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We study the influence of oscillatory perturbations on nonlinear nonisochronous oscil-

latory systems in the plane. We assume that the perturbation amplitude decays and the

frequency is unboundedly increasing in time. We study capture into resonance in the

case where the amplitude of the system unboundedly increases and the frequency adjusts

to the perturbation frequency. We discuss the existence, stability, and asymptotic behav-

ior of resonance solutions at long times. We propose the technique based on averaging

method and construction of the Lyapunov functions. The results obtained are applied

to the Duffing oscillator with decaying parametric perturbations. Bibliography: 14 titles.

Illustrations: 3 figures.

In this paper, we study resonance phenomena in Hamiltonian systems in the plane under decay-

ing oscillatory perturbations. The problem under consideration is connected with bifurcations in

asymptotically autonomous systems discussed, for example, in [1]–[4]. In particular, asymptoti-

cally autonomous Hamiltonian systems were considered in [5], where conditions were described

under which perturbations do not violate the global behavior of the solution to the limit equa-

tions. Bifurcations in almost Hamiltonian systems with decaying oscillatory perturbations were

studied in [6, 7], where possible asymptotic regimes were described for solutions in a neighbor-

hood of the equilibrium state in the resonance and nonresonance cases. Moreover, the frequency

of oscillatory perturbations was assumed to be asymptotically constant. The asymptotics of

solutions at long times for similar linear equations was obtained in [8, 9]. Decaying perturba-

tions with growing frequency and a small parameter were considered in [10], where the solutions

were considered in a neighborhood of the equilibrium state on an asymptotically large, but finite

time-interval. At the same time, the behavior of trajectories far from the equilibrium state of

the limit system has not been studied earlier. In this paper, we discuss this topic and study

decaying oscillatory perturbations with growing frequency. The presence of a small parameter
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is not assumed. We study the stability and asymptotic behavior of resonance solutions on a

semi-infinite time-interval.

The paper is organized as follows. In Section 1, we state the problem. The main results

are formulated in Section 2 and justified in Sections 2–5. In particular, we obtain a necessary

condition for the existence of resonance solutions in Section 3. In Section 4, we prove the stability

and asymptotics of resonance solutions at long times in a model case. In Section 5, we apply

the obtained results to the Duffing oscillator with nonlinear parametric perturbation.

1 Statement of the Problem

We consider the nonautonomous system of ordinary differential equations

dρ

dt
= t−af(ρ, ϕ, S(t)),

dϕ

dt
= ω(ρ) + t−ag(ρ, ϕ, S(t)),

S(t) = stb+1, t t0 > 0,

(1.1)

where ω(ρ), f(ρ, ϕ, S), g(ρ, ϕ, S) are smooth functions defined for all (ρ, ϕ, S) ∈ R
3 and a, b, s ∈

R+ are constant parameters, b 1. We assume that the functions f(ρ, ϕ, S) and g(ρ, ϕ, S) are

2π-periodic in ϕ and S, and the following asymptotic expansions hold:

f(ρ, ϕ, S) = ρβ+1
∞

j=0

ρ−jfj(ϕ, S),

g(ρ, ϕ, S) = ρβ
∞

j=0

ρ−jgj(ϕ, S),

ω(ρ) = ρh
∞

j=0

ρ−jωj

(1.2)

as ρ → ∞ with periodic coefficients fj(ϕ, S), gj(ϕ, S), constant coefficients ωj (ω0 > 0), and

integer parameters β, h ∈ Z, h 1.

The system (1.1) is nonlinear and oscillating far from the equilibrium state under perturba-

tions decaying in time. The unknown functions ρ(t) and ϕ(t) are interpreted as the amplitude

and phase oscillations. We study capture into resonance in the case where ρ(t) unboundedly

increases and ϕ(t) adjusts to the perturbation phase S(t).

For an example we consider the equation

d2x

dt2
+ U (x) = t−aQ(x) cosS(t), (1.3)

where

U(x) =
x2h+2

2h+ 2
(1 + O(x−1)), Q(x) = xp(q + O(x−1)), x → ∞,

with parameters h, p ∈ Z, q ∈ R. The corresponding unperturbed equation

d2x

dt2
+ U (x) = 0
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written in the variables x, y ≡ dx/dt takes the form of an autonomous Hamiltonian system with

H(x, y) = y2/2 + U(x). It is easy to verify that there exists ρ0 > 0 such that the level lines

{(x, y) ∈ R
2 : H(x, y) = ρ2h+2} for every ρ ρ0 determine closed curves in the phase plane

(x, y) and correspond to periodic solutions x0(t, ρ), y0(t, ρ) with period

T (ρ) = ρ−h(T0 + O(ρ−1)), ρ → ∞,

where

T0 = (2h+ 2)
1

2h+2

1

−1

√
2dζ

1− ζ2h+2
.

We note that the functions

X(ϕ, ρ) = x0
ϕ

ω(ρ)
, ρ , Y (ϕ, ρ) = y0

ϕ

ω(ρ)
, ρ (1.4)

with ω(ρ) ≡ 2π/T (ρ) are 2π-periodic in ϕ and can be used to write Equation (1.3) in the

variables (ρ, ϕ). From the identity

H(X(ϕ, ρ), Y (ϕ, ρ)) ≡ ρ2h+2

it follows that
∂ϕX ∂ρX

∂ϕY ∂ρY
=

(2h+ 2)ρ2h+1

ω(ρ)
= 0

for ρ ρ0 and ϕ ∈ R. Hence the transformation (1.4) is invertible. Equation (1.3) written in

the variables (ρ, ϕ) has the form (1.1) with

f(ρ, ϕ, S) ≡ Y (ϕ, ρ)Q(X(ϕ, ρ)) cosS

(2h+ 2)ρ2h+1
,

g(ρ, ϕ, S) ≡ −ω(ρ)∂ρX(ϕ, ρ)Q(X(ϕ, ρ)) cosS

(2h+ 2)ρ2h+1
.

(1.5)

We note that the functions X(ϕ, ρ), Y (ϕ, ρ) satisfy the system of differential equations

ω(ρ)∂ϕX = Y,

ω(ρ)∂ϕY = −U (X)

and have the following asymptotics (cf., for example, [11]):

X(ρ, ϕ) = ρ
∞

j=0

ρ−jXj(ϕ),

Y (ρ, ϕ) = ρh+1
∞

j=0

ρ−jYj(ϕ)

as ρ → ∞, where the coefficients Xj(ϕ) and Yj(ϕ) are 2π-periodic; moreover, X0(ϕ) and Y0(ϕ)

satisfy the system

ω0∂ϕX0 = Y0,

ω0∂ϕY0 = −X2h+1
0 ,

Y 2
0 /2 +X2h+2

0 /(2h+ 2) = 1.
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Hence (1.5) implies the asymptotic expansion (1.2) with β = p− h− 1 and

f0(ϕ, S) ≡ qY0(ϕ)(X0(ϕ))
p cosS

2h+ 2
,

g0(ϕ, S) ≡ −πqX0(ϕ)(X0(ϕ))
p cosS

(h+ 1)T0
,

ω0 =
2π

T0
.

A numerical analysis of Equation (1.3) in the case U(x) ≡ x4/4 − x2/2 and Q(x) ≡ qxp

shows that the existence of resonance solutions with growing amplitude ρ(t) ≡ (H(x(t), y(t))1/4

depends on the initial data and perturbation parameters (cf. Figure 1). The goal of this paper

is to describe the conditions for the existence and stability of resonance solutions far from the

equilibrium state in systems with decaying oscillatory perturbation.

Figure 1. Evolution ρ(t) of solutions to Equation (1.3) in the case U(x) ≡ x4/4− x2/2

and Q(x) ≡ qxp for a = b = 1 with different values of parameters p, s, q and the initial

data.

2 The Main Results

We note that there exists ρ0 > 0 such that ω(ρ) > 0 and ω (ρ) > 0 for ρ ρ0. Consequently,

for any κ ∈ Z+ the equation

ω(ρκ) = κ
−1S (t)

has a solution ρκ(t) > 0, t t0, such that

ρκ(t) = t
b
h cκ − ω1

ω0
t−

b
h + O(t−

2b
h ) , t → ∞,

where

cκ =
s(b+ 1)

κω0

1
h
.

By a resonance solution to the system (1.1) we mean a solution ρ(t), ϕ(t) admitting the

asymptotics ρ(t) ∼ ρκ(t) and ϕ(t) ∼ κ
−1S(t) as t → ∞.

Theorem 2.1. If the system (1.1) has a resonance solution, then

a− 1

b

β

h
< 1 +

a

b
. (2.1)
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We describe conditions for the existence and stability of resonance solutions in the model

case where the right-hand sides of the system (1.1) are the leading terms of their asymptotics

f(r, ϕ, S) ≡ ρβ+1f0(ϕ, S),

g(r, ϕ, S) ≡ ρβg0(ϕ, S),

ω(r) ≡ ρhω0

(2.2)

as ρ → ∞. In this case, ρκ(t) ≡ cκt
b/h. We set

Z (ξ) κξ :=
1

2πκ

2πκ

0

Z (s) ds, {Z (ξ)}κξ ≡ Z (ξ)− Z (ξ) κξ,

Γ0 :=

⎧
⎪⎨

⎪⎩

b

h

κω0

s(b+ 1)

β/h
, β =

h(a− 1)

b

0, β =
h(a− 1)

b

,

Γ1 :=

⎧
⎪⎨

⎪⎩

a+
b− 1

2
− 1

h

κω0

s(b+ 1)

β/h
, β =

h(a− 1)

b

0, β =
h(a− 1)

b

.

Theorem 2.2. Let the conditions (2.1) and (2.2) hold, and let for any κ ∈ Z+

∃ϑ0 ∈ R : f0(ϑ0 + κ
−1ξ, ξ) κξ = Γ0, ∂ϕf0(ϑ0 + κ

−1ξ, ξ) κξ < 0, (2.3)

γκ := ∂ϕg0(ϑ0 + κ
−1ξ, ξ) κξ + Γ1 < 0. (2.4)

Then for any > 0 there exist d > 0 and t > 0 such that the solution ρ(t), ϕ(t) to the system

(1.1) with the initial data such that

|ρ(t )− ρκ(t )|+ |ϕ(t )− κ
−1S(t )− ϑ0| d

satisfies the inequality

sup
t t

(|ρ(t)− ρκ(t)|+ |ϕ(t)− κ
−1S(t)− ϑ0|) .

Furthermore, ρ(t) = ρκ(t)(1 + o(1)) and ϕ(t) = κ
−1S(t) + ϑ0 + o(1) as t → ∞.

The analysis of stability and asymptotics of resonance solutions in a general (not model)

case requires special attention and will not be considered in this paper.

3 Proof of Theorem 2.1

By (1.2), there exists M > 0 such that |f(ρ, ϕ, S)| Mρβ+1 and |g(ρ, ϕ, S)| Mρβ for

ρ ρ0 and all (ϕ, S) ∈ R
2. Hence the first equation of the system (1.1) implies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
1

ρβ(t)
|β|Mt−a, β = 0,

d

dt
log ρ(t) Mt−a, β = 0,

(3.1)
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for t t0. It is easy to verify that for the resonance solutions
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt

1

ρβκ(t)
∼ c−β

κ

|β|b
h

t
−
βb

h
−1

, β = 0,

d

dt
log ρκ(t) ∼ b

h
t−1, β = 0,

as t → ∞. Hence (3.1) implies β/h (a− 1)/b.

From the second equation of the system (1.1) it follows that

ϕ(t)

S(t)
− κ

−1 ∼ t
βb
h
−(b+a)G(t),

where G(t) = O(1) as t → ∞ for ρ(t) ∼ ρκ(t). Since for the resonance solutions the left-hand

side of the last expression converges to zero as t → ∞, we have β/h < 1 + a/b.

4 Proof of Theorem 2.2

The proof consists of two steps. At the first step, we look for an invertible change of

variables, which allows us to simplify the system in leading terms of the asymptotics. After that

we construct the Lyapunov functions for the transformed system, which allows us to justify the

stability of resonance solutions.

4.1. Change of variables. Substituting

ρ(t) = ρκ(t)(1 + t−Ar(τ)), ϕ(t) = κ
−1S(t) + θ(τ), τ =

tB

B
, (4.1)

where

A =
b

2
1 +

a

b
− β

h
> 0, B = b+ 1 > 0,

into (1.1), we obtain the system of equations for r(τ), θ(τ)

dr

dτ
= F (r, θ, ξ(τ), τ),

dθ

dτ
= G(r, θ, ξ(τ), τ),

(4.2)

where

F (r, θ, ξ, τ) ≡ cβκ(Bτ)−
A
B 1 + r(Bτ)−

A
B

β+1
f0(θ + κ

−1ξ, ξ)

− b

h
(Bτ)−

B−A
B + (Bτ)−1 A− b

h
r,

G(r, θ, ξ, τ) ≡ ω0c
h
κ 1 + r(Bτ)−

A
B

h − 1

+ cβκ(Bτ)−
2A
B 1 + r(Bτ)−

A
B

β
g0(θ + κ

−1ξ, ξ),

ξ(τ) ≡ S (Bτ)
1
B = ντ,
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with the number parameter ν = sB > 0. By the condition (2.1), B 2A. Consequently, the

right-hand sides of (4.2) admit the asymptotics

F (r, θ, ξ, τ) ≡ τ−
A
B FA(θ, ξ) + τ−

B−2A
B FB−A

+ τ−
2A
B F2A(r, θ, ξ) + τ−

B−2A
B FB(r) +O(τ−

3A
B ),

G(r, θ, ξ, τ) ≡ τ−
A
BGA(r) + τ−

2A
B G2A(r, θ, ξ) + O(τ−

3A
B )

as τ → ∞ with coefficients

FA(θ, ξ) ≡ cβκB
−A

B f0(θ + κ
−1ξ, ξ),

FB−A ≡ − b

h
B−1+A

B ,

F2A(r, θ, ξ) ≡ λ2AFA(θ, ξ)r,

FB(r) ≡ A

B
− 1

h
r,

GA(r) ≡ μAr,

G2A(r, θ, ξ) ≡ B− 2A
B cβκg0(θ + κ

−1ξ, ξ) + (h− 1)B−A
BGA(r)

r

2
,

where λ2A = (β + 1)B−A/B > 0 and μA = hω0c
h
κB

−A/B > 0. Thus, the system (4.2) is

asymptotically autonomous; moreover, the corresponding limit system

dr

dτ
= 0,

dθ

dτ
= 0

as τ → ∞ is trivial. The right-hand sides F (r, θ, ξ, τ) and G(r, θ, ξ, τ) are 2π-periodic in θ and

2πκ-periodic in ξ. Since dξ/dτ = ν > 0, we see that ξ(τ) varies faster than r(τ) and θ(τ) as

τ → ∞ and can play the role of the fast variable at long times. The further simplification of

the system can be done by using the averaging procedure [12, 13] for the leading terms of the

equations with respect to ξ(τ).

We consider the transformation of the system (4.2) which is close to the identity one:

R(r, θ, τ) = r + τ−
A
B RA(r, θ, ξ(τ)) + τ−

B−2A
B RB−2A(r, θ, ξ(τ))

+ τ−
2A
B R2A(r, θ, ξ(τ)) + τ−

B−2A
B RB(r, θ, ξ(τ)) ,

Θ(r, θ, τ) = θ + τ−
A
BΘA(r, θ, ξ(τ)) + τ−

2A
B Θ2A(r, θ, ξ(τ)) + τ−

B−2A
B ΘB(r, θ, ξ(τ)) ,

(4.3)

where the functions Rk(r, θ, ξ) and Θk(r, θ, ξ) are periodic, have zero means in ξ, and are chosen

in such a way that the system (4.2) written in the new variables

(τ) = R(r(τ), θ(τ), τ),

ϑ(τ) = Θ(r(τ), θ(τ), τ)
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is independent of ξ(τ) in the leading terms of the asymptotics

d

dτ
= τ−

A
B ΛA( , ϑ) + τ−

B−2A
B ΛB−A( , ϑ)

+ τ−
2A
B Λ2A( , ϑ) + τ−

B−2A
B ΛB( , ϑ) +O(τ−

3A
B ),

dϑ

dτ
= τ−

A
BΩA( , ϑ) + τ−

2A
B Ω2A( , ϑ) + τ−

B−2A
B ΩB( , ϑ) + O(τ−

3A
B )

(4.4)

as τ → ∞, where | | < const uniformly for all ϑ ∈ R. Substituting (4.3) into the system (4.2)

and comparing the result with (4.4), we obtain the following chain of differential equations for

the coefficients Rk(r, θ, ξ) and Θk(r, θ, ξ):

ν∂ξRA = ΛA(r, θ)− FA(θ, ξ),

ν∂ξΘA = ΩA(r, θ)−GA(r),

ν∂ξRB−A = ΛA−B(r, θ)− FB−A,

ν∂ξR2A = Λ2A(r, θ)− F2A(r, θ, ξ)−F2A(r, θ, ξ),

ν∂ξΘ2A = Ω2A(r, θ)−G2A(r, θ, ξ)− G2A(r, θ, ξ),

ν∂ξRB = ΛB(r, θ)− FB(r)−FB(r, θ, ξ),

ν∂ξΘB = ΩB(r, θ)− GB(r, θ, ξ),

where

F2A(r, θ, ξ) ≡ (FA(θ, ξ)∂r +GA(r)∂θ)RA(r, θ, ξ)− (RA(r, θ, ξ)∂r +ΘA(r, θ, ξ)∂θ)ΛA(r, θ),

G2A(r, θ, ξ) ≡ (FA(θ, ξ)∂r +GA(r)∂θ)ΘA(r, θ, ξ)− (RA(r, θ, ξ)∂r +ΘA(r, θ, ξ)∂θ)ΩA(r, θ),

FB(r, θ, ξ) ≡ (FA(θ, ξ)∂r +GA(r)∂θ)RB−A(r, θ, ξ)− (RA(r, θ, ξ)∂r

+ΘA(r, θ, ξ)∂θ)ΛB−A(r, θ) + FB−A∂rRA(r, θ, ξ)−RB−A(r, θ, ξ)∂rΛA(r, θ),

GB(r, θ, ξ) ≡ FB−A∂rΘA(r, θ, ξ)−RB−A(r, θ, ξ)∂rΩA(r, θ),

The periodicity condition on the coefficients Rk(r, θ, ξ) and Θk(r, θ, ξ) in ξ leads to the following

definition of functions Λk(r, θ) and Ωk(r, θ):

ΛA(r, θ) ≡ FA(θ, ξ) κξ,

ΩA(r, θ) ≡ GA(r),

ΛB−A(r, θ) ≡ FB−A,

Λ2A(r, θ) ≡ F2A(r, θ, ξ) +F2A(r, θ, ξ) κξ,

Ω2A(r, θ) ≡ G2A(r, θ, ξ) + G2A(r, θ, ξ) κξ,

ΛB(r, θ) ≡ FB(r) + FB(r, θ, ξ) κξ,

ΩB(r, θ) ≡ GB(r, θ, ξ) κξ.
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In this case, we have

RA(r, θ, ξ) ≡ −1

ν

ξ

0

{FA(θ, σ)}σ dσ
κξ

,

ΘA(r, θ, ξ) ≡ 0, RB−A(r, θ, ξ) ≡ 0,

F2A(r, θ, ξ) ≡ GA(r)∂θRA(r, θ, ξ), G2A(r, θ, ξ) ≡ −GA(r)RA(r, θ, ξ),

FB(r, θ, ξ) ≡ 0, GB(r, θ, ξ) ≡ 0.

Hence

Λ2A(r, θ) ≡ F2A(r, θ, ξ) κξ, Ω2A(r, θ) ≡ G2A(r, θ, ξ) κξ,

ΛB(r, θ) ≡ FB(r), ΩB(r, θ) ≡ 0.

Using the change of variables (4.3), we transform the system (4.2) to the form (4.4). Furthermore,

by the structure of (4.3), for any r0 > 0 and ε ∈ (0, r0) there is τ0 > 0 such that

|R(r, θ, τ)− r| ε, |∂rR(r, θ, τ)− 1| ε, |∂θR(r, θ, τ)| ε,

|Θ(r, θ, τ)− θ| ε, |∂rΘ(r, θ, τ)| ε, |∂θΘ(r, θ, τ)− 1| ε

for all |r| r0, θ ∈ R, and τ τ0. Consequently, the transformation (r, θ, τ) → ( , ϑ, τ) is

invertible for all | | 0, ϑ ∈ R, and τ τ0 with 0 = r0 − ε > 0.

4.2. The Lyapunov functions. We begin with the case B = 2A. In this case, the system

(4.4) has the form
d

dt
= τ−

1
2ΛA(ϑ) + τ−1Λ2A( , ϑ) + O(τ−

3
2 ),

dϑ

dt
= τ−

1
2μA + τ−1Ω2A( , ϑ) + O(τ−

3
2 )

(4.5)

as τ → ∞ uniformly for all | | 0 and ϑ ∈ R, where

ΛA(ϑ) ≡ FA(ϑ, ξ) κξ + FB−A,

Λ2A( , ϑ) ≡ λ2A FA(ϑ, ξ) κξ + FB( ).
(4.6)

Lemma 4.1. We assume that there exists ϑ0 ∈ R such that ΛA(ϑ0) = 0, ΛA(ϑ0) < 0, and

γ0 := ∂ Λ2A(0, ϑ0) + ∂ϑΩ2A(0, ϑ0) < 0. Then for any ∈ (0, 0) there exist δ > 0 and τ τ0
such that the solution (τ), ϑ(τ) to the system (4.5) with initial data | (τ )|+ |ϑ(τ )− ϑ0| δ

satisfies the inequality

sup
τ τ

(| (τ)|+ |ϑ(τ)− ϑ0|) .

Furthermore, | (τ)|+ |ϑ(τ)− ϑ0| → 0 as τ → ∞.

Proof. It is easy to verify that the substitution

(τ) = τ−
1
2 1 + (τ), ϑ(τ) = ϑ0 + τ−

1
2ϑ1 + ϑ(τ)
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with 1 = −Ω2A(0, ϑ0)/μA and ϑ1 = −Λ2A(0, ϑ0)/ΛA(ϑ0) reduces the system (4.5) to the form

d

dτ
= −τ−

1
2∂

ϑ
H ( , ϑ, τ) + O(τ−

3
2 ),

dϑ

dτ
= τ−

1
2∂ H ( , ϑ, τ) + τ−1Z ( , ϑ) + O(τ−

3
2 )

(4.7)

as τ → ∞ and | |+ |ϑ| < ∞, where

H ( , ϑ, τ) ≡ μA

2

2
−

ϑ

0

ΛA(ϑ0 + τ−
1
2ϑ1 + θ)− ΛA(ϑ0)− τ−

1
2ϑ1ΛA(ϑ0) dθ

− τ−
1
2

ϑ

0

(Λ2A( , ϑ0 + θ)− Λ2A(0, ϑ0)) dθ + τ−
1
2

0

(Ω2A(r, ϑ0)− Ω2A(0, ϑ0) ) dr,

Z ( , ϑ) ≡ Ω2A( , ϑ0 + ϑ)− Ω2A( , ϑ0) +

ϑ

0

∂ Λ2A( , ϑ0 + θ) dθ.

We note that

H ( , ϑ, τ) =
Δ2

2
(1 + O(τ−

1
2 ) + O(Δ)),

Z ( , ϑ) = γ0ϑ+ O(Δ)

(4.8)

as τ → ∞ and Δ ≡ μA
2 + λAϑ2 → 0, where λA := |ΛA(ϑ0)| > 0. Hereinafter, we assume

that the asymptotic estimates are uniform for all ( , ϑ, τ) ∈ R
3 such that Δ Δ∗ and τ τ∗

with some constants Δ∗ > 0 and τ∗ > 0.

As a candidate for the Lyapunov function of the system (4.7) we consider the function

V ( , ϑ, τ) = H ( , ϑ, τ) + τ−
1
2
γ0
2

ϑ.

By (4.8), the total derivative of this function along the trajectories of the system (4.7) admits

the asymptotics

dV

dτ (4.7)
= τ−1γ0

Δ2

2
(1 + O(Δ)) + O(Δ)O(τ−

3
2 ), τ → ∞, Δ → 0.

Consequently, for any σ ∈ (0, 1) there are Δ0 > 0 and τ0 τ0 such that

(1− σ)
Δ2

2
V ( , ϑ, τ) (1 + σ)

Δ2

2
,

dV

dτ (4.7)
−τ−1(1− σ)|γ0|Δ

2

2
+Mτ−

3
2Δ

(4.9)

for all ( , ϑ, τ) ∈ R
3 such that Δ Δ0 and τ τ0 with some constant M > 0. We fix ∈ (0,Δ0).

Then
dV

dτ (4.7)
−τ−1 (1− σ)|γ0| − 2M

δ
τ
− 1

2
Δ2

2
0
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for all ( , ϑ, τ) ∈ R
3 such that δ Δ and τ τ , where

δ =
4M

(1− σ)|γ0|τ
− 1

2 , τ = max
16M2(1 + σ)

(1− σ)3|γ0|2 2
, τ0 .

We note that

δ < (1− σ)/(1 + σ),

sup
Δ δ

V ( , ϑ, τ) inf
Δ=

V ( , ϑ, τ), τ τ .

Therefore, since the total derivative of V ( , ϑ, τ) is nonnegative, the trajectories of the system

(4.7) outgoing from the domain {( , ϑ) : Δ δ } for τ = τs τ cannot leave the neighborhood

{( , ϑ) : Δ } for τ > τs. Furthermore, (4.9) implies

dV

dτ (4.7)
−τ−1 1− σ

1 + σ
|γ0|V ( , ϑ, τ) +Mτ−

3
2Δ0

for all ( , ϑ, τ) ∈ R
3 such that Δ Δ0 and τ τ0. Integrating the last inequality with respect

to τ , we find

V ( (τ), ϑ(τ), τ) = O(τ−
1
2 log τ) + O(τ−|γ0|(1−σ)/(1+σ)), τ → ∞.

By properties of Lyapunov functions, | (τ)|+ |ϑ(τ)| → 0 as τ → ∞.

We consider the case B > 2A where the system (4.4) takes the form

d

dt
= τ−

A
B ΛA(ϑ) + τ−

B−2A
B FB−A + τ−

2A
B Λ2A( , ϑ) +O(τ−

C
B ),

dϑ

dt
= τ−

A
B μA + τ−

2A
B Ω2A( , ϑ) + O(τ−

3A
B )

(4.10)

as τ → ∞ uniformly for all | | 0 and ϑ ∈ R, where

ΛA(ϑ) ≡ FA(ϑ, ξ) ξ, Λ2A( , ϑ) ≡ λ2A ΛA(ϑ), C = min{B, 3A}. (4.11)

Lemma 4.2. We assume that there exists ϑ0 ∈ R such that ΛA(ϑ0) = 0, ΛA(ϑ0) < 0, and

γ0 := ∂ϑΩ2A(0, ϑ0) < 0. Then for any ∈ (0, 0) there are δ > 0 and τ τ0 such that the

solution (τ), ϑ(τ) to the system (4.10) with the initial data | (τ )|+ |ϑ(τ )− ϑ0| δ satisfies

the inequality

sup
τ τ

(| (τ)|+ |ϑ(τ)− ϑ0|) .

Furthermore, | (τ)|+ |ϑ(τ)− ϑ0| → 0 as τ → ∞.

Proof. We consider the change of variables

(τ) = τ−
A
B 1 + (τ), ϑ(τ) = ϑ0 + τ−

B−2A
B ϑB−2A(τ) + ϑ(τ)

with 1 = −Ω2A(0, ϑ0)/μA and ϑB−2A(τ) such that

ΛA(ϑ0 + τ−
B−2A

B ϑB−2A(τ)) + τ−
B−2A

B FB−A ≡ 0.
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It is easy to verify that

ϑB−2A(τ) = −FB−A/ΛA(ϑ0) + O(τ−(B−2A)/B), τ → ∞.

The system (4.10) is written in the new variables in the form

d

dτ
= −τ−

A
B ∂

ϑ
H ( , ϑ, τ) + O(τ−

C
B ),

dϑ

dτ
= τ−

A
B ∂ H ( , ϑ, τ) + τ−

2A
B Z ( , ϑ) +O(τ−

C
B )

(4.12)

as τ → ∞ and | |+ |ϑ| < ∞, where

H ( , ϑ, τ) ≡μA

2

2
−

ϑ

0

ΛA(ϑ0 + τ−
B−2A

B ϑB−2A(τ) + θ)− ΛA(ϑ0 + τ−
B−2A

B ϑB−2A(τ)) dθ

− τ−
A
B λ2A

ϑ

0

(ΛA(ϑ0 + θ)− ΛA(ϑ0)) dθ + τ−
A
B

0

(Ω2A(r, ϑ0)− Ω2A(0, ϑ0)) dr,

Z ( , ϑ) ≡ Ω2A( , ϑ0 + ϑ)− Ω2A( , ϑ0) + λ2A

ϑ

0

(ΛA(ϑ0 + θ)− ΛA(ϑ0)) dθ.

The functions H ( , ϑ, τ) and Z ( , ϑ) admit the following asymptotics:

H ( , ϑ, τ) =
Δ2

2
(1 + O(τ−

1
2 ) + O(Δ)),

Z ( , ϑ) = γ0ϑ+ O(Δ)

as τ → ∞ and

Δ ≡ μA
2 + λAϑ2 → 0,

where λA := |ΛA(ϑ0)| > 0. For the system (4.12) the Lyapunov function is constructed in the

form

V ( , ϑ, τ) = H ( , ϑ, τ) + τ−
A
B
γ0
2

ϑ.

Computing the total derivative of this function, we find the estimate

dV

dτ (4.12)
= −τ−

2A
B |γ0|Δ

2

2
(1 +O(Δ)) + O(Δ)O(τ−

C
B ), τ → ∞, Δ → 0.

Consequently, for any σ ∈ (0, 1) there are Δ0 > 0 and τ0 τ0 such that

(1− σ)
Δ2

2
V ( , ϑ, τ) (1 + σ)

Δ2

2
,

dV

dτ (4.12)
−τ−

2A
B (1− σ)|γ0|Δ

2

2
+Mτ−

C
BΔ

for all ( , ϑ, τ) ∈ R
3 such that Δ Δ0 and τ τ0 with some constant M > 0. Thus,

the constructed Lyapunov function satisfies estimates similar to (4.9). Repeating the proof of

Lemma 4.1, we obtain the required assertion.
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Combining Lemmas 4.1 and 4.2 with formulas (4.1) and (4.3) of change of variables, and the

expressions (4.6) and (4.11) for the coefficients, we complete the proof of Theorem 2.2.

5 Examples

We consider the Duffing equation with decaying perturbation

d2x

dt2
− x+ x3 = qt−axp cos stb+1 , (5.1)

where a, b, s ∈ R+, p ∈ Z, q ∈ R, b 1. Equation (5.1) is a particular case of (1.3) with h = 1,

U(x) ≡ x4/4 − x2/2, and Q(x) ≡ qxp. The corresponding change of variables (1.4) reduces

Equation (5.1) to the form (1.1) with β = p− 2. Moreover,

T0 = 2
√
2K

1

2
, X0(ϕ) =

√
2 cn

T0ϕ

π
√
2
;
1

2
, Y0(ϕ) =

2π

T0
∂ϕX0(ϕ),

where K(k) is a complete elliptic integral of the first kind and cn(t, k) is the Jacobi elliptic

function. Furthermore, the 2π-periodic function X0(ϕ) is expanded into the Fourier series [14]

X0(ϕ) =
∞

j=1

xj cos((2j − 1)ϕ),

where

xj =
4π

√
2

T0
sech (2j − 1)

π

2
.

We note that Theorem 2.1 provides a necessary condition for the existence of resonance

solutions to Equation (5.1):

2 +
a− 1

b
p < 3 +

a

b
.

To obtain the conditions for the stability of resonance solutions, we consider the equation in

the corresponding model case (2.2), where

f0(ϕ, S) ≡ qπ

2T0(p+ 1)
∂ϕ(X0(ϕ))

p+1 cosS,

g0(ϕ, S) ≡ − qπ

2T0
(X0(ϕ))

p+1 cosS,

ω0 =
2π

T0
.

We assume that p = 2 and a = b = 1. Then β = 0, Γ0 = 1, and Γ1 = 0. We verify the

assumptions of Theorem 2.2 with κ = 1. We note that for any 2π-periodic function Z(ϕ)

Z(ϑ+ ξ) cos ξ ξ ≡ Z(ξ) cos(ξ − ϑ) ξ ≡ Z(ξ) cos ξ ξ cosϑ+ Z(ξ) sin ξ ξ sinϑ.
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Hence

f0(ϑ+ ξ, ξ) ξ ≡ −qπC3

6T0
sinϑ,

∂ϕf0(ϑ+ ξ, ξ) ξ ≡ −qπC3

6T0
cosϑ,

∂ϕg0(ϑ+ ξ, ξ) ξ ≡ qπC3

2T0
sinϑ,

where C3 = X3
0 (ξ) cos ξ ξ ≈ 0.954. Consequently, if |q| > q∗, q∗ = 6T0/(πC3), then there is ϑ0

satisfying the condition (2.3):

ϑ0 =

⎧
⎪⎨

⎪⎩

− arc sin
6T0

qπC3
+ 2πk, q > 0,

π − arc sin 6T0
|q|πC3

+ 2πk, q < 0,

k ∈ Z.

It is easy to verify that, in this case, the condition (2.4) is satisfied with γκ = −3 < 0. Thus, if

|q| > q∗, then Theorem 2.2 implies the stability of resonance solutions to the model system and

asymptotic estimates

ρ(t) ∼ cκt, ϕ(t)− S(t) ∼ ϑ0, t → ∞, cκ =
sT0

π
.

A numerical analysis shows that the resonance solutions to Equation (5.1) are adequately de-

scribed by the solutions to the model system (cf. Figure 2).

(a) (b)

Figure 2. Evolution of the amplitude ρ(t) ≡ (H(x(t), ẋ(t)))1/4 (a) and the phase differ-

ence θ(t) ≡ ϕ(t) − S(t), tan ϕ(t) = −ẋ(t)/x(t) (b) for the solutions to Equation (5.1)

with p = 2, q = 11, a = b = s = 1 (q∗ ≈ 10.49). The dashed lines correspond to cκt

(cκ ≈ 1.67) (a) and ϑ0 ≈ −1.27 (b).

We assume that p = 3, a = 2, and b = 1. Then β = 1 and Γ0 = Γ1 = κπ/(sT0). We verify

the assumptions of Theorem 2.2 for κ = 2. We note that

f0(ϑ+
ξ

2
, ξ) 2ξ ≡ −qπC4

4T0
sin 2ϑ,

∂ϕf0(ϑ+
ξ

2
, ξ) 2ξ ≡ −qπC4

2T0
cos 2ϑ,
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∂ϕg0(ϑ+
ξ

2
, ξ) 2ξ ≡ qπC4

T0
sin 2ϑ,

where C4 = X4
0 (ξ) cos 2ξ ξ ≈ 0.911. Consequently, if |q| > q∗, q∗ = 8/(sC4), then there exists

ϑ0 satisfying the condition (2.3):

ϑ0 =

⎧
⎪⎪⎨

⎪⎪⎩

−1
2 arc sin

8

sqC4
+ πk, q > 0,

π

2
− 1

2
arc sin

8

s|q|C4
+ πk, q < 0,

, k ∈ Z.

It is easy to verify that, in this case, the condition (2.4) is satisfied with γκ = −6π/(sT0) < 0.

Thus, in the case |q| > q∗, Theorem 2.2 implies the stability of resonance solutions in the model

system (cf. Figure 3). Moreover,

ρ(t) ∼ cκt, ϕ(t)− S(t)

2
∼ ϑ0, t → ∞, cκ =

sT0

2π
.

(a) (b)

Figure 3. Evolution of the amplitude ρ(t) ≡ (H(x(t), ẋ(t)))1/4 (a) and the phase

difference θ(t) ≡ ϕ(t)− S(t)/2, tan ϕ(t) = −ẋ(t)/x(t) (b) for the solution to Equation

(5.1) with p = 3, q = 10, a = 2, b = s = 1 (q∗ ≈ 8.78). The dashed lines correspond to

cκt (cκ ≈ 0.84) (a) and ϑ0 ≈ −0.54 (b).
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