as a

metaschema (Gray et al., 2001). The RDF schema provides knowledge on the class

hierarchy and class properties with type information. A constraint encoded in RDF

makes explicit references to classes defined in the domain model (OWL ontology) as

well as the CIF language definition in RDF Schema as shown in Figure 6.5. The CIF

constraint class has three subclasses, namely, impliesconstr, unquantified_constraint

and existsconstr. The impliesconstr class is used to represent fully quantified constraint

expressions while existsconstr is used to represent existentially quantified constraint

expressions. Further, each class has properties (object and data type properties) defined

in the RDF schema. An ontology model is created with the classes and properties

defined in the RDF Schema using Jena. The code snippet in Jena to do this is as shown

below:

//create an ontology model

OntModel ontologyModel = ModelFactory.createOntologyModel();

// create classes in the ontology model

OntClass c_impliesconstr = ontologyModel

.createClass("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#impliesconstr");

OntClass c_unquantifiedconstr = ontologyModel

.createClass("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#unquantified_cons

traint");

OntClass c_enset = ontologyModel

.createClass("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entset");

OntClass c_enmet = ontologyModel

.createClass("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entmet");

.

.

.

//create object properties in the ontology model

ObjectProperty p_qvar = ontologyModel

.createObjectProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#impliesc

onstr_qvar");

ObjectProperty p_set = ontologyModel

http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#impliesconstr
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#impliesconstr
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#unquantified_cons
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entset
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entset
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entmet
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entmet
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#impliesc

141

Chapter 6: ConEditor+

.createObjectProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#setmem

_set");

ObjectProperty p_prop = ontologyModel

.createObjectProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#mvfncall

_prop");

.

.

//create data type properties in the ontology model

DatatypeProperty p_entmet_rdfname = ontologyModel

.createDatatypeProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entme

t_rdfname");

DatatypeProperty p_propmet_rdfname = ontologyModel

.createDatatypeProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#propm

et_rdfname");

DatatypeProperty p_operator = ontologyModel

.createDatatypeProperty("http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#comp

arison_operator");

.

.

.

Consider the following constraint in CoLan:

constrain each k in Kite

such that has_level(k) = "beginner"

to have density(has_material(has_cover(k))) > 0.5

The above constraint in English is as follows:

“Every kite that is of beginner level should have a cover material density greater than

0.5 units.” The constraint can be divided into three parts as follows:

Antecedent: constrain each k in Kite

Application condition: such that has_level(k) = "beginner"

Consequent: to have density(has_material(has_cover(k))) > 0.5

Each CIF constraint is stored in a XML file (e.g., kite_cif_1.xml). The XML

file is read (parsed) by the ontology model using Jena (e.g., ontologyModel.read(new

http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#setmem
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#setmem
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#mvfncall
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#entme
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#propm
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#comp

142

Chapter 6: ConEditor+

FileInputStream(“kite_cif_1.xml”), null) parses the CIF constraint stored in

‘kite_cif_1.xml’). A description of ConEditor+’s interpretation of the CIF constraint is

given below by considering specific fragments of CIF representation.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:cif="http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2#"
xml:base="http://www.csd.abdn.ac.uk/~sajit/constraint1#">

<cif:impliesconstr rdf:ID="test_constraint_1">

<cif:impliesconstr_qvar>
<cif:setmem>
<cif:setmem_set>
<cif:entset>
<cif:entset_entclass>
<cif:entmet rdf:ID="generic_4">
<cif:entmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#Kite
</cif:entmet_rdfname>
</cif:entmet>
</cif:entset_entclass>
</cif:entset>
</cif:setmem_set>
<cif:setmem_var>
<cif:variable rdf:ID="generic_2">

<cif:variable_varname>
uevar1
</cif:variable_varname>
</cif:variable>
</cif:setmem_var>
</cif:setmem>

</cif:impliesconstr_qvar>

The RDF fragment above defines the namespaces and provides explicit

references to the CIF language definition and the domain ontology in OWL. The

fragment also defines instances, namely, ‘test_constraint_1’, ‘generic_4’ and

‘generic_2’ of the ‘implies_constr class’, ‘entmet class’ and ‘variable’ class

respectively. The ‘entmet’ class has a property ‘entmet_rdfname’ that has a value of

‘file:///D/exp2/kit/RR_Onto1.owl#Kite’ representing the ‘Kite’ class. The ‘variable’

class has a property ‘variable_varname’ that has a value of ‘uevar1’ representing the

variable ‘k’ in the CoLan constraint. The variable ‘uevar1’ is restricted to be an instance

of the entity class ‘Kite’ which is defined by the domain ontology in

‘file:///D/exp2/kit/RR_Onto1.owl#Kite’. The value of the ‘cif:entmet_rdfname’

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.csd.abdn.ac.uk/~khui/akt/cif/cifv2
http://www.csd.abdn.ac.uk/~sajit/constraint1

143

Chapter 6: ConEditor+

property provides a reference to the kite domain ontology in OWL . Thus, the above

fragment defines the antecedent: constrain each k in Kite.

<cif:impliesconstr>

<cif:impliesconstr_qvar>
<cif:setmem>
<cif:setmem_set>
<cif:mvfncall>
<cif:mvfncall_prop>
<cif:propmet>
<cif:propmet_fname>
has_level
</cif:propmet_fname>
<cif:propmet_resulttype>
<cif:entmet>
<cif:entmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#string
</cif:entmet_rdfname>
</cif:entmet>
</cif:propmet_resulttype>
<cif:propmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#has_level
</cif:propmet_rdfname>
<cif:propmet_firstargtype>
<cif:entmet rdf:about="#generic_4"/>
</cif:propmet_firstargtype>
</cif:propmet>
</cif:mvfncall_prop>
<cif:mvfncall_arg>
<cif:variable rdf:about="#generic_2"/>
</cif:mvfncall_arg>
</cif:mvfncall>
</cif:setmem_set>
<cif:setmem_var>
<cif:variable rdf:ID="generic_9">
<cif:variable_varname>
evar2
</cif:variable_varname>
</cif:variable>
</cif:setmem_var>
</cif:setmem>

</cif:impliesconstr_qvar>

The above fragment defines a multi-valued function ‘has_level’ with

rdfname ‘file:///D/exp2/kit/RR_Onto1.owl#has_level’. The function contains an

instance of class Kite as its argument. The result of the function is stored as an instance

‘generic_9’ of the variable class that has a property ‘variable_varname’

144

Chapter 6: ConEditor+

with value ‘evar2’. ‘evar2’ is of type string, which is defined in the kite domain

ontology in OWL.

<cif:impliesconstr_if>

<cif:comparison>
<cif:comparison_operator>
=

</cif:comparison_operator>
<cif:comparison_op2>

<cif:stringconst>
<cif:stringconst_value>
beginner
</cif:stringconst_value>
</cif:stringconst>
</cif:comparison_op2>
<cif:comparison_op1>
<cif:variable rdf:about="#generic_9"/>
</cif:comparison_op1>
</cif:comparison>

</cif:impliesconstr_if>

The above fragment defines the property ‘impliesconstr_if’ that

represents the application condition of the constraint. The value of ‘impliesconstr_if’

contains an instance of the comparison class with property values of ‘=’, ‘beginner’ and

‘generic_9’. From the previous fragment, it can be inferred that ‘generic_9’ represents

the value of the multi-valued function ‘has_level(k)’, where k is an instance of class

‘Kite’. Thus the above fragment represents the application condition: such that

has_level(k) = "beginner".

<cif:impliesconstr>

<cif:impliesconstr_qvar>
<cif:setmem>
<cif:setmem_set>
<cif:mvfncall>
<cif:mvfncall_prop>
<cif:propmet>
<cif:propmet_fname>
has_cover
</cif:propmet_fname>
<cif:propmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#has_cover
</cif:propmet_rdfname>
<cif:propmet_firstargtype>
<cif:entmet rdf:about="#generic_4"/>
</cif:propmet_firstargtype>

145

Chapter 6: ConEditor+

<cif:propmet_resulttype>
<cif:entmet rdf:ID="generic_5">
<cif:entmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#Cover
</cif:entmet_rdfname>
</cif:entmet>
</cif:propmet_resulttype>
</cif:propmet>
</cif:mvfncall_prop>
<cif:mvfncall_arg>
<cif:variable rdf:about="#generic_2"/>
</cif:mvfncall_arg>
</cif:mvfncall>
</cif:setmem_set>
<cif:setmem_var>
<cif:variable rdf:ID="generic_8">
<cif:variable_varname>
evar3
</cif:variable_varname>
</cif:variable>
</cif:setmem_var>
</cif:setmem>

</cif:impliesconstr_qvar>

The above fragment defines a multi-valued function ‘has_cover’ with

rdfname ‘file:///D/exp2/kit/RR_Onto1.owl#has_cover’ that contains an instance of

class ‘Kite’ as its argument. The result of the function is stored as an instance

‘generic_8’ of the ‘variable’ class that has an object property ‘variable_varname’ with

value ‘evar3’. The result type is an instance ‘generic_5’ of class ‘Cover’ with rdfname

‘file:///D/exp2/kit/RR_Onto1.owl#Cover’. All the RDF names provide references to

the kite domain ontology in OWL

<cif:impliesconstr>

<cif:impliesconstr_qvar>
<cif:setmem>
<cif:setmem_set>
<cif:mvfncall>
<cif:mvfncall_prop>
<cif:propmet>
<cif:propmet_fname>
has_material
</cif:propmet_fname>
<cif:propmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#has_material
</cif:propmet_rdfname>
<cif:propmet_resulttype>

146

Chapter 6: ConEditor+

<cif:entmet rdf:ID="generic_3">
<cif:entmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#Kite_Material
</cif:entmet_rdfname>
</cif:entmet>
</cif:propmet_resulttype>
<cif:propmet_firstargtype>
<cif:entmet rdf:about="#generic_5"/>
</cif:propmet_firstargtype>
</cif:propmet>
</cif:mvfncall_prop>
<cif:mvfncall_arg>
<cif:variable rdf:about="#generic_8"/>
</cif:mvfncall_arg>
</cif:mvfncall>
</cif:setmem_set>
<cif:setmem_var>
<cif:variable rdf:ID="generic_7">
<cif:variable_varname>
evar4
</cif:variable_varname>
</cif:variable>
</cif:setmem_var>
</cif:setmem>

</cif:impliesconstr_qvar>

The above fragment defines a multi-valued function ‘has_material’ with

rdfname ‘file:///D/exp2/kit/RR_Onto1.owl#has_material’ that contains an instance

‘generic_8’ of class ‘Cover’ (‘generic_5’) as its argument. The result of the function

is stored as an instance ‘generic_7’ of the ‘variable’ class that has an object property

‘variable_varname’ with value ‘evar4’. The result type is an instance ‘generic_3’ of

the class ‘Kite_Material’ with rdfname

‘file:///D/exp2/kit/RR_Onto1.owl#Kite_Material’.

<cif:impliesconstr>

<cif:impliesconstr_qvar>
<cif:setmem>
<cif:setmem_set>
<cif:mvfncall>
<cif:mvfncall_prop>
<cif:propmet>
<cif:propmet_fname>
density
</cif:propmet_fname>
<cif:propmet_resulttype>
<cif:entmet>

147

Chapter 6: ConEditor+

<cif:entmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#float
</cif:entmet_rdfname>
</cif:entmet>
</cif:propmet_resulttype>
<cif:propmet_rdfname>
file:///D/exp2/kit/RR_Onto1.owl#density
</cif:propmet_rdfname>
<cif:propmet_firstargtype>
<cif:entmet rdf:about="#generic_3"/>
</cif:propmet_firstargtype>
</cif:propmet>
</cif:mvfncall_prop>
<cif:mvfncall_arg>
<cif:variable rdf:about="#generic_7"/>
</cif:mvfncall_arg>
</cif:mvfncall>
</cif:setmem_set>
<cif:setmem_var>
<cif:variable rdf:ID="generic_6">
<cif:variable_varname>
evar5
</cif:variable_varname>
</cif:variable>
</cif:setmem_var>
</cif:setmem>

</cif:impliesconstr_qvar>

The above fragment defines a multi-valued function ‘density’ with

rdfname ‘file:///D/exp2/kit/RR_Onto1.owl#density’ that contains an instance

(‘generic_7’) of class ‘Kite_Material’ (‘generic_3’) as its argument. The result of the

function is stored as an instance ‘generic_6’ of the ‘variable’ class that has an object

property ‘variable_varname’ with value ‘evar5’. The function has a result type of

float.

<cif:unquantified_constraint>

<cif:unquantified_constraint_body>
<cif:comparison>
<cif:comparison_operator>
>
</cif:comparison_operator>
<cif:comparison_op2>
<cif:floatconst>
<cif:floatconst_value>
0.5
</cif:floatconst_value>

148

Chapter 6: ConEditor+

</cif:floatconst>
</cif:comparison_op2>
<cif:comparison_op1>
<cif:variable rdf:about="#generic_6"/>
</cif:comparison_op1>
</cif:comparison>

</cif:unquantified_constraint_body>
</cif:unquantified_constraint>

The above fragment defines the class unquantified_constraint that represents the

consequent of the constraint. The class has a property ‘unquantified_constraint_body’

that contains an instance of the ‘comparison’ class as its value. The instance of the

‘comparison’ class has property values of ‘>’, ‘0.5’ and ‘generic_6’. From the previous

fragment, it can be inferred that ‘generic_6’ represents the value of the multi-valued

function ‘density (has_material(has_cover(k)))’, where ‘k’ is an instance of class ‘Kite’.

Thus the above fragment represents the consequent: to have

density(has_material(has_cover(k))) > 0.5.

ConEditor+ retrieves the antecedent, application condition and consequent of

each constraint by interpreting CIF as described above. Subsequently ConEditor+

applies the algorithm outlined in Section 6.4 to compare pairs of constraints, detect

inconsistencies, subsumption, redundancy, fusion and suggest appropriate refinements

between them to support maintenance.

6.6 Summary

This chapter describes the design, implementation and functionality of ConEditor+,

together with a description of its framework consisting of the Designers’ Workbench.

ConEditor+ is an extended version of ConEditor. ConEditor was developed with the

focus being mainly to facilitate domain experts in capturing constraints. The system

provides basic maintenance facilities to check the constraints for syntax errors and

allows reading constraints from text files, editing the constraints and then writing them

to the same or new file. Following the implementation of ConEditor, the system has

been extended to interpret constraints in CIF and provide further support to the

maintenance of constraints. In addition, some changes were made to ConEditor’s GUI.

The extended system became known as ConEditor+. Further support to maintenance of

constraints is provided in ConEditor+ by implementing the proposed

149

Chapter 6: ConEditor+

knowledge refinement rules described in Chapter 5. The knowledge refinement rules

use constraints together with the associated application conditions and domain ontology

to support maintenance. The algorithm used to determine the order in which ConEditor+

applies the refinement rules is outlined in this chapter. The chapter also describes the

interpretation of CIF constraints by ConEditor+ with an example. The following chapter

describes the evaluation of the research work reported in this thesis.

150

Chapter 7

Evaluation

‘The true worth of an experimenter consists in his

pursuing not only what he seeks in his experiment,

but also what he did not seek.’

- Claude Bernard

This chapter describes how the research work has been evaluated. The chapter is divided

into three main sections. Section 7.1 describes a preliminary evaluation performed using

ConEditor at Rolls-Royce, Derby, UK. The aim of this evaluation was to determine

whether the design engineers would consider using a system such as ConEditor to

capture and maintain design rules. Following the implementation of ConEditor+, three

experiments were performed in the kite (design) domain. Experiment 1 was carried out

to evaluate parts (IIb, IIc) of Research Question II, i.e., determine whether an explicit

representation of application conditions together with the constraints and domain

ontology can be used to: i) reduce the number of spurious inconsistencies and ii) prevent

the identification of inappropriate refinements of redundancy, subsumption and fusion

between pairs of constraints. Experiment 2 (Usability Studies) was carried out to

evaluate parts (Ia, Ib, Ic) of Research Question I, i.e., examine whether ConEditor+ can

facilitate (domain) experts in capturing and maintaining constraints in engineering

design. Experiment 3 (Scalability Studies) was carried out to evaluate Research

Question Id, i.e., determine whether the time taken by ConEditor+ to process constraints

and detect inconsistencies/refinements on realistic tasks is viable for domain experts to

use. Section 7.2 provides a description of each experiment and discusses the results

obtained. After successful application of the proposed refinement rules to the kite

domain, a part of the more complex Rolls-Royce domain was analysed, to determine

whether the proposed system/approach could be used to capture and maintain

constraints in a more complex KB (described in Section 7.3). An analysis of a part of

the Rolls-Royce domain together with Sections 5.2 (kite

151

Chapter 7: Evaluation

domain) and Section 5.3 (logical proofs) in Chapter 5 evaluate part (IIa) of Research

Question II, i.e., an explicit representation of application conditions together with the

corresponding constraints and the domain ontology can be used to detect

inconsistencies, redundancy, subsumption and fusion between pairs of constraints.

Further, an experiment was carried out using the KB with and without application

conditions. Section 7.4 provides a summary of the chapter.

7.1 Preliminary Evaluation

This section describes a preliminary evaluation performed using ConEditor at Rolls-

Royce, Derby. The main aim of this evaluation was to determine whether the design

engineers at Rolls-Royce would consider using ConEditor to capture and maintain

design rules as constraints. A demonstration was given by the experimenter (author) to

a group of five design engineers at Rolls-Royce. The focus of the demonstration was

one of the constraints from the design rule book. The demonstration involved the

following three phases:

Phase 1: Presenting the constraint as in the rule book

The description of the constraint, as found in the rule book, is shown in Figure 7.1. After

consulting the design engineers, it became clear that Nmin denotes the trap diameter

of the bolted joint containing internally trapped nuts, PCD denotes the pitch circle

diameter and M denotes the gap in the flange. The English rendering of the constraint

considered is:

Bolted joints must conform to the formula for internally trapped nuts:

Nmin = PCD + 2*M + Maximum Nut Width

where Nmin = trap diameter of the flange, PCD = pitch circle diameter of flange and

150.0<PCD<=180.0, M = gap in the flange = 0.5.

Phase 2: Expressing the constraint in CoLan

This constraint was expressed in CoLan by the author and discussed with the design

engineers. In particular, the translation of the rule in English into a CoLan constraint

comprising of antecedent, application condition and consequent was explained to the

design engineers. The constraint in CoLan is as follows:

152

Chapter 7: Evaluation

Figure 7.1: Constraint as expressed in the design rule book

153

Chapter 7: Evaluation

constrain each j in BoltedJoint

such that has_nut_type(j) = "Captive Nut"

and dimension(pitch_circle_diameter(has_flange(j))) >= 150.0

and dimension(pitch_circle_diameter(has_flange(j))) < 180.0

and is_internal(has_flange(j))

to have gap(has_flange(j)) = 0.5

and dimension(trap_diameter(has_flange(j))) =

dimension(pitch_circle_diameter(has_flange(j)))

+ 2*gap(has_flange(j)) + dimension(nut_width(has_nut(j))) +

tolerance(nut_width(has_nut(j)))

Phase 3: Formulating the constraint using ConEditor

In the final phase of the demonstration, the CoLan expression was input to ConEditor

by the experimenter, together with a running commentary of the steps taken while using

ConEditor’s GUI. As an example, the commentary included description such as: “I am

selecting keywords “constrain” and “each” from the keywords panel using a single

mouse click. On selecting the keywords, they appear in the result panel.”

After the demonstration, the design engineers were interviewed by the

experimenter. The aim of the interview was to get feedback from design engineers on

their views about ConEditor’s usability and whether they would consider using such a

system for capturing and maintaining design rules. An overview of the results is

presented below.

7.1.1 Overview of Results

The following is a summary of the feedback obtained from this interview with Rolls-

Royce design engineers:

 The design engineers found the GUI simple, user friendly and intuitive.

 The design engineers were able to follow the steps where a constraint written in

English was mapped to one expressed in CoLan; further they were able to

understand how the CoLan expression was formulated using ConEditor.

However, they felt they would need training to do either of these phases

unsupported.

154

Chapter 7: Evaluation

 Controlled Acquisition Scenario: The tool restricts the user’s choice to a limited

number of pre-defined keywords of the constraint language CoLan. Even though

the constraint language is expressive and user-friendly, the engineers said they

were not as comfortable using CoLan as with expressing the constraint directly

in English.

 They also made the general point that in the company, they have a Design

Standards group that has the responsibility for creating and maintaining the

company-wide rule books, and so they would expect the standards group to

formulate such constraints using ConEditor. The designers would subsequently

use the information either in the current form or in a Designers’ Workbench-

like environment.

Overall, the evaluation results were encouraging and indicated that the domain experts

would consider using the system to capture and maintain design rules. Following

encouraging results from the evaluation of ConEditor, the system was extended with

modifications to the GUI and addition of new features to provide additional support to

the maintenance of constraints. The extended system became known as ConEditor+. An

evaluation of parts (Ia, Ib, Ic) of Research Question I (usability studies) was carried out

using the latest version of ConEditor, i.e. ConEditor+. Experiments performed using

ConEditor+ are described in the next section.

7.2 Experiments using ConEditor+

The three experiments that were conducted using ConEditor+ in the kite design domain

are described below:

Experiment 1: The aim of this experiment was to address the following parts of

Research Question II:

 Can an explicit representation of application conditions together with the

corresponding constraints and the domain ontology be used to:

a) Reduce the number of spurious inconsistencies and,

b) Prevent the identification of inappropriate refinements of redundancy,

subsumption and fusion between pairs of constraints?

155

Chapter 7: Evaluation

The kite domain was studied, and subsequently constraints were captured together with

their application conditions. An experiment was run with ConEditor+ using: (I) KB1

containing 15 constraints together with their application conditions, (II) KB2 containing

the same constraints without any application conditions.

Results: For KB1, ConEditor+ detected 3 subsumptions, 0 inconsistencies, 3

redundancies and 2 cases of fusion between pairs of constraints. For KB2, ConEditor+

detected 2 subsumptions, 5 inconsistencies, 3 redundancies and 4 cases of fusion

between pairs of constraints. The investigator confirmed that the inconsistencies and

some of the refinements (subsumption, redundancy, fusion) reported for KB2 were

spurious, and concluded that the absence of application conditions have caused these to

be reported by ConEditor+. This is explained further below with examples. Consider

two KBs, namely, KBA and KBB containing the following constraints:

KBA (with application conditions):

(i) constrain each k in Kite

such that has_level(k) = “beginner”

to have density(has_material(has_cover(k))) < 0.5

(ii) constrain each k in Kite

such that has_level(k) = “advanced”

to have density(has_material(has_cover(k))) > 1.0

KBB (without application conditions):

(iii) constrain each k in Kite

to have density(has_material(has_cover(k))) < 0.5

(iv) constrain each k in Kite

to have density(has_material(has_cover(k))) > 1.0

As shown above, the KBA contains two constraints [(i) and (ii)] with the corresponding

application conditions. The KBB contains the same pair of constraints

156

Chapter 7: Evaluation

[(iii) and (iv)] without the corresponding application conditions. For KBA, ConEditor+

does not detect any inconsistency (or contradiction). For KBB, ConEditor+ detects an

inconsistency between the two constraints [(iii) and (iv)]. Hence, it can be concluded

that the absence of application conditions can cause a number of spurious

inconsistencies between constraints. In addition, this can cause ConEditor+ to suggest

inappropriate refinements of redundancy, subsumption and fusion between pairs of

constraints, as described below with examples.

a) Redundancy

Consider two KBs, namely, KBC and KBD containing the following

constraints:

KBC (with application conditions):

(v) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

(vi) constrain each j in JapaneseKite

such that has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

KBD (without application conditions):

(vii) constrain each j in JapaneseKite

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

(viii) constrain each j in JapaneseKite

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

For KBC, ConEditor+ suggests that the two constraints [(v) and (vi)] be fused and

replaced by the constraint (ix):

157

Chapter 7: Evaluation

(ix) constrain each j in JapaneseKite

such that has_wind_condition(j) = “strong” or has_type(j) = “stunt”

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

For KBD, ConEditor+ inappropriately suggests that either constraint (vii) or constraint

(viii) be deleted because they are redundant.

b) Subsumption

Consider two KBs, namely, KBE and KBF containing the following

constraints:

KBE (with application conditions):

(x) constrain each s in SledKite

such that has_size(s) = “standard”

to have kite_line_strength(has_kite_line(s)) >= 15

(xi) constrain each s in ConventionalSledKite

such that has_size(s) = “small”

to have kite_line_strength(has_kite_line(s)) >= 15

KBF (without application conditions):

(xii) constrain each s in SledKite

to have kite_line_strength(has_kite_line(s)) >= 15

(xiii) constrain each s in ConventionalSledKite

to have kite_line_strength(has_kite_line(s)) >= 15

ConventionalSledKite is a subclass of SledKite in the domain ontology. For KBE,

ConEditor+ does not suggest any refinements. For KBF, ConEditor+ inappropriately

suggests that constraint (xiii) be removed or deactivated because constraint (xii)

subsumes constraint (xiii).

158

Chapter 7: Evaluation

c) Fusion

Consider two KBs, namely, KBG and KBH containing the following

constraints:

KBG (with application conditions):

(xiv) constrain each d in Delta_kite

such that has_level(d) = “beginner”

to have bridle_length(has_bridle(d)) > 3 * has_height(d)

(xv) constrain each d in Delta_kite

such that has_wind_condition(d) = “strong”

to have kite_line_strength(has_kite_line(d)) > 90

KBH (without application conditions):

(xvi) constrain each d in Delta_kite

to have bridle_length(has_bridle(d)) > 3 * has_height(d)

(xvii) constrain each d in Delta_kite

to have kite_line_strength(has_kite_line(d)) > 90

Again, two KBs have been considered: KBG and KBH, with and without application

conditions respectively. For KBG, ConEditor+ does not suggest any refinements. For

KBH, ConEditor+ inappropriately suggests that the two constraints [(xvi) and (xvii)] be

fused and replaced by the constraint (xviii):

(xviii) constrain each d in Delta_kite

to have bridle_length(has_bridle(d)) > 3 * has_height(d) and

kite_line_strength(has_kite_line(d)) > 90

Thus, the results of experiment 1 demonstrate that an explicit representation of the

application conditions together with the corresponding constraints and the domain

ontology can be used to: (i) reduce the number of spurious inconsistencies and, (ii)

159

Chapter 7: Evaluation

prevent the identification of inappropriate refinements of redundancy, subsumption and

fusion between pairs of constraints.

Experiment 2: The aim of this experiment was to determine the usability of ConEditor+

and address the following parts of Research Question I:

 Examine whether it is possible to design and construct a system to facilitate

(domain) experts in capturing and maintaining constraints in engineering

design. In particular, the aim was to seek answers for the following main

questions:

a) Can the subjects successfully perform the allocated tasks within

acceptable time limits?

b) Did the subjects perform the tasks accurately? What kind of mistakes

did the subjects make? Can the GUI be modified to eliminate or

minimize these errors?

c) How easy and intuitive did the subjects find the system to use?

The above research questions (Ia, Ib, Ic) are common in the field of usability testing

and research (Rubin, 1994; Jordan, 1998; Dumas & Redish, 1999; Barnum, 2002). The

evaluation method used was a combination of expert evaluation and survey evaluation

methods. Expert evaluation is a diagnostic method lying between the theoretical

approach taken in analytic evaluation and more empirical methods such as

observational and experimental evaluation (Preece, 1993). In expert evaluation,

‘experts’ (usually people experienced in interface design or human factors research or

both) assume the role of less experienced users and describe the potential problems they

foresee arising for users of the system. This method has certain appeal because it is

efficient and provides prescriptive feedback. In particular, a small number of experts

can usually identify a whole range of potential problems for users during a single

session with an interface. Survey evaluation is a method used to address users’

subjective opinions following use of the system through either interviews or

questionnaires. In a survey evaluation, potential or actual users (domain experts in the

case of this experiment) take the role of subjects. Survey evaluation has certain appeal

because the subjects are actual users (or potential users) and they can identify

160

Chapter 7: Evaluation

problems that others (interface experts) cannot identify. The types of subjects recruited

for this experiment are discussed below.

Recruiting subjects: For reasons relating to timeliness and cost, the recruiting method

adopted was purposive/judgement sampling (Levy & Lemeshow, 1991; Kothari, 2005;

Tongco, 2007). More discussion about purposive/judgement sampling can be found

later in this section. Two computer science research (PhD) students who have had

considerable experience in designing/developing user interfaces were recruited

evaluation experts. Two post graduate engineering students (MEng and PhD) were

recruited to constitute the subjects in the survey evaluation. A computer science

research fellow who had neither prior experience in developing user interfaces nor any

domain expertise was chosen as a neutral subject. The neutral subject was chosen such

that he could identify problems, which neither domain experts nor user interface design

experts identified. The experimental procedure carried out is described below.

Experimental procedure: A pilot experiment was conducted before the actual

experiment using a computer science research student as the subject and that helped in

detecting some elementary errors in the experiment’s script and GUI. The pilot

experiment also helped in estimating the average time taken for each task. The estimated

time was used to allocate an acceptable time limit (benchmark) for each task. In the

actual experiment, a demonstration was given by the experimenter (developer of

ConEditor+) to each of the five subjects individually. The demonstration was given by

following instructions from a script to maintain consistency and consisted of the

following main tasks: description of the features of ConEditor+; a walkthrough of the

process of converting a sample constraint in English to CoLan, inputting the CoLan

constraint using ConEditor+, eliminating syntactic errors and performing appropriate

refinements (redundancy, subsumption, contradiction, fusion). Each subject was then

asked to perform the following tasks:

Task 1: The following constraint was presented in English and CoLan.

English: “Every standard sized or stunt type Sled Kite must have a kite line with

strength greater than or equal to 15 units”

161

Chapter 7: Evaluation

CoLan:

constrain each s in SledKite

such that has_size(c) = “standard” or has_type(s) = “stunt”

to have kite_line_strength(has_kite_line(c)) >= 15

The subject was asked to input the above constraint in CoLan using ConEditor+.

Task 2: ConEditor+’s KB already consisted of a constraint (shown below) that was

subsumed by the constraint, the subject input in task 1. After successfully inputting the

constraint in task 1, ConEditor+ detects subsumption and suggests the user considers

deleting the following constraint:

constrain each c in ConventionalSledKite

such that has_size(c) = “standard”

to have kite_line_strength(has_kite_line(c)) >= 15

Each subject was asked to follow ConEditor+’s suggestion and delete the above

constraint.

Task 3: Each subject was asked to answer a questionnaire and also provide oral

feedback on the usability of ConEditor+ to the experimenter. The questionnaire

contained various questions regarding the usability and usefulness of various features

of ConEditor+. The methodology used to develop this questionnaire is discussed below.

The subjects were asked to use a 5-point rating scale (1 being poor and 5 being

excellent). The questionnaire used for this experiment is listed in Appendix B. The

experimenter also observed all the actions performed by each subject and took notes.

Methodology of Developing Questionnaires: There is an extensive literature (Payne,

1951; Sudman & Bradburn, 1982; Rubin, 1994; Dumas & Redish, 1999; Bradburn,

2000; Barnum, 2002) available on how to develop effective questionnaires. Some of

the principles that have been adopted from the literature to develop the questionnaire

used in this experiment are discussed below. According to Dumas & Redish (1999),

there are two reasons for having written questionnaires: (1) so that one asks every

participant the same question and (2) so that one does not forget to ask questions.

However, the main purpose of the written post-test questionnaire is to gather

162

Chapter 7: Evaluation

preference information from the subjects in order to clarify and deepen the

understanding of the product’s strengths and weaknesses (Rubin, 1994). The questions

created have to be unambiguous, unbiased, non-threatening and should prompt users to

respond in a consistent way. The consistency of response is frequently verified by

framing the same type of question in two different places or by asking for a certain kind

of information in two different ways (Barnum, 2002). Questionnaires should be pilot-

tested so that any problems can be addressed and corrected before using them in the

actual test. Questions should be structured into formats where the respondents can

provide ratings for their answers. A rating scale has to be used wherever possible instead

of creating questions with just yes/no responses because yes/no responses force

respondents into making a specific choice. The advantage of using a 5-point scale is

that this allows respondents to choose the neutral central point. O'Muircheartaigh et al.

(1999) concluded that offering a middle alternative in rating scales reduces the amount

of random measurement error and does not affect validity. Some researchers find that

the number of items on a scale is not as significant as the fact that there should be an

odd number, thus providing a neutral point, which an even numbered scale (e.g., 4-point

scale) would not provide. However, the error of central tendency, which is the tendency

to avoid the extremes for the middle, comes into play with the larger scale. For instance,

participants using a 7-point scale are less likely to choose either 1 or 7, avoiding the

extremes of the scale (Barnum, 2002).

The advice offered by Sudman & Bradburn (1982) to those starting to write

attitude questions is to plagiarize good-quality questions because most of the bugs will

have been ironed out. For many years, following the classic book by Payne (1951), there

has been no question in practitioner’s minds that questionnaire design was still an art

and not a science (Bradburn, 2000). “Although there is a lot of literature that is

accumulating now to lay a foundation for a science of asking questions, it will always

involve an element of art” (Schaeffer & Presser, 2003).

Results: All the subjects completed the allocated tasks accurately within the acceptable

time limits (benchmarks). Tasks 1 and 2 were allocated a time limit (benchmark) of 5

and 3 minutes each respectively. The subjects were not aware of these predefined time

limits (benchmarks). The errors committed by subjects can be summarized as follows:

Two subjects double clicked on the keywords panel instead of single clicking. This

resulted in the selected keyword being appended twice to the

163

Chapter 7: Evaluation

constraint expression. The GUI has now been changed to support a double mouse click

instead of a single click. Two subjects mentioned that they would like to see the console

tab in the display panel activated automatically after inputting a constraint rather than

having to do it manually. The GUI has been modified to support this feature. Two

subjects also suggested that they would like a search facility in the taxonomy panel to

help locate entities in a large taxonomy. This feature is planned to be implemented as

part of the future work. All the subjects reported that they found ConEditor+ easy to use

and helpful in both the capture and maintenance of constraints. Appendix D lists the

scanned versions of the questionnaires that were answered by the subjects during this

evaluation. The average overall rating given by the subjects, for the usability (including

capture and maintenance facilities) of ConEditor+ was 3.8 on a 5-point rating scale (1

being poor and 5 being excellent) (Figure 7.2). On the basis of purposive/judgemental

sampling the results of experiment 2 indicate that ConEditor+ is easy to use and

facilitates domain experts in capturing and maintaining constraints in engineering

design.

Figure 7.2: Graph showing results of an experiment to evaluate usability of ConEditor+

(Rating scale: 1-poor and 5-excellent)

Discussion (Critical Analysis): It is important to critically discuss the adopted method.

The method (sampling or sample survey) used here may be defined as a study

5 4 3

User

2 1

5

4

3

2

1

0

ConEditor+ Usability

R
a
ti
n
g

164

Chapter 7: Evaluation

involving a subset (or sample) of individuals selected from a larger population.

Variables or characteristics of interest are observed or measured on each of the sampled

individuals. These measurements are then aggregated over all individuals in the sample

to obtain summary statistics for the sample. It is from these summary statistics that

extrapolations can be made concerning the entire population. Sampling is adopted when

it is infeasible to conduct a census due to various reasons including timeliness, cost,

limited access or inaccessibility of some of the population. In addition, within sampling,

it is often not feasible to sample the elementary units directly. This is because lists of

elementary units from which the sample can be taken are often not readily available,

and can be constructed only at considerable cost (Levy & Lemeshow, 1991). The

method adopted in the above experiment is a type of non- probability sampling that is

called purposive or judgemental sampling. In this type of sampling, individuals are

selected (by the researcher) who are considered to be most representative of the

population as a whole. “Non-probability samples are used quite frequently because

probability sampling is often a time-consuming and expensive procedure, and in fact,

may not be feasible in many situations” (Levy & Lemeshow, 1991). “Purpose sampling

is a practical and efficient tool when used properly, and can be just as effective as, and

even more efficient than random sampling” (Tongco, 2007). The advantages and

disadvantages of non-probability based purposive or judgement sampling, used in the

above experiment are as follows:

Advantages:

 Time and Costs are relatively lower when compared to other methods.

 Non-probability based approaches to sampling can be used when the objective

is to conduct an exploratory or descriptive study on an issue or process that has

not been studied in detail. In the above experiment, the objective was to explore

whether the proposed approach/system (not studied/developed earlier) is

feasible for use by domain experts. “Judgement or Purposive sampling is useful

in qualitative studies when a researchable hypothesis needs to be explored,

where other sampling techniques prove difficult to apply” (Okolo, 1990).

 “Provides a dynamic picture of the data and serves as the basis for process

improvement” (Lloyd, 2004). In the above experiment, the investigator was able

to diagnose problems/shortcomings and thus improve the usability of

165

Chapter 7: Evaluation

ConEditor+. In particular, the feedback given by the subjects has been useful in

exploring what kind of problems/shortcomings they could experience when

using such a system.

 Non-probability based purposive sampling can be more efficient than

probabilistic random sampling. Missing data can render random samples invalid

for traditional probabilistic inference (Godambe, 1982). This can occur because

not everybody is willing to participate, and possibly not be around during

sampling. In addition, some respondents may be disinterested and hence not

answer all items in questionnaires and provide proper feedback. These problems

can be avoided in purposive sampling because it is the researcher who selects

the samples after doing a background study.

Disadvantages:

 “The disadvantage of judgemental sampling is that no insight can be obtained

mathematically concerning the reliability of the resulting estimates”(Levy &

Lemeshow, 1991). Sampling error cannot be calculated. Sampling error

comprises the differences between the sample and the population that are solely

due to the particular units that happen to have been selected.

 Unlike random sampling, non-probability methods such as purposive sampling

are not free from bias. Sampling bias is a tendency to favour the selection of

units that have particular characteristics. However, it is argued that the inherent

bias of the method contributes to its efficiency, and the method stays robust even

when tested against random probability sampling (Tongco, 2007). A sample is

expected to mirror the population from which it comes, however there is no

guarantee that any sample will be precisely representative of the population

from which it comes (due to potential subjectivity of researcher).

Another experiment performed to determine the time taken by ConEditor+ to process

constraints is described below.

Experiment 3: The aim of this experiment was to determine the time taken by

ConEditor+ to process constraints (including application conditions) and detect syntax

errors, inconsistencies, redundancy, subsumption and fusion. These results were then

used to address the following part of Research Question I:

166

Chapter 7: Evaluation

 Is the speed of the system on realistic tasks viable for (domain) experts to

use?

The constraints and application conditions acquired from the kite domain were used for

this experiment. Four KBs containing 30, 60, 90 and 120 constraints, together with their

application conditions were used in the experiment. The KBs of larger size were

constructed by repeatedly using the same set of constraints, i.e., the same set of

constraints was duplicated to make it a larger KB. For each KB, twelve tasks were

performed. All the twelve tasks performed are listed and described below. The time

taken by ConEditor+ in each task (tasks 2 to 11) that involves only one comparison

between a pair of constraints is referred to as the ‘best case’ time. The time taken by

ConEditor+ in each task that involves ‘n’ comparisons between pairs of constraints

(where n = 30, 60, 90, 120 for the four KBs) is referred to as the ‘worst case’ time. The

time taken by ConEditor+ in each task is shown in Table 7.1. The best-case time is

indicated by (B) and worst-case time by (W) respectively in the table. Figure 7.3 shows

a graph comparing the average refinement time taken by ConEditor+ versus number of

constraints in KB.

Task 1: A constraint (including application condition) that would not cause any error

was submitted. The time taken by ConEditor+ to process the constraints and check for

any syntactic errors, inconsistencies and refinements (subsumption, redundancy and

fusion) was recorded. The time taken by ConEditor+ was calculated programmatically

by subtracting the time taken at the start of program and subtracting it from the time

taken at the end of the program. The Java statement “System.currentTimeMillis()” was

used in appropriate places in the code to get the time in milliseconds. The submitted

constraint was as follows:

constrain each d in Delta_kite

such that has_level(d) = “beginner”

to have bridle_length(has_bridle(d)) > 3 * has_height(d)

Task 2: A constraint (including application condition) that caused an inconsistency

when compared with the first constraint in the KB (i.e. ver_1_CoLanKiteList.txt_1)

was submitted. The time taken by ConEditor+ to process the constraints (involving one

comparison between the pair of constraints) and report the error was recorded

167

Chapter 7: Evaluation

programmatically. The first constraint in the KB (i.e. ver_1_CoLanKiteList.txt_1) was

as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner"

to have kite_line_strength(has_kite_line(c)) >= 15

The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner”

to have kite_line_strength(has_kite_line(c)) < 15

Task 3: A constraint (including application condition) that caused a redundancy (by

duplication) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner"

to have kite_line_strength(has_kite_line(c)) >= 15

Task 4: A constraint (including application condition) that caused a redundancy (by

class equivalence) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each t in TraditionalSledKite

such that has_level(t) = "beginner"”

to have kite_line_strength(has_kite_line(t)) >= 15

And ‘ConventionalSledKite’ is an equivalent class to ‘TraditionalSledKite’ in the

domain ontology.

168

Chapter 7: Evaluation

Task 5: A constraint (including application condition) that caused a redundancy (by

property equivalence) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_class(c) = "beginner"”

to have kite_line_strength(has_kite_line(c)) >= 15

And ‘has_level’ is an equivalent class to ‘has_class’ in the domain ontology.

Task 6: A constraint (including application condition) that caused a subsumption (via

subclass) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each s in SledKite

such that has_level(s) = "beginner"”

to have kite_line_strength(has_kite_line(s)) >= 15

And ‘ConventionalSledKite’ is a subclass of ‘SledKite’ in the domain ontology.

Task 7: A constraint (including application condition) that caused a subsumption (via

application condition) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner" or has_size(c) = "standard"

to have kite_line_strength(has_kite_line(c)) >= 15

Task 8: A constraint (including application condition) that caused a subsumption (via

conjunction) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

169

Chapter 7: Evaluation

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner"

to have kite_line_strength(has_kite_line(c)) >= 15

and bridle_length(has_bridle(c)) > 25

Task 9: A constraint (including application condition) that caused a fusion (via class)

when compared with the first constraint in the KB (i.e. ver_1_CoLanKiteList.txt_1)

was submitted. The time taken by ConEditor+ to process the constraints (involving one

comparison between the pair of constraints) and suggest refinement was recorded

programmatically. The submitted constraint was as follows:

constrain each m in ModernSledKite

such that has_level(m) = "beginner"”

to have kite_line_strength(has_kite_line(m)) >= 15

‘ConventionalSledKite’ and ‘ModernSledKite’ are the only two subclasses of

‘SledKite’ in the domain ontology.

Task 10: A constraint (including application condition) that caused a fusion (via

application condition) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints and suggest refinement was recorded programmatically. The submitted

constraint was as follows:

constrain each c in ConventionalSledKite

such that has_size(c) = "standard"

to have kite_line_strength(has_kite_line(c)) >= 15

170

Chapter 7: Evaluation

Task

No.

Type of

Error/

Refinement

Time in milliseconds (B- best case; W- worst case)

Number of constraints in ConEditor+’s KB

30 60 90 120

1 No Error 41734 76125 112891 144704

2 Inconsistency 375 (B)

37543 (W)

418 (B)

72735 (W)

438 (B)

108578 (W)

456 (B)

140078 (W)

3 Redundancy

(via duplication)

437 (B)

38110(W)

453 (B)

73328 (W)

469 (B)

109922 (W)

489 (B)

141015 (W)

4 Redundancy

(via class

equivalence)

469 (B)

38125 (W)

546 (B)

73188

612 (B)

109156 (W)

683 (B)

141109 (W)

5 Redundancy

(via property

equivalence)

475 (B)

37250 (W)

547 (B)

72672 (W)

618 (B)

108157 (W)

687 (B)

140750 (W)

6 Subsumption

(via subclass)

687 (B)

38282 (W)

750 (B)

73297 (W)

814 (B)

109312 (W)

874 (B)

141203 (W)

7 Subsumption

(via application

condition)

546 (B)

32640 (W)

547 (B)

67985 (W)

578 (B)

103031 (W)

638 (B)

135422 (W)

8 Subsumption

(via conjunction)

609 (B)

34484 (W)

703 (B)

69953 (W)

786 (B)

105735 (W)

847 (B)

137219 (W)

9 Fusion

(via class)

2656 (B)

39609 (W)

2891 (B)

74704 (W)

3134 (B)

110859 (W)

3380 (B)

142219 (W)

10 Fusion

(via application

condition)

875 (B)

37609 (W)

906 (B)

72610 (W)

943 (B)

108579 (W)

980 (B)

140157 (W)

11 Fusion

(via conjunction)

2453 (B)

38875 (W)

2593 (B)

73110 (W)

2729 (B)

109653 (W)

2863 (B)

141406 (W)

Table 7.1: Time Taken by ConEditor+ to detect inconsistencies and refinements for various KB

sizes

171

Chapter 7: Evaluation

Task 11: A constraint (including application condition) that caused a fusion (via

conjunction) when compared with the first constraint in the KB (i.e.

ver_1_CoLanKiteList.txt_1) was submitted. The time taken by ConEditor+ to process

the constraints (involving one comparison between the pair of constraints) and suggest

refinement was recorded programmatically. The submitted constraint was as follows:

constrain each c in ConventionalSledKite

such that has_level(c) = "beginner"

to have bridle_length(has_bridle(c)) > 25

160000

140000

120000

100000

80000

60000

40000

20000

0

30 60 90 120

KB Size

(Number of Constraints)

Worst-case

Best-case

Figure 7.3: Graph showing average refinement time taken by ConEditor+ versus number of
constraints in KB

Task 12: The first constraint in the KB was swapped with the last constraint in the KB.

Tasks 2 to 11 were repeated by submitting a constraint (including application condition)

that caused an inconsistency/refinement when compared with the last constraint in the

KB (i.e. ver_1_CoLanKiteList.txt_n where n = 30, 60, 90, 120 for the four KBs

respectively). It has to be noted here that the constraints in the KB were chosen so that

an inconsistency/refinement is detected only when comparing the

A
v

e
ra

g
e

 R
e

fi
n

e
m

e
n

t
T

im
e

 (
m

s
)

172

Chapter 7: Evaluation

submitted constraint against the last constraint in the KB (i.e. comparisons with other

constraints in the KB result in no syntax errors, inconsistencies, redundancy,

subsumption or fusion). The time taken by ConEditor+ to process the constraints

(involving ‘n’ comparisons between pairs of constraints where n =30, 60, 90, 120 for

the four KBs) and detect inconsistency/refinement in each task was recorded

programmatically.

The experiment was run on a computer with the following configuration: AMD

Athlon 64-bit processor, clock frequency of 2.21 GHz, 960 MB of RAM, operating

system: Windows XP, JDK (Java Development Kit) 1.4.2 and Jena 2.1. The time taken

by ConEditor+ to report a syntax error in the submitted constraint was recorded

programmatically and it was equal to 500 milliseconds. Also, the time taken to submit

a constraint to a KB with no constraints in it was recorded programmatically and it was

equal to 484 milliseconds.

Results: It can be observed from Table 7.1 and Figure 7.3 that the average worst-case

time taken by ConEditor+ for refinements essentially increases linearly as the KB size

increases while the average best-case time taken is almost a constant. ConEditor+ uses

Jena to parse the domain ontology, constraints and application conditions in CIF.

Currently a file system (text files) is used to store the constraints. The increase in

average worst-case refinement time might become non-linear for larger KBs that

involve manipulation of information that cannot all be held in main memory. Semantic

web technologies such as Jena face scalability issues, and work is being carried out by

semantic web researchers to tackle them. For large KBs containing thousands of

constraints, the author plans to use 3-store (Harris & Gibbins, 2003) which is a RDF

bulk storage and query engine developed to enable the efficient handling of large RDF

KBs. Moreover, although the total number of design constraints formulated by Rolls-

Royce is in the order of thousands, it is expected that only a small subset (say in the

order of hundreds) will be needed for any particular design. For a small subset, the

above results suggest that speed should not be an issue. The following section describes

the application of ConEditor+ to capture and maintain constraints in a more complex

KB.

173

Chapter 7: Evaluation

7.3 Extension/Evaluation of Jet Engine Ontology and Maintenance
of a more complex set of Constraints

After successful application and evaluation of ConEditor+ in the domain of kite design,

a part of the considerably more demanding Rolls-Royce domain was analysed. The aim

of this analysis was to demonstrate that the proposed system/approach could be used in

capturing and maintaining constraints in a more complex and extensive KB containing

real-world constraints.

Figure 7.4: Extended/Evaluated Jet Engine Ontology of part of the Rolls-Royce domain in

Protégé

174

Chapter 7: Evaluation

The analysis aims to address the following part of Research Question II:

 Can an explicit representation of application conditions together with the

corresponding constraints and the domain ontology be used to detect

inconsistencies, redundancy, subsumption and fusion between pairs of

constraints?

An analysis of a considerable number of Rolls-Royce design standard

documents (72), which contain rules/standards for the design of various parts and

processes involved in civil aero-engines was carried out. Interviews were held with a

design engineer at Rolls-Royce, Derby to clarify the succinctly described rules;

additionally, the engineer was asked to describe the conditions under which they

thought the rule (constraint) was applicable. The investigator then formulated this as an

application condition for the constraint. The ontology used to support Designers’

Workbench did not contain all the concepts and properties that were needed to express

the design rules obtained from this analysis. As a result, the jet engine ontology was

extended (e.g., additional classes and properties) to incorporate the additional

information obtained from this analysis. The jet engine ontology was then evaluated by

a further independent assessor in Rolls-Royce. Following several discussions with the

assessor and modifications to the ontology, the ontology was approved by the assessor.

Figure 7.4 shows a screenshot of the extended jet engine ontology developed using

Protégé editor (Noy et al., 2000).

A confidential technical report (Ajit et al., 2008b) describes the list of all the

constraints and application conditions obtained from this analysis, together with their

corresponding representations in CoLan. Appendix E describes sample refinements

from the Rolls-Royce domain and demonstrates how the proposed approach can be

applied to support the maintenance of this more demanding KB, containing a series of

real-world constraints. Section 5.2 (kite domain), Section 5.3 (logical proofs) of Chapter

5 and the sample refinements in Appendix E demonstrate that an explicit representation

of application conditions together with the corresponding constraints and the domain

ontology can be used to detect inconsistencies, redundancy, subsumption and fusion

between pairs of constraints. Further, an experiment was carried out using a selected

list of constraints and application conditions from the Rolls-Royce domain. The details

of the experiment are given below:

175

Chapter 7: Evaluation

Experiment 4: The aim of this experiment was to further demonstrate in a more

complex domain than the kite domain that an explicit representation of application

conditions together with the corresponding constraints and the domain ontology can be

used to: i) reduce the number of spurious inconsistencies and ii) prevent the

identification of inappropriate refinements (for example, fusion) between pairs of

constraints.

The experiment was run with ConEditor+ using: (I) KB3 containing 63

constraints together with their application conditions, (II) KB4 containing the same

constraints without any application conditions.

Results: For KB3, ConEditor+ detected 0 subsumptions, 0 inconsistencies, 0

redundancies and 8 cases of fusion between pairs of constraints. For KB4, ConEditor+

detected 0 subsumptions, 54 inconsistencies, 0 redundancies and 128 cases of fusion

between pairs of constraints. The investigator confirmed that the 54 inconsistencies and

120 (out of 128) cases of fusion for KB4 were spurious, and concluded that the absence

of application conditions have caused these to be reported by ConEditor+. The list of

constraints and application conditions used for this experiment are part of a confidential

technical report (Ajit et al., 2008b). The spurious inconsistencies and inappropriate

refinement (fusion) reported by ConEditor+ can be demonstrated using the following

examples:

(xxiv) constrain each f in Forging

such that not type(has_forging_material(f)) = "light alloy"

to have has_external_draw_angle(f) >= 5

and has_internal_draw_angle(f) >= 7

(xxv) constrain each f in Forging

such that type(has_forging_material(f)) = "light alloy"

to have has_external_draw_angle(f) >= 3

and has_internal_draw_angle(f) >= 5

For constraints (xxiv) and (xxv), the absence of application conditions would cause

ConEditor+ to report a spurious inconsistency.

176

Chapter 7: Evaluation

(xxvi) constrain each s in FaceRingSeal

such that has_ring(s) is a ElastometricToroidalORing

and not name(has_material(has_ring(s))) = "perfluorocarbon"

and pressure_type_hou_mat_flange(s) = "internal"

to have min_face_groove_dia(s) =

max_face_groove_dia(s) - 0.25

(xxvii) constrain each s in FaceRingSeal

such that has_ring(s) is a ElastometricToroidalORing

and not name(has_material(has_ring(s))) = "perfluorocarbon"

and pressure_type_hou_mat_flange(s) = "external"

to have min_face_groove_dia(s) =

mean_inside_diameter(has_ring(s))

- (tolerance(face_groove_dia(s))/2)

For constraints (xxvi) and (xxvii), the absence of application conditions would cause

ConEditor+ to suggest inappropriately that the constraints (xxvi) and (xxvii) be fused.

Hence, one can infer that an explicit representation of application conditions together

with the corresponding constraints and the domain ontology can be used to:

(i) reduce the number of spurious inconsistencies, and (ii) prevent identification of

inappropriate refinements (fusion in this case).

7.4 Summary

This chapter describes the evaluations performed during the research work. A

preliminary evaluation of ConEditor was conducted at Rolls-Royce, Derby. The design

engineers at Rolls-Royce were given a demonstration of ConEditor and asked to

provide feedback on the system. The design engineers found the GUI simple, user

friendly and intuitive. They were able to understand the various phases in the

demonstration but they felt that they would need training to do them unsupported.

ConEditor was then extended with modifications to the GUI and addition of new

features, to provide support for the maintenance of constraints. The extended system

became known as ConEditor+. Three experiments were carried out using ConEditor+

in the kite design domain. Experiment 1 involved applying ConEditor+ to a kite

177

Chapter 7: Evaluation

domain KB with application conditions and to the same kite domain KB without

application conditions. For the KB with application conditions, ConEditor+ did not

detect any inconsistencies but suggested appropriate refinements. For the KB without

any application conditions, ConEditor+ detected a number of spurious inconsistencies

and also suggested inappropriate refinements of redundancy, subsumption and fusion.

Hence, one can conclude that an explicit representation of application conditions

together with the corresponding constraints and the domain ontology can be used to i)

reduce the number of spurious inconsistencies and ii) prevent identification of

inappropriate refinements of redundancy, subsumption and fusion.

Experiment 2 was performed using five subjects to determine the usability of

ConEditor+ and examine whether it can facilitate (domain) experts in capturing and

maintaining constraints in engineering design. The evaluation method was a

combination of expert evaluation and survey evaluation methods. The subjects were

recruited using purposive/judgement sampling. After providing an initial

demonstration, the subjects were asked to capture and refine a constraint using

ConEditor+. The subjects were then asked to answer a questionnaire and provide

feedback on the usability of ConEditor+. The average overall rating given by the

subjects for the usability of ConEditor+ was 3.8 on a 5-point scale. The subjects also

suggested some modifications to the GUI. Based on purposive/judgemental sampling,

the results indicate that ConEditor+ can facilitate domain experts in capturing and

maintaining constraints. The advantages and disadvanatages of this type of evaluation

have been discussed. The advantages include relatively lower time and costs, more

efficiency, usefulness to conduct an exploratory study and diagnose

problems/shortcomings. However, the disadvantages include no mathematical insight

concerning reliability of resulting estimates, possibility of sampling bias and inability

to precisely represent the population. (i.e actual users of ConEditor+) due to potential

subjectivity of researcher.

Experiment 3 was performed to determine the time taken by ConEditor+ to

process constraints (including application conditions) and detect syntax errors,

inconsistencies, redundancy, subsumption and fusion. Four KBs containing 30, 60, 90

and 120 constraints from the kite domain together with application conditions were

used. The best and worst time taken by ConEditor+ to detect inconsistency and

refinements in each KB were recorded programmatically. The results of Experiment 3

178

Chapter 7: Evaluation

have shown that the time taken by ConEditor+ to process constraints, detect

inconsistencies, and suggest refinements should not be an issue for realistic tasks,

considering that only a small subset (say in the order of hundreds) will be needed for

any particular design.

In addition, an evaluation was performed by analysing a part of the Rolls-

Royce domain and applying ConEditor+ to this more demanding KB. Design rules were

elicited from 72 Rolls-Royce design standard documents. The domain ontology was

extended to incorporate the additional information obtained from these analyses. The

ontology was evaluated by an assessor at Rolls-Royce. Sample refinements of this KB

(provided in Appendix E) indicate that the proposed approach/system is viable in the

case of a more complex KB. The refinements discussed in Section 5.2 (kite domain),

Section 5.3 (logical proofs) of Chapter 5 and sample refinements provided in Appendix

E demonstrate that an explicit representation of application conditions together with the

corresponding constraints and the domain ontology can be used to detect

inconsistencies, redundancy, subsumption and fusion between pairs of constraints.

Further, an experiment was carried out in the Rolls-Royce domain by applying

ConEditor+ to KBs with and without application consitions. The results of this

experiment were similar to the results of Experiment 1 (kite domain) and demonstrated

that an explicit representation of application conditions together with the corresponding

constraints and the domain ontology can be used to: (i) reduce the number of spurious

inconsistencies, and (ii) prevent identification of inappropriate refinements (fusion).

179

Chapter 8

Conclusions and Future Work

‘There is nothing like a dream to create the

future.’

- Victor Hugo

The thesis has focused on knowledge management with engineering design as an

application domain. Within engineering design, the thesis aims to tackle

issues/problems in the capture and maintenance of constraints. This final chapter

highlights the main research contributions of the thesis, discusses some limitations of

the work and provides some possible directions for future work. The chapter is

structured as follows: Section 8.1 highlights the research contributions of the work

reported in this thesis; Section 8.2 discusses some limitations of the work; Section

8.3 discusses some possible directions for future work.

8.1 Research Contributions

The thesis identifies a situation where it is highly desirable to eliminate the knowledge

engineer from the tedious, error-prone and time-consuming task of capturing and

maintaining constraints for systems such as the Designers’ Workbench. In order to

relieve the knowledge engineer from the above task, the thesis proposes a novel

approach to facilitate domain experts in capturing and maintaining constraints. The

thesis further reports the design and construction of a system that embodies the

proposed approach. The feedback obtained from a preliminary evaluation performed at

Rolls-Royce was encouraging and indicated that the domain experts would consider

using such a system for capturing and maintaining constraints in engineering design.

The thesis identifies potential problems faced during maintenance of

constraints. In order to reduce/overcome the maintenance problems, the thesis reports

that it is important to capture the underlying assumptions and context in which each

180

Chapter 8: Conclusions and Future Work

constraint is applicable. These assumptions and contexts are referred to as application

conditions. The thesis proposes an approach to capture and use the application

conditions in a machine-interpretable format together with the corresponding

constraints and the domain ontology to support the maintenance of constraints. The

thesis hypothesises that an explicit representation of application conditions together

with the corresponding constraints and the domain ontology can be used to: a) detect

inconsistencies, subsumption, redundancy and fusion, b) reduce the number of spurious

inconsistencies, and c) prevent the identification of inappropriate refinements of

subsumption, redundancy and fusion between pairs of constraints. The thesis proposes

four types of refinement rules to detect inconsistencies, subsumption, redundancy and

fusion between pairs of constraints using the associated application conditions and

domain ontology.

The thesis extends the system (ConEditor) with an ability to implement the

refinement rules and support the maintenance of constraints. The thesis reports on

experiments, usability and scalability studies that apply the extended system

(ConEditor+) to support the capture and maintenance of constraints from a kite design

KB. The usability studies demonstrate that ConEditor+ can facilitate domain experts in

capturing and maintaining constraints in engineering design. The scalability studies

demonstrate that the speed of ConEditor+ on realistic tasks is viable for domain experts

to use. Further, the thesis investigates part of the more complex Rolls-Royce domain

and demonstrates that the proposed approach/system can be used to support the capture

and maintenance of a more complex KB consisting of real world design constraints.

The logical proofs of refinement rules together with the results of experiments in the

kite domain and part of the Rolls-Royce domain demonstrate that an explicit

representation (machine-interpretable format) of application conditions together with

the corresponding constraints and the domain ontology can be used in: i) detecting

inconsistencies, subsumption, redundancy and fusion, ii) reducing the number of

spurious inconsistencies, and iii) preventing the identification of inappropriate

refinements of subsumption, redundancy and fusion between pairs of constraints.

Finally, the overall research work reported in this thesis demonstrates the use of

ontologies/semantic web technologies for knowledge management in an organisation.

Inferencing using ontologies was done to detect subsumption, redundancy, inconsistency and

fusion between pairs of constraints. The key point emphasised by the

181

Chapter 8: Conclusions and Future Work

thesis is that by adding some additional information at the knowledge acquisition

stage, one can greatly enhance the maintainability of a KB.

In summary, the main research contributions8 can be listed as:

 Proposed a novel approach, designed and constructed system(s) to facilitate

domain experts in capturing and maintaining constraints in engineering design.

[Chapter 3 and ConEditor/ConEditor+ in Chapters 4 and 6].

 Demonstrated the effectiveness of the above system to facilitate (domain)

experts in capturing and maintaining constraints in engineering design. [Chapter

7, Experiment 2].

 Demonstrated that the speed of such a system on realistic tasks is viable for

domain experts to use. [Chapter 7, Experiment 3].

 Analysed engineering design domains (kite domain and a part of Rolls-Royce

domain) and demonstrated various types of contexts and underlying

assumptions associated with constraints in these domains with the help of

examples. These contexts and underlying assumptions are referred to as

“application conditions”. [Chapter 5, Section 5.2 and Chapter 7, Section 7.3].

 Proposed four main types of refinement rules to detect inconsistencies,

redundancy, subsumption and fusion between pairs of constraints using the

associated application conditions and domain ontology. Proved that the

refinement rules are logically sound. [Chapter 5, Section 5.3].

 Demonstrated that an explicit representation of application conditions together

with the corresponding constraints and the domain ontology can be used to:

i) Detect inconsistencies, redundancy, subsumption and fusion between

pairs of constraints, [Chapter 5, Sections 5.2 and 5.3; Chapter 7, Section

7.3].

ii) Reduce the number of spurious inconsistencies, and

8 Pointers in square brackets tie the contributions back to the original source in the thesis.

182

Chapter 8: Conclusions and Future Work

iii) Prevent identification of inappropriate refinements of redundancy,

subsumption and fusion between pairs of constraints. [(ii) and (iii) in

Chapter 7, Experiment 1].

 Demonstrated that the proposed approach/system can be used to support the

capture and maintenance of a more complex KB, consisting of real world design

constraints. [Chapter 7, Section 7.3].

 Demonstrated the use of ontologies/semantic web technologies for knowledge

management in an organisation. [Use of OWL, Protégé, Jena, RDQL, CIF in

Chapters 4 and 6; Inferencing done using ontology to detect subsumption,

redundancy, inconsistency and fusion between pairs of constraints (Chapter 5,

Sections 5.2 and 5.3)].

The following section describes some possible limitations of the research work reported

in this thesis.

8.2 Limitations

ConEditor+ has been implemented to detect subsumption, inconsistency

(contradiction), redundancy, fusion and suggest appropriate refinements between pairs

of constraints. Comparison of pairs of constraints is sufficient for detecting all kinds of

(i) Redundancy and (ii) Subsumption, but not for detecting all kinds of (iii)

Inconsistency and (iv) Fusion. This is explained as follows:

(i) Redundancy

Consider ‘n’ constraints, namely, S1, S2, ……., Sn. Let us assume S1 S2 ……. Sn,

i.e., redundancy exists between all the n constraints. By comparing all possible pairs of

constraints, ConEditor+ detects the following nC2 cases: S1 S2, S1 S3, ……, S1 Sn,

S2 S3, …… S2 Sn,….,Sn-1 Sn. One can infer from the above nC2 cases that

redundancy exists between all ‘n’ constraints. Moreover, when the domain expert

eliminates redundancy in each of the nC2 cases, redundancy between all the ‘n’

constraints are eliminated.

183

Chapter 8: Conclusions and Future Work

(ii) Subsumption

The principles described above in (i) apply here too. Consider ‘n’ constraints, namely,

S1, S2, ……., Sn. Let us assume S1 subsumes {S2, S3,…, Sn}, i.e., one constraint

subsumes all the other (n-1) constraints. By comparing all possible pairs of constraints,

ConEditor+ detects the following (n-1) cases: S1 subsumes S2, S1 subsumes S3, ……,

S1 subsumes Sn. One can infer from the above (n-1) cases that S1 subsumes {S2, S3,…,

Sn}. Moreover, when the domain expert eliminates subsumption in each of the (n-1)

cases, all cases of subsumption are eliminated.

However, comparison of all possible pairs of constraints is insufficient (or

incomplete) for detecting (iv) Inconsistency and (v) Fusion. This is explained as

follows:

(iii) Inconsistency

Consider ‘n’ constraints, namely, S1, S2, ……., Sn. Let us assume x {S1: P(x) < Q(x),

S2: Q(x) < R(x),..…, Sn: R(x) < P(x)}, where x C, C is a class in the domain ontology,

Q and R are properties in the domain ontology. By comparing S1, S2 and Sn, one can

infer that there exists an inconsistency between them. This kind of inconsistency cannot

be detected by comparing all pairs of constraints.

(iv) Fusion

Consider ‘n’ constraints, namely, S1, S2, ……., Sn. Let us assume S1, S2, ……., Sn, can

be fused into a single constraint S by applying the rule of fusion via class to ‘n’

constraints. This kind of fusion cannot be detected by comparing all pairs of constraints.

The reasons for comparing only pairs of constraints in ConEditor+ are as

follows:

(a) Comparison of all combinations of constraints is more complex and

substantially increases the complexity of the algorithm, especially, when one

considers an arbitrary number of first-order logic expressions. It is planned to

investigate this issue as part of future work.

184

Chapter 8: Conclusions and Future Work

(b) Moreover, the main aim of the research work is to demonstrate the usefulness

of an explicit representation (machine-interpretable format) of application

conditions together with the domain ontology in supporting the maintenance of

constraints. This has been demonstrated by the results of experiments 1 and 4

that apply ConEditor+ to two KBs, one KB with application conditions and the

other KB without application conditions.

The following section describes some possible directions for future work.

8.3 Future Work

Figure 8.1: Proposed System Architecture

Figure 8.1 shows how ConEditor+ fits into a wider framework of the sophiscated KBE

system. A Design Standards author captures and maintains all the design rules

(constraints) using ConEditor+. The constraints are converted by ConEditor+ into the

standard constraint interchange format (CIF); subsequently the constraints in CIF

185

Chapter 8: Conclusions and Future Work

format are converted into a predicate in prolog and a query in RDQL, and the latter are

then processed by the Designers’ Workbench. The domain ontology is represented in

OWL and used by both ConEditor+ and the Designers’ Workbench to express

constraints. As part of the future work, it is planned to interface the Designers’

Workbench to a sophisticated knowledge-based engineering (KBE) system. The

Designers' Workbench will be called from the KBE system, effectively as a sub- process

to check the consistency of a design, or part of a design.

Acquisition and Maintenance of design knowledge from additional knowledge

repositories: In fact, Figure 8.1 only represents some aspects (rule books/design

constraints and ontologies) of the knowledge that is both generated and used by a

contemporary of the knowledge-based engineering firm that is involved in the design,

manufacturing and maintenance of artefacts. For example, there are additional

knowledge repositories needed by today’s KBE systems, including:

• Design templates (and conditions under which they should be used, i.e.

application conditions)

• Libraries of designs for components and their rationales

• Requirements and constraints of the various manufacturing environments

• Best practices as collected by several parts of the organization (including

designers)

• Requirements and constraints mandated by the several organizations which

service the engines

• Feedback from the servicing and maintenance organizations that indicate

which problems actually arise in the field, some analysis of their possible

causes, and suggested remedies.

Acquisition and maintenance of some of the above mentioned knowledge repositories

(in particular, the feedback from servicing and maintenance organisations to the

designers) is the focus of IPAS (2005), a DTI / Rolls-Royce funded project. Further

information on work done in this area can be found in Wong et al. (2008).

Ontology Creation and Maintenance: It can be observed that ontologies have played

an important role in both the systems discussed in this thesis, namely, the

186

Chapter 8: Conclusions and Future Work

Designers’ Workbench and ConEditor+. The design rules have been expressed against

the appropriate domain ontology. The domain ontology has been used along with the

constraints and application conditions to support the maintenance of constraints.

Ontologies play an important role in the IPAS project too. There are vast amounts of

data and information available from a variety of sources, and to make this information

inter-operational, there is potentially a major role for ontologies as many of the data /

information sources use different terminologies. Creation and maintenance of these

domain ontologies involves various issues/problems. In fact, in both the projects

undertaken with Rolls-Royce, i.e. AKT (2000) and IPAS (2005), there are many

problems of contemporary ontology engineering, namely:

• ontology creation (seeking to develop ontologies systematically and to ensure

that relevant aspects of trust and provenance are captured; deciding whether or

not domain ontologies should be developed from high-level ontologies);

• ontology evolution (an ontology developed for one engine may need to be

modified so that it is applicable to a future engine) and,

• ontology modularization (for some services a sparse description of, say, the

combustion chamber may be sufficient, but for other services much detail may

be required).

Further information on work done in this area can be found in Sleeman et al. (2008).

Some other directions for future work include:

Constraint Evolution History: Engineering design constraints are evolutionary in

nature (Goonetillake et al., 2002; Goonetillake & Wikramanayake, 2004). ConEditor+

assigns each constraint a unique identification number. When a constraint is modified

and saved, the number is incremented and a new identification number is assigned.

ConEditor+ uses the latest versions of constraints by default. A previous version of the

constraint can be retrieved by using a keyword-based search. It would be useful to

provide users with a facility to view the way in which a particular constraint has

evolved. ConEditor+ could provide a feature to view the evolution of constraints

together with the corresponding application conditions.

187

Chapter 8: Conclusions and Future Work

Protégé Plug-in: Protégé (Noy et al., 2000) is a popular tool for developing ontologies.

It would be useful to provide ConEditor+ as a Protégé plug-in to help users capture and

maintain constraints over ontologies. ConEditor+ currently captures the constraints in

the CoLan language and converts them into CIF. Recently, an extension to the SWRL

language (Horrocks et al., 2004) to express fully quantified constraints has been

developed and is known as CIF/SWRL (McKenzie et al., 2004). Developing a

transformation program to enable ConEditor+ to produce constraints in CIF/SWRL

would also be useful.

Design rationales: The research work reported in this thesis has concentrated on

capturing the assumptions and context associated with a constraint as an application

condition. Application conditions constitute one type of design rationales that refer to

“when” a constraint is applicable. There are other rationales that refer to “why”, “who”,

“how”, etc. It would be interesting to investigate the capture of these additional

rationales that could be associated with a constraint. Applying the design principles of

ConEditor+ to enable the capture and use of these other types of rationales (some of

which are captured by DRed) for maintenance could be investigated as part of future

work.

188

Bibliography

Abdalla, H. S. (1997). A constraint knowledge based system for supporting a

mechatronics design environment. In Proceedings of the 14th International

Conference on Production Research, pages 842-845, Osaka, Japan.
Abdalla, H. S. (1998). A Concurrent Engineering Constraint-based System.

Computers in Industry, 35(3-4):459-462.
Aiken, A., & Sleeman, D. (2003). Refiner++: A Knowledge Acquisition and

Refinement Tool. In Proceedings of the Workshop on Capturing Knowledge

from Domain Experts: Progress & Prospects, KCAP 2003, Sanibel Island,
Florida.

Ajit, S., Sleeman, D., Fowler, D. W., & Knott, D. (2004). ConEditor: Tool to Input and
Maintain Constraints. In Proceedings of the 14th International Conference on

Engineering Knowledge in the Age of the Semantic Web, EKAW 2004, pages
466 - 468, Whittlebury Hall, Northampton, UK.

Ajit, S., Sleeman, D., Fowler, D. W., & Knott, D. (2008a). Constraint capture and
maintenance in engineering design. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing (Special Issue on Design Rationale),

22(4):325-343.
Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2005a). Acquisition and

Maintenance of Constraints in Engineering Design. In Proceedings of the 3rd

International Conference on Knowledge Capture, KCAP 2005, pages 173-174,
Banff, Canada.

Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2005b). Capture and
Maintenance of Engineering Design Constraints. In Proceedings of the Twenty-

fifth SGAI International Conference on Innovative Techniques and Applications

of Artificial Intelligence as Poster (CD Proceedings), AI 2005, Cambridge, UK.
Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2005c). Capture and

Maintenance of Engineering Design Constraints. In N. Shadbolt & Y. Kalfoglou
(Eds.), Advanced Knowledge technologies: Selected Papers 2005 (pp. 309-322).

Ajit, S., Sleeman, D., Fowler, D. W., Knott, D., & Hui, K. (2006). Capture and
Maintenance of Engineering Design Constraints. In Proceedings of the 2nd AKT

Doctoral Symposium 2006, pages 4-13, Aberdeen, UK.
Ajit, S., Sleeman, D., & Knott, D. (2008b). Analysis of Design Rule Books of part of

the Rolls-Royce domain. Aberdeen: Department of Computing Science,
University of Aberdeen.

AKA. (2006). American Kite Association. Retrieved 28 June, 2006, from
http://www.aka.org.au/kites_in_the_classroom/index.htm

Anumba, C. J., Ugwu, O., Newnham, L., & Thorpe, A. (2001). A multi-agent system
for distributed collaborative design. Logistics Information Management,

14:355-366.
Aurisicchio, M., Bracewell, R., & Wallace, K. M. (2006). Evaluation of DRed: a way

of capturing and structuring engineering processes. In Proceedings of the

NordDesign 2006, pages 169-178, Reykjavik, Iceland.
Bahler, D., & Bowen, J. (1992). Design Rationale Management in Concurrent

Engineering. In Proceedings of the Workshop on Design Rationale Capture and

Use,10th Natl. Conf. on Artificial Intelligence (AAAI-92), San Jose, USA.

http://www.aka.org.au/kites_in_the_classroom/index.htm

189

Bahler, D., Dupont, C., & Bowen, J. (1994). An axiomatic approach that supports
negotiated resolution of design conflicts in Concurrent Engineering. Artificial

Intelligence in Design:363-379.
Barker, V. E., & O'Connor, D. E. (1989). Expert Systems for Configuration at Digital:

XCON and Beyond. Communications of the ACM, 32(3):298-318.
Barnum, C. M. (2002). Usability Testing and Research: The Allyn and Bacon series in

Technical Communication.
Bassiliades, N., & Gray, P. (1995). CoLan: A Functional Constraint Language and Its

Implementation. Data and Knowledge Engineering, 14(3):203-249.
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific

American (May 2001 issue).
Berry, D. (1987). The problem of implicit knowledge. Expert Systems, 4(3):144-151.
Bhansali, S., Kramer, G. A., & Hoar, T. J. (1996). A principled approach towards

symbolic geometric constraint satisfaction. Journal of Artificial Intelligence

Research, 4:419-443.
Blythe, J., Kim, J., Ramachandran, S., & Gil, Y. (2001). An Integrated Environment for

Knowledge Acquisition. In Proceedings of the International Conference on

Intelligent User Interfaces, pages 13-20.
Blythe, J., & Ramachandran, S. (1999). Knowledge acquisition using an english- based

method editor. In Proceedings of the Twelfth Knowledge Acquisition for

Knowledge-Based Systems Workshop, Banff, Alberta.
Boose, J. H., & Bradshaw, J. M. (1999). Expertise transfer and complex problems:

Using AQUINAS as a knowledge acquisition workbench for knowledge-based
systems. International Journal of Human-Computer Studies, 51:453-478.

Borning, A., Maher, M., Martindale, A., & Wilson, M. (1989). Constraint Hierarchies
and Logic Programming. In Proceedings of the International Conference on

Logic Programming (ICLP), pages 149-164, Lisbon, Portugal.
Borst, W. N. (1997). Construction of Engineering Ontologies for Knowledge sharing

and Reuse. PhD thesis, University of Twente, Enschede, The Netherlands.
Borst, W. N., Akkermans, J. M., & Top, J. L. (1997). Engineering Ontologies.

International Journal of Human-Computer Studies, 46(2-3):365-406.
Bowen, J. (1997). Using dependency records to generate design coordination device in

a constraint-based approach to Concurrent Engineering. Computers in Industry,

33(2-3):191-199.
Bowen, J. (2001). Constraint-Based Co-operative Problem-Solving: A case study from

Concurrent Engineering. In Proceedings of the Workshop on Cooperative

Solvers in Constraint Programming, CP 2001, Cyprus.
Bowen, J., & Bahler, D. (1992). Frames, quantification, perspectives and negotiation in

constraint networks in life-cycle engineering. Artificial Intelligence in

Engineering, 7(4):199-226.
Bracewell, R. H., & Wallace, K. M. (2003). A Tool for Capturing Design Rationale. In

Proceedings of the International Conference on Engineering Design (ICED 03),
Stockholm.

Bradburn, N. M. (2000). Questionnaire Design: from Art into Science. In Proceedings

of the Fifth International Conference on Social Science Methodology, Cologne,
Germany.

Brazier, F. M., Langen, P. H. G. V., & Treur, J. (1997). A compositional approach to
modelling design rationale. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 11:125-139.

190

Brimble, R., & Sellini, F. (2000). The MOKA Modelling Language. In Proceedings of

the EKAW 2000 conference, pages 49-56, Dagstuhl, Germany.
Bromby, M., Macmillan, M., & McKellar., P. (2003). A CommonKADS

Representation for a Knowledge-based System to Evaluate Eyewitness
Identification. International Review of Law Computers, 17(1):99-108.

Brown, D. C. (2006). Assumptions in Design and Design Rationale. In Proceedings of

the Design Rationale Workshop (DCC'06), Eindhoven, Netherlands.
Brown, D. C., & Chandrasekaran, B. (1985). Expert systems for a class of mechanical

design activity: Knowledge engineering. In J. Gero (Ed.), Computer-Aided

Design (pp. 259-283).
Brown, D. C., & Chandrasekaran, B. (1989). Design Problem Solving: Knowledge

Structures and Control Strategies. London: Pitman.
Buchanan, B. G., Barstow, D., Bechtel, R., Bennet, J., Clancey, W., Kulikowski, C., et

al. (1983). Constructing an Expert System. In F. Hayes-Roth, D. A. Waterman
& D. Lenat (Eds.), Building Expert Systems.

Bultman, A., Kuipers, J., & Harmelen, F. V. (2000a). Maintenance of KBS's by Domain
Experts: The Holy Grail in Practice. In Proceedings of the Thirteenth

International Conference on Industrial & Engineering Applications of Artificial

Intelligence & Expert Systems IEA/AIE'00.
Bultman, A., Kuipers, J., & Harmelen, F. V. (2000b). Maintenance of KBS's by Domain

Experts: The Holy Grail in Practice. In Proceedings of the Thirteenth

International Conference on Industrial & Engineering Applications of Artificial

Intelligence & Expert Systems IEA/AIE'00, pages 139-148, New Orleans, USA.
Burge, J. (1998). Knowledge Elicitation for Design Task Sequencing Knowledge. MSc

thesis, Worcester Polytechnic Institute, Worcester, USA.
Burge, J., & Brown, D. C. (2003). Rationale Support for Maintenance of Large Scale

Systems. In Proceedings of the Workshop on Evolution of Large-Scale

Industrial Software Applications (ELISA), ICSM '03, Amsterdam, NL.
Burge, J. E., & Brown, D. C. (2000). Reasoning with Design Rationale. In J. Gero (Ed.),

Artificial Intelligence in Design '00 (pp. 611-629). Netherlands: Kluwer
Academic Publishers.

Bylander, T., & Chandrasekaran, B. (1987). Generic Tasks for Knowledge-Based
Reasoning: The "Right" Level of Abstraction for Knowledge Acquisition.
International Journal of Man-Machine Studies, 26(2):231-243.

Callot, M., Kneebone, S., Oldham, K., Murton, A., & Brimble, R. (1999). MOKA - A
Methodology for developing Knowledge Based Engineering Applications. In
Proceedings of the 8th European Conference on Product Data Technology,
pages 361-366, Stavanger, Norway.

Carbonara, L., & Sleeman, D. (1999). Effective and Efficient Knowledge Base
Refinement. Machine Learning, 37:143-181.

Carnduff, T. W., & Goonetillake, J. S. (2004). Configuration management in
evolutionary engineering design using versioning and integrity constraints.
Advances in Engineering Software, 35:161-177.

CEKS. (2006). Cutting Edge Kite Shop. Retrieved 28 June, 2006, from
http://www.cuttingedgekites.com/faq.htm

Chandrasekaran, B. (1986). Generic Tasks in Knowledge-based Reasoning: High- level
Building Blocks for Expert System Design. IEEE Expert, 1(3):23-30.

Chandrasekaran, B., Johnson, T. R., & Smith, J. W. (1992). Task Structure Analysis for
Knowledge Modeling. Communications of the ACM, 35(9):124-137.

http://www.cuttingedgekites.com/faq.htm

191

Cheung, W. M., Bramall, D. G., Maropoulos, P. G., Gao, J. X., & Aziz, H. (2006).
Organizational knowledge encapsulation and re-use in collaborative product
development. International Journal of Computer Integrated Manufacturing,

19(7):736-750.
Ciocoiu, M., Gruninger, M., & Nau, D. S. (2001). Ontologies for integrating

engineering applications. Journal of Computers, Information Science and

Engineering, 1:12-22.
Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27:289-350.
Clarkson, P. J., & Hamilton, J. R. (2000). ‘Signposting’, A Parameter-driven Task-

based Model of the Design Process. Research in Engineering Design, 12:18-
38.

Cleland, D. I. (2004). Field Guide to Project Management: Wiley.
Coenen, F. P. (1992). A Methodology for the Maintenance of Knowledge based

Systems. In Proceedings of the Niku-Lari, A. (Ed), EXPERSYS-92, IITT-

International, pages 171-176, France.
Conklin, J., & Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory policy

discussion. ACM Transactions Office Information Systems, 4:303-331.
Conklin, J., & Burgess, Y. (1991). A Process-Oriented Approach to Design Rationale.

Human Computer Interaction, 6(3-4):357-391.
Corbridge, C., Rugg, G., Major, N. P., Shadbolt, N. R., & Burton, A. M. (1994).

Laddering: technique and tool use in knowledge acquisition. Knowledge

Acquisition, 6(3):315-341.
Cordingley, E. S. (1989). Knowledge Elicitation Techniques for knowledge based

systems (D. Diaper, Eds.). Chichester, England: Ellis Horwood Ltd.
Craw, S., & Sleeman, D. (1990). Automating the Refinement of Knowledge-Based

Systems. In Proceedings of the ECAI 1990, pages 167-172, Stockholm, Sweden.
Craw, S., & Sleeman, D. (1995). Knowledge-based Refinement of Knowledge Based

Systems (Technical Report No. 95/2). Aberdeen, UK: School of Computer and
Mathematical Sciences, The Robert Gordon University.

Crowder, R., Bracewell, R., Hughes, G., Kerr, M., Knott, D., & Moss, M. (2003). A
Future Vision for the Engineering Design Environment: A Future
SocioTechnical Scenario. In Proceedings of the International Conference on

Engineering Design (ICED 03), Stockholm.
Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Geneserth, M. R., Gruber, T. R., Mark,

W. S., et al. (1993). PACT: an experiment in integrating concurrent engineering
systems. IEEE Computer, 26(1):28-37.

Darlington, M. J., & Culley, S. J. (2008). Investigating ontology development for
engineering design support. Advanced Engineering Informatics, 22(1):112- 134.

Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules.
Artificial Intelligence, 12(2):409-427.

Debowski, S. (2006). Knowledge Management. Australia: John Wiley & Sons.
Demian, P., & Fruchter, R. (2005). Measuring Relevance in support of design reuse

from archives of building product models. ASCE Journal of Computing in Civil

Engineering, 29(2):119-136.
Diaper, D. (1989). Knowledge Elicitation: Principle, Techniques and Applications.

England, UK.
Dieng, R., & Corby, O. (2000). Knowledge Acquisition, Modeling and Management.

In Proceedings of the EKAW 2000, Juan-les-Pins, France.

192

Dieng, R., Corby, O., Giboin, A., & Ribiere, M. (1999). Methods and tools for corporate
knowledge management. International Journal of Human-Computer Studies,

51(3):567-598.
Dumas, J. S., & Redish, J. C. (1999). A Practical guide to Usability Testing: Intellect

Books.
Eden, M. (1998). The Magnificient Book of Kites: Explorations in Design,

Construction, Enjoyment and Flight: Black Dog & Levanthal Publishers, New
York.

Embury, S., & Gray, P. (1995). The Declarative Expression of Semantic Integrity in a
Database of Protein Structure. In Proceedings of the Data Management

Systems: Proceedings of the Basque International Workshop on Information

Technology (BIWIT 95), pages 216-224, San Sebastian, Spain.
Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal reports as data

(revised edition). Cambridge, MA.
Eriksson, H., & Musen, M. (1993). Conceptual Models for Automatic Generation of

Knowledge-Acquisition Tools. Knowledge Engineering Review, 8:27-47.
Eriksson, H., Puerta, A., Gennari, J., Rothenfluh, T., Tu, S., & Musen, M. (1995a).

Custom-tailored development tools for knowledge-based systems. In
Proceedings of the Ninth Banff Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Canada.
Eriksson, H., Puerta, A., & Musen, M. (1994). Generation of knowledge-acquisition

tools from domain ontologies. International Journal of Human-Computer

Studies, 41:425-453.
Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., & Musen, M. A. (1995b). Task

Modeling with Reusable Problem-Solving Methods. Artificial Intelligence,

79(2):293-326.
Eshelman, L., Ehret, D., McDermott, J., & Tan, M. (1988). MOLE: A Tenacious

Knowledge Acquisition Tool. Knowledge Based Systems, 1:95-108.
Feigenbaum, E. A. (1977). The Art of Artificial Intelligence: Themes and Case Studies

in Knowledge Engineering. In Proceedings of the IJCAI-77, pages 1014-1029.
Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consistency-based

diagnosis of configuration knowledge bases. Artificial Intelligence, 152:213-
234.

Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce (2nd ed.): Springer-Verlag Berlin and Heidelberg GmbH
& Co.

Fensel, D., Angele, J., & Studer, R. (1998). The Knowledge Acquisition and
Representation Language, KARL. IEEE Transactions on Knowledge and Data

Engineering, 10(4):527-550.
Fensel, D., & Poeck, K. (1994). A Comparison of Two Approaches to Model-based

Knowledge Acquisition. In Proceedings of the EKAW 94, pages 46-62,
Belgium.

Fischer, G., Lemke, A., McCall, R., & Morch, A. (1995). Making Argumentation Serve
Design. In T. M. a. J. Carroll (Ed.), Design Rationale Concepts, techniques, and

Use (pp. 267-294).
Fleischanderl, G., Friedrich, G., Haselbock, A., & Schreiner, H. (1998). Configuring

large systems using generative constraint satisfaction. IEEE Intelligent Systems

and their applications, 13(4):59-68.

193

Fletcher, D., & Gu, P. (2005). Adaptable Design for Design Reuse. In Proceedings of

the Second CDEN International Conference on design Education, Innovation,

and Practice, Canada.
Fowler, D. W., Sleeman, D., Wills, G., Lyon, T., & Knott, D. (2004). Designers'

Workbench. In Proceedings of the Twenty-fourth SGAI International

Conference on Innovative Techniques and Applications of Artificial

Intelligence, pages 209-221, Cambridge, UK.
Frayman, F., & Mittal, S. (1987). COSSACK: A constraints-based expert system for

configuration tasks. In D. Sriram & R. A. Adey (Eds.), Knowledge based Expert

systems in Engineering: Planning and Design (pp. 143-166). Southampton, UK:
Computational Mechanics Publications.

French, T. E., Vierck, C. J., & Foster, R. J. (1993). Engineering Drawing and Graphics

Technology: McGraw-Hill Inc.
Fruchter, R., & Demian, P. (2002). CoMem: designing an interaction experience for

reuse of rich contextual information from a corporate memory. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 16(3):127-
147.

Fruchter, R., Saxena, K., Breidenthal, M., & Demian, P. (2007). Collaborative Design
Exploration in an Interactive Workspace. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 21(3):279-293.
Gao, X. S., & Chou, S. C. (1998a). Solving geometric constraint systems I: A global

propogation approach. Computer-Aided Design, 30(1):47-54.
Gao, X. S., & Chou, S. C. (1998b). Solving geometric constraint systems II: A symbolic

approach and decision of Rc-constructability. Computer-Aided Design,

30(2):115-122.
Garcia, A. C. B., & Howard, H. C. (1992). Acquiring design knowledge through design

decision justification. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 6(1):59-71.
Gennari, J. H., Altman, R. B., & Musen, M. A. (1995). Reuse with PROTEGE-II: From

Elevators to Ribosomes. In Proceedings of the Symposium on Software Reuse,
Seattle.

Ginsberg, A. (1988). Knowledge-Base Reduction: A New Approach to Checking
Knowledge Bases for Inconsistency and Redundancy. In Proceedings of the

AAAI 88, pages 585-589, Saint Paul, Minnesota.
Godambe, V. P. (1982). Estimation in survey sampling: robustness and optimality.

Journal of the American Statistical Association, 77:393-403.
Goodall. (1996). The PC PACK Knowledge Analysis Tool. AI Watch, 5:1-9.
Goonetillake, J. S., Carnduff, T. W., & Gray, W. A. (2002). An integrity constraint

management framework in engineering design. Computers in Industry,

48(1):29-44.
Goonetillake, J. S., & Wikramanayake, G. N. (2004). Management of Evolving

Constraints in a Computerised Engineering Design Environment. In
Proceedings of the 23rd National IT Conference, pages 43-54, Colombo, Sri
Lanka.

Gray, P., Embury, S., Hui, K., & Kemp, G. (1999a). The evolving role of constraints in
the functional data model. Journal of Intelligent Information Systems, 12:113-
137.

Gray, P., Hui, K., & Preece, A. (1999b). Finding and moving constraints in cyberspace.
Intelligent Systems in cyberspace:121-127.

194

Gray, P., Hui, K., & Preece, A. (2001). An Expressive Constraint Language for
Semantic Web Applications. In Proceedings of the E-Business and the

Intelligent Web: Papers from the IJCAI-01 Workshop, pages 46-53, Seattle,
USA.

Gross, M. D., Ervin, S. M., Anderson, J. A., & Fleisher, A. (1988). Constraints:
Knowledge representation in design. Design Studies, 9(3):133-143.

Grosso, W., Eriksson, H., Fergerson, R., Gennari, J., Tu, S., & Musen, M. (1999).
Knowledge Modeling at the Millenium (The Design and Evolution of Protege-
2000). In Proceedings of the Twelfth Banff Workshop on Knowledge

Acquisition, Modeling and Management, Banff, Alberta.
Gruber, T. (1993). A translation approach to portable ontology specification.

Knowledge Acquisition, 5(2):199-221.
Gruber, T. R., & Olsen, G. R. (1994). An Ontology for Engineering Mathematics. In

Proceedings of the Fourth International Conference on Principles of

Knowledge Representation and Reasoning, pages 258-269, Bonn, Germany.
Gruber, T. R., & Russell, D. M. (1991). Design Knowledge and Design Rationale: A

Framework for Representation, Capture and Use (Technical Report KSL 90-
45). California: Computer Science Department, Stanford University.

Grudin, J. (1996). Evaluating opportunities for design rationale capture. In T. P. Moran
& J. M. Carroll (Eds.), Design rationale: Concepts, techniques, and use. (pp.
453-470). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc.

Guihua, L., Bracewell, R., & Wallace, K. (2002). A Literature Survey Technical Report.
Cambridge: Cambridge Engineering Design Centre.

Harary, F. (1962). A Graph Theoretic Approach to Matrix Inversion by Partitioning.
In Numerische Mathematik (Vol. 4, pp. 128-135).

Haroud, D., Boulanger, S., Gelle, E., & Smith, I. (1995). Management of conflict for
preliminary engineering design tasks. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 9:313-323.
Harris, S., & Gibbins, N. (2003). 3store:Efficient Bulk RDF Storage. In Proceedings of

the 1st International Workshop on Practical and Scalable Semantic Systems

(PSSS'03), International Semantic Web Conference, Sanibel Island, Florida.
Haselbock, A., & Stumptner, M. (1993). An integrated approach for modelling complex

configuration domains. In Proceedings of the 13th International Conference on

Artificial Intelligence, pages 625-634, Avignon, France.
Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1983). Building Expert Systems

(Vol. 1): Addison-Wesley.
Hengl, T. (2004). Protege, Ontology and Knowledge Acquisition: Knowledge

Representation, the Foundation of Intelligent Systems. PCAI magazine, vol.
18.3, pages 37-48.

Hicks, R. C. (2003). Knowledge base management systems-tools for creating verified
intelligent systems. Knowledge-Based Systems, 16(3):165-171.

Hinkle, D. N. (1965). The change of personal constructs from the viewpoint of a theory

of implications. PhD thesis, Ohio State University, Ohio, USA.
Hooey, B. L., & Foyle, D. C. (2007). Requirements for a Design Rationale Capture

Tool to Support NASA's Complex Systems. In Proceedings of the International

Workshop on Managing Knowledge for Space Missions, , Pasadena, USA.
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M.

(2004). SWRL: A Semantic Web Rule Language: Combining OWL and

195

RuleML. Retrieved 11 June 2007, from
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

HP. (2004). Jena-a semantic web framework for java. Developed at Helwett Packard

Labs. Retrieved 28 June, 2006, from http://jena.sourceforge.net/index.html
Hu, X., Pang, J., Pang, Y., Atwood, M., Sun, W., & Regli, W. C. (2000). A Survey on

Design Rationale: Representation, Capture and Retrieval. In Proceedings of the

ASME Design Engineering Technical Conference, Baltimore, Maryland.
IPAS. (2005). Integrated Products and Services. Retrieved 9 May, 2008, from

http://www.3worlds.org/
Johanson, B., Fox, A., & Winograd, T. (2002). The Interactive Workspaces Project:

experiences with ubiquitous computing rooms. IEEE Pervasive Computing,

1(2):67-75.
Jordan, P. W. (1998). An Introduction to Usability. UK: Taylor & Francis.
Junker, U., & Mailharro, D. (2003). The logic of ilog(j) configurator: Combining

constraint programming with description logic. In Proceedings of IJCAI'03

Workshop on Configuration.
Kahn, G., Nowlan, S., & McDermott, J. (1985). MORE: An Intelligent Knowledge

Acquisition Tool. In Proceedings of the Ninth Joint Conference on Artificial

Intelligence, pages 581-584, Los Angeles, CA.
Karensty, L. (1996). An Empirical Evaluation of Design Rationale Documents. In

Proceedings of the SIGCHI conference on Human Factors in Computing

Systems, pages 150-156, Canada.
Kelly, G. A. (1955). The Psychology of Personal Constructs. New York, USA: W. W.

Norton & Company Inc.
Kim, J., & Gil, Y. (1999). Deriving expectations to guide knowledge base creation. In

Proceedings of the AAAI/IAAI, pages 235-241.
Kingston, J. K. C. (1998). Designing knowledge based systems: the CommonKADS

design model. Knowledge-Based Systems, 11:311-319.
Klein, R. (2000). Knowledge Modeling in Design - the MOKA framework. In

Proceedings of the International Conference on AI in Design, pages 77-102,
Worcester, MA.

Knublauch, H., Fergerson, R. W., Noy, N. F., & Musen, M. A. (2004). The Protege
OWL Plugin: An Open Development Environment for Semantic Web
Applications. In Proceedings of the International Semantic Web Conference,
pages 229-243, Hiroshima, Japan.

Koo, D. Y., Han, S. H., & Lee, J. W. (1998). An object-oriented configuration design
method for paper feeding mechanisms. Expert Systems with Applications,

14(3):283-289.
Kothari, C. R. (2005). Research Methodology: Methods and Techniques (Second

Edition). New Delhi: New Age Publishers.
Laburthe, F. (2003). Constraints over ontologies. In Proceedings of the CP 2003, pages

878-882.
Lam, S., Sleeman, D., Pan, J., & Vasconcelos, W. (2008). A Fine-Grained Approach to

Resolving Unsatisfiable Ontologies. Journal on Data Semantics, 10:62-95.
Lam, S., Sleeman, D., & Vasconcelos, W. (2005). ReTAX++: a Tool for Browsing and

Revising Ontologies. In Proceedings of the Posters and Demonstrations of

ISWC-05, Galway, Ireland.
Landauer, T. K., & Dumais, S. T. (1995). A solution to Plato's problem: the latent

semantic analysis theory of acquisition, induction and representation of
knowledge. Psychological Review, 104(2):211-240.

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://jena.sourceforge.net/index.html
http://www.3worlds.org/

196

Landes, D. (1994). An Approach to the Design of Knowledge-Based Systems. In
Software Quality Management II Vol 2 Building Quality into Software (pp. 707-
722).

Lee, J. (1997). Design Rationale Systems: Understanding the Issues. IEEE Expert,

12(3):78-85.
Lee, J., Chae, H., Kim, C.-H., & Kim, K. (2009). Design of product ontology

architecture for collaborative enterprises. Expert Systems with Applications

(Available online 28 December 2007), 36(2):2300-2309.
Leigh, D. (2006). Dan Leigh Delta Kite Designs. Retrieved 28 June, 2006, from

http://www.deltas.freeserve.co.uk/home.html
Leo, P. (1995). S-SALT: A Problem Solver plus Knowledge Acquisition Tool which

additionally can refine its knowledge base. MSc thesis, University of Aberdeen,
Aberdeen.

Levy, P. S., & Lemeshow, S. (1991). Sampling of Populations: Methods and

Applications (Second Edition). New York: Wiley-Interscience.
Lin, H. K., & Harding, J. A. (2003). An ontology driven manufacturing system

engineering moderator for global virtual enterprise teams. In Proceedings of the

1st International Conference on Manufacturing Research, pages 365-370,
Glasgow.

Lin, L., & Chen, L. C. (2002). Constraints modelling in product design. Journal of

Engineering Design, 13(3):205-214.
Lloyd, R. C. (2004). Quality Health Care: A Guide to Developing and Using Indicators.

Sudbury, USA: Jones & Bartlett.
Lords, D. (2006). Kite, Kite Buggy and Land Yacht Page. Retrieved 28 June, 2006, from

http://users.techline.com/lord/index.html
Lottaz, C., Smith, I. F. C., Robert-Nicoud, Y., & Faltings, B. V. (2000). Constraint-

based support for negotiation in collaborative design. Artificial Intelligence in

Engineering, 14:261-280.
Lottaz, C., Stalker, R., & Smith, I. (1998). Constraint solving and preference activation

for interactive design. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 12:13-27.
Lu, S. C.-Y., & Cai, J. (2001). A collaborative design process model in the socio

technical engineering design framework. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 15:3-20.
Maher, M. L. (1988). HI-RISE: An expert system for preliminary structural design. In

M. Rychener (Ed.), Expert Systems for Engineering Design (pp. 37-52).
Marcus, S. (1988). Automating Knowledge Acquisition for Expert Systems. Boston:

Kluwer Academic Publisher.
Marcus, S., & McDermott, J. (1989). SALT: A knowledge acquisition language for

propose-and-revise systems. Artificial Intelligence, 39(1):1-37.
Marcus, S., Stout, J., & McDermott, J. (1992). VT: An Expert Elevator Designer that

uses knowledge-based backtracking. In C. Tong & D. Sriram (Eds.), Artificial

Intelligence in Engineering Design (Vol. 1, pp. 317-356).
McDermott, J. (1982). R1-A rule-based configurer of computer systems. Artificial

Intelligence, 19(1):39-88.
McDermott, J. (1988). Preliminary steps towards a taxonomy of problem-solving

methods. In S. Marcus (Ed.), Automating Knowledge Acquisition for Expert

Systems (pp. 225-256): Kluwer Academic.
McDermott, J. (1993). R1("XCON") at age 12: lessons from an elementary school

achiever. Artificial Intelligence, 59:241-247.

http://www.deltas.freeserve.co.uk/home.html
http://users.techline.com/lord/index.html

197

McGuinness, D. L., & Harmelen, F. v. (2004). OWL Web Ontology Language

Overview, W3C Recommendation 10 February 2004. Retrieved 29 August,
2006, from http://www.w3.org/TR/owl-features/

McGuinness, D. L., & Wright, J. R. (1998a). Conceptual Modelling for Configuration:
A description logic based approach. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 12:333-344.
McGuinness, D. L., & Wright, J. R. (1998b). An Industrial-Strength Description Logic

Based Configurator Platform. IEEE Intelligent Systems and their applications,

13(4):69-77.
McKenzie, C., Gray, P., & Preece, A. (2004). Extending SWRL to Express Fully-

Quantified Constraints. In Proceedings of the Workshop on Rules and Rule

Markup Languages for the Semantic Web (RuleML 2004), International

Semantic Web Conference, pages 139-154, Hiroshima, Japan.
McMahon, C., Lowe, A., & Culley, S. (2004). Knowledge management in engineering

design: personalization and codification. Journal of Engineering Design,

15(4):307-325.
Menzies, T. (1999). Knowledge Maintenance: the State of the Art. The Knowledge

Engineering Review, 14(1):1-61.
Meseguer, P., & Preece, A. D. (1995). Verification and Validation of Knowledge-

Based Systems with Formal Specifications. Knowledge Engineering Review,

10:331-343.
Milton, N., Shadbolt, N., Cottam, H., & Hammersley, M. (1999). Towards a knowledge

technology for knowledge management. International Journal of Human-

Computer Studies, 51:615-641.
Milton, N. R. (2007). Knowledge Acquisition in Practice: Springer.
Milton, N. R. (2008). Knowledge Technologies: Springer.
Mitchell, T. M., Steinberg, L. I., & Shulman, J. S. (1985). A knowledge based approach

to design. IEEE Transactions on Pattern Analysis and Machine Intelligence,

7(5):502-510.
Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. In

Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI

90), pages 25-32, Boston, USA.
Moore, J., Stader, J., Chung, P., Jarvis, P., & Macintosh, A. (1999). Ontologies to

support the management of new product development in the chemical process
industries. In Proceedings of the 12th International Conference on Engineering

Design (ICED 99), pages 159-164, Munich.
Musen, M., Tu, S., Eriksson, H., Gennari, J., & Puerta, A. (1993). PROTEGE-II: An

Environment for Reusable Problem-Solving Methods and Domain Ontologies.

In Proceedings of the International Joint Conference on Artificial Intelligence,
Chambery, France.

Musen, M. A., Combs, D. M., Shortliffe, E. H., & Fagan, L. M. (1988). OPAL: Towards
the computer aided design of oncology advice systems. Selected Topics in

Medical Artificial Intelligence:166-180.
Myers, K., Zumel, N., & Garcia, P. (2000). Acquiring Design Rationale Automatically.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

14(2):115-135.
Newnes, L. B., Mileham, A. R., Cheung, W. M., Marsh, R., Lanham, J. D., Saravi, M.

E., et al. (2008). Predicting the whole-life cost of a product at the conceptual
design stage. Journal of Engineering Design, 19(2):99-112.

http://www.w3.org/TR/owl-features/

198

Nguyen, T. A., Perkins, W. A., Laffey, T. J., & Pecora, D. (1985). Checking an Expert
Systems Knowledge Base for Consistency and Completeness. In Proceedings

of the IJCAI '85, pages 375-378, Los Angeles, USA.
Noy, N. F., Fergerson, R. W., & Musen, M. A. (2000). The knowledge model of

Protege-2000: Combining interoperability and flexibility. In Proceedings of the

International Conference on Knowledge Engineering and Knowledge

Management (EKAW' 2000), pages 17-32, Juan-les-Pins, France.
Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., & Musen, M. A.

(2001). Creating Semantic Web Contents with Protege 2000. IEEE Intelligent

Systems, 16(2):60-71.
Okolo, E. N. (1990). Health Research Design and Methodology. USA: CRC Press.
Olson, J. R., & Reuter, H. H. (1987). Extracting expertise from experts: methods for

knowledge acquisition. Expert Systems, 4:152-168.
O'Muircheartaigh, C. A., Krosnick, J. A., & Helic, A. (1999). Middle alternatives,

acquiescence, and the quality of questionnaire data. In Proceedings of the

American Association for Public Opinion Research Annual Meeting, St.
Petersburg, Florida.

O'Sullivan, B. (2002a). Constraint-based product structuring for configuration. In
Proceedings of the ECAI 2002 Workshop on Configuration.

O'Sullivan, B. (2002b). Interactive constraint-aided conceptual design. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 16:303- 328.
Pahl, G., & Beitz, W. (1995). Engineering Design: A systematic approach. London:

Springer.
Payne, S. L. (1951). The Art of Asking Questions. New Jersey: Princeton University

Press.
Poeck, K., & Gappa, U. (1993). Making Role-Limiting Shells more Flexible. In

Proceedings of the EKAW 93, pages 103-122, Toulouse, France.
Preece, A. (1999). COVERAGE: Verifying Multiple-Agent Knowledge-Based

Systems. Knowledge-Based Systems, 12:37-44.
Preece, A., Flett, A., Sleeman, D., Curry, D., Meaney, N., & Perry, P. (2001). Better

Knowledge Management through Knowledge Engineering. IEEE Intelligent

Systems, 14:26-36.
Preece, A. D., Shinghal, R., & Batarekh, A. (1992). Verifying Expert Systems: A

Logical Framework and a Practical Tool. Expert Systems with Applications,

5(3/4):421-436.
Preece, J. (1993). A Guide to Usability: Human Factors in Computing: Addison

Wesley.
Puerta, A. R., Egar, J. W., Tu, S. W., & Musen, M. A. (1992). A Multiple-Method

Knowledge Acquisition Shell for the Automatic Generation of Knowledge
Acquisition Tools. Knowledge Acquisition, 4(2):171-196.

Puerta, A. R., & Eriksson, H. (1996). Knowledge Engineering Environments and
Knowledge Sharing: From Reusable Knowledge Components to the Internet
(Tutorial Material). In Proceedings of the ECAI 1996, Budapest, Hungary.

Qian, Y., Zheng, M., Li, X., & Lin, L. (2005). Implementation of knowledge
maintenance modules in an expert system for fault diagnosis of chemical
process operation. Expert Systems with Applications, 28:249-257.

Regli, W. C., Hu, X., Atwood, M., & Sun, W. (2000). A Survey of Design Rationale
Systems: Approaches, Representation, Capture and Retrieval. Engineering with

Computers: An Int'l Journal for Simulation-Based Engineering, special

199

issue on Computer Aided Engineering in Honor of Professor Steven J. Fenves,

16(3-4):209-235.
Reichgelt, H., & Shadbolt, N. (1992). ProtoKEW: A knowledge-based system for

knowledge acquisition. In D. Sleeman & N. O. Bernsen (Eds.), Artificial

Intelligence, Research Directions in Cognitive Science (Series). Hove, UK: L.
Erlbaum Associates.

Richter, H. A., & Abowd, G. D. (1999). Automating the capture of design knowledge:

a preliminary study (Technical Report No. GVU-99-45). Atlanta, USA: Georgia
Institute of Technology.

Rittel, H. W. J. (1972). Second generation design methods. The DMG 5th Anniversary

Report: DMG Occasional paper No.1 (reprinted in Cross, N. (ed.)

Developments in Design Methodology, 317-327).
Roche, C. (2000). Corporate ontologies and concurrent engineering. Journal of

Materials Process Technology, 107:187-193.
Rothenfluh, T., Gennari, J., Eriksson, H., Puerta, A., Tu, S., & Musen, M. (1994).

Reusable Ontologies, Knowledge-Acquisition Tools, and Performance
Systems: PROTEGE-II Solutions to Sisyphus-2. In Proceedings of the Eighth

Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, Canada.

Rothenfluh, T. E., Gennari, J. H., Eriksson, H., Puerta, A. R., Samson, W. T., & Musen,
M. A. (1996). Reusable ontologies, knowledge-acquisition tools, and
performance systems: PROTEGE-II solutions to Sisyphus-2. International

Journal of Human-Computer Studies, 44(3-4):303-332.
Rousset, M. C. (1988). On the Consistency of Knowledge Bases: the COVADIS

System. Computational Intelligence, 4(2):166-170.
Rubin, J. (1994). Handbook of Usability Testing: Wiley Technical Communication

Library.
Rychtyckyj, N., & Reynolds, R. G. (2000). Long-Term Maintainability of Deployed

Knowledge Representation Systems. In Proceedings of the 7th International

Conference on the Principles of Knowledge Representation and Reasoning,
pages 494-504, Breckenridge.

Sabin, D., & Weigel, R. (1998). Product Configuration frameworks-a survey. IEEE

Intelligent Systems and their applications, 13(4):42-49.
Salonen, M., Holtta-Otto, K., & Otto, K. (2008). Effecting product reliability and life

cycle costs with early design phase product architecture decisions. International

Journal of Product Development, 5(1/2):109-124.
Sanghee, K., Bracewell, R., & Wallace, K. (2008). Some reflections on ontologies in

engineering domain. In Proceedings of the 8th International Symposium on

Tools and Methods of Competitive Engineering (TMCE 2008), Kusadasi,
Turkey.

Sanghee, K., Bracewell, R. H., & Wallace, K. M. (2007). Improving design reuse using
context. In Proceedings of the International Conference on Engineering Design,
Paris, France.

Sapuan, S. M., Osman, M. R., & Nukman, Y. (2006). State of the art of the concurrent
engineering technique in the automotive industry. Journal of Engineering

Design, 17(2):143-157.
Schaeffer, N. C., & Presser, S. (2003). The Science of Asking Questions. Annual

Review of Sociology, 29(65-88).

200

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R. d., Shadbolt, N.,
VandeVelde, W., et al. (2000). Knowledge Engineering and Management: the

CommonKADS Methodology: MIT Press.
Seaborne, A. (2004). RDQL - A Query Language for RDF, W3C Member Submission

9 January 2004, HP Labs, Bristol. Retrieved 29 August 2006, from
http://www.w3.org/Submission/RDQL/

Selpi. (2004). An FDM Prototype for Pathway and Protein Interaction Data.

International Master's programme in Bioinformatics thesis, Chalmers
University of Technology, Goteborg, Sweden.

Serrano, D., & Gossard, D. (1992). Tools and Techniques for Conceptual Design. In
C. Tong & D. Sriram (Eds.), Artificial Intelligence in Engineering Design

(Vol. 1, pp. 71-116). San Diego, CA, USA: Academic Press Professional, Inc.
Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The Semantic Web Revisited. IEEE

Intelligent Systems, 21(3):96-101.
Shimizu, S., & Numao, M. (1997). Constraint-based design for 3D shapes. Artificial

Intelligence, 91:51-69.
Shin, H. Y., & Lee, J. W. (1998). Expert system for pneumatic design. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 12(1):3-11.
Shipman, D. W. (1981). The Functional Data Model and the Data Language DAPLEX.

ACM Transactions Database Systems, 6(1):140-173.
Shortliffe, E. H. (1981). Computer-Based Medical Consultations:MYCIN. New York:

Elsevier.
Shortliffe, E. H., Scott, A. C., Bischoff, M. B., Melle, W. V., & Jacobs, C. D. (1981).

ONCOCIN: An expert system for oncology protocol management. In
Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, pages 876-881, Vancouver, British Columbia.
Shum, S. B. (1991). A Cognitive Analysis of Design Rationale Representation.

[Awarded the 1992 Kathleen Stott Proze for Best Doctoral Thesis] PhD thesis,
University of York, York, UK.

Shum, S. B., & Hammond, N. (1994). Argumentation-Based Design Rationale: What
Use at What Cost? International Journal of Human-Computer Studies,

40(4):603-652.
Sleeman, D., Ajit, S., Fowler, D. W., & Knott, D. (2008). The role of ontologies in

creating and maintaining corporate knowledge: a case study from the aero
industry. Journal of Applied Ontology, 3(3):151-172.

Sleeman, D., & Mitchell, F. (1996). Towards Painless Knowledge Acquisition. In
Proceedings of the Advances in Knowledge Acquisition, pages 262-277, Berlin.

Smithers, T. (1998). KLDE - a knowledge level theories of design process. In J. Gero
& F. Sudweeks (Eds.), Artificial Intelligence in Design '98. Dordrecht: Kluwer.

Soloway, E., Bachant, J., & Jensen, K. (1987). Assessing the Maintainability of XCON-
in-RIME: Coping with Problems of a Very Large Rule-Base. In Proceedings of

the AAAI-87, pages 824-829, Seattle, USA.
Sriram, D. (1997). Intelligent systems for engineering: A knowledge based approach.
Stokes, M. (Ed.). (2001). Managing Engineering Knowledge. MOKA: Methodology for

Knowledge Based Engineering Applications: Professional Engineering
Publishing.

Streeter, T. (1980). The Art of the Japanese Kite. Tokyo: Charles E Tuttle Company
Inc.

http://www.w3.org/Submission/RDQL/

201

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge Engineering: Principles
and Methods. Data and Knowledge Engineering, 25(1-2):161-197.

Sudman, S., & Bradburn, N. (1982). Asking Questions: A Practical Guide to

Questionnaire Design. London: Jossey-Bass Inc.
Suwa, M., Scott, A. C., & Shortliffe, E. H. (1982). An Approach to Verifying

Completeness and Consistency in a Rule-based System. AI Magazine, 3(4):16-
21.

Thorton, A. C. (1996). A support tool for constraint processes in embodiment design.

In Proceedings of the ASME Design Theory and Methodology Conference,
pages 231-239, Minneapolis, USA.

Tian, L., Chen, J., Wang, Q., Hao, W., & Tong, B. (2007). CoDesign Space: a
collaborative design support system in a network environment. International

Journal of Computer Integrated Manufacturing, 20(2-3):265-279.
Tommelein, I. D., Leit, R. E., Hayes-Roth, B., & Confrey, T. (1991). Sight-Plan

experiments: Alternate Strategies for site layout design. ASCE Journal of

Computing in Civil Engineering, 5(1):42-63.
Tongco, M. D. C. (2007). Purposive sampling as a tool for informant selection.

Ethnobotany Research & Applications: A Journal for Plants, People and

Applied Research, 5:147-158.
Tsai, W.-T., Vishnuvajjala, R., & Zhang, D. (1999). Verification and Validation of

Knowledge-Based Systems. IEEE Transactions on Knowledge and Data

Engineering, 11(1):202-212.
Ullman, D. G. (2003). The Mechanical Design Process. New York: McGraw-Hill.
Valarakos, A., Paliouras, G., Karkaletsis, V., & Vouros, G. (2004). Enhancing

ontological knowledge through ontology population and enrichment. In
Proceedings of the EKAW 2004, pages 144-156, Northampton, UK.

Veeke, H. P. M., Lodewijks, G., & Ottjes, J. A. (2006). Conceptual design of industrial
systems: an approach to support collaboration. Research in Engineering Design,

17:85-101.
Wallace, K. M., & Ahmed, S. (2003). How engineering designers obtain information.

Human behaviour in design.Individuals, teams, tools:184-194.
Wardley, A. (2006). Basics of Stunt Kite Design. Retrieved 28 June, 2006, from

http://www.kfs.org/~abw/kite/rec.kites/skdesign1.html
White, S. (2000). Enhancing knowledge Acquisition with Constraint Technology. PhD

thesis, University of Aberdeen, Aberdeen.
White, S., & Sleeman, D. (2001). A Grammar-Driven Knowledge Acquisition Tool that

incorporates Constraint Propagation. In Proceedings of the KCAP-01

Conference, pages 187-193, Canada.
Wielinga, B., & Schreiber, G. (1997). Configuration-Design Problem Solving. IEEE

Expert, 12(2):49-57.
Winner, R. I., Pennel, J. P., Bertrand, E. H., & Slusarczuk, M. (1988). The Role of

Concurrent Engineering in Weapons System Acquisition: VA: Institute for
Defense Analyses.

Winter, M., Sleeman, D., & Parsons, T. (1998). Inventory Management using constraint
satisfaction and knowledge refinement techniques. Knowledge Based

Systems(11):293-300.
Wong, S. C., Crowder, R. M., Wills, G. B., & Shadbolt, N. R. (2008). Knowledge

Transfer: From Maintenance to Engine Design. Journal of Computing and

Information Science in Engineering (Transactions of the ASME), 8(1).

http://www.kfs.org/~abw/kite/rec.kites/skdesign1.html

202

Wu, S., Ghenniwa, H., Zhang, Y., & Shen, W. (2006). Personal assistant agents for
collaborative design environments. Computers in Industry, 57:732-739.

Yao, Z. (1996). Constraint Management for Engineering Design. PhD thesis,
Cambridge University, Cambridge.

Yolen, W. (1976). The Complete Book of Kites and Kite Flying. New York: Simon
and Schuster Trade.

Zhang, S., Shen, W., & Ghenniwa, H. (2004). A review of Internet-based product
information sharing and visualisation. Computers in Industry, 54:1-15.

203

Appendix A

Equations, Constraints and Application Conditions in

Kite Design

1. Like an aircraft, kites are heavier than air and rely on aerodynamic forces to fly.

The relevant aerodynamic equations for calculating lift coefficient (Cl) and drag

coefficients (Cd) are:

Cl = L

0.5AρairV2

Cd = D

0.5AρairV2

where L = lift in Newton (N), D = drag in Newton (N), A = projected surface area in

square metres (m2), ρair = air density in kilograms per cubic metre (kg/m3), V = wind

velocity over the surface in metre per second (m/s).

Notes: Now, the same set of equations cannot usually be used for flying objects such

as gas balloons and bubbles, which are lighter than air and rely on buoyancy forces

to fly, unless they are designed to have lift characteristics to improve control and

performance. In these circumstances, buoyancy equations have to be used. The equation

is also not applicable to things like bricks, i.e. things that do not have significant lifting

surfaces.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/kite1.html

2. The lift coefficient used by aerodynamicists to model the complex dependencies of

shape, inclination, and some flow conditions on lift is given by:

Cl = L

0.5AρairV2

http://www.grc.nasa.gov/WWW/K-12/airplane/kite1.html

204

where Cl = lift coefficient, L = lift in Newton (N), A = projected surface area in square

metres (m2), ρair = air density, V = wind velocity over the surface in metre per second

(m/s).

Notes: This is applicable for very low speeds (<321.87 Km-hr), when the

compressibility effects of air are negligible. However, at higher speeds it is incorrect

to use this equation. [The compressibility of air will alter the physics]. It has to be noted

here that the speed of 321.87 Km-hr is low in the field of aerodynamics but is high for

the kite flying domain. The above equation and notes are stated mainly to illustrate

another type of application condition.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/liftco.html

3. The weight of the kite, W, is equal to the weight of the surfaces in kilograms (kg),

Ws, plus the weight of the frame in kilograms (kg), Wf.

W = Ws + Wf

Notes: It is assumed that all the materials are subjected to the same gravitational

acceleration and so weight is used. Otherwise, mass has to be used in aerodynamic

equations.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html

4. The weight of the surface of kite in kilograms (kg), Ws, is the product of the

surface material density in kilograms per square metre (kg/m2), ds, and the surface area

in square metres (m2), As.

Ws = dsAs

Notes: Area is being used here because one is dealing with very thin coverings that

are nearly the same for all materials. Otherwise, volume has to be used.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html

http://www.grc.nasa.gov/WWW/K-12/airplane/liftco.html
http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html
http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html

205

5. The weight of the frame, Wf, is the product of the frame material density in

kilograms per metre (kg/m), df, and the length of the frame in metre (m), Lf.

Wf = dfLf

Notes: The frame material is characterised by "density", a weight per unit length of the

material. Notice that this definition of "density" is different from the standard mass

divided by volume and from the surface definition of weight divided by area. This

definition is used because it is dealing with long thin sticks in the frame and the

material is uniform along the length of the sticks.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html

6. The drag D in Newton (N) is the product of a drag coefficient Cd, the projected

surface area A in square metres (m2), the air density ρair= 1.229 kg/m3, and one-half the

square of the wind velocity over the surface V in metre per second (m/s).

Cl = 1.229Cd AV2

2

Note 1: The drag depends on two properties of the air; the density and velocity. In

general, the density depends on your location on the earth. The higher the elevation, the

lower the density. The standard value for air density ρair used above (i.e., 1.229 kg/m3)

is at sea level conditions. The air velocity is the relative speed between the kite and the

air. When the kite is held fixed by the control line, the air velocity is the wind speed.

If the line breaks, or if you let out line, the velocity is something less than the wind

speed; if you pull on the control line the velocity is the wind speed plus the speed of

your pull.

Note 2: It has to be noted that the area (A) used in this equation is a reference area. It

is important to clearly specify the area used. The computed value of the drag

coefficient will vary according to the type of area used. For example, if one chooses the

wing area, rather than the cross-sectional area, the computed coefficient will have a

different value.

Source: http://www.grc.nasa.gov/WWW/K-12/airplane/kitedrag.html

http://www.grc.nasa.gov/WWW/K-12/airplane/kitewt.html
http://www.grc.nasa.gov/WWW/K-12/airplane/airprop.html
http://www.grc.nasa.gov/WWW/K-12/airplane/move.html
http://www.grc.nasa.gov/WWW/K-12/airplane/kitedrag.html

206

7. Kite designs have constraints concerning the requirement of tails.

Notes: Tails are required only for flat kites, but not for example, for bowed kites. It is

important to make this context explicit.

Source: http://www.aka.org.au/kites_in_the_classroom/chap3.htm

8. A constraint requires the length of the tail of the kite needs to be 7 times the

length of the spine.

Notes: Again, this is applicable only to flat diamond kites.

Source: http://www.aka.org.au/kites_in_the_classroom/chap3.htm

9. A constraint requires the density of sail material of the kite to be greater than

21.9 kilograms per square metre.

Notes: This constraint is applicable only when there is a requirement to produce low

cost kites for beginners. [Kites for experts have lighter materials, which are of higher

quality and hence costlier]

Source: http://www.cuttingedgekites.com/faq.htm

10. Aspect ratio is the wing span divided by the chord length.

Notes: Applicable only to kites of simple shapes with rectangular wings.

Source: http://users.techline.com/lord/musing.html

11. A constraint requires the kites to be made from lightweight non-porous

spinnaker fabric.

Notes: Applicable only to light wind delta kites.

Source: http://www.deltas.freeserve.co.uk/whatsadelta.html

12. The two wing halves of kites should be exactly symmetrical.

Notes: This need for strict symmetry is applicable only to ordinary delta kites.

http://www.aka.org.au/kites_in_the_classroom/chap3.htm
http://www.aka.org.au/kites_in_the_classroom/chap3.htm
http://www.cuttingedgekites.com/faq.htm
http://users.techline.com/lord/musing.html
http://www.deltas.freeserve.co.uk/whatsadelta.html

207

Source: http://www.deltas.freeserve.co.uk/whatsadelta.html

13. The ratio between the height and width of a kite should be five.

Notes: This is applicable only to basic 2-stick flat kites.

Source: “The complete book of kites and kite flying” by Will Yolen.

14. The bridle attachment angle for a kite has to be close to 100 degrees (for good

performance).

Notes: This is applicable only to airfoil kites.

Source: “The complete book of kites and kite flying” by Will Yolen.

15. For a wind speed of 8 to 10 miles per hour, the kite’s lifting surface area has to

be about 120 square feet.

Notes: This is applicable only to Hargrave weather kites.

Source: “The complete book of kites and kite flying” by Will Yolen.

16. The edges of cloth kites need reinforcing to prevent rips or unravelling.

Notes: New Nylon Ripstop cloth kites are an exception.

Source: “The complete book of kites and kite flying” by Will Yolen.

17. A constraint requires the spine and cross-spar of a kite to be tapered such that

the weight is gradually decreased from the top descending to the bottom edge.

Notes: Applicable only to Japanese kites.

Source: “The art of the Japanese kite” by Tal Streeter.

18. The bridling point has to be positioned one-third of the way down from the top

of the kite.

Notes: Applicable only to Japanese kites.

http://www.deltas.freeserve.co.uk/whatsadelta.html

208

Source: “The art of the Japanese kite” by Tal Streeter.

19. The strength of the kite line should be three times, in pounds pull, the square

feet of the kite’s surface.

Notes: Applicable only to Japanese kites.

Source: “The art of the Japanese kite” by Tal Streeter.

20. The faces and wings of a box kite should be the same distance apart from top to

bottom.

Notes: Applicable only to Japanese kites.

Source: “The art of the Japanese kite” by Tal Streeter.

21. For the kite’s bridle, the dynamic line has to be as long as the leading edge and

a static line has to be 50-60% of the leading edge's length.

Notes: This is applicable only at the start of flying a kite.

Source: http://www.idemployee.id.tue.nl/p.j.f.peters/kites/index.html

22. A kite must have a tight sail, curved leading edge, outboard, low set bridle and

outboard stand-offs.

Notes: Applicable only to radical trick kites.

Source: http://www.kfs.org/~abw/kite/

http://www.idemployee.id.tue.nl/p.j.f.peters/kites/index.html
http://www.kfs.org/~abw/kite/

209

Appendix B

Evaluation of ConEditor+ - Questionnaire

Please reply to as many of the questions below as possible using the scale

[1(poor)-5(excellent)] wherever applicable:

Q) Do you find the GUI of the system intuitive to use? Please rate it.

What, if anything, would you like to have changed?

Q) How easy was it for you to input constraints? Please rate it.

What, if anything, would you like to have changed?

Q) How easy was it for you to input application conditions together with the constraints?

Please rate it. What, if anything, would you like to have changed?

Q) Did the system provide you with helpful suggestions to resolve/remove

inconsistencies? What, if anything, would you like to have changed?

Q) Which mode would you prefer to use (1) semi-auto mode (2) auto (default) mode?

Q) How well does the system help you in the maintenance of constraints?

Please rate it.

Q) Would you like to see any additional features added?

Please specify details.

Q) Would you like to see any existing features removed/changed?

Please specify details.

Q) Does the system provide you with new functionality? If so, which ones?

If not please specify which of your current system(s) provides this.

Q) Considering all the factors, could you give an overall rating of the system (ConEditor+:

Acquisition and Maintenance of Constraints in Engineering Design)?

Q) Any other additional comments:

210

Appendix C

Annotated Walkthrough of capturing a constraint

using ConEditor+

211

212

213

214

215

216

217

218

219

Appendix D

Scanned copies of the Questionnaires answered by

subjects during the Evaluation of ConEditor+

220

221

222

223

224

225

226

227

228

229

Appendix E

Sample Refinements of Constraints and Application

Conditions by ConEditor+ in the Rolls-Royce domain

Redundancy:

(a) Duplication

(i) constrain each c in FlameDepositionCoating

such that has_fabricated_component(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

(ii) constrain each c in FlameDepositionCoating

such that has_fabricated_component(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

By comparing the two constraints above, one can infer that the constraint (i) is

identical to (ii).

(b) Class Equivalence

(iii) constrain each c in DepositionCoating

such that has_fabricated_component(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

(iv) constrain each c in FlameDepositionCoating

such that has_fabricated_component(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

230

As DepositionCoating is an equivalent class to FlameDepositionCoating in the

domain ontology one can infer that the constraint (iii) is equivalent to constraint (iv).

(c) Property Equivalence

(v) constrain each c in FlameDepositionCoating

such that has_fabricated_component(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

(vi) constrain each c in FlameDepositionCoating

such that has_fabricated_part(c)

and has_mask_location_level(c) = "difficult"

to have has_max_overspray_thickness(c) = 4.0

As has_fabricated_component is an equivalent property to has_fabricated_part in the

domain ontology one can infer that the constraint v) is equivalent to constraint vi).

ConEditor+ notifies the user (domain expert) of all occurrences of redundancy and

suggests that the user takes appropriate action(s) to eliminate redundancy.

Subsumption:

(a) Subsumption via sub-class:

(vii) constrain each s in RingSeal

such that has_elastometric_toroidal_oring(s)

and name(has_material(has_sealing_ring(s))) <> "perfluorocarbon"

and pressure_type_hou_mat_flange(s) = "internal"

to have min_face_groove_dia(s) = max_face_groove_dia(s) - 0.25

231

(viii) constrain each s in FaceRingSeal

such that has_elastometric_toroidal_oring(s)

and name(has_material(has_sealing_ring(s))) <> "perfluorocarbon"

and pressure_type_hou_mat_flange(s) = "internal"

to have min_face_groove_dia(s) = max_face_groove_dia(s) - 0.25

As FaceRingSeal is a subclass of RingSeal in the domain ontology one can infer that

the constraint (vii) subsumes constraint (viii). ConEditor+ notifies the user (domain

expert) of this fact and suggests that the user considers removing or deactivating

constraint (viii).

(b) Subsumption via application condition

(ix) constrain each s in Stud

such that has_stud_type(s) = "standard"

or has_stud_type(s) = "large"

to have min_stand_out(s) = min_length(s) - (max_cbore(s) +

max_pull_in(s))

(x) constrain each s in Stud

such that has_stud_type(s) = "standard"

to have min_stand_out(s) = min_length(s) - (max_cbore(s) +

max_pull_in(s))

By comparing the two constraints above, one can infer that the constraint (ix) subsumes

constraint (x). ConEditor+ notifies the user (domain expert) of this fact and suggests

that the user considers removing or deactivating constraint (x).

(c) Subsumption via conjunction

(xi) constrain each f in Forging

such that type(has_forging_material(f)) <> "light alloy"

to have has_external_fillet_radii(f) >= 10

and has_internal_fillet_radii(f) >= 10

232

(xii) constrain each f in Forging

such that type(has_forging_material(f)) <> "light alloy"

to have has_external_fillet_radii(f) >= 10

Again, one can infer that constraint (xi) subsumes constraint (xii). ConEditor+ notifies

the user (domain expert) of this fact and suggests that the user considers removing or

deactivating constraint (xii).

Figure 9.1: A screenshot of ConEditor+ showing inconsistency between a pair of constraints

Inconsistency:

(xiii) constrain each c in Component

such that name(component_coating(c)) = "silver"

and name(component_material(c)) = "steel"

to have tensile_strength(component_material(c)) < 1390

233

(xiv) constrain each c in Component

such that name(component_coating(c)) = "silver"

and name(component_material(c)) = "steel"

to have tensile_strength(component_material(c)) > 1590

By comparing the two constraints above, one can infer that the constraint (xiii)

contradicts constraint (xiv). ConEditor+ notifies the user (domain expert) of this fact

and suggests that the user takes an appropriate action (modify/delete) to resolve the

inconsistency. An example of such an inconsistency (contradiction) detected by

ConEditor+ is shown in Figure 9.1.

Fusion:

(a) Fusion via class

(xv) constrain each c in LowVelocityPlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium"

to have material_thickness(has_coating_material(c)) >= 0.05

(xvi) constrain each c in HighVelocityPlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium"

to have material_thickness(has_coating_material(c)) >= 0.05

If LowVelocityPlasmaCoating and HighVelocityPlasmaCoating are the only two

subclasses of PlasmaCoating in the domain ontology and if every instance of

PlasmaCoating is an instance of either LowVelocityPlasmaCoating or

HighVelocityPlasmaCoating then the constraints (xv) and (xvi) can be fused together

and replaced by the constraint (xvii) as follows:

(xvii) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium"

to have material_thickness(has_coating_material(c)) >= 0.05

234

(b) Fusion via application condition

(xviii) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium"

to have material_thickness(has_coating_material(c)) < 0.20

(xix) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"copper"

to have material_thickness(has_coating_material(c)) < 0.20

The constraints above can be fused together by using “or” between the application

conditions, i.e., the constraints (xviii) and (xix) can be fused together and replaced by

the constraint (xx) as follows:

(xx) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium" or contains(component_material(has_component(c))) <>

"copper"

to have material_thickness(has_coating_material(c)) < 0.20

(c) Fusion via conjunction

(xxi) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium" or contains(component_material(has_component(c))) <>

"copper"

to have material_thickness(has_coating_material(c)) >= 0.05

235

(xxii) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium" or contains(component_material(has_component(c))) <>

"copper"

to have material_thickness(has_coating_material(c)) < 0.20

The constraints above can be fused together by using “and”, i.e., the constraints (xxi)

and (xxii) can be fused together and replaced by the constraint (xxiii) as follows:

(xxiii) constrain each c in PlasmaCoating

such that contains(component_material(has_component(c))) <>

"magnesium"

or contains(component_material(has_component(c))) <> "copper"

to have material_thickness(has_coating_material(c)) >= 0.05

and material_thickness(has_coating_material(c)) < 0.20

In the above cases of fusion, ConEditor+ notifies the user (domain expert) and suggests

the user considers fusing the appropriate pairs of constraints. It is then left to the user

to take appropriate action.

