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Capture and Representation of Human
Walking in Live Video Sequences

Jia-Ching Cheng and José M. F. Moura,Fellow, IEEE

Abstract—Extracting human representations from video has
vast applications. In this paper, we present a knowledge-based
framework to capture metarepresentations for real-life video
with human walkers. The system models the human body as an
articulated object and the human walking as a cyclic activity
with highly correlated temporal patterns. We extract for each of
the body parts its motion, shape, and texture. Once available,
this structural information can be used to manipulate or synthe-
size the original video sequence, or animate the walker with a
different motion in a new synthesized video.

Index Terms—Capture, cyclic motion, human walkers in real
video, motion, recognition, stick model, video contents.

I. INTRODUCTION

V IDEO significantly increases the perceived level of inter-
activity in many multimedia applications, ranging from

video conferencing to immersive and collaborative environ-
ments to the entertainment industry. To enhance its efficiency
and versatility, it is important to develop metarepresentations
that describe digital video in terms of its structure rather than in
terms of pixels and frames. For example, in a video sequence,
if we can capture a human automatically in each frame of
the sequence, it is then possible to highlight the human while
dimming or replacing the background. We consider recovering
these metarepresentations for real-life video sequences with a
walking human. The major tasks are to determine the camera
motion, to reconstruct the background as viewed across the
sequence, and to capture the human and the human motions.

Extracting humans and their representations has also found
wide application in computer graphics, animation, and virtual
reality [16]. Chromo keying is a technique commonly used
in these contexts. However, extracting human representations
from real-life video remains a challenge.

In this paper, we describe a system that develops metarep-
resentations for real-life videos with humans in action. This
extends generative video (GV), described in [10], [11], and
[14]. GV is a framework that represents video in terms of
structural components: informational units and ancillary data.
The informational units capture the spatial information. They
describe the shape and the texture of individual parts in the
video experiencing coherent motion. Examples of informa-
tional units include the background, humans, cars, or other
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moving objects. The ancillary data describes the temporal
information, like the motion of the informational units and the
motion of the camera, plus additional auxiliary information.
In the digital video community, these structural components
are often referred to asvideo contentsand provide a compact
representation for the original video sequence. Once available,
the GV representation lends itself to simple video annotation,
access, manipulation, indexing, nonlinear editing, or synthesis.
By analyzing its motion and shape, each individual information
unit can be labeled, for example, as a car, with additional
attributes such as color. These annotations facilitate retrieval
from video databases. The original or a subset of the infor-
mational units can be recombined, with the same motions
or different motions, with the same or a new background,
regenerating the original or a different video sequence.

Due to the complex nature of the human body, which is
nonrigid and capable of performing a wide variety of actions,
and of the real-life video, which is dynamic and has cluttered
background, it is a difficult task to capture the human and its
motion in a real-life video sequence. It requires solving the
following problems.

• Detecting the moving human in a dynamic scene.
• Approximately locating the human in each frame. We

refer to this as the recognition step, since it recognizes
the posture of the human in each frame. The posture is
defined roughly by the relative position of the four limbs,
the head, and torso. Details are in Section III.

• Tracking the human body parts to determine their mo-
tions.

• Recovering the shape and texture for the human.

We develop a knowledge-based approach to solve the above
problems. Section III overviews the main tasks of our system
and briefly reviews the literature related to tracking and
recognition of human motion. Section III describes theknowl-
edge database. Sections IV–VII consider in more detail the
components of thecaptureblock. Section IV details the pre-
processing, Section V the posture recognition, Section VI the
tracking, and Section VII the texture recovery. Section VIII il-
lustrates with real-life videos our experimental results. Finally,
Section IX concludes the paper.

II. SYSTEM OVERVIEW

Fig. 1 shows a diagram of our video representation system.
Functionally, it is decomposed into three blocks:

• Knowledge Database Block:The knowledge database
describes the human body and the walking movement,
and the shape and motion of the individual body parts. It
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Fig. 1. Diagram of the video representation system.

contains models for the human body, the body parts, and
the human motions, as well as possibly for other video
contents.

• Capture of the Human Walker Block:The capture block
combines the body and walking models with real live
videos to extract the human and human motion from the
video. It includes algorithms to extract the motion, shape,
and texture for each rigid part of the human walker and for
any other object exhibiting a distinct motion, including the
background. No prior model is assumed for the texture.
The texture is recovered solely from the video sequence.

• Video Synthesis Block:The synthesis block uses the
metarepresentation of the original video to resynthesize it
or to manipulate it, for example, by altering the texture,
replacing the background, or modifying the motions to
regenerate a different video sequence.

The capture block is the key component of our system. We
elaborate on our approach to capturing a human walker below.

Capturing the motion of human walkers from live video
is essentially a localization problem. We adopt a two-stage
procedure: global stage and local stage. In the global stage,
we use thepreprocessingblock to locate the human in each
frame of the video sequence and therecognition block to
find the approximate posture of the walking human. The
preprocessing block resorts to low-level vision techniques
to detect and isolate the walker in a dynamic scene. The
recognition algorithm is guided witha priori models for the
walking motion. These are crude walking models obtained
by averaging over tens of walking patterns of normal male
adults. The output of the global stage is a fair approximation
of the posture. This localization information, if used to extract
the walker and to resynthesize the original sequence, leads
to visible artifacts and low quality video. These artifacts are
overcome by the next processing stage—the tracking block.

The output of the global stage is input to the local stage—the
tracking block—which tracks the articulated human motions.
The tracking algorithms are gradient-based search methods
initialized by the model posture recognized in the global stage.
They provide accurate positioning and motion estimation for
each individual body part.

The fine-tuned tracking results enable the extraction of the
texture for the body parts by thetexture recoveryblock.

This two-pronged approach—global localization (prepro-
cessing and recognition) and local localization (tracking)—is
successful in capturing the human walkers and results in high
quality resynthesized video.

A. Related Work

Tracking and recognition of humans and their actions is not
a new task in computer vision. Previous work in this area in-
cludes [8], [9], [12], [17], and [18]. Due to its complex nature,
most systems resort to model-based approaches, control the
video capturing devices, or constrain the environment. These
approaches are not practical in multimedia applications when
it is desired to recover the human from real-life videos with
little human intervention with as few constraints as possible.

Most existing techniques fall into one of two categories.

1) Single View and Constrained Motion: See Hogg [9],
Rohr [18], and Yacoob and Black [19]. In [9], Hogg
presented work on recognizing human walking in real
images. He modeled both the human body and the
human motion. The human body is described as a set
of elliptical cylinders; the motion model is acquired
interactively from a prototype image sequence. A similar
approach is taken by Rohr [18]. Rohr also adopted a
cylindrical model for the human body. However, Rohr
modeled the motion through time series, averaging the
kinematic data provided by the medical motion studies
conducted by Murray [15].

Recently, Yacoob and Black [19] presented a system
for tracking human body parts from a monocular image
sequence. They model the body parts as articulated
links with rectangular patches. They have demonstrated
tracking human legs using a three-patch model. Their
system needs initial positions for the corner of each
patch, and it only tracks nonoccluded body parts.

2) Multiview and Unconstrained Motion: See Gavrila and
Davis [8] and Kakadiaris and Metaxas [12]. Gavrila
and Davis [8] presented a system for tracking human
movements based on a multiview approach. Their model
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of a human body is constructed with super-quadrics and
a large number of degrees of freedom (DOF). The human
subjects can perform unconstrained actions, but need
to wear tight clothes with plain colors. Kakadiaris and
Metaxas [12] presented a similar multiview approach for
high DOF tracking of the human body. They modeled
the body parts of a human as deformable contours. These
high-DOF systems can track unconstrained actions, but
they need to be operated in very controlled environments
with several static cameras to provide sufficient views,
and need known initial poses as start-up conditions.

All these systems require stationary video capturing devices.
The system we describe belongs to the category ofSingle
View and Constrained Motion, yet it allows for camera motion
during video capturing. The task is made more complicated
by the camera mobility. It significantly improves upon our
previous work [4]–[6].

III. K NOWLEDGE DATABASE

Our primary concern is to capture humans and their motions
from live video. The problem could be reduced to an exhaus-
tive search over each frame of the sequence attempting to
match templates that represent the possible different configu-
rations of the human. The templates themselves are not known,
which makes this search clearly a daunting task. To simplify
the task, while still producing good capture results, the initial
global stage roughly locates the walker in each frame. This
step is guided strongly by prior models, which are collected
in a knowledge database that groups models for the human
body and the human motions. The human body is described
as an articulated object with 12 three-dimensional (3-D) rigid
body parts. Each body part is a generalized truncated cone
with semi-oval spheres attached at each end.

We focus on human walking, which is highly structured and
constrained. The constraints provide strong cues for capturing
the walkers from live video. We incorporate two constraints.
1) Physical and kinematic constraints that simplify the human
body to 12 body parts and reduce human walking to 14 DOF,
and 2) dynamic constraints that restrict the search space for
the estimation of the motion parameters.

In the following, we first discuss general issues related
to human modeling, then describe our articulated model for
the human body, and, finally, describe the models for human
walking.

A. Human Modeling

To reduce the complexity of the capture phase and the
synthesis phase, we adopt models for the human body and for
the human walking. To motivate the models, we analyze the
major tasks of the capture and synthesis phases. The goal of
the capture phase is to recover for each frame of the live video
sequence the human and its motion. Capture requires posture
recognition, also referred to as action recognition, body parts
tracking, and texture recovery. The goal of the synthesis phase
is to regenerate the original video sequence or a modified video
sequence by manipulating the video representation obtained in
the capture phase.

We briefly discuss each of the tasks of the system and their
impact on the human body model and motion model.

• Recognitionof the posture or action of the human walker
in each frame of the video sequence. We achieve this
by matching the contour of the human walker in a given
frame of the real video with the contour of a synthesized
human walker in a model sequence.

• Tracking of each of the articulated body parts of the
human across the video sequence. This recovers accurate
postures for the walker in each frame of the video. We
use a gradient-based method that requires an articulated
model providing an accurate geometrical resemblance to
each of the body parts in the human.

• Recoveryof the texture from the image sequence. It needs
accurate geometrical information for each of the body
parts.

• Synthesisof the human from the metarepresentation that
includes the motion, shape, and texture as recovered
from the original video. Human synthesis is also used
to generate the synthetic humans used in the action
recognition stage. This task requires a human model en-
abling the manipulation of its geometrical and topological
characteristics.

To accomplish these tasks, we adopt a kinematic model for
the human body and use a set of predefined time series to
characterize the temporal patterns of human walking. These
time series are adequate, yet simple, models. We describe the
model in detail in the following two subsections.

B. Articulated Human Body Model

One of the primary purposes of our modeling scheme is to
generate the contour information of the walker. Shape differs
from one human to another. It suffices for our purposes to
adopt an articulated cone-shaped model. This model is similar
to that of Marr and Nishihara [13], which was adopted by Hogg
[9] and Rohr [18] in their work. The human body, represented
as a stick figure in Fig. 2(a), is considered to be composed of
12 rigid body parts (head, torso, plus two primitives of arms,
and three primitives of legs). Each part is represented by a
truncated cone with elliptical cross section and a semi-oval
sphere attached to each end of the truncated cone (see [6] for
the details). More general models could be used that adjust
the dimensions of the body parts.

The stick model shown in Fig. 2(a) is a hierarchical model.
The root originates from the torso. Each stick is linked with its
parent at a joint with 3 DOF, i.e., in general, a stick can rotate
with respect to the three axes in the joint-centered coordinate
system. With 11 joints, there are then 33 rotational DOF. We
assign to each joint a rotational vector

C. Human Walking

As mentioned earlier, we focus on human walking and
consider a single walker. These are not very restrictive as-
sumptions, and we will discuss them in Section IX. A stick
model with 12 independently moving body parts has a total of
72 DOF in 3-D. Articulating the body parts through 11 joints
as in Fig. 2(a) reduces the number of DOF to 33 rotational
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(a) (b)

Fig. 2. Articulated human body kinematic model. (a) General model. (b)
Walking model.

DOF plus 6 DOF for the human body as a whole. We further
reduce this number by assuming that the human walks on a
plane (the torso plane) with a small angle with respect to the
camera plane. We refer to this asfront and parallelwalking.
The 3 DOF of each joint are now reduced to 1, and the 6 DOF
of the human body to 2 translational DOF on the plane and 1
rotational DOF (for the torso), leading to a total of 14 DOF.
The 2 translational DOF fix the global position of the walker
on the walking plane; in particular, we choose the coordinates
of the center of the torso and The 12 rotational DOF
correspond to the angles in Fig. 2(b). The rotational vectors

become simply
The posture of the walker is defined by the 12-dimensional

vector1

(1)

This vector describes the relative position of the different body
parts.

1) Data and Model Walkers:In the sequel, we need to
distinguish between two walkers: the walker that is to be
captured from the video and the walker that is synthesized
with the assumed body model and the model assumed posture.
We refer to the former as the “data” walker and to the latter
as the “model” walker. The postures of each of these walkers
are accordingly indexed as and , where the index
stands for data walker, and the index stands for model
walker. The components of each of these vectors are similarly
indexed by or as the case may be. Similarly, we index
with or the torso coordinates and

2) Frame Number and Pose The motion of the walker
is defined by the time evolution of the vector posture angle
and the torso center coordinates. With the data walker, time is
indexed by the frame number With the model walker, the

1In (1),
�
= stands for definition.

time index will be referred to as the pose and represented by
The pose is normalized; i.e.,is restricted to the interval
It is usually given in percentage, for example, So,
the walking motions will be described by vectors like
or

To capture the walking motion, we structure further the
motions. We adopt two models for walking: the first is
deterministic and is used in the recognition stage; the second
is stochastic and is used in the tracking stage. When needed,
we distinguish between the models by indexing the quantities
of interest by “det” or “st,” respectively. Usually, this will not
be required and understood from the context. We now detail
these models.

3) Deterministic Walking Model—Recognition:In the recog-
nition phase, we assume that walking is aperiodic motion
with a constant (unknown) period Murray [15] conducted
experiments on measuring gaits of males and females in a
wide range of ages and heights. His results reveal that the
movement patterns of different body parts as defined by the
posture angles are similar for different people. Rohr [18]
used the average measurements of the movement patterns
given in [15] in his work. Further, the walking is assumed
symmetric so that can be obtained from
the odd posture angles As a compromise
between simplicity and accuracy, in the recognition phase, we
adopt Rohr’s approach to model the human movements, and
use these average joint angle time series as our motion model
(prior knowledge). Note that in our model we do not restrict
the angles and

Fig. 3 shows the fundamental period of the (periodic) time
series of the joint angles for the hip and knee, and
respectively. Reference [18] provides similar time series for

and
4) Stochastic Walking Model—Tracking:In the tracking

stage, we keep the same articulation shown in Fig. 2(b) to
represent the data walker, but generalize the motion model of
the previous paragraph.

5) Walking Cycle—Anchor Frames and Complement An-
chor Frames: The deterministic model assumes that the walk-
ing is periodic with a constant period. Walking, in reality, is
better described as a cyclic motion where the duration of each
cycle is not constant. We consider the uneven characteristic of
the duration of the walking cycle by modeling this duration
as a random sequence. Denote the walking cycleby

(see Fig. 4). The walking cycles
and are defined by special frames, which we refer to
as anchor frames with index Walking cycle
starts at anchor frame and ends at the frame immediately
prior to the next anchor frame

The anchor frames have poses near 0. We also introduce for
each walking cycle a complement anchor frame
The complement anchors are the center frames of the walking
cycles and have poses approximately equal to 50%. The anchor
frames and the complement anchor frames are close to being
the frames with the least self-occlusion. Because of this, they
are used in Section VI when extracting reference templates for
the body parts. The templates are then used for tracking the
body parts in walking cycle



148 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

(a) (b)

Fig. 3. Temporal walking curves: (a) hip angle�M3; (b) knee angle�M5:

Fig. 4. Anchor frames.

The duration of the walking cycle represented by
is modeled by

for (2)

Equation (2) is a first order difference equation, autoregressive
(AR) model for We could adopt a higher order AR
model, or, more generally, an autoregressive moving average
(ARMA) model to describe the sequence. For simplic-
ity, we choose an AR model of first order. We assume that
the sequence is a sequence of independent, identically
distributed (iid) random variables having uniform probability
density function in the interval where

is a constant.2

The initial condition of the recursion in (2) is the period of
the walking estimated in the recognition stage.

6) Walking Posture:The recognition stage adopts a generic
walking model to characterize the walking pattern. In the real
world, of course, the walking of an arbitrary individual will
significantly depart from this average pattern. We also need to
accommodate the walking cycles.

Let be the posture of the model in cycle
at pose We adopt the following model:

(3)

(4)

where is the posture vector for the deterministic
model introduced above for the recognition stage. The vector

accounts for the departure from the generic model.

2In practice,�m are discrete random variables, and we assume they have
a uniform point masses distribution over a maximum integer range��0:

IV. PREPROCESSING

Recall Section III-C, where we assume there is a single
walker walking in front of a moving camera. The preprocess-
ing estimates the 3-D camera motion, the position of the walker
across the sequence, and the orientation of the head and torso.
It consists of four steps.

• Stabilizing the camera motionby estimating the back-
ground motion. We model this motion with a two-
dimensional (2-D) eight-parameter projective model. We
assume that the scene is a planar surface and that most of
the points of the scene satisfy this constraint. Due to lack
of space we do not detail the estimation of the projective
motion parameters.

• Detecting the walkerisolates the human walker from the
background. This is done by low-level vision techniques
that include background registration and motion based
detection algorithms.

• Pursuing the walkerestimates the motion for the walker’s
head-and-torso. We consider a 2-D four-parameter affine
model: a rotational parameter a scaling parameter
and two translational parameters and where is
the frame index.

• Estimating the position of the walkerrecovers 3-D back-
ground motion from 2-D motion.

The output of the preprocessing block includes the 3-D
camera motion and the position and the orientation of the
walker across the video sequence.

V. POSTURE RECOGNITION

The preprocessing localized the walker in each frame of the
sequence by pinpointing the center of the torso and determined
the head and torso rotational angles. Regarding the other ten
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posture angles , they are assumed to be periodic with
the fundamental period equal to the fundamental period of the
model posture ; see the time series in Fig. 3. To recognize
the posture, we are left only with determining the period

and with determining the phase of the posture of the
data walker. The phase realigns the data walker posture
angle time series with the model walker posture angle time
series. Once these two time series are realigned, the pose
corresponding to the frame is given by

To estimate and we determine for each data walker
the best matching model walker This estab-

lishes for each the corresponding matching pose We
then fit a straight line to the scattering plot of versus

We describe briefly each of these two steps of the posture
recognition algorithm, see also [6].

A. Contour Matching

To match the data walker in each frame with a model walker,
we match the contour of the data walker where is the
corresponding frame number, with the contour of the model
walker synthesized from the model where
is the pose. Since we track a walker in a dynamic scene, we
expect the edges to be cluttered. To reduce the noise introduced
by these cluttered edges, we consider only edges falling within
the region corresponding to the data walker extracted by the
motion detection process described in Section IV.

We estimate the posture by matching edge information of
the data walker with edge information of the model walker. We
introduce below a similarity measure that quantifies how close
a data walker is from a model walker This
similarity measure involves a phase filtering operation. This is
based on constructing a distance map and a phase map.

1) Distance and Phase Maps:For the model walker with
pose we create the edge image by using
the Canny edge detector [3]. We construct the distance map

if

otherwise
(5)

where

pixel position;
, positive constants;

position of an edge pixel in ;
given threshold.

Then we construct the phase map

if

otherwise
(6)

where and are the components of the gradient operator
and is a Gaussian lowpass filter.

The distance map indicates the distance of a pixel to
its closest edge pixel. The phase map is derived from the
gradient of a blurred model walker; it possesses the orientation
information of the edge image. We use these two maps as
geometry filters to measure the geometrical similarity between
the model walker and the data walker. Functionally, our
distance map is similar to the chamfer image [2] used for
measuring the similarity between two sets of edge pixels.
The chamfer matching method in [2] computes the similarity
between two sets of edge pixels by only measuring the distance
between them. It doesn’t consider the orientation information
between these edges, which, in practice, seems to be actually
more important than the distance information. Our phase
map provides this information by measuring the orientation
between these two sets of edge pixels.

Similarly, we construct for the data walker an edge
image and a phase map In this step, we choose
in (5) and (6) so that there is no need to generate

2) Similarity Measure:For the data walker in frame
we determine its closest pose in the model by

(7)

where is the similarity measure

(8)

where

if and

otherwise

where is a given threshold. We call the procedure defined
by as phase filtering; see [6] for details.

B. Posture Fitting

After finding the closest pose for each of the data
walkers in a number of consecutive frames

by using the approach described in Section V-A,

we determine the period in frames/cycle and the
phase (or the pose of the walker in the first frame of the
video) by a line fitting algorithm

(9)

We designate to be the fittest pose

of the data walker and to be
the fittest posture.



150 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

VI. TRACKING ARTICULATED HUMAN MOTIONS

The goal of the tracking stage is to accurately locate the
position of all the body parts of the human walker across all
the frames of the video sequence. The preprocessing block
localized the (center of the) torso and the orientation of the
head and torso across all the frames of the sequence—it
resolved the two translational degrees and two of the rotational
degrees. It also determined the scaling factor associated with
the camera. The recognition block assumed the generic model
about the human body and human walking described in
Section III. The output of the recognition stage is the period

and the phase of the walking cycle. Using these, the
recognition stage roughly identifies the posture of the walker,
i.e., the vector in each of the frames, resolving all
remaining degrees of freedom.

When contrasting walker sequences synthesized using the
posture sequence with the data walker sequences, we
observe that there is a certain level of mismatch, as shown in
Fig. 8(a). This section describes the tracking algorithm that
follows the recognition stage and significantly reduces the
artifacts that persist after recognition has been accomplished.
The output of the tracking is an improved estimate of the
walking posture, i.e., of the data posture ; hence a fine
tuning of the rotational degrees of freedom.

In Section VI-A, we describe the tracking algorithm, re-
ferred to as the Human Walking Tracking Algorithm (HWTA).
In Sections VI-B–D, we describe the building modules in the
HWTA.

A. Human Walking Tracking Algorithm

Fig. 5 shows a block diagram of the HWTA. An early
implementation has been reported in [5]. The HWTA has three
main modules.

• Localization of Anchor Frames:This module locates for
each walking cycle the anchor frame and the
complement anchor frames The anchor frames have
poses close to 0 and the complement anchors poses close
to 50%.

• Registration of Frames:This module registers accurately
the postures of the anchor frames and the complement
anchor frames by determining the position of all body
parts.

• Tracking of the Body Parts:This module estimates for
each walking cycle the true posture of the walker in
each frame. The recognition results of Section V provide
initial reference templates for the tracking of the body
parts.

The tracking algorithm is iterative on the cycles
into which we divide the walking sequence. Before entering
the iterative loop, the first block of the algorithm has an
initialization step thatregistersa reference frame, which we
call the anchor frame i.e., determines the position of all
the body parts in the first anchor frame This provides
starting templates for all the body parts. After this block,
the HWTA enters the iterative loop; see Fig. 5. The loop
iteration is divided into five main blocks. The first block
locates the reference frames—the anchor frames and the

Fig. 5. Block diagram of the Human Walking Tracking Algorithm (HWTA).

complement anchor frames This step is followed
by a body part tracking block that tracks the head and torso
(H/T), the front leg (FL), and the front arm (FA) across all the
frames within the current cycle The next block registers
the anchor frames and the complement anchor frames

i.e., determines the position of the body parts in these
frames. The block provides possibly several complementary
body part reference templates. The templates for the back leg
(BL) and back arm (BA) are used to track these two body parts
on the current cycle; see the second block labeled Tracking.
The final block simply tests the end of the loop.

We now describe in detail the building modules in the
HWTA.

B. Frame Registration

As explained in Section VI-D, in each walking cycle, the
body parts are tracked by a template matching technique.
This template matching uses texture cues to track each of
the body parts. This requires that we extract from the data
walker the texture templates of the body parts. The texture
templates are then used as initial reference templates for
the subsequent tracking of the corresponding body parts. To
extract accurately the texture of the body parts, we fine tune
the posture parameters of the body parts. This is the goal of
the frame registration module that we now describe in detail.

The first issue regards choosing the initial reference tem-
plates. The ideal frames for providing initial reference tem-
plates are the ones with least occlusion. The data for the
temporal walking patterns suggests that frames with walkers
with poses close to 0 and 50%, whose arms and legs are widely
open, are good candidates. The anchor frames and the
complement anchor frames are exactly these ideal frames.

We break the tasks of frame registration into three groups
according to the types of body parts that need to be registered.

• Initialization/Registration of All Body Parts in the First
Anchor Frame : All body parts of the human walker
in are registered to provide initial reference templates
for tracking.
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• Registration of the Back Leg in Anchor Frames
and Complement Anchor Frames : This task
establishes reference templates for the thigh, the shank,
and the foot of the back leg that are used for tracking
the back leg.

• Registration of the Back Arm in Anchor Frames and
Complement Anchor Frames : This establishes
reference templates for the upper arm and for the forearm
of the back arm that are used for tracking the back arm.

The above registration tasks are similar. We estimate the
data postures of these frames by using a hybrid matching
method, which incorporates image intensity, contour, motion
cues. Due to lack of space, we omit the description of the
method.

C. Anchor Frame Localization

To apply the dynamic constraints to the tracking of human
walking, we need to section accurately the image sequence into
walking cycles. This is accomplished by identifying the indices
of the anchor frames which by definition mark the beginning
of each walking cycle. This is the goal of the anchor frame
localization. We describe the method for localization of the
anchor frames in the next paragraph.

1) Localization Method:Due to lack of space, we do not
detail how the body parts in the first anchor frame are
registered, but assume that this task has been accomplished,
and that the posture of the data walker of the first anchor frame

has been fine-tuned to a new posture estimate ; see
[7] for details. The registered data walker in anchor frame

is then used as a reference template for locating the
second anchor frame as the algorithm enters the loop in
the block diagram of Fig. 5. After times around the
loop, the algorithm has located the firstanchor frames, i.e.,

and has registered the posture of the data
walker in these anchor frames
We consider the th cycle in the loop by explaining the
localization of the next anchor frame The durations

of consecutive walking cycles follow the first-order AR
model described by (2). The predicted index for anchor
frame is

(10)

We now correct this predicted estimate of We minimize
the sum of squared differences (SSD) between the data walker
in frame and the data walker in frames with frame
numbers within The quantity was introduced
in model (2); see footnote 2 on p. 148.

D. Body Parts Tracking

The tracking of the body parts fine tunes the posture
parameters of the walking model, i.e., the data posture vector

sequence We adopt a gradient-based method. Dy-
namic constraints regarding the walking patterns and kinematic
constraints and physical constraints regarding the articulation
are incorporated to improve stability and reliability. We de-
compose the human body into five groups: head and torso
and four limbs. Each part therefore consists of two or three
rigid segments. We develop algorithms to track these multiple-
segmented articulated objects.

The registration of the anchor frames and the complement
anchor frames identifies the positions of the head and torso
and the positions of the joints of the limbs with respect to the
torso, so it takes care of the translational motion of the shoulder
joints and hip joints. We are left with determining the rotational
motion of the articulated body parts. Each articulated body part
is modeled as a planar manipulator, which is a robot arm with
joints on the same plane and revolutes rotating around the
same axis. In the following paragraphs, we first describe the
kinematic model for the articulated objects that we adopt and
then develop a least squares solution for tracking an articulated
body part.

1) Tracking Articulated Objects:For a joint manipu-
lator working in an -DOF space, the joint angle vector

is determined by inverting the nonlinear relation

(11)

Equation (11) expresses what is known as the forward kine-
matic problem [1]. Differentiating with respect to time, one
obtains

(12)

where is the Jacobian matrix. A manipulator
working in 3-D space with revolute joints rotating around
the -axis, i.e., where each joint has two DOF, is referred
to as a planar manipulator. Assume that each segment of the
planar manipulator is modeled as a cylinder-like rigid object,
as shown in Fig. 6. For a given point
on the surface (and in the inner body) of theth segment, it
can be shown that

(13)

and the entries of the Jacobian at the point are
specified in (14), shown at the bottom of the page, where

The last columns and the
last row of are zero.

(14)
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Fig. 6. Structure of aK-DOF manipulator.

2) Least Squares Solution:At time , assume we know the
rotation We determine by least squares the incremental
rotation at time that leads to the rotation at time

i.e., The object surface
specified by the manipulator is defined in an object centered
coordinate system, denoted as An actual object
surface must be expressed in the world coordinate system,
namely, For the human walker in 3-D, we
assume that the angle between the orientation of the walker
and the image plane of the camera, is a known constant;

i.e., the plane is parallel to the plane; and
i.e., the plane is parallel to the plane.

The relationship between the and the
coordinate systems is defined by a homogeneous coordinate
transform i.e.,

(15)

(16)

At this point, we do not estimate the 3-D motion parame-
ters of the perspective projection model. As we recall from
Section III-C, we constrain the walker to move in front of
the camera with a limited view angle. This enables us to
approximate the perspective projection by an orthographic
projection. Under the orthographic projection, a point

in the object coordinate system is projected to the

image location given by

(17)

Note that we ignore a scaling factor in the equation above.
Taking the time derivative of (17), the velocity field for a
pixel on the image plane is

(18)

where the stands for time derivative. Assuming that the
changes in image intensity between two consecutive video
frames and are described by

(19)

The first-order Taylor series expansion of (19) leads to the
well-known gradient formulation

(20)

where and are
the components of the spatial image gradient at location

and is the temporal image gradient.
Substituting (12) and (18) into (20) yields3

(21)

(22)

where .

Choose for the th segment points4 from the surface
of this segment, which are projected to the image plane. This
results in the following system of linear equations:

(23)

...
...

(24)

Combining the systems of linear equations (23) correspond-
ing to the revolute joints into a single vector equation

(25)

...
...

(26)

The least squares solution of (25) is

(27)

See [5] for the special case of this algorithm for tracking a
two-segment articulated object.

3Going from (12) to (20), we assume that time is discrete and_��� is replaced
by ����t:

4These are usually referred to as feature points.
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(a) (b)

(c) (d)

Fig. 7. Estimation results of posture parameters: recognition results are in dashed line; tracking results are in solid lines.

VII. T EXTURE RECOVERY

The last block of the capture component is the texture
recovery block. It extracts from the video the texture for the
human walker.

Occlusion and the dynamics in the scene may result in a
body part to remain partially unseen in several image frames.
To recover the texture, it is necessary to integrate texture
patches from several frames and possible different views using
a Venn diagram of the view and of the occlusion.

Since we assume that the orientation of the walker with
respect to the image plane stays at a constant angle, the
projections of the human body parts on the image plane remain
almost unchanged during a walking cycle. Therefore, in each
walking cycle, we can assign a 2-D template to each body part.
This simplifies the 3-D texture recovery to a 2-D problem.
For each walking cycle, the 3-D texture is then obtained by
integrating the recovered 2-D templates.

Instead of arbitrarily choosing frames from an image se-
quence as measurements from which to recover the texture
for the body parts, we choose the frames based on the
data posture vector sequence obtained from the
tracking stage in Section VI. The data posture vector se-
quence determines the occlusion of each body
part. Observation of human walking patterns suggests that,
to recover the texture for occluded body parts, it is suffi-
cient to integrate the texture from the two frames with least
occlusion. The frames with the least occlusion are located
in the neighborhood of the anchor frames and of the com-
plement anchor frames. We work with the anchor frames

and the complement anchor frames Due to lack
of space, we do not provide the details of the recovery of
the texture.

VIII. E XPERIMENTS

The capture block of the system has four task modules: pre-
processing, recognition, tracking, and texture recovery mod-
ules. In addition the system has the synthesis block. The
knowledge database supports all these tasks.

The preprocessing module processes the raw video and
outputs the motions of the background and of the head-and-
torso of the walker. The output motion vectors enable the
extraction of the data walkers from the video and the syn-
thesis of their corresponding model walkers. The recognition
block then estimates the generic walking parameters, i.e.,
the period and the phase of the walking, by matching the
contours between the model walkers and the data walkers.
The resulting walking parameters provide a crude estimate
to the walker’s posture. The tracking module fine tunes this
posture estimate. The fine-tuned posture estimate enables
the texture recovery module to extract texture templates for
each individual body part from the real video. Finally, the
synthesis block synthesizes video by manipulating the video
metarepresentation.

We present experimental results for two real-life video
sequences:Pedrosequence andJuhnsequence. For thePedro
sequence, Fig. 7(a) and (b) show the rotation angle of the hip
joint and the rotation angle of the ankle joint of the front leg,
respectively, and Fig. 7(c) and (d) show the rotation angle of
the hip joint and the rotation angle of the ankle joint of the
back leg, respectively. The dashed lines are the result from the
recognition stage in Section V and the solid lines are after the
tracking stage in Section VI. There is a significant difference
between the dashed lines and the solid lines, which means that
the tracking stage significantly modifies the estimation of the
angles and of the posture.
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(a)

(b)

Fig. 8. Pedro sequence. Recognition and tracking results.

Fig. 9. Juhn sequence. Tracking results.

(a)

(b)

Fig. 10. Synthesized articulated human sequences.

To judge the quality of these estimates, we contrast the
visual look of the patterns recovered from the live video after
the recognition stage and tracking stage and compare these
patterns with the original video. This comparison is shown in
Fig. 8 for thePedrosequence. This figure displays a number

of frames of the original video where we superimpose to the
original data walker in the frame the contour of the model
walker synthesized with the posture recovered either by the
recognition or the tracking stages. In the images in Fig. 8(a),
the model walker is animated using the posture de-
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termined by the recognition stage described in Section VI.
We observe a significant level of mismatch between the data
walker and the contour of the model walker. The frames
in Fig. 8(b) are generated by animating the model walker
using the posture determined by the tracking stage
described in Section VI. Contrasting Fig. 8(a) with Fig. 8(b),
we conclude that the mismatches after the recognition stage
are basically eliminated by the tracking stage.

Fig. 9 illustrates similar results, but only for the tracking
stage for theJuhn sequence. With this sequence, there is a
significant zoom out effect, but the quality of the tracking is
again very good. The experiments with these two sequences,
as well as other experiments not shown due to lack of space,
demonstrate that the system can provide very accurate tracking
of human walkers.

With the motion, shape, and texture recovered from the
live video, we can synthesize different articulated human
sequences. Fig. 10(a) shows frames from a synthesized se-
quence using themotionand texture recovered from thePedro
sequence. Fig. 10(b) shows frames from a second sequence
synthesized with the texture recovered from the original video
but animated with different postures.

IX. CONCLUSION

In this paper, we presented a system that captures automati-
cally a walking human from a monocular real video sequence.
The result is a representation that includes the camera motion,
the extended background as seen across the video sequence,
the human walker shaped by a stick model with 12 cone shaped
body parts, the human walking given by a vector time series
that defines the posture of the human in each frame, i.e.,
the position of each of the body parts, and the body parts
texture. The system is a significant tool that can be used
in numerous multimedia applications. Extracting the video
contents simplifies indexing and retrieval in video databases.
The nature of the representation adds functionality to nonlinear
video editors like generating articulated human sequences that
may differ from the original sequence. Reducing significantly
the amount of data describing the video significantly facilitates
video transmission and manipulation; see [14], where a similar
metarepresentation was used for transmission of video over
wireless links. The current system implementation is all in
MatLab, so it is slow and far from being real time. It takes
currently about 20 min on a alpha 233 MHz station to process
each frame. We believe that by coding with a compiled
language, with algorithmic optimizations, and with faster
processors, the system could become close to being real time.
The framework can be generalized beyond the simplifying
assumptions underlying the work: single walker, the body parts
dimensions stay fixed, and the motion is restricted to a planar
walking motion. Including several walkers is easy to handle if
the individual walkers appear unoccluded over several frames
in the sequence. Body parts with variable dimensions can
be handled by increasing the dimensionality of the problem,
for example, by including the dimensions of each body part
as additional degrees of freedom. To extend the framework
to other cyclic human actions like running and jogging, one

needs a similar generic model to guide the recognition stage.
These models can be obtained by analysis of running or
jogging sequences. We are currently exploiting some of these
extensions.

REFERENCES

[1] H. Asada and J.-J. E. Slotine,Robot Analysis and Control. New York:
Wiley, 1986.

[2] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf,
“Parametric correspondence and chamfer matching: Two techniques for
image matching,”Proc. 5th Annu. Int. Joint Conf. Artificial Intelligence,
Aug. 1977, pp. 659–663.

[3] J. F. Canny, “A computational approach to edge detection,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, June 1986. ‘

[4] J. C. Cheng and J. M. F. Moura, “Model-based recognition of human
walking in dynamic scenes,” inProc. IEEE First Workshop Multimedia
Signal Processing, 1997, pp. 268–273.

[5] , “Tracking human walking in dynamic scenes,” inProc. of IEEE
Int. Conf. Image Processing, ICIP’97, Santa Barbara, CA, vol. 1, pp.
137–140, 1997.

[6] , “Automatic recognition of human walking in monocular image
sequences,”J. VLSI Signal Process., vol. 20, no. 1/2, pp. 107–120, Oct.
1998.

[7] J. C. Cheng, “Capture and representation of human walking in live
monocular video,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Carnegie Mellon Univ., Pittsburgh, PA, Nov. 1998.

[8] D. M. Gavrila and L. S. Davis, “3-D model-based tracking of human
in action: A multi-view approach,” inProc. IEEE Int. Conf. Computer
Vision Pattern Recognition, CVPR’96, June 1996, pp. 73–80.

[9] D. Hogg, “Model-based vision: A program to see a walking person,”
Image Vis. Comput., vol. 1, no. 1, pp. 5–20, 1983.

[10] J. M. F. Moura and R. S. Jasinschi, “Content-based video sequence
representation,” inProc. IEEE Int. Conf. Image Processing, ICIP’95,
vol. 2, pp. 229–232, 1995.

[11] , “Content based video compression system,” U.S. Patent
5 854 856, Dec. 1998.

[12] I. A. Kakadiaris and D. Metaxas, “Model-based estimation of 3D human
motion with occlusion based on active multi-viewpoint selection,” in
Proc. IEEE Int. Conf. Computer Vision Pattern Recog., CVPR’96, June
1996, pp. 81–87.

[13] D. Marr and H. K. Nishihara, “Representation and recognition of the
spatial organization of three-dimensional shapes,”Proc. R. Soc. Lond.
B, vol. 200, pp. 269–294, 1978.

[14] J. M. F. Moura, R. S. Jasinschi, H. Shiojiri, and J. C. Lin, “Video over
wireless,”IEEE Personal Commun. Mag., vol. 3, pp. 44–54, Feb. 1996.

[15] M. P. Murray, “Gait as a total pattern of movement,”Amer. J. Phys.
Med., vol. 46, no. 1, pp. 290–332, 1967.

[16] J. Ohya, Y. Kitamura, F. Kishino, N. Terashima, H. Takemura, and
H. Ishii, “Virtual space teleconferencing: Real-time reproduction of 3D
human images,”J. Vis. Commun. Image Represent., vol. 6, no. 1, pp.
1–25, 1995.

[17] J. O’Rourke and N. I. Badler, “Model-based image analysis of hu-
man motion using constraint propagation,”IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-2, pp. 522–536, Nov. 1980.

[18] Y. Yacoob and M. J. Black, “Parameterized modeling and recognition
of activities,” in Sixth Int. Conf. Computer Vision, ICCV’98, Mumbai,
India, Jan. 1998, pp. 120–127.

Jia-Ching Cheng was born in Taiwan, R.O.C. He
received the B.S.E. and M.S.E. degrees in electrical
engineering from Tatung Institute of Technology,
Taipei, Taiwan, in 1987 and 1989, respectively.
From 1993 to 1998, he was with Carnegie Mel-
lon University (CMU), Pittsburgh, PA, where he
received the Ph.D. degree in electrical and computer
engineering from in December 1998.

From 1989 until 1993, he was a Lecturer, Depart-
ment of Electrical Engineering, Tatung Institute of
Technology. Since January 1999, he has been with

the Faculty of the Tatung Institute of Technology.



156 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999
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