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Abstract: The capture and prediction of rainfall-induced landslide warning signals is the premise
for the implementation of landslide warning measures. An attention-fusion entropy weight method
(En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional
neural network (ATCN) is used to predict the warning signals. Specifically, the sensor data are
analyzed using Pearson correlation analysis after obtaining data from the sensors on rainfall, moisture
content, displacement, and soil stress. The comprehensive evaluation score is obtained offline using
multiple entropy weight methods. Then, the attention mechanism is used to weight and sum different
entropy values to obtain the final landslide hazard degree (LHD). The LHD realizes the warning
signal capture of the sensor data. The prediction process adopts a model built by ATCN and uses
a sliding window for online dynamic prediction. The input is the landslide sensor data at the last
moment, and the output is the LHD at the future moment. The effectiveness of the method is verified
by two datasets obtained from the rainfall-induced landslide simulation experiment.

Keywords: rainfall-induced landslide; attention mechanism; entropy weight methods; an attention-
based temporal convolutional neural network; landslide hazard degree

1. Introduction

Rainfall-induced landslides are geological hazards triggered by prolonged rainfall
or short-term heavy rainfall. Scholars have conducted in-depth research on landslide
susceptibility mapping [1], data modeling [2], and mechanism analysis [3].

Machine learning (ML) and deep learning (DL) are important methods for landslide
prediction because of their ability to achieve complex nonlinear modeling. Many ML and
DL methods are used for landslide detection and prediction with better performance than
traditional methods. Wei et al. proposed an attention-constrained neural network with over-
all cognition (OC-ACNN) to capture features to predict landslides [4]. Ghorbanzadeh et al.
used different deep convolutional neural networks (CNNs) for landslide remote sensing
images and achieved better results in landslide mapping [5]. An integrated framework of
DL models with rule-based object-based image analysis (OBIA) to detect landslides was
explored by Ghorbanzadeh et al. [6]. Wang et al. optimized the Elman neural network with
the genetic algorithm and used it to implement the prediction of landslide displacement [7].
Wang et al. compared five machine learning methods for reservoir displacement predic-
tion, and the Hodrick–Prescott filter decomposed the cumulative displacement into trend
displacement and periodic displacement [8]. Wang et al. predicted the intrinsic evolution
trend of landslide displacement by (double exponential smoothing, DES) DES-VMD-LSTM,
based on the Gaussian process regression (GPR) model to assess the uncertainty in the first
prediction [9]. Miao et al. applied the fruit fly optimization algorithm back-propagation
neural network (FOA-BPNN) for the prediction of random displacements [10]. Gong et al.
considered the problem of interval prediction of landslide displacements and proposed
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a new method of interval prediction of landslide displacements combining dual-output
least squares support vector machine (DO-LSSVM) and particle swarm optimization (PSO)
algorithms [11]. Time series analysis and long short-term memory neural networks are used
in landslide displacement prediction [12,13]. Lin et al. analyzed the internal relationship
between rainfall, reservoir water level, and periodic landslide displacement and used the
double-bidirectional long short-term memory (Double-BiLSTM) model to predict landslide
displacement [14]. Zhang et al. proposed a method based on Gated Recurrent Unit (GRU)
and Fully Integrated Empirical Decomposition of Adaptive Noise (CEEMDAN) for the
dynamic prediction of landslide displacement [15]. The application of hybrid methods
based on metaheuristics (MH) in the field of geohazards is a recent research direction in
disaster prediction. Ma et al. conducted a comparative study on MHs and proposed a
new hybrid algorithm, namely MH-based support vector machine regression (SVR) [16].
The hybrid method has high performance in terms of accuracy and reliability for landslide
displacement prediction. Meanwhile, the hybrid method combined with a multiverse
optimization (MVO) for hyperparameter optimization of MHs [17] improves the reliability
of disaster prediction modeling.

Rainfall is commonly used for early warning as an important trigger for landslides.
Cost-sensitive rainfall thresholds were investigated by Sala et al. and sensitivity analysis
was performed [18]. However, rainfall thresholds that are difficult to standardize cannot be
used as early warning signals for the occurrence of landslides. Changes in soil moisture
are an important factor in landslides. Domínguez-Cuesta et al. focused on the role of
rainfall and soil moisture as triggering and evolutionary factors for unstable events [19].
Soil moisture saturation and sudden rainfall are more likely to lead to landslides. Chen et al.
analyzed the role of soil moisture index (SWI) in landslides based on 279 mass movements
that occurred in Taiwan during 2006–2017 [20].

These data-driven approaches effectively implement the displacement prediction
problem for landslides; however, these models do not consider correlations among multiple
sensor data and do not capture warning signals in sensor data well. Entropy value, as
a physical quantity describing the degree of data chaos, has also been used to analyze
landslide risk [21]. However, landslide hazard analysis using the information entropy
value method does not take into account the effects of different entropy values on landslide
sensor data. A single entropy value method for landslide warning feature analysis failure
will result in the possibility of misclassification.

Challenges: First, there are many landslide monitoring sensors, but the methods of
effectively capturing warning signals are less studied. Second, there are correlations among
different types of landslide sensor data, which need to be analyzed. Third, the accuracy of
data-driven rainfall-induced landslide hazard prediction models needs to be improved.

Contributions:

• We combine an attention mechanism with multiple entropy weight methods and
propose an attention-fusion entropy weight method (En-Attn) to capture warning
signals based on massive landslide sensor data.

• We propose an attention-based temporal convolutional neural network for landslide
warning signals prediction based on massive sensor data.

• We carry out the experimental simulation of rainfall-induced landslides, collect sensor
data when landslides occur, analyze the precursory warning characteristics of the data,
and use a variety of entropy weight methods to analyze the characteristics of warning
signals offline.

• Our model is validated on two datasets obtained from rainfall-induced simulation
experiments, and our model has high accuracy compared with similar landslide
warning capture and prediction methods.
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2. Methods
2.1. Capture Models of Landslide Warning Signal

We obtain massive sensor data from landslide simulation experiments, including
rainfall, the soil moisture content in shallow layers, the soil moisture content in deep layers,
soil stress, and displacement. The evaluation of landslide warning signals is to extract the
warning features from these massive sensor data to characterize the landslide warning
situation. The entropy weight methods (EWM) can be used to assess the degree of landslide
hazard [21].

2.1.1. Entropy Weight Methods

Entropy is a measure of uncertain information. The smaller the entropy value, the
greater the amount of information and the greater the weight. The entropy weight method
(EWM) [22] is an objective weighting method. The canonical EWM uses information
entropy (InEn) [23] as the basis for calculation. In fact, there are many entropy methods,
namely approximate entropy [24], sample entropy [25], fuzzy entropy [26], and permutation
entropy [27]. Therefore, an improved entropy method can be obtained by replacing the
information entropy in the canonical entropy weight method with the following four
entropy values: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy
(FuzzyEn), permutation entropy (PeEn).

The calculation process of the EWM [28] has five steps.
Step 1: Data normalization using Equation (1).
Step 2: Calculate the entropy value using Equation (2).
Step 3: Calculate the coefficient of variation using Equation (3).
Step 4: Calculate weights using Equation (4).
Step 5: Calculate the entropy weight score using Equation (5).

xij = zij/
N

∑
i=1

zij (1)

ej = fEn(xij), i ∈ [1, N], ej ∈ [0, 1] (2)

dj = 1− ej (3)

ωj = dj/
N

∑
j=1

dj (4)

si =
M

∑
j=1

ωjxij, i = 1, 2, · · · , N (5)

where
zij is the raw data at row i and column j in the sensor dataset.
xij is the data normalized by zij.
ej is the entropy value of xij.
fEn is the method for calculating the entropy values using Equations (6)–(26) for the

specific formula.
N is the number of rows in the sensor dataset.
dj is the coefficient of variation of xij.
ωj is the corresponding weight of each column of data obtained by the EWM.
si is the weight entropy score.
M is the number of columns in the sensor dataset.
Information entropy (InEn) [23] can be calculated by Equation (6).

f InEnj = −
1

ln N

N

∑
i=1

xij ln xij, ej ∈ [0, 1] (6)
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where
ln denotes the natural logarithm.
f InEnj denotes the information entropy value.
The calculation of ApEn can also be understood as the degree of self-similarity of a

sequence in the pattern. For the change of a signal sequence, the change of the approximate
entropy value can be used to achieve the purpose of effective identification. The biggest
advantage of the approximate entropy calculation is that it does not require a large amount
of data, most of the measured time series can meet the requirements, and the obtained
results are robust and reliable [29]. The calculation of approximate entropy (ApEn) is
as follows:

Xi = [x(i), x(i + 1), · · · , x(i + m− 1)]
(7)

d[Xi, Xj] = max
∣∣x(i + k)− x(j + k)

∣∣, k ∈ (0, m− 1) (8)

Bi(r) = num
{

d[Xi, Xj] < r
}

(9)

Φm
i (r) =

Bi
N −m + 1

(10)

fApEn = Φm(r)−Φm+1(r) (11)

where
d[Xi, Xj] denotes the distance between the vector Xi and Xj.
Bi is the number of items that satisfy the condition d[Xi, Xj] < r.
r denotes the similarity tolerance threshold.
Φm

i denotes the ratio of the approximate quantity to the total quantity, namely the
approximate ratio.

fApEn denotes the approximate entropy value of sequence Xi.
m is the dimension of Xi, which is an artificially set parameter value.
ApEn characterizes the complexity of a sequence. The value of ApEn is less affected

by the amount of data and is suitable for non-stationary and nonlinear sequences. ApEn
preserves the time series information in the original signal sequence and reflects the char-
acteristics of the signal sequence on the structural distribution. The entropy value of the
fault signal will be greater for fault data present in a set of continuous data, so ApEn is
often used to detect the fault signal. The fault signal here refers to the presence of multiple
abnormal signals in a set of sequential signals.

SampEn is an improved method based on ApEn [29]. The SampEn has better consistency.
If one time series has a higher SampEn value than another time series, then the other r and
m values also have higher SampEn values. Meanwhile, SampEn is not sensitive to missing
data [29].

The calculation of sample entropy (SampEn) is as follows:

Bm
i (r) =

1
N −m

num
{

d[Xi, Xj] < r
}

(12)

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (13)

fSampEn = − ln(Bm+1(r)/Bm(r)) (14)

where
Bm

i denotes the ratio of the number of d[Xi, Xj] < r to the total number of vectors N-m,
for a given threshold r (r > 0).

fSampEn denotes the sample entropy value of the sequence Xi.
In the definitions of ApEn and SampEn, the similarity of vectors is determined by

the difference in absolute values of the data. Correct analysis results cannot be obtained
when there are slight fluctuations in the data used or baseline drift. FuzzyEn removes
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the influence of baseline drift through mean operation, and the similarity of vectors is
no longer determined by the absolute amplitude difference, but determined by the shape
of the fuzzy function determined by the exponential function, thereby fuzzifying the
similarity measure [26]. The FuzzyEn uses an exponential function to fuzzify the similarity
measurement formula. The continuity of the exponential function makes the fuzzy entropy
change continuously and smoothly with the parameter change.

The calculation of fuzzy entropy (FuzzyEn) is as follows:

Yi = [x(i), x(i + 1), · · · , x(i + m− 1)]− x0(i), i = 1, 2, · · · , N −m + 1 (15)

x0(i) =
1
m

m−1

∑
j=0

x(i + j) (16)

dm
i,j = d[Yi, Yj] = max

k∈(0,m−1)

∣∣∣∣x(i + k)− x0(i)− x(j + k)− x0(j)
∣∣∣∣ (17)

Dm
i,j = exp

[
−
(dm

i,j)
n

r

]
(18)

ψm+1(r) =
1

N −m + 1

N−m+1

∑
i=1

(
1

N −m

N−m+1

∑
j=1,j 6=i

Dm
i,j

)
(19)

fFuzzyEn = − ln(ψm+1(r)/ψm(r)) (20)

where
m denotes the embedding dimension.
Y denotes the sequence after the phase space reconstruction of X.
x0 is the mean of m consecutive x(i + j).
dm

i,j denotes the maximum value of the difference between the corresponding endpoints
of Yi and Yj.

Dm
i,j is the similarity between Yi and Yj after using the fuzzy membership function.

ψm is a function defined like Φm
i and Bm

i .
fFuzzyEn denotes the fuzzy entropy value of sequence Xi.
Permutation entropy (PeEn) is a method to detect the randomness and dynamic muta-

tion behavior of time series. The PeEn has the characteristics of simple and fast calculation,
strong anti-noise ability, and can realize the characteristics of online monitoring of mutation
signals. PeEn introduces the idea of permutation when calculating the complexity between
reconstructed subsequences.

The calculation of permutation entropy (PeEn) is as follows:

Yi = [x(i), x(i + τ), · · · , x(i + (m− 1)τ)], i = 1, 2, · · · , N −m + 1 (21)

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ · · · ≤ x(i + (jm − 1)τ) (22)

S(l) = (j1, j2, · · · , jm), l = 1, 2, · · · , k, and k ≤ m! (23)

Pi =
Number(Yi)

N − (m− 1)τ
(24)

PE(m) = −
k

∑
i=1

(Pi ln Pi) (25)

0 ≤ fPeEn = PE/ ln(m!) ≤ 1 (26)

where
m denotes the embedding dimension.
τ denotes the time delay factor.
k = N − (m− 1)τ, j = 1, 2, · · · , k
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S is a set of symbol sequences consisting of the index of each element position column
after each reconstructed component is rearranged in ascending order.

jm is the column index of the position of the mth element in the vector.
Pi is the probability of occurrence of each sort.
PE denotes the permutation entropy value of the sequence.
fPeEn denotes the normalized value of the permutation entropy.
The matrix has k reconstruction components in total, and each reconstruction com-

ponent has m-dimensional embedded elements. Arrange the jth category in the matrix in
ascending order according to the size of the array using Equation (22).

j1, j2, · · · , jm represents the subscript index value of each element in the reconstructed
component. Note that the above sequence has a parameter τ, namely the time delay
factor, which must be a positive integer. In fact, this parameter can be understood as
the downsampling of the sequence. For example, when τ = 3, it is sampling every three
data points. When τ = 1, the sequence is the same as the sequence definition of the ApEn
and SampEn.

2.1.2. Attention-Fusion Entropy Method

The attention mechanism can pay attention to important parts of the sequence data [2,30].
Queries and key-value pairs are mapped to outputs. The calculation process of the attention
mechanism is shown in Figure 1.

Figure 1. Overview of attention mechanism.

Equation (27) shows the score function, and Equation (28) shows the attention calcula-
tion process. The score function is essentially seeking a degree of similarity, and the Softmax
function is to normalize the weights at all positions so that the sum is equal to one [31].

f (Q, K) =
QTK√

d
(27)

C = Attention(Q, K, V) = So f tmax( f (Q, K))V (28)

where
Q denotes the queries, and Q = Wqi Xt, where Wqi is the weight corresponding to Q.
K denotes the keys K = Wki Xt, where Wki is the weight corresponding to K.
V denotes the values V = Wvi Xt, where Wvi is the weight corresponding to V.
C denotes the result of the weighted summation of weights and variables.

1√
d

denotes the scaling factor.
The role of the scaling factor is to keep the dot product of Q and K from becoming too

large [31]. Once the dot product is too large, the activation function Softmax enters a region
with a small gradient. The attention mechanism is used for the calculation to fuse multiple
EWMs, and the fused entropy method is obtained, which is named as En-Attn.

Figure 2 shows that the input of the En-Attn model is historical sensor data, including
rainfall, shallow moisture content, deep moisture content, displacement, and soil stress.
The three types of data are calculated by three EWMs for comprehensive evaluation scores.
The difference between these three entropy weight methods is that the entropy is different,
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namely InEn, FuzzyEn, and PeEn. The reason why ApEn and SampEn are not used in the
En-Attn model is that FuzzyEn is an improvement on SampEn and ApEn. Meanwhile, in
the actual dataset, the difference between these three methods is not obvious. For the
same datasets, the result of getting almost the same output needs to be computed three
times, which consumes computation time and occupies the memory of the computation
space. Therefore, FuzzyEn is chosen instead of the three EWMs to reduce the time and
space complexity of the En-Attn method. The demonstration of the details of these three
EWMs for landslide sensor data processing is presented in Section 4.1.

Figure 2. Overview of an attention-fusion entropy weight method (En-Attn).

The attention mechanism is used to fuse the outputs of the three EWMs (InEn, FuzzyEn,
and PeEn) and finally outputs landslide hazard degree (LHD). Algorithm 1 elaborates the
specific calculation steps.

Algorithm 1: Attention-fusion entropy weight method (En-Attn).

Initialization: M, m, r, d, W
Input: the raw data z
Entropy weight methods
For j = 1:M

Data normalization using Equation (1).
Calculate InformEn using Equation (6).
Calculate FuzzyEn using (15)~(20).
Calculate PeEn using (21)~(26).
Calculate the coefficient of variation using Equation (3).
Calculate weights using Equation (4).
Obtain the entropy weight scores using Equation (5).

End if
Output: SInEn, SFuzzyEn, SPeEn
Attention calculation
Q = K = V = W · [SInEn, SFuzzyEn, SPeEn]

SEn−Attn = So f tmax
(

QT K√
d

)
V

LHD = normalize(SEn−Attn)
Output: LHD.

2.2. Prediction Model of Landslide Warning Signal

The prediction model of the hazard degree of rainfall-induced landslides is based on
temporal convolutional neural networks (TCNs). TCNs have a good predictive effect on
the processing of time series data [32,33]. We add an attention module to the data before
TCN input to extract the prediction features of the input data; we also add an attention
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module to the output data of TCN to extract the features of the output data to improve the
performance of TCN.

The TCN incorporating the attention mechanism is shown in Figure 3, including the
attention mechanism (I-Attn) in the input stage, the attention mechanism (T-Attn) after the
TCN output, and the TCN that plays the main prediction role. The input of I-Attn is sensor
data at time t and the hidden layer at time t − 1, and the output is the attention weight
at time t. The input of T-Attn is the hidden layer at time t, and the output is the size of
the attention weight at time t and the weight value of the TCN’s output, which is the final
predicted output value. TCN is composed of multiple residual blocks [32]. The output of
the previous residual block is the input of the next residual block. The 1D convolution in
TCN enables equal lengths of the input and output sequences [34]. Causal convolution
ensures that the prediction process does not suffer from data leakage. TCN enlarges the
convolutional field size, which can be obtained from Equation (29). The calculation of the
number of residual blocks is obtained from Equation (30).

r = 1 +
n−1

∑
i=0

2(k− 1)bi = 1 + 2(k− 1)
bn − 1
b− 1

(29)

n =

[
logb

(
(l − 1)(b− 1)

2(k− 1)
+ 1
)]

(30)

where
k denotes the size of the convolutional kernel.
B denotes the size of the dilated base.
N denotes the number of residual blocks.
L denotes the length of the input tensor.

Figure 3. The overall framework of the attention-based temporal convolutional neural network (ATCN).
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In the actual landslide experiment, the sensor data are transmitted back to the host
computer as a continuous string of arrays. The dynamic sliding prediction of the ATCN
model is implemented using a sliding window as a way to process the dynamic data, as
shown in Figure 4. The input of the sliding window is the five-dimensional sensor data of
Ti length, and the output is the landslide hazard degree (LHD) of To length. The sliding
window moves forward with the time step while the predicted value is output. Algorithm 2
illustrates the specific steps of the landslide warning signals prediction model (ATCN). The
performance of the ATCN is experimentally verified in Section 4.2.

Algorithm 2: Attention-based temporal convolutional neural network (ATCN).

Input: xt =
{

x1
t , x2

t , · · · , xTi
t

}
Data normalization using Equation (1).
I-Attn calculation:
Qi = Ki = Vi = Wi·xt

x̃t = So f tmax
(

Qi
T Ki√
di

)
Vi

Predictor:
ht = fTCN(x̃t)
T-Attn calculation:
Qo = Ko = Vo = Wo·ht

yt = So f tmax
(

Qo
T Ko√
do

)
Vo

Output: yt =
{

y1
t , y2

t , · · · , yTo
t

}
Update xt ← xt+1 , and repeat the above steps.

Figure 4. Sliding window for dynamic prediction of sensor data.

3. Data Acquisition and Processing
3.1. Landslide Simulation Platform

The landslide simulation platform (LSP) is built to simulate the occurrence of rainfall-
induced landslides. The landslide simulation platform (LSP) simulates a small monitoring
area in a mountain rather than a large area such as a natural landslide itself. This is because
simulating a mountain in nature is actually very challenging, and all we can do is simulate
a certain monitoring area. In nature, multiple monitoring zones work together on a large
mountain. The analysis of a monitoring zone is a prerequisite for data analysis and early
warning of a large mountain. Figure 5 shows the physical objects of the LSP. The structure
of the LSP includes the simulated rainfall system and the sensor measurement system.
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The simulated rainfall system consists of the following components: rainfall sprinklers,
soil-carrying box, hydraulic support rods, and lift bars. The rain sprinklers simulate the
natural rainfall environment, and controlling the amount of rainfall can simulate the
rainstorm. The soil-carrying box contains rock and soil mass to simulate natural slope
conditions. The hydraulic support rods and the lifting bars can adjust the angle of the
soil-carrying box to simulate the angle of the potential landslide body in nature. Water
will seep out of the tube wall as it passes through the porous ceramic tube, simulating
underground water in the rock and soil mass.

The experimental process includes five steps:
Step 1: Place the rock and soil mass inside the soil box.
Step 2: Install five types of sensors at the appropriate positions.
Step 3: Use the hydraulic support rod to adjust the soil box to a suitable angle. Here,

we chose 30◦.
Step 4: Turn on the rain sprinklers for rainfall simulation and use the monitoring

software to monitor the sensor data and save it to the database.
Step 5: Analyze and process the sensor data after the experiment is completed.
In the landslide simulation experiment platform, we installed five types of sensors: a

tipping bucket rain gauge, a draw-wire displacement sensor, a soil stress gauge, and two
moisture content sensors. The installation positions of the sensors are shown in Figure 6.

The locations of the sensors installed in the experiment are as follows:

1. The tipping bucket rain gauge is located in the center of the soil-carrying box, with its
opening facing upwards for better rain reception.

2. The position of the draw-wire displacement sensor is in the front third of the soil-
carrying box. It monitors the change in soil displacement as the leading edge of the
landslide moves.

3. The soil stress gauge is positioned in the front third of the soil-carrying box to monitor
the stress changes within the soil at the leading edge of the landslide.

4. The location of the soil moisture sensor for monitoring the shallow moisture content
is about 30 cm from the surface, and the location of the soil moisture sensor for
monitoring the deep moisture content is about 80 cm from the surface.

Note that the above sensor installation locations are limited by the LSP and are only
used as a reference criterion for experiments.
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Figure 6. Schematic diagram of sensor installation in the landslide disaster simulation platform.
(a) Side view of sensor installation schematic; (b) Top view of sensor installation schematic.

3.2. Landslide Data Processing

We carry out two experiments on rainfall-induced landslides and obtain datasets for
L1 and L2. The rainfall, soil stress, and displacement in the datasets are normalized to
obtain the sensor data curves in Figure 7.

Figure 7. Curve of landslide datasets L1 and L2. (a) Dataset L1. (b) Dataset L2.

The ordinate on the left of Figure 7 is moisture content, and the ordinate on the right
is the percentage of data. After a period of time, the moisture content of the soil in the
shallow layer begins to rise, and the moisture content of the soil in the deep layer rises in
response. The reason why the relationship between the two moisture contents in Figure 7b
is not significant is that before rainfall, the deep soil moisture content is high and close
to saturation.

The Pearson correlation coefficient method is used to analyze the landslide sensor
datasets to analyze the correlation between different types of sensor data.

The Pearson correlation coefficient is suitable for two columns of spaced variables
(continuous variables) in a normal distribution. The correlation coefficient and the proba-
bility of the correlation can be obtained for two columns of data using Equation (31) when
they have the same number of data and correspond to each other.

rp =
Cov(X, Y)

σXσY
=

n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)

2
√

n
∑

i=1
(Yi −Y)2

(31)

where
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rp denotes Pearson correlation coefficient.
X represents senor data.
Y represents sensor data other than X.
σX denotes the standard deviation of X.
σY denotes the standard deviation of Y.
The Pearson correlation coefficient ranges between −1 and 1. When the Pearson

correlation coefficient is 0, the X and Y vectors are not correlated. When its value is greater
than 0.8, X and Y are highly correlated.

We let X and Y be one of the five types of sensor data, respectively, and the heatmaps
are obtained in Figure 8 after the calculation of Equation (31).

Figure 8. Heatmaps of landslide datasets L1 and L2. (a) Pearson heatmap of L1. (b) Pearson heatmap
of L2.

In Figure 8a, the rainfall and displacement show a high correlation with the magnitude
of soil stress and a moderate correlation with the shallow moisture content and the deep
moisture content. The shallow moisture content and the deep moisture content are highly
correlated states. The shallow moisture content shows a weak correlation with the dis-
placement amount. Soil stress shows a strong correlation with displacement. In Figure 8b,
rainfall displays a strong correlation with displacement, soil stress, and deep moisture
content and a moderate correlation with shallow moisture content. The correlation between
shallow moisture content and other sensor data is weak. The relationship between the
landslide process and different sensor data is analyzed as follows:

1. The amount of rainfall directly affects the moisture content of the shallow soil. Surface
water will exist when the surface seepage rate is less than the rainfall.

2. The moisture content of deep soil is significantly higher than that of shallow soil due
to groundwater action during the initial stage of rainfall. The moisture content in
the deeper layers of the soil would gradually increase as surface water gradually
infiltrates into the ground as rainfall continues. However, its moisture content does
not exceed the shallow moisture content at this stage. The growth rate of the shallow
moisture content would gradually decrease, and the size of the deep moisture content
would eventually be approximately equal to the shallow moisture content throughout
the entire landslide formation process.

3. The soil stress also varies as the soil layer’s moisture content varies. The shear strength
of the soil is characterized by soil stress. The soil stress increases quickly for a while
when there is no significant displacement of the surface, after which the surface
gradually becomes significantly displaced during the sliding phase. As the soil’s
moisture content rises, the clay in the soil softens and loses some of its slip resistance.
It also loses shear strength.

4. The soil moisture content tends to become saturated before the landslide body enters
the catastrophic slip phase. When the soil stress increases, the landslide body enters
the severe sliding stage. When a landslide reaches the severe slip stage, the surface
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displacement dramatically rises, and erosion-created depressions and gullies start to
show up near the body’s front edge.

5. After entering the stabilization stage, the surface displacement of the landslide body
no longer increases, but due to the effects of rainfall and groundwater, the surface and
underground runoff still play a role in triggering the secondary landslide.

4. Experiments and Results

In this section, we describe experiments on landslide warning signals and signal
prediction. We present the results of two experiments to demonstrate the effectiveness of
En-Attn as well as ATCN in landslide warning signal capture and prediction.

4.1. Landslide Hazard Degree and Results

We apply the En-Attn model to process the landslide datasets L1 and L2. Figure 9
illustrates the landslide hazard degree (LHD) obtained by En-Attn as well as the three
EWMs. The LHD obtained by all six methods shows an increasing trend, indicating a
gradual increase in the characteristics of the hazard level during landslide formation. The
LHD ranges from 0 to 1. LHD = 0 means no warning feature, and LHD = 1 means the
landslide warning feature is significant and enters a very urgent warning situation. For
dataset L1, the LHD increases gradually, and when the time step is greater than 14,000, the
LHD increment rate increases. For dataset L2, the incremental rate of LHD increases when
the time step is greater than 10,000, while the volatility of LHD is greater compared to L1.

Figure 9. Landslide hazard degree (LHD) of the landslide datasets L1 and L2. (a) LHD of L1. (b) LHD
of L2.

Note that the differences in the LHD obtained by ApEn, SampEn, and FuzzyEn are
not significant, and the differences exhibited by the local enlarged image are shown in
Figure 8a,b. The reason that only FuzzyEn is considered in the En-Attn model and not both
ApEn and SampEn is because the differences between the three methods are not significant.

The single entropy value method is prone to fluctuations in the calculation of LHD, as
in the case of PeEn in Figure 8b. The LHD obtained by the En-Attn model not only demon-
strates landslide warning characteristics but also exhibits better stability and robustness.
The En-Attn model overcomes the drawbacks of the single EWM and adapts better to the
case of multi-sensor data to evaluate landslide warning features.

4.2. Prediction Experiments and Results

We apply the ATCN model to process the landslide datasets L1 and L2 and their
LHD. The ATCN model is elaborated in Section 2.2. We conducted experiments to test the
performance of the ATCN model, comparing long short-term memory neural networks
(LSTM) [35], grated recurrent units (GRU) [36], temporal neural networks (TCN) [32,34],
convolutional long short-term memory neural networks (ConvLSTM) [37], and dual-stage
attention-based recurrent neural networks (DA-RNN) [30]. The metrics [2] for evaluating
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the performance are root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percent error (MAPE), and the specific equations are shown in Equations (32)–(34).

MAE =
1
N

N

∑
t=1
|ŷt − yt| (32)

RMSE =

√√√√ 1
N

N

∑
t=1

(ŷt − yt)
2 (33)

MAPE =
100%

N

N

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ (34)

where
N is the total number of test data.
yt is the true value at the tth time step.
ŷt is the predicted value at the tth time step.
The model tests are divided into two types of sliding windows, “100-10” and “100-50”,

which reflect different input data lengths and prediction lengths. The hyperparameters of
the TCN and ATCN models are set as follows: filters = 32, batch size = 128, kernel size = 8,
where the activation function of the attention mechanism is Softmax. The hyperparameters
of the LSTM and GRU models are set as follows: the number of units is 16. The activation
function is ReLU, the optimization algorithm is Adam, the initial learning rate is 0.001,
and the learning rate can be adjusted according to the loss function subsequently. The
hyperparameter experiments of ATCN are shown in Appendix A. All models are run
20 times, and the predicted values are obtained after testing the datasets L1 and L2. The
average values of RMSE, MAE, and MAPE are shown in Tables 1 and 2.

Table 1. Comparison of LHD prediction effects of different models for dataset L1.

Model Metric
Size of Sliding Window

100-10 100-50

LSTM
RMSE 0.04973 0.05987
MAE 0.03483 0.03988

MAPE (%) 3.45876 4.48301

GRU
RMSE 0.04296 0.11422
MAE 0.02916 0.10989

MAPE (%) 3.21155 4.70642

ConvLSTM
RMSE 0.01511 0.02480
MAE 0.01162 0.02307

MAPE (%) 1.31189 2.70816

DA-RNN
RMSE 0.02606 0.02044
MAE 0.01825 0.01590

MAPE (%) 1.96037 1.68211

TCN
RMSE 0.02009 0.03222
MAE 0.01500 0.02192

MAPE (%) 1.68965 2.42844

ATCN
RMSE 0.00892 0.01827
MAE 0.00718 0.01411

MAPE (%) 0.82503 1.59699
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Table 2. Comparison of LHD prediction effects of different models for dataset L2.

Model Metric
Size of Sliding Window

100-10 100-50

LSTM
RMSE 0.04465 0.10245
MAE 0.03571 0.09849

MAPE (%) 3.74129 6.12409

GRU
RMSE 0.03632 0.06781
MAE 0.02316 0.05799

MAPE (%) 2.41790 4.88399

ConvLSTM
RMSE 0.02937 0.05297
MAE 0.02369 0.03579

MAPE (%) 2.56583 3.82107

DA-RNN
RMSE 0.01633 0.02966
MAE 0.01360 0.02266

MAPE (%) 1.44912 2.38209

TCN
RMSE 0.02540 0.03209
MAE 0.02059 0.02687

MAPE (%) 2.16727 2.84709

ATCN
RMSE 0.01082 0.01899
MAE 0.00950 0.01463

MAPE (%) 1.02798 1.54598

Tables 1 and 2 demonstrate the RMSE, MAE, and MAPE of ATCN and its counterparts.
Table 1 shows that the RMSE, MAE, and MAPE metrics of ATCN are lower for dataset L1,
which implies better performance of ATCN.

The ATCN outperforms other models in the prediction of LHD. Compared with the
TCN model, the RMSE, MAE, and MAPE of ATCN decreased by 55.60%, 52.13%, and
51.17%, respectively, with the sliding window set to “100-10”. The ATCN can effectively
capture the characteristics of landslide prediction. The ATCN also outperforms other
models when the sliding window is “100-50”. In comparison to the TCN model, the
performance of the three metrics is decreased by 43.30%, 35.63%, and 34.24%, respectively.
The poor performance is due to the absence of attention mechanisms in the LSTM, GRU,
and ConvLSTM, as well as the insignificant features obtained from the complex landslide
sensor signals.

Figure 2 displays the metrics for dataset L2, which is similar to dataset L1. The classical
recurrent neural network models, LSTM and GRU, performed poorly because the predictive
properties shown by the sensor data in dataset L2 are not obvious. The performance of DA-
RNN and ATCN with the addition of the attention mechanism is outstanding. The three
metrics of ATCN are decreased by 33.74%, 30.15%, and 29.06%, respectively, in comparison
to DA-RNN when the sliding window is set to “100-10”. The three metrics of ATCN are
decreased by 35.97%, 35.44%, and 35.10%, respectively, compared to DA-RNN when the
sliding window is set to “100-50”.

Comparing the model performance with different prediction lengths, it can be seen that
the shorter the prediction length, the smaller the performance metrics, and the better the
prediction effect. When the prediction length is long, the attention mechanism captures the
long-term dependency characteristics more and more prominently, and the performance
of DA-RNN and ATCN with the attention mechanism is better than the other models.
Comparing the DA-RNN and ATCN models, ATCN has better prediction results and stable
performance when the sliding windows are “100-10” and “100-50”. The ATCN model has
the lowest error and the best prediction, as seen in Tables 1 and 2. The two sliding windows
can be compared to demonstrate that the model’s error increases with prediction length.
ATCN’s prediction accuracy is greater.
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5. Discussion and Conclusions

This work adopts the attention mechanism to integrate the multi-entropy values to
capture the landslide warning signals and explores the ATCN to realize landslide hazard
prediction. Compared with its counterparts, our model has the characteristics of higher
accuracy. Compared with current landslide hazard prediction methods, our methods have
the following characteristics:

1. Exploring deep learning algorithms combined with big landslide data is an extension
of deep learning application scenarios. This model uses a simple attention mechanism
combined with a temporal convolutional neural network. Although this model is
simple, its prediction effect is better than other complex deep learning models.

2. Effective landslide hazard capture. In the traditional sense, the capture of rainfall-
induced landslide hazards is either directly replaced by the landslide displacement
or only a single EWM is used to realize the signals capture. The model uses the
attention mechanism to integrate a variety of EWMs, and the obtained landslide
warning signals are more reliable.

3. Note that our model cannot be adapted for landslide hazard prediction with a small
amount of data, as massive data is the basis of our model.

In the future, we intend to design a software system that integrates the algorithms for
actual landslide sites. Further, we intend to consider different types of sensor data because
more kinds of sensor data represent more comprehensive landslide disaster information.
Furthermore, we plan to consider the sensor data of the landslide simulation platform in
relation to soil thickness. We use landslide simulation experiments in this study. However,
we could not achieve the exact same processes in the laboratory as in nature. For example,
simulating different soil layers, which would take millions of years to form in nature.
Our future research work will take into account multiple natural environmental factors to
improve the experimental setup, including slope angle and dynamics of water extinction.
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Appendix A. Hyperparameter Experiments of the ATCN

The hyperparameters in ATCN can directly affect the high performance of the landslide
prediction model. The kernel size, filters, and training batch size in the model has a large
impact on ATCN. With dataset L2, performance comparison experiments are carried out
on the kernel sizes, filters, and batch sizes in the ATCN model. The comparison metrics
are RMSE, MAE, and MAPE, and the experiments of each hyperparameter are repeated
20 times, and the mean values of the 20 experiments are counted. The statistical results are
shown in Tables A1–A3.
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Table A1. Comparison of different batch sizes in the ATCN model.

Batch Size Metric
Size of Sliding Window

100-10 100-50

16

RMSE 0.01452 0.01928
MAE 0.01325 0.01723

MAPE (%) 1.63992 1.86792

32
RMSE 0.01213 0.01989
MAE 0.01069 0.01907

MAPE (%) 1.08400 2.37950

64
RMSE 0.01614 0.01734
MAE 0.01609 0.01609

MAPE (%) 1.11208 1.73150

128
RMSE 0.00954 0.01929
MAE 0.00943 0.01606

MAPE (%) 1.00213 0.91316

256
RMSE 0.01619 0.01892
MAE 0.01825 0.01838

MAPE (%) 2.19243 1.99731

Table A2. Comparison of different filters in the ATCN model.

Filter Metric
Size of Sliding Window

100-10 100-50

4
RMSE 0.01674 0.01937
MAE 0.01531 0.01334

MAPE (%) 1.64269 1.56591

8
RMSE 0.01016 0.01102
MAE 0.01158 0.00934

MAPE (%) 1.31589 1.13547

16
RMSE 0.01023 0.01803
MAE 0.01709 0.00949

MAPE (%) 1.82595 1.86010

32
RMSE 0.01953 0.01597
MAE 0.01897 0.01504

MAPE (%) 1.07723 1.88453

64
RMSE 0.11779 0.01696
MAE 0.01085 0.01360

MAPE (%) 1.42817 1.63355

Table A3. Comparison of different kernel sizes in the ATCN model.

Kernel Size Metric
Size of Sliding Window

100-10 100-50

4
RMSE 0.01148 0.01582
MAE 0.01810 0.01442

MAPE (%) 1.47336 1.54591

8
RMSE 0.00984 0.01074
MAE 0.09313 0.00943

MAPE (%) 1.39457 1.03825
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Table A3. Cont.

Kernel Size Metric
Size of Sliding Window

100-10 100-50

16
RMSE 0.00949 0.00965
MAE 0.00809 0.00807

MAPE (%) 0.89151 0.98417

32
RMSE 0.10553 0.00963
MAE 0.01805 0.00909

MAPE (%) 1.37068 1.08417

64
RMSE 0.00959 0.10772
MAE 0.01168 0.10620

MAPE(%) 1.21431 1.05872

Table A1 shows the metrics of ATCN for different batch sizes tested with kernel
size = 16, filters = 8. The results in Table A1 show that the RMSE, MAE, and MAPE metrics
of the model for both sliding window cases are the smallest for batch size = 128. Table A2
provides the metrics of ATCN with different filters tested for batch size = 128 and kernel
size = 16. The sliding window “100-50” model exhibits the smallest RMSE, MAE, and
MAPE metrics when filter = 8, according to Table A2. Table A3 demonstrates the metrics of
ATCN for different kernel sizes with batch size = 128 and filters = 8. The results in Table A3
demonstrate that for the sliding window “100-10” with kernel size = 16, the RMSE, MAE,
and MAPE metrics are minimum. The smallest MAE and MAPE metrics are for the sliding
window “100-50” with kernel size = 16. The optimal combination of hyperparameters for
the ATCN model is batch size = 128, kernel size = 16, and filters = 8.

Note that our model code runs on Windows 10, NVIDIA GeForce GTX 1650 GPU, and
the deep learning framework is TensorFlow 2.6.0.
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