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Abstract

A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify
direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated
genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-
34a in both cell lines. Despite this large number, validation experiments suggested that ,90% of the genes identified in
both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The
transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle
progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction
pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated
genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and
enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive.
Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor
signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins
D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth
factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.
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Introduction

microRNAs (miRNAs) that promote cell differentiation, inhibit

cell proliferation, or enhance DNA damage or stress-induced cell

cycle arrest or death, and whose expression is reduced in some

cancers, are candidate tumor suppressor genes [1]. One of the most

well studied tumor suppressor miRNAs is miR-34a. Depending on

cellular context [2], ectopic over-expression of miR-34a induces cell

cycle arrest [3], senescence [4] or apoptosis [5]. miR-34a is up-

regulated by p53 in response to DNA damage [6–8], but can also be

transcriptionally activated independently of p53 [9,10]. miR-34a is

located on chromosome 1p36, a locus deleted in neuroblastoma,

breast, thyroid, and cervical cancer [11,12]. In other cancers, miR-

34a expression is epigenetically reduced by hypermethylation [13].

miR-34a administration can inhibit tumor outgrowth in mice [4].

Thus miR-34a satisfies the criteria for a tumor suppressor gene.

The best way to understand the function of a miRNA is to

identify the genes it regulates. In this study we sought to

understand how miR-34a acts as a tumor suppressor by identifying

its direct target genes. However, target gene identification is not

straightforward because of the partial complementarity of the

short ,22 nt miRNA sequence with the miRNA recognition

element (MRE) of the target gene [14]. MRE pairing to the

miRNA seed region (nt 2–7) contributes significantly to target gene

recognition and is the basis for the most successful target gene

prediction algorithms [15,16]. However, a perfect seed match is

not necessary [17,18] and does not guarantee targeting [19].

miRNA target prediction algorithms typically predict hundreds to

thousands of putative miRNA target genes, but most predicted

target genes are not bona fide targets and the best algorithms

sometimes miss key targets [17,19–21]. It is unclear how many

target genes are in fact regulated by a given miRNA in any

physiological context. Analysis of genes whose mRNA or protein

expression decreases when a miRNA is overexpressed or increases

when it is antagonized identifies genes that may be either direct

targets or indirectly regulated [22]. Biochemical methods to
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capture RNA-induced silencing complex (RISC)-bound mRNAs

potentially provide a more direct way to identify miRNA-

regulated target genes [23–25]. However, immunoprecipitation

has mostly been used to define the general features of miRNA-

regulated mRNAs and their MREs, rather than to identify the

targets of a particular miRNA.

Already 36 putative miR-34a targets have been validated by

luciferase reporter assays. These targets strongly support miR-

34a’s role as a tumor suppressor. They include genes that promote

cell cycle progression through the G1/S transition (CCND1,

CCNE2, CDK4, CDK6, MYC, MYCN and E2F3) [3,8,10,12,26],

enhance transcription (MYB, HNF4A and FOXP1) [9,27,28] or

growth factor signaling (MET, MEK1, AXL and RRAS) [8,29–32],

inhibit apoptosis (BCL2) [33] or p53 activity (YY1, MTA2, SIRT1

and MAGE-A) [5,32,34,35], and promote stem cell survival

(NOTCH1, NOTCH2, LEF1 WNT1, DLL1, JAG1 and CD44)

[32,36–40]. The diversity of direct miR-34a targets suggests that

miR-34a acts pleiotropically by regulating many genes.

To identify additional direct target genes of miR-34a without

bias and understand better how miR-34a functions, we optimized

a simple biochemical method to isolate mRNAs that bind to

transfected biotinylated (Bi-)miR-34a [41,42]. mRNAs significant-

ly enriched in the Bi-miRNA pull-down with streptavidin relative

to their cellular expression were candidate targets. The pull-down

was performed in two unrelated cancer cell lines, K562

erythroleukemia cells and HCT116 colon carcinoma cells. p53

activates transcription of miR-34a [8]. Under basal conditions,

p53-sufficient HCT116 cells highly express miR-34a, while p53-

null K562 cells do not express it above background (data not

shown). We selected disparate cell lines to identify genes that may

be regulated in multiple cell types or more specifically in a

particular context. Several thousand genes were significantly

enriched in the miR-34a pull-down in each cell line and 982

were significantly enriched in both cell lines. Most known miR-34a

target mRNAs expressed in these cells were pulled down with

miR-34a. Despite the large number of genes significantly enriched

in the miR-34a pull-down, 91% of a random list of 11 genes

enriched in both cell lines contained miR-34a-regulated 39UTR

sequences. These results suggest that the pull-down is quite specific

and that miR-34a potentially directly regulates hundreds of

genes. Bioinformatic analysis of the pulled down genes or of

genes down-regulated after miR-34a transfection suggested that

miR-34a regulates a dense network of genes that transduce

proliferative signals arising from growth factor stimulation.

Multiple candidate target genes participate in RAS-RAF-MAPK

signaling. In fact miR-34a knockout reduced sensitivity to growth

factor withdrawal by serum starvation, while miR-34a transfection

led to increased vulnerability. Fourteen novel miR-34a targets

identified by the pull-down in both cell lines were experimentally

verified, including ARAF and PIK3R2 in the RAS-RAF-MAPK

pathway, and additional target genes required for cell cycle

progression, including cyclins D3 and G2, MAD2L2, MCM2,

MCM5 and PLK1.

Results

Isolation of mRNAs bound to a transfected
biotinylated–miRNA
We modified a method [5] for capturing miRNA-mRNA

complexes using streptavidin-coated beads from cells transfected

with miR-34a biotinylated at the 39-end of the mature strand.

Control samples were transfected with a biotinylated C. elegans

miRNA (Bi-cel-miR-67) (Figure 1A). Biotinylation did not

interfere with miRNA-mediated gene suppression as measured

by luciferase reporter assay (Figure 1B). Over-expressing Bi-miR-

34a or miR-34a in K562 cells also similarly suppressed expression

of known miR-34a target genes (Figure 1C). Moreover, immuno-

precipitation of HA-tagged Ago1 or Ago2 in K562 cells

cotransfected with Bi-miR-34a specifically enriched for miR-34a

by ,4-fold and ,6-fold, respectively (Figure 1D). Thus the Bi-

miRNA is incorporated into the RISC and functions like the

unbiotinylated miRNA.

We next optimized conditions to capture known target gene

mRNAs. In the Bi-miR-34a pull-down of K562 cells, known miR-

34a target transcripts CDK4 and CDK6, but not UBC (a

housekeeping gene), were enriched 12 hr after transfection, and

their capture plateaued at 24–48 hr (Figure 1E). Therefore, 24 hr

was chosen for subsequent experiments. The specificity of the pull-

down and applicability to other cell types was verified since CDK4,

CDK6 and MYB mRNAs were consistently enriched by transfec-

tion of Bi-miR-34a, but not Bi-cel-miR-67, in K562 (Figure 1F)

and HCT116 (Figure S1A) cells. Streptavidin beads did not enrich

for non-target SDHA and UBC mRNAs, and the specific target

mRNAs were not pulled down in cells transfected with

unbiotinylated miR-34a (data not shown). miR-34a was specifi-

cally enriched .40-fold in the Bi-miR-34a pull-down compared to

the input lysate (Figure S1B). Modifications of the pull-down to

include formaldehyde cross-linking and/or pre-isolation of RNAs

in high molecular weight cellular fractions reduced the amount of

captured RNA, but did not improve the relative enrichment for

known target gene mRNAs (data not shown). To confirm that

association of Bi-miRNAs with target mRNAs was not a post-lysis

artifact, we performed streptavidin pull-downs after adding Bi-

miR-34a or Bi-cel-miR-67 to cytoplasmic extracts of untransfected

K562 cells. CDK4, CDK6 and MYB mRNAs were not enriched

when Bi-miR-34a was added post-lysis (Figure S1C). The general

applicability of the pull-downs to enrich for miRNA target genes

was also verified for another miRNA, miR-24 in HepG2 cells. Bi-

miR-24 capture enriched for 3 known miR-24 targets (H2AFX,

E2F2 and MYC [43]) by 2–5-fold (Figure 1G).

Sensitivity of the Bi-miR-34a pull-down
We next used gene expression microarrays to identify putative

miR-34a targets captured by Bi-miR-34a in duplicate experiments

from K562 (p53 deficient) and HCT116 cells (p53 proficient)

Author Summary

microRNAs (miRNAs) are small RNAs that regulate gene
expression by binding to mRNAs bearing a partially
complementary sequence. miRNAs decrease the stability
or translation of mRNA targets, leading to reduced protein
expression. Understanding the biological function of a
miRNA requires identifying its targets. Here we developed
a sensitive and specific biochemical method to identify
candidate microRNA targets that are enriched by pull-
down with a tagged, transfected microRNA mimic. The
method was applied to miR-34a, a miRNA that inhibits cell
proliferation. We found that miR-34a can potentially
regulate hundreds of genes. Computational analysis of
these genes suggested a novel function for miR-34a—
suppression of the pro-proliferative response to diverse
growth factors. This function complements the previously
known role of miR-34a in blocking cell cycle progression.
Thus, by reducing the expression of an extensive network
of genes, miR-34a dampens growth factor signaling as well
as its downstream consequences, promotion of cell
survival and proliferation.

miR-34a Inhibits Growth Factor Signaling
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Figure 1. The Biotin-miRNA pulldown method. (A) Schematic of the Bi-miRNA pull-down (PD) assay. (B) Activity of 39-biotinylated miR-34a (Bi-
miR-34a) is similar to unbiotinylated miR-34a mimics by dual luciferase assay performed in HeLa cells cotransfected with psiCHECK-2 vector (black) or
psi-CHECK-2 bearing a perfectly complementary sequence to miR-34a (psiCHECK-2-AS-miR-34a, white). Transfection with cel-miR-67 is the control
(CTL). Luciferase expression was assayed after 24 hr; results are normalized to cells transfected with the luciferase vector and the CTL miRNA. (C) Bi-
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(Table S1). mRNA abundance in the streptavidin pull-down and

input in Bi-miR-34a-transfected cells were separately normalized

to their levels in Bi-cel-miR-67-transfected cells. For each

biological replicate, the ratio of the abundance of the pull-down

mRNA compared to the input mRNA for cells transfected with Bi-

miR-34a versus Bi-cel-miR-67 was calculated, averaged and used

to define the enrichment ratio {Bi-miR-34a PD/Bi-cel-miR-67

PD}/{Bi-miR-34a input/Bi-cel-miR-67 input}. Normalizing to

the input improved identification of true targets in 2 ways – by

reducing the background caused by highly abundant mRNAs that

associate with streptavidin beads nonspecifically and by incorpo-

rating a measure of mRNA knockdown into the denominator of

the ratio.

The miR-34a pull-downs enriched for 2416 genes in HCT116

cells (by $1 standard deviation (SD), enrichment ratio $2.5) and

for 2816 genes in K562 cells ($1 SD, enrichment ratio $3.3)

(Figure 2A). The overlap of genes enriched $1 SD in both of these

unrelated cell lines was 982 genes. To determine the sensitivity of

the pull-down, we first looked at how many of the 36 published

targets of miR-34a were captured in the K562 or HCT116 pull-

downs (Figure 2B). Of the known expressed targets, 22 of 31

mRNAs (71%) were enriched in HCT116 cells and 14 of 29 (48%)

were enriched in K562 cells. It should be noted that the choice of

cut-off is somewhat arbitrary. Two additional known targets had

enrichment ratios of 2.5–3.2 in K562 cells. The enrichment ratio

ranged from 2.7–85. 12 genes were identified in both pull-downs.

The enrichment ratio for the shared hits was not significantly

different in K562 cells, which do not express miR-34a, compared

to HCT116 cells, which do, suggesting that the pull-downs

efficiently captured miR-34a targets even in cells that express

endogenous miR-34a.

Analysis of genes down-regulated by miR-34a
over-expression
To compare the mRNAs that associate with miR-34a to

mRNAs that decrease with miR-34a over-expression, we mea-

sured mRNA abundance in cells transfected with miR-34a or cel-

miR-67 by gene expression microarrays (Table S1). Genes whose

mean mRNA level ratio decreased by at least 20% after miR-34a

transfection were considered to be down-regulated either directly

or indirectly by miR-34a. With this arbitrary cut-off (,1 SD),

2087 genes were down-regulated in HCT116 cells and 945 genes

were down-regulated in K562 cells (Figure 2C). About a third of

these transcripts in both cell lines were also pulled down with Bi-

miR-34a (30% in HCT116, 36% in K562).

Down-regulated and pulled down mRNAs are enriched
for miR-34a seed sequences
Many miRNA targets contain a perfect match to the miRNA

seed region in their 39UTR. We examined the frequency of

39UTR matches to all hexamer sequences in miR-34a in the pull-

down and down-regulated gene sets relative to all genes probed on

the microarray (Figure S2A). Hexamer matches to nt 2–7 in the

miR-34a seed region were significantly enriched in the pull-down

(HCT116 p=1.8E-95; K562 p= 2.4E-11) and down-regulated

(HCT116 p= 1.7E-24; K562 p= 1.0E-11) datasets. There was also

significant enrichment in the HCT116 pull-down genes for nt 13–

19 exact matches, suggesting that base-pairing there enhances

miRNA binding, as has previously been shown [44]. In both cell

lines, seed enrichment was greater for the overlapping set of genes

that was both pulled down and down-regulated by miR-34a. For

genes in this overlap, exact matches to nt 2–7 were 1.8–2.0-fold

more frequent per kb of 39UTR than for all genes on the

microarray. These data suggest that genes in the overlap may be

more likely to be direct targets than genes identified by only one

method or that a perfect seed match might enhance miRNA-

mediated mRNA decay.

We next examined hexamer enrichment in the 982 genes

enriched$1 SD in pull-downs from both HCT116 and K562 cells

(Figure S2B). Seed matches were most enriched in the 39UTRs of

these genes, with the nt 2–7 match being the most abundant (1.7

fold more abundant than in all genes on the microarray (p = 8.4E-

39). The coding region (CDS) of these genes also contained a

highly significant enrichment for hexamer seed matches (p = 6.1E-

13). These results are consistent with recent cross-linked RISC

pull-downs that suggest that 25–50% of MREs may be in the CDS

[23,25]. There was also a modest enrichment of hexamers

matching the seed in the 59UTR (p= 0.005). Thus the pull-down

and down-regulated mRNAs were enriched for expected miRNA

target sequence features.

We next analyzed whether mRNA expression of the enriched

genes was reduced by miR-34a transfection in HCT116 cells

(Figure 2D). The mRNAs of the 982 genes enriched in the miR-

34a pull-down by $1 SD in both cell lines were significantly

down-regulated after miR-34a transfection compared to the set of

all genes expressed in the cell (p = 4.7E-80). The extent of down-

regulation was comparable to the set of 469 TargetScan-predicted,

evolutionarily conserved targets of miR-34a and significantly

greater than in the larger list of 2904 poorly conserved,

TargetScan-predicted genes (p = 1.6E-20). Increasing the cutoff

for the enrichment ratio in the pull-down led to a greater

proportion of highly down-regulated genes, indicating that a

higher enrichment ratio correlates with more effective mRNA

degradation and/or that highly enriched mRNAs are more likely

to be miR-34a targets. Thus, the Bi-miR-34a pull-down enriches

for known sequence and gene expression characteristics of bona fide

miRNA targets.

Genes enriched in the miR-34a pull-down of both cell
lines have a high probability of being direct miR-34a
targets
To determine the specificity of the pull-down, we generated a

random list (Table S2) of 11 genes enriched.2.5 fold in both pull-

downs (median enrichment 3.5-fold, range 2.5–17.3). The random

miR-34a efficiently silences known miR-34a targets CDK4, CDK6 and MYB. K562 cells were transfected with CTL miRNA, miR-34a, Bi-CTL or Bi-miR-34a
mimics for 48 hr. Expression was measured by qRT-PCR normalized to GAPDH. The housekeeping genes SDHA and UBC are negative controls. (D)
Cytoplasmic lysates from K562 cells were prepared 48 hr after cotransfection with Bi-CTL (black) miRNA or Bi-miR-34a (white) and a plasmid encoding
HA-Ago1, HA-Ago2, or empty vector. Enrichment of miR-34a by HA immunoprecipitation was measured by qRT-PCR normalized to U6. Enrichment of
Bi-miR-34a in the HA-immunoprecipitates suggests that Bi-miR-34a is incorporated into RISC. (E) Bi-miR-34a pull-downs optimally enrich targets 24 or
48 hr after transfection. K562 cells were transfected in duplicate with Bi-CTL (black) or Bi-miR-34a (white) mimics for the indicated times. Enrichment
of known miR-34a targets (CDK4 and CDK6) or control genes (GAPDH and UBC) was assessed by qRT-PCR relative to GAPDH. (F) The streptavidin pull-
down enriches for miR-34a target genes in K562 cells transfected with Bi-CTL (black) or Bi-miR-34a (white) mimics. (G) Known miR-24 target mRNAs
(H2AX, E2F2 and MYC) are also pulled down with Bi-miR-24 in HepG2 cells reverse transfected 48 hr earlier with Bi-CTL (black) or Bi-miR-24 (white).
Enrichment of target mRNAs in (F) and (G) was analyzed by qRT-PCR relative to SDHA. In all panels, data represent mean 6 SD of 3 independent
experiments. *, p,0.05, #, p,0.01, **, p,0.005, ##, p,0.001.
doi:10.1371/journal.pgen.1002363.g001
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list contained 3 known target genes (AXL, CDK4 and FOXP1; AXL
and FOXP1 were not known when the list was generated). First,

qRT-PCR analysis verified that the random gene mRNAs are

pulled down by Bi-miR-34a and not Bi-cel-miR-67. All 11

mRNAs were enriched (,4–10 fold) by Bi-miR-34a pull-down in

K562 cells, validating the microarray results (Figure 2E). miR-34a

over-expression significantly down-regulated mRNA levels of 9 of

11 genes by 25–90% (Figure 2F). PCYOX1L expression declined by

20%, but the change was not significant. To test whether the

39UTR of each gene could be regulated by miR-34a, the full 39

UTR of each gene was cloned into a dual luciferase reporter

plasmid. miR-34a repressed the 39UTRs of 10 of 11 genes by

,20–80% (Figure 2G). Thus, miR-34a could regulate the 39UTR

of 91% of a random set of genes enriched in both miR-34a pull-

downs. These results suggest that the Bi-miRNA pull-down is

highly specific for identifying direct miRNA targets. An important

implication of the large number of genes in the overlapping target

list and the low false positive rate is that miR-34a is capable of

regulating hundreds of genes.

miR-34a directly regulates growth factor signaling and
cell cycle progression
To understand miR-34a’s biological functions, we analyzed the

cellular pathways whose genes were most enriched in the Bi-miR-

34a pull-downs (Figure 3A). In both K562 and HCT116 cells, Bi-

miR-34a pull-downs enriched for genes in pathways related to

growth factor signaling and cell cycle control. Bi-miR-34a pull-

downs enriched significantly for genes in the EGFR, TGF-b,

interleukin, estrogen, and androgen receptor signaling pathways

(Figure 3A). Many of these pathways utilize common downstream

signaling molecules and have a well-established link to cancer.

Genes in the MAPK pathway, activated by most growth factors,

were highly enriched in the pull-downs for both cell lines. Growth

factor signaling also activates cell proliferation. Genes involved in

cell cycle regulation, especially the G1/S transition, and the p53

response were enriched in both pull-downs, consistent with

previously described targets and roles of miR-34a [3,4,7,8].

We performed a similar pathway enrichment analysis for genes

down-regulated by miR-34a (Figure 3B), which includes both

direct and indirect miR-34a targets. The downstream effects of

growth factor signaling on cell proliferation and p53 activation

were more prominent in the down-regulated genes than in the

pulled-down gene set, especially in p53-sufficient HCT116 cells.

Cell cycle and DNA repair pathways were enriched in genes

down-regulated by miR-34a in both K562 and HCT116 cells.

These results suggest that miR-34a directly inhibits growth factor

signal transduction and cell cycle progression pathways, culmi-

nating in reduced expression of genes needed for cell proliferation.

A pathway enrichment analysis of the TargetScan-predicted

targets of miR-34a (Figure S3) also highlighted the most

significantly enriched pathways in the experimental pull-down

and down-regulated gene sets, notably TGFb and MAPK

signaling and cell cycle and G1/S transition. However, the

significance of the enrichment was weaker and the strong role of

miR-34a in growth factor signaling was less obvious.

miR-34a regulates a dense network of genes involved in
signal transduction and cell cycle progression
To begin to understand regulation of growth factor signaling

and cell proliferation at the gene level by miR-34a, an interactome

of pulled down or down-regulated genes in HCT116 cells that

participate in the significantly enriched pathways was generated

(Figure 4). miR-34a potentially regulates the expression of critical

genes involved in virtually every step and branch of growth factor

signal transduction from ligand binding to downstream growth-

promoting transcription factors. The putative direct targets

included genes encoding multiple TGFb and FGF isoforms,

receptors for EGF, FGF, and insulin, and several oncogenic

receptor tyrosine kinases, including MET and AXL. Several genes
operating proximally in signal transduction, including SRC, PLCG1

and VAV2, were selectively pulled down. miR-34a targets also

included protein kinase subunits that activate downstream

signaling, including subunits of protein kinase A and C. In the

RAS-RAF-MAPK signal transduction pathway, putative directly

regulated genes included RRAS and RASA2, ARAF and BRAF,
JAK2, and 11 MAPK genes. Although knockdown of most of the

targets would be expected to inhibit cellular activation by diverse

growth factors, the genes also encode for some important

inhibitors, including the ubiquitin ligase CBLC, RASA2, and 5

DUSP genes (MAPK phosphatases). The pull-down also captured

76 transcripts of transcription factors, including some that

orchestrate the transcriptional response to signal transduction

(including STAT3, CREB1 and CREB3, SP1, ELK1 and SMAD4).

A major downstream effect of growth factor signaling and its

activated transcription factors is to stimulate cell proliferation.

miR-34a is already known to suppress E2F3 and some key cyclins

and cyclin-dependent kinases that regulate the G1/S transition.

The miR-34a pull-down enriched for additional cyclins (CCND3,

CCNG2), but also for transcripts of genes that inhibit the kinases

that promote exit from G1 (CDKN1C that encodes p57(KIP2),

CDKN2A (p14(ARF)). Other enriched transcripts include MCM5,

whose product is required to initiate DNA replication, and several

genes required for mitosis (PLK1, MAD2L2 and CDC23). Ectopic

miR-34a expression led to down-regulation of mRNAs for many

genes needed to replicate DNA, including 2 members of the

initiating complex that assembles at origins of DNA replication, 7

Figure 2. miR-34a pulls down transcripts of known and novel direct targets of miR-34a. (A) Overlap of genes enriched $1 SD in gene
expression microarray analysis of Bi-miR-34a pull-downs from HCT116 and K562 cells. (B) Enrichment of previously described miR-34a target gene
mRNAs in Bi-miR-34a pull-downs from HCT116 and K562 cells. Genes enriched $1 SD are indicated in bold. Abs =not expressed. (C) Genes down-
regulated by $20% after miR-34a over-expression. (D) mRNA expression of candidate miR-34a targets identified by Bi-miR-34a pull-down in both
HCT116 and K562 cells decreases after miR-34a over-expression. Cumulative distribution plots compare the extent of mRNA reduction of genes
enriched to varying degrees in the Bi-miR-34a pull-down with conserved (cons) or all TargetScan (TScan)-predicted targets. Genes whose mRNAs are
more highly enriched in the pull-down are progressively more likely to have reduced expression. (E) Pull-down of 11 mRNAs randomly selected from
the set of genes enriched$2.5-fold by microarray in both HCT116 and K562 Bi-miR-34a pull-downs is confirmed by qRT-PCR relative to SDHA in K562
cells transfected for 24 hr with Bi-CTL (black) or Bi-miR-34a (white). UBC is a negative control and E2F3 is a positive control. Three previously validated
miR-34a targets (AXL, CDK4 and FOXP1) in the random list of genes are indicated in bold. (F) miR-34a over-expression significantly decreases the
expression of 9 of 11 of the randomly chosen candidate target genes. K562 cells were transfected with CTL miRNA (black) or miR-34a (white) mimics
for 72 hr. Expression of random targets was measured by qRT-PCR normalized to GAPDH. Expression of 2 randomly selected genes (ACSM3 and
PCYOX1L) and the housekeeping mRNA UBC didn’t change significantly. (G) miR-34a targets the 39UTR of 10 of 11 randomly chosen targets. Luciferase
activity was measured 48 hr after HeLa cells were cotransfected with the luciferase reporter psiCHECK2 bearing the 39UTR of each gene and CTL
miRNA or miR-34a mimics. Results obtained after miR-34a transfection were normalized to CTL miRNA. In (E–G), data represent mean 6 SD of 3
independent experiments. *, p,0.05, #, p,0.01, **, p,0.005, ##, p,0.001.
doi:10.1371/journal.pgen.1002363.g002

miR-34a Inhibits Growth Factor Signaling

PLoS Genetics | www.plosgenetics.org 6 November 2011 | Volume 7 | Issue 11 | e1002363



components of the MCM complex, 4 DNA polymerases, and 5

components of the RFC complex, a cofactor for DNA polymerase.

These results suggest that miR-34a not only interferes with the

signaling that transduces the growth factor response, but also

directly and indirectly suppresses the expression of numerous

genes needed for cell proliferation.

miR-34a regulates cellular responses to growth factor
signaling
The Ras–extracellular signal-regulated kinase (ERK) and

phosphoinositide 3-kinase (PI3K)–AKT pathways are key trans-

ducers of the cellular response to growth factors. Since many

candidate miR-34a target gene products act in pathways converging

on ERK and AKT activation, we analyzed the effect of miR-34a

over-expression on ERK and AKT phosphorylation. miR-34a

transfection reduced basal phosphorylation of ERK and AKT in

HCT116 and HeLa cells (Figure 5A, 5B), but not in A549 cells

(Figure S4A). miR-34a over-expression both reduced basal

proliferation in the absence of serum and blunted the ability of

HCT116 (Figure 5C), HeLa (Figure 5D) and A549 (Figure S4B)

cells to proliferate in response to serum growth factors. Conversely,

immortalized mouse embryonic fibroblasts (MEFs) genetically

deficient in miR-34a were more resistant to serum starvation than

WT MEFs (Figure 5E). Apoptosis measured by annexin V and

Figure 3. Genes in the Bi-miR-34a pull-down or down-regulated by miR-34a over-expression are enriched in growth factor
signaling, cell cycle progression, and DNA repair pathways. Network of canonical pathways (Wikipathways and KEGG) significantly enriched
for genes identified by Bi-miR-34a pull-down (A) or down-regulated following miR-34a over-expression (B) in HCT116 and K562 cells. Each pathway is
represented by a node in the network. The node size increases with the number of identified genes in the pathway and the node color represents the
p-value based on the hypergeometric distribution (see key). Pathways that are not significantly enriched in an experiment are still shown, but are in
gray. The number of genes shared between two pathways is represented by an edge whose thickness increases with the number of shared genes.
The pull-down enriched pathways (A) suggest that miR-34a extensively targets growth factor, signal transduction and cell cycle control pathways.
The integrated outcome of both direct and indirect effects of miR-34a on gene expression in (B) is suppression of expression of genes participating in
downstream signaling, cell cycle and DNA repair pathways.
doi:10.1371/journal.pgen.1002363.g003
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propidium iodide staining was also significantly reduced in miR-

34a2/2 MEFs compared to wild-type MEFs after 24 hours of

serum starvation (Figure 5F). Despite the strong difference in cell

survival in cells deficient in miR-34a, expression of several known

miR-34a targets did not differ significantly between wild-type and

miR-34a2/2 MEFs (data not shown). The lack of a notable

difference may be due in part to compensatory up-regulation of

miR-34b and miR-34c in miR-34a2/2 MEFs (Figure 5G). These

data suggest that miR-34a dampens the basal state of activation of

proliferative and pro-survival pathways mediated by AKT and

ERK by down-modulating multiple genes whose products contrib-

ute to their phosphorylation.

miR-34a directly targets genes that regulate ERK and AKT
phosphorylation
To determine whether some of the candidate miR-34a target

genes identified in the pull-down that participate in growth factor

signaling are bona fide targets, we next tested miR-34a targeting of

selected receptor-proximal (AXL, MET and PIK3R2) and more

downstream (ARAF and MEK1) components of ERK and AKT

signal transduction pathways. These 5 genes were both pulled

down with Bi-miR-34a and down-regulated by miR-34a in

HCT116 cells. ARAF is a serine/threonine protein kinase that

phosphorylates and activates MEK1, which in turn phosphorylates

ERK [45]. AXL is a receptor tyrosine kinase that stimulates cell

Figure 4. Interactome of genes in the enriched canonical pathways pulled down with Bi-miR-34a and/or down-regulated by miR-
34a over-expression. Interactome of products of genes identified by Bi-miR-34a pull-down (red) or down-regulated by miR-34a over-expression
(blue) in significantly enriched pathways (Figure 3) in HCT116 cells. Edges represent physical interactions. A dense network of genes involved in
growth factor signaling and downstream effects on cell cycle progression and DNA repair is implicated.
doi:10.1371/journal.pgen.1002363.g004
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proliferation and also promotes metastasis [46,47]. PIK3R2 is a

regulatory subunit of PI3K [48] and MET is a tyrosine kinase

receptor that activates both PI3K and RAS [49]. AXL, MET and

MEK1 are described miR-34a targets [8,29,31], although AXL and

MEK1 were not known when these studies were performed.

The transcripts of all 5 genes were enriched 3–15-fold in the Bi-

miR-34a pull-down by qRT-PCR, validating the microarray

results (Figure 6A). Furthermore, over-expression of miR-34a

down-regulated both the mRNA and protein levels of all 5 genes

(Figure 6B, 6C). All but ARAF are also predicted miR-34a targets

by TargetScan. To determine whether these genes are direct miR-

34a targets, we tested the 39UTRs for 4 of the genes (ARAF, AXL,

MEK1 and MET) by luciferase assay. miR-34a reduced reporter

activity of these 39UTRs by ,40–75% (Figure 6D). Using the

PITA algorithm [50] to identify potential MREs in their 39UTRs,

we found 1 potential MRE in AXL, 2 in ARAF, 3 in MEK1, 4 in

PIK3R2 and 5 in MET (Figure S4). We tested repression of these

MREs by miR-34a using luciferase assays. All 5 genes contained at

least one miR-34a-responsive MRE (Figure 6E). Point mutations

that disrupt the MRE-miR-34a interaction restored luciferase

Figure 5. miR-34a expression suppresses cellular activation in response to serum growth factors. (A,B) miR-34a over-expression reduces
basal phosphorylation of AKT and ERK as measured by immunoblot 48 hr after transfection of HCT116 (A) and HeLa (B) cells with control (CTL) miRNA
or miR-34a mimics. Abundance of total ERK and AKT doesn’t change. (C,D) miR-34a over-expression reduces cell proliferation in the absence of serum
and suppresses the proliferative response of HCT116 (C) and HeLa (D) cells 24 hr after adding serum. (E) Total numbers of miR-34a+/+ or miR-34a2/2

MEFs after 24 hr of culture in 10% serum (10%) or 24 hr in 10% serum followed by 24 hr in 0.1% serum (0.1%). MEFs sufficient for miR-34a were more
sensitive to serum starvation. (F) miR-34a+/+ MEFs were more prone to apoptosis than miR-34a2/2 MEFs after 24 hr of culture in reduced serum. (G)
Expression of miR-34 family members in miR-34+/+ (WT) and miR-342/2 MEFs assessed by qRT-PCR. miR-34a2/2 MEFs expressed higher levels of miR-
34b and miR-34c. In C,D,F, and G, data represent mean 6 SD of 3 independent experiments. *, p,0.05, #, p,0.01, **, p,0.005, ##, p,0.001.
doi:10.1371/journal.pgen.1002363.g005
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activity, validating their regulation by miR-34a. Therefore, these 5

important genes in PI3K and MAPK signaling are all directly

regulated by miR-34a.

miR-34a pull-downs identify new miR-34a targets that
regulate cell cycle progression
Ectopic expression of miR-34a reduces expression of multiple

direct target genes whose products facilitate the G1/S transition

(CDK4, CDK6, CCND1, CCNE2 and E2F3). The pull-down

identified novel genes acting at the G1/S transition and genes

involved in DNA replication and mitosis. Two cell cycle-regulating

genes enriched in the miR-34a pull-down are in the random gene

list and were already shown (Figure 2C–2E) to be miR-34a-

regulated - CCNG2, which is most highly expressed in late S phase,

and MAD2L2, a component of the mitotic spindle assembly

checkpoint complex. To examine whether some of the other

putative targets that participate in cell cycle progression are direct

miR-34a targets, we focused on genes that were both pulled down

and down-regulated by miR-34a in HCT116 cells (Table S2).

Fourteen cell cycle-regulating genes (CDK4, CDK6, CCNE2, E2F2,

E2F3, E2F5, HDAC1, CDKN2A, MCM5, PKMYT1, PLK1, SMAD4,

MAD2L2 and CCND3) met these criteria. Four of these (CDK4,
CDK6, CCNE2 and E2F3) are known miR-34a targets. We

experimentally tested 5 of the 9 putative novel targets. These

genes were CCND3, a cyclin that binds to CDK4 or CDK6 and

regulates Rb phosphorylation; MCM5, a mini-chromosome

maintenance (MCM) protein involved in initiating DNA replica-

tion, MYT1, a serine/threonine protein kinase that phosphorylates

and inactivates CDC2, thereby negatively regulating cell cycle

progression at the G2/M transition; PLK1, a serine/threonine

protein kinase required for mitotic spindle maturation; and

SMAD4, a TGFb-activated transcription factor that induces G1

arrest and apoptosis. To determine whether these miR-34a pull-

down genes are bona fidemiR-34a target genes, we first verified that

their transcripts associate with Bi-miR-34a (Figure 7A). After miR-

34a over-expression, 3 of the 5 genes (MCM5, PLK1 and MYT1)

had reduced mRNA by at least 2-fold (Figure 7B) and all 5 had

significantly reduced protein (Figure 7C). Two other MCM genes,

MCM2 and MCM4, also demonstrated a significant miR-34a-

dependent reduction in mRNA, and their protein levels became

undetectable in miR-34a-transfected cells.

To investigate whether these 5 genes are directly regulated, we

measured changes in luciferase activity in HeLa cells after miR-

34a co-transfection with reporters containing their 39UTRs. The

39UTRs of 4 of 5 of these genes (CCND3, MCM5, PLK1 and

SMAD4) were significantly repressed 30–60% by miR-34a

(Figure 7D). The 39UTR of MYT1, which bound to Bi-miR-34a

and was down-regulated by miR-34a over-expression (Figure 7A,

7B), was not regulated by miR-34a. MYT1 expression could be

regulated by MREs outside the 39UTR or indirectly. PITA and

TargetScan were used to identify miR-34a MREs in the 39UTRs

of CCND3, SMAD4, MCM5, and PLK1 (Figure 7E, Figure S5).

CCND3 MRE1, SMAD4 MRE1 and MCM5 MRE5 were

significantly suppressed by miR-34a (Figure 7E, Figure S5). The

CCND3 and SMAD4 MREs were predicted by TargetScan, while

MCM5 MRE5 contains a miR-34a hexamer seed match.

Mutations that disrupt base pairing with miR-34a rescued

luciferase expression, further confirming that these genes are

direct miR-34a targets. Because the enrichment ratios for MCM2

and MCM4 in the pull-down (,2.3) were close to our cut-off, we

also evaluated whether MCM2 and MCM4 might be direct targets.

MCM2 is a direct target as verified by mRNA enrichment in the

pull-down, decrease in mRNA and protein following miR-34 over-

expression, miR-34a regulation of its 39UTR by luciferase activity

and MRE identification (Figure 7A–7E). However, the MCM4

39UTR was not active in luciferase assays. Collectively, these

findings suggest that miR-34a acts as a master regulator of cell

proliferation, directly suppressing many key genes that control cell

cycle progression.

Discussion

Despite improvements in bioinformatic and experimental tools,

distinguishing the direct targets of a miRNA from indirectly

regulated genes remains challenging [14]. Here we describe a

simple biochemical method to isolate candidate miRNA targets by

streptavidin pull-down of mRNAs that associate with a transfected

Bi-miRNA, and apply it to study miR-34a. Comparison of the set

of mRNAs that directly associate with the Bi-miRNA with

mRNAs down-regulated by miRNA over-expression makes it

possible to distinguish the direct and indirect effects of a miRNA.

Candidates identified by Bi-miR-34a pull-down have properties of

validated miRNA targets: they are enriched for sequences

complementary to the miR-34a seed and tend to decrease in

expression with miR-34a over-expression. Genes that both

decrease in mRNA abundance after over-expression and are

isolated by Bi-miR-34a pull-down are further enriched for seed

matches, indicating that either they are more likely true miR-34a

targets or that a perfect seed match might enhance target mRNA

degradation.

In our analysis we defined candidate direct targets using an

arbitrary enrichment ratio cut-off of 1 SD, which corresponded to

an enrichment of $2.5-fold for HCT116 cells and $3.3-fold for

K562 cells. As the enrichment ratio cut-off was increased, mRNA

suppression after ectopic miR-34a expression increased in tandem

(Figure 2D). A more stringent cut-off would reduce the already low

false positive rate, but also reduce the sensitivity to detect direct

targets (Figure 2B). With this cut-off, we identify 71% of the known

miR-34a targets expressed in HCT116 cells as ‘‘hits’’, but only

48% of the known expressed targets in K562 cells. If we had also

chosen a 2.5-fold cut-off for K562 cells, our sensitivity for picking

targets would have increased to 55%, while a 2-fold cut-off would

have increased it to 69%. Since 10 of 11 genes in the random list

of genes enriched by $2.5 fold by Bi-miR-34a pull-downs in both

cells have 39UTRs regulated directly by miR-34a by luciferase

assay, a lower cut-off for the enrichment ratio might have

increased sensitivity without an unacceptable false discovery rate.

Some bona fide target genes are only enriched in the pull-down by

,2-fold; one of the novel genes we validated by identifying its

MRE (MCM2) was only enriched by 2.3-fold in the pull-down of

both cell lines. The low false positive rate of target identification

demonstrated with the random gene list was also supported by the

high degree of experimental validation of the growth factor

signaling and cell cycle regulatory genes we chose to examine

experimentally (Table S2). In all, we provided experimental

evidence for 14 novel direct targets of miR-34a and identified 14

miR-34a MREs, of which 11 had a perfect hexamer seed match

and the 3 others had perfect matches if G:U wobbles were allowed.

Thus, the majority of genes we identified as regulated by miR-34a

contain canonical 39UTR MREs with good seed pairing. In the

setting of over-expression by transfection, protein levels of all 11

genes we analyzed by immunoblot declined substantially. The few

target genes that we tested for which we did not find miR-34a

regulation of the 39UTR might be false positives or might be direct

targets, regulated by sequences in the 59UTR or CDS. In fact we

found enrichment for hexamer seed matches in these regions in

the mRNAs pulled down with miR-34a, consistent with MRE
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Figure 6. miR-34a directly inhibits growth factor signaling and signal transduction pathways by regulating novel genes. (A) Five
genes involved in growth factor signaling or signal transduction are pulled down by Bi-miR-34a. HCT116 cells were transfected with Bi-cel-miR67 (CTL
miRNA, black) or Bi-miR-34a (white) mimics for 24 hr and mRNA capture was measured by qRT-PCR normalized to GAPDH. Five of 5 (ARAF, AXL, MEK1,
MET and PIK3R2) genes identified by microarrays, but not housekeeping mRNAs SDHA and UBC, are significantly enriched in the Bi-miR-34a pull-
down. (B) miR-34a decreases ARAF, AXL, MEK1, MET and PIK3R2mRNAs, measured by qRT-PCR relative to GAPDH, in HCT116 cells transfected with CTL
(black) or miR-34a (white) for 48 hr. UBC is a negative control gene. Relative mRNA levels were normalized to levels in CTL miRNA-transfected cells. (C)
ARAF, AXL, MEK1, MET and PIK3R2 protein levels decline by immunoblot after miR-34a over-expression in HCT116 cells harvested 48 hrs after
transfection with CTL miRNA or miR-34a mimic. Because of the low signal for AXL, an additional experiment probed for AXL with a longer exposure is
shown at right. (D) miR-34a significantly regulates the 39UTR of ARAF, AXL, MEK1 and MET in HeLa cells co-transfected with a dual luciferase reporter
bearing the 39UTR of each gene and CTL miRNA or miR-34a for 48 hr. Insertion of a sequence fully complementary to miR-34a into the Renilla

luciferase 39UTR (AS-34a) is the positive control. Luciferase activity was normalized to results obtained with the empty vector (V). (E) Luciferase
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properties in recent cross-linking-RISC immunoprecipitation

experiments [23,25].

Known targets may not have been identified by the pull-down

for a variety of reasons. First, not all of the targets in the literature

may be correctly assigned. Second, some known targets, such as

CD44, are only modestly regulated by miR-34a [40]. The ratio

that defines a ‘‘hit’’ is arbitrary. We set a relatively high threshold

for identifying ‘‘hits’’ to maximize the specificity of the method

(especially given the large numbers of enriched mRNAs in the

pull-down), which came at the cost of sensitivity. Some known

targets, which we did not designate hits with our 1 S.D. threshold

of the enrichment ratio (which corresponded to .3.3 in K562

cells) had enrichment ratios of 2.5–3.2 in K562 cells. Other bona

fide targets may have low, but detectable expression levels, and

could have been missed due to the low sensitivity and inter-assay

variability of microarray experiments. In addition to cellular

variation in endogenous miRNA expression and RISC abun-

dance, other context-dependent biological factors, such as target

site accessibility, might vary due to the expression of RNA binding

proteins, which could influence the efficiency of miRNA target site

binding and the mechanism of targeting [51,52]. Cell-type specific

expression of other MRE-containing genes that compete for

miRNA binding could also influence the pull-down enrichment

ratio [53]. Finally, some missed targets are likely to be false

negatives.

Normalizing the pulled down mRNAs to their abundance in the

input cellular mRNA was critical to eliminate from consideration

highly abundant housekeeping mRNAs. Our pull-down method

modified a previously developed protocol [41,42], which did not

normalize the pull-down mRNAs to the input RNA. Many of the

‘‘hits’’ pulled down with Bi-miR-10a included ribosomal mRNAs,

which may represent background binding of very abundant

transcripts. Moreover, the miR-10a ‘‘hits’’ were not enriched for

mRNAs containing miR-10a 39UTR seed matches and were not

down-regulated by miR-10a over-expression. In other work to be

presented elsewhere, the pull-down method was used to identify

genome-wide targets of miR-200c and miR-21. Importantly, the

miR-200c and miR-21 pulled down mRNAs are also enriched for

known targets and for 39UTR seed sequences.

An advantage to the Bi-miRNA pull-down method described

here is its simplicity. In contrast to mRNA expression-based target

identification methods, Bi-miRNA pull-downs should identify only

direct targets, excluding genes whose expression is indirectly

modulated by changes in miRNA expression. Because the degree

of mRNA suppression mediated by miRNAs is often small relative

to changes in protein, methods that rely on changes in mRNA

expression in response to manipulation of miRNA levels will

necessarily miss some direct targets. Although the enrichment ratio

takes into account a reduction in target gene mRNA in its

denominator, the pull-down should not only identify target genes

whose mRNA levels decline, but also those that are regulated

primarily by inhibiting translation. Unlike approaches based on

Ago pull-downs, the Bi-miRNA pull-down identifies the mRNAs

directly associated with a specific miRNA, simplifying analysis of

biological processes regulated by the miRNA.

The method described here without cross-linking does not

directly identify MREs. The streptavidin pull-down method might,

however, readily be modified to include cross-linking, RNase

digestion of unbound mRNA segments and sequencing, similar to

the HITS-CLIP protocol [23,24], to capture not only direct

targets, but also identify MREs of an individual Bi-miRNA.

Isolating RNAs associated with an individual miRNA rather than

all RISC-associated RNAs in cells over-expressing the miRNA of

interest might be a more direct way to define specific target

sequences. Future bioinformatic studies of Bi-miRNA pull-down

datasets could be used to better define in an unbiased manner the

sequence features that dictate miRNA targeting, and could reveal

non-canonical modes of targeting, such as those that contain only

partial seed complementarity [17] or pairing to the central region

of the miRNA [18] or that lie outside the 39UTR. Indeed, in this

work, we enriched for mRNAs with 59UTR and CDS seed

matches, indicating that some direct miR-34a targets may be

regulated outside of their 39UTR.

Only 29% of the 2416 enriched genes in the HCT116 pull-

down had down-regulated mRNA levels by mRNA microarray

analysis after over-expressing miR-34a for one day, while 10 of 11

randomly chosen genes in the pull-down had significantly

decreased mRNA by qRT-PCR analyzed 72 hr after transfection.

Thus although miRNAs may commonly lead to mRNA

degradation, the degree of mRNA down-regulation of most genes

is slight if cells are harvested within a day of transfection. mRNA

microarrays may be too noisy to detect subtle changes in

expression, unless the analysis is performed on many replicates.

Our data also suggest that the kinetics of mRNA degradation may

be slow. The early 24 hr time point used for the assay may have

fortuitously enhanced our ability to capture miRNA-bound

transcripts before too many had been degraded. Indirect effects

of the miRNA are also likely to increase over time. The set of

genes enriched in the miR-34a pull-down of both HCT116 and

K562 cells contains 76 transcription factors or co-factors, whose

suppression would reduce many mRNAs.

One important corollary of our results is that miR-34a likely

directly regulates hundreds of genes. However, further experi-

mental work is needed to assess how many of the hundreds to

thousands of genes whose mRNAs associated with ectopic miR-

34a are actually directly regulated by endogenous miR-34a.

Possibly only a minority of potential targets is indeed directly

regulated in an individual cell at any time. Based on our analysis

(Figure 2D), the genes whose transcripts are most enriched in the

pull-down may be the most significant targets in a given context.

Additional experiments are needed to probe the functional

consequences of miR-34a regulation of the genes we identified

as targets. The directly regulated genes might vary considerably

from cell type to cell type or even in the same cell lineage

depending on differentiation state or environmental conditions.

For this study we focused on the shared targets identified in two

very different types of cells, rather than the ones that were unique

to each cell-type. The pull-down method could be used in the

future to compare miRNA target genes in different cellular

contexts. Notably, the effect of miR-34a on cell signaling differed

in the cancer cells we examined. Basal phosphorylation of AKT

and ERK was reduced by miR-34a over-expression in HCT116

and HeLa cells (Figure 5), but not in A549 cells (Figure S4).

Constitutively active RAS in A549 cells may override the effect of

miR-34a in that context. Our results suggest that a dense network

of genes that participate in common pathways, sometimes with

opposing functions, is capable of being regulated by one miRNA.

Although we observed a clear effect of genetic loss of miR-34a on

the ability to cells to survive growth factor withdrawal, we did not

see reduced expression in miR-34a2/2 compared to wild-type

reporters bearing PITA-predicted wild-type (WT) MREs from each target gene are significantly repressed in HeLa cells cotransfected with miR-34a.
Point mutations (MT) that disrupt base pairing with miR-34a rescue reporter expression. MRE sequences are provided in Figure S4.
doi:10.1371/journal.pgen.1002363.g006
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Figure 7. miR-34a pull-downs identify novel miR-34a targets involved in cell cycle progression. (A) Bi-miR-34a pull-down captures
transcripts of cell cycle genes. Enrichment of candidate mRNAs in HCT116 cells transfected with Bi-cel-miR-67 miRNA (CTL, black) or Bi-miR-34a
(white) for 24 hr was assessed by qRT-PCR analysis normalized to GAPDH. SDHA and UBC mRNAs are housekeeping genes not enriched in the pull-
downs. (B) miR-34a over-expression significantly suppresses mRNA levels of 5 of 7 cell cycle genes tested. mRNA expression was analyzed by qRT-PCR
relative to GAPDH performed on total RNA harvested from HCT116 cells transfected with CTL miRNA (black) or miR-34a (white) mimics for 48 hr. Two
candidate target genes (CCND3 and SMAD4) and the housekeeping genes SDHA and UBC are not significantly altered. (C) Protein levels of 6 of 6 cell
cycle genes examined decrease with miR-34a over-expression. HCT116 cells were transfected with CTL miRNA or miR-34a mimics for 48 hr before
immunoblot. b-Actin is a loading control. (D) miR-34a represses the 39UTR of CCND3, MCM2, MCM5, PLK1 and SMAD4, but not MCM4 and MYT1. HeLa
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cells of some of the key miR-34a target genes we identified. Since

growth factor signaling is so central to cell survival and

proliferation, the permanent loss of miR-34a expression likely

led to myriad compensatory changes. This seeming paradox

supports the conclusions of our study – namely that a single

miRNA may exert its biological effect by regulating expression of

hundreds of genes. The capacity of miR-34a to potentially regulate

so many genes that affect growth factor signaling may enable it to

exert an effect in diverse contexts.

The numbers of genes that are actually regulated by miR-34a in

any setting will likely depend on how strongly miR-34a is

expressed. In our pull-down, we greatly over-expressed miR-34a.

However, the level of over-expression throughout this study was

not greater than endogenous miR-34a expression in some

physiological settings, i.e. in K562 cells stimulated with phorbol

ester where miR-34a increases 1000-fold [9]. There may be a

target gene hierarchy – some genes regulated by low levels of miR-

34a, others regulated only by high levels.

The dense network of cell signaling genes captured in the pull-

downs suggests that an important function of miR-34a is to

regulate the proliferative and activation responses to extracellular

growth factors. Despite its function in regulating growth factor

signaling and cell proliferation, we did not find a significant

variation in miR-34a expression after serum starvation or when

cells were synchronized in different phases of the cell cycle (data

not shown). In this study we experimentally verified as direct miR-

34a targets 5 growth factor signaling genes (ARAF, AXL, MEK1,

MET and PIK3R2). miR-34a was previously shown to inhibit the

G1/S transition [3,8]. Here we identified 7 novel cell cycle-

regulating direct targets that included genes also required for DNA

replication and mitosis. The ultimate anti-proliferative effect of

miR-34a integrates both direct consequences of suppressing

expression of genes required for progression through the G1/S

transition and at other steps of the cell cycle as well as indirect anti-

proliferative effects from repressing the growth factor signaling

pathways that activate cell cycle progression. Consistent with our

genome-wide target gene analysis, miR-34a expression resets the

basal state of ERK and AKT phosphorylation in several cell lines,

rendering cells less responsive to growth factor signaling (Figure 5).

This was shown both by miR-34a overexpression as well as by

genetic deletion. miR-34a may reduce cellular sensitivity to growth

factor signaling by suppressing many genes in multiple signal

transduction pathways. miR-34a candidate targets include genes

that are universally involved in transmitting growth factor

activation signals as well as some that participate in specific

pathways. The particular signaling genes that are suppressed in a

given cell line will likely vary from cell to cell, depending on the

growth factors to which the cell responds. These types of

differences likely contribute to the incomplete overlap between

the enriched pathways captured in the two hematopoietic and

colon cancer cell lines examined here.

Materials and Methods

Cell lines
HCT116, K562, A549 and HeLa cells were from ATCC. miR-

34a+/+ and miR-34a2/2 MEFs were generated from E14.5

littermate embryos. A full description of the mice will be published

elsewhere. MEFs were transformed by infecting the cells with

retroviruses encoding H-RAS-V12 and E1A and by selection with

puromycin (1 mg/ml) and hygromycin (50 mg/ml). The plasmids

for expression of H-RAS-V12 (plasmid 9051) and E1A (plasmid

18748) were obtained from Addgene. The VSV-G pseudotyped

viruses were produced in 293T cells using the standard protocol.

MEFs, HCT116, A549 and HeLa cells were grown in DMEM

with 10% fetal bovine serum and supplemented with penicillin,

streptomycin, HEPES, L-glutamine and b-mercaptoethanol,

K562 cells were grown in RPMI containing 10% fetal bovine

serum and the same supplements.

Transfection of miRNA mimics and plasmid DNA
For most experiments, 26106 HCT116 or K562 cells were

transfected with 200 pmol hsa-miR-34a or cel-miR-67 miRNA

mimics (Dharmacon), using Amaxa nucleofection according to the

manufacturer’s protocol. Biotin was attached to the 39-end of the

active strand. HeLa and A549 cells were transfected with

Lipofectamine 2000 and miRNA mimics at a final concentration

of 50 nM (Invitrogen). To study the association of Bi-miRNAs

with HA-Ago1 or HA-Ago2, pIRESNeo (Clontech) or pIRESNeo-

HA-Ago1 or pIRESNeo-HA-Ago2 (Addgene) plasmids were co-

transfected in six-well plates (2 mg/well, 16106 cells/well) with

200 pmol Bi-miR-34a or Bi-cel-miR-67 using Amaxa as per the

manufacturer’s instructions.

RNA isolation and quantitative RT–PCR
Total RNA was isolated using Trizol reagent (Invitrogen), treated

with DNase I (Ambion) and reverse transcribed using random

hexamers and superscript III reverse transcriptase (Invitrogen).

qRT-PCR was performed in triplicate samples using SYBR Green

FastMix (Quanta) on a BioRad CFX96. mRNA levels were

normalized to housekeeping genes GAPDH, UBC or SDHA. miRNA

was quantified in triplicate using the TaqMan MicroRNA Assay

(Applied Biosystems) as per the manufacturer’s instructions and

normalized to U6. Primer sequences are listed in Table S3.

Immunoblot
Whole cell lysates from transfected K562 or HCT116 cells were

prepared using RIPA buffer. Proteins were analyzed by SDS-

PAGE, transferred to nitrocellulose membranes and probed with

the following antibodies: AXL [4566], ARAF [4432], MEK1

[9124], CDK4 [2906], MCM2 [3619], PKMYT1 [4282], PLK1

[4513], SMAD4 [9515], FOXP1 [2005], RBBP4 [4633], AKT

[9272], pAKT ser-473 [4051], ERK [4370], pERK [9107] from

Cell Signaling; MET [sc-161], MCM5 [sc-165995], E2F1 [sc-

251], E2F3 [sc-879], CHEK1 [sc-8408] from Santa Cruz;

ACSM3 [SAB1400253], MAD2L2 [SAB1400387], AGBL5

[AV53752], CCNG2 [AV03032], PSMD5 [WH0005711M1]

from Sigma; MCM4 [06-1296] from Millipore; and PI3KR

[610045], BD Biosciences. Western Blots were quantified by

densitometry.

Biotin pull-down
HCT116 or K562 cells (16106) were transfected in triplicate

with Bi-miR-34a or Bi-cel-miR-67 (Dharmacon) as described

cells were cotransfected for 48 hr with CTL miRNA or miR-34a mimics and psiCHECK-2 empty vector (V) or psiCHECK-2 containing the 39UTR of each
gene in the Renilla luciferase 39UTR. The positive control reporter contained a perfectly complementary sequence to miR-34a (AS-34a). Relative
luciferase activity in miR-34a-transfected cells is normalized to CTL miRNA-transfected cells. (E) Dual luciferase reporter plasmids bearing wild-type
(WT) MREs from CCND3, MCM2, MCM5 and SMAD4 are significantly repressed by co-transfection with miR-34a in HeLa cells. Mutation of the seed
region of each MRE (MT) rescues reporter expression. MRE sequences are provided in Figure S5. *, p,0.05, #, p,0.01, **, p,0.005, ##, p,0.001.
doi:10.1371/journal.pgen.1002363.g007
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above and then cultured in six-well plates. Twenty-four hours

later, the cells from 3 wells were pelleted at 5006g. After washing

twice with PBS, cell pellets were resuspended in 0.7 ml lysis

buffer (20 mM Tris (pH 7.5), 100 mM KCl, 5 mM MgCl2, 0.3%

NP-40, 50 U of RNase OUT (Invitrogen), complete mini-

protease inhibitor cocktail (Roche Applied Science)), and

incubated on ice for 5 min. The cytoplasmic lysate was isolated

by centrifugation at 10,0006g for 10 min. Streptavidin-coated

magnetic beads (Invitrogen) were blocked for 2 hr at 4uC in lysis

buffer containing 1 mg/ml yeast tRNA and 1 mg/ml BSA

(Ambion) and washed twice with 1 ml lysis buffer. Cytoplasmic

lysate was added to the beads and incubated for 4 h at 4uC before

the beads were washed five times with 1 ml lysis buffer. RNA

bound to the beads (pull-down RNA) or from 10% of the extract

(input RNA), was isolated using Trizol LS reagent (Invitrogen).

The level of mRNA in the Bi-miR-34a or Bi-cel-miR-67 control

pull-down was quantified by qRT-PCR or mRNA microarray.

For qRT-PCR, mRNA levels were normalized to a housekeeping

gene (GAPDH, SDHA or UBC). The enrichment ratio of the

control-normalized pull-down RNA to the control-normalized

input levels was then calculated.

Microarray analysis
Total RNA (independently in two experiments) was amplified,

labeled and hybridized to Affymetrix U133 plus 2.0 mRNA

microarrays. The quality of the RNA was assessed before

performing the microarray and the quality of the microarray data

was assessed using affyPLM and Affy software. The replicate data

sets for the 4 sets of samples (pull-down and input for miR-34a and

cel-miR-67) were compared using an unsupervised hierarchical

clustering algorithm, which verified the similarity of the duplicates.

The microarray data were normalized using RMA [7] to reduce

interarray variation. The enrichment ratio {Bi-miR-34a PD/Bi-

cel-miR-67 PD}/{Bi-miR-34a input/Bi-cel-miR-67 input} was

calculated for each probe. For genes represented by multiple

probes, the mean ratio for all the probes was calculated. Genes for

which none of the probe hybridization signals exceeded the

background were considered not expressed and were disregarded

in the analysis. For informatic analysis of the PD data, genes whose

enrichment ratio were $1 SD above background based on a log-

normal distribution were considered ‘‘hits’’.

Gene down-regulation after miR-34a over-expression
HCT116 or K562 cells were transfected in independent

duplicate experiments as above with unbiotinylated miR-34a or

cel-miR-67 (Dharmacon) and total RNA was harvested 24 hr later

and analyzed as above by gene expression microarrays. After

normalization, fold changes for each probe were calculated as the

ratio of input RNA from miR-34a-transfected cells to the ratio of

input RNA from cel-miR-67-transfected cells. Genes were

considered down-regulated if the ratio decreased by at least

20%, which corresponded to ,1 SD. To test the expression levels

of putative target sets, each gene list was plotted in a cumulative

distribution function (CDF) plot, and the Kolmogorov-Smirnov

[KS] test was used for statistical comparisons between gene sets.

Analysis of miR-34a target genes by target prediction
algorithms
To determine whether a gene was also a predicted target of

miR-34a, the presence of miR-34a binding sites was analyzed

using TargetScan 4.2 (http://www.targetscan.org/) [39,54,55] or

PITA (http://132.77.150.113/pubs/mir07/mir07_prediction.

html) [50].

Hexamer analysis
The mature hsa-miR-34a sequence was obtained from miRBase

(http://mirbase.org/). All RefSeq human mRNA sequences were

downloaded from NCBI in July 2009 (http://ftp.ncbi.nih.gov/).

mRNAs were indexed by Entrez Gene ID; in cases where multiple

sequences matched a gene ID, the sequence with the longest

39UTR was selected. For each test gene list and miR-34a

hexamer, the miR-34a hexamer frequency (hexamer matches

per kb of sequence) was calculated. The frequency of hexamer

matches for all genes on the microarray (the background set) was

also determined. Gene IDs with no corresponding sequence in the

database were excluded from analysis. Monte Carlo simulations of

equally sized random gene sets (without replacement) were used to

generate an empirical 2-tailed p-value for each gene set/hexamer

combination. When p,1E-4, the p-value was calculated from

curve fitting relative to the random background distribution.

Pathway enrichment analysis and network visualization
For each of the lists of down-regulated and pull-down-enriched

genes, the p-value of over-representation in a suite of canonical

pathways (KEGG [56] and Wikipathways [57]) was determined

using the hypergeometric distribution. A visualization of the

relationship between the enriched pathways (p,0.001) based on

the number of overlapping genes was rendered using Cytoscape

[58]. The network of gene-gene interactions underlying these

relationships was constructed based on interactions supplied by

MetaCore (GeneGo Inc). Physical, predicted and genetic interac-

tions were used to connect the down-regulated and pull-down

enriched genes within the significant signaling, cell cycle or DNA

repair pathways. Signaling pathway genes with no connection to

any other node were removed and the network was arranged

according to predicted sub-cellular localization.

Luciferase assay
HeLa cells were cotransfected in 24 well plates using

Lipofectamine 2000 (Invitrogen) with 50 nM miR-34a mimic or

control miRNA mimic and 50 ng of psiCHECK2 (Promega)

vector containing the MRE or 39UTR of indicated genes cloned

into the multiple cloning site of Renilla luciferase. After 48 hr of

transfection (unless otherwise indicated) luciferase activities were

measured using the Dual Luciferase Assay System (Promega) and

Top count NXT microplate reader (Perkin Elmer) per manufac-

turer’s instructions. All experiments were performed at least in

triplicate. Results were normalized to those obtained in cells

transfected with an empty vector. For some experiments, a

perfectly complementary antisense sequence to the active strand of

miR-34a was inserted into the multiple cloning site for use as a

positive control. Data were normalized to Firefly luciferase and

results from 3 independent experiments were compared. Sequence

of primers used for cloning 39UTRs for miR-34a target genes are

listed in Table S4. MREs sequences were cloned into psiCHECK-

2 by annealing complementary oligomers matching each MRE

sequence (Figures S4, S5) with overhanging ends complementary

to the XhoI and NotI sites of psiCHECK-2.

Cell growth experiments
HCT116, HeLa and A549 cells were transfected as described

above. One day after transfection, cells were placed in serum-free

medium or medium containing 10% fetal calf serum. 48 hours

after the medium was changed, total cell numbers were counted.

MEFs were plated at a density of 2.56105 or 56105 cells per well

of a 6-well plate. The medium was changed to vary serum

concentration 24 hr after plating. The MEFs were harvested 24 hr
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later and counted using Trypan blue staining or stained in

PBS+0.4% BSA with annexinV-APC (Invitrogen) at a 1:30

dilution, then washed once and stained with propidium iodide

(4 mg/ml) (Sigma-Aldrich).

Supporting Information

Figure S1 (A) HCT116 cells were transfected with Bi-miR-34a

or Bi-cel-miR-67 (CTL) and after 24 hr, abundance of known

miR-34a target mRNAs (CDK4, CDK6 andMYB) was measured by

qRT-PCR analysis of pull-down RNA. CDK4, CDK6 and MYB

and not UBC (a housekeeping mRNA) were significantly enriched

in the Bi-miR-34a pull-downs (white) and not the control pull-

down (black). (B) K562 cells were transfected with Bi-miR-34a

(white) or Bi-CTL (black), and RNA isolated from the streptavidin

pull-down was analyzed by qRT-PCR for miR-34a and miR-24 (a

control miRNA) after normalization to U6. miR-34a was,50-fold

higher in miR-34a pull-down as compared to control pull-down.

miR-24 was not enriched and its levels were similar in each pull-

down. (C) Addition of Bi-miR-34a (white) or Bi-CTL (black) to

cytoplasmic extracts prepared from untransfected K562 cells does

not enrich for known miR-34a target mRNAs, suggesting that the

specific association of these mRNAs with Bi-miR-34a occurs in

live cells and not post-lysis. Data in (B) are from 3 independent

experiments and in (A) and (C) are from duplicate experiments.

(TIF)

Figure S2 Sequence characteristics of Bi-miR-34a pull-down

targets. (A) Enrichment of hexamers matching each position of the

mature miR-34a sequence in the HCT116 and K562 pull-down

(red), down-regulated genes (blue), and genes down-regulated by

miR-34a and pulled-down (yellow). Genes both enriched by Bi-

miR-34a pull-down and down-regulated by miR-34a are the most

enriched for miR-34a seed matches (B) Hexamer enrichment

analysis for genes enriched in both HCT116 and K562 Bi-miR-

34a pull-downs. Bi-miR-34a pull-down enriched for sequences

matching two miRNA regions: the seed (positions 1–8) and a

possible 39 compensatory region (positions 13–19). Bi-miR-34a

pull-down mRNAs are also enriched for CDS and 59UTR

matches to these sequences (*p#0.0001).

(TIF)

Figure S3 Pathway networks representing the significant

canonical pathways enriched for TargetScan conserved (A) and

TargetScan non-conserved (B) target predictions.

(TIF)

Figure S4 miR-34a regulation of growth factor signaling. (A)

Western blots of A549 cells transfected with miR-34a or CTL

mimics. No reproducible change in pERK or pAKT was observed

in these cells. (B) A549 cells were transfected with miR-34a or cel-

miR-67 (CTL) mimics, and placed in normal growth medium with

10% serum (+) or growth medium lacking serum (2). Cells

transfected with miR-34a did not proliferate in response to serum.

Candidate miR-34a microRNA recognition elements (MRE) in

the 39UTR of AXL, ARAF, MEK1, MET and PIK3R2 mRNAs

predicted by PITA (see Materials and Methods). Numbers in

parenthesis represent the location of the MRE in the 39UTR.

Wild-type MREs in (C) were repressed by miR-34a (see Figure 5F)

whereas MREs that were not responsive to miR-34a are shown in

(D). Point mutations that disrupt the base-pairing with miR-34a

are shown in red in the mutant MREs.

(TIF)

Figure S5 Candidate miR-34a microRNA recognition elements

(MRE) in the 39UTR of CCND3, MCM2, MCM5, PLK1 and

SMAD4 mRNAs predicted by PITA or TargetScan (see Materials

and Methods). Numbers in parenthesis represent the location of

the MRE in the 39UTR (PLK1 MRE2 spans the stop codon of

PLK1). Wild-type MREs in (A) were repressed by miR-34a (see

Figure 6E), whereas MREs that were not responsive to miR-34a

are shown in (B). Point mutations that disrupt the base-pairing

with miR-34a are shown in red in the mutant MREs.

(TIF)

Table S1 Genes enriched in Bi-miR-34a pull-downs or down-

regulated by miR-34a over-expression in HCT116 and K562 cells.

(XLS)

Table S2 Experimental validation of miR-34a target genes.

(XLS)

Table S3 Sequence of primers used for qRT-PCR.

(XLS)

Table S4 Sequence of primers used for cloning 39UTR of miR-

34a target genes.

(XLS)
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13. Vogt M, Munding J, Grüner M, Liffers S-T, Verdoodt B, et al. (2011) Frequent
concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in
colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas
and soft tissue sarcomas. Virchows Arch 458: 313–322. doi:10.1007/s00428-
010-1030-5.

14. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets.
Nat Struct Mol Biol 17: 1169–1174. doi:10.1038/nsmb.1921.

15. Bartel DP (2009) MicroRNAs: Target Recognition and Regulatory Functions.
Cell 136: 215–233. doi:10.1016/j.cell.2009.01.002.

16. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38
Suppl: S8–13. doi:10.1038/ng1798.

17. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, et al. (2009) miR-24
Inhibits Cell Proliferation by Targeting E2F2, MYC, and Other Cell-Cycle
Genes via Binding to ‘‘Seedless’’ 39UTR MicroRNA Recognition Elements.
Molecular Cell 35: 610–625. doi:10.1016/j.molcel.2009.08.020.

18. Shin C, Nam J-W, Farh KK-H, Chiang HR, Shkumatava A, et al. (2010)
Expanding the MicroRNA Targeting Code: Functional Sites with Centered
Pairing. Molecular Cell 38: 789–802. doi:10.1016/j.molcel.2010.06.005.

19. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of
microRNAs on protein output. Nature 455: 64–71. doi:10.1038/nature07242.

20. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG
(2009) Lost in translation: an assessment and perspective for computational
microRNA target identification. Bioinformatics 25: 3049–3055. doi:10.1093/
bioinformatics/btp565.

21. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to
Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell
differentiation. Nature 455: 1124–1128. doi:10.1038/nature07299.

22. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, et al. (2007)
The let-7 MicroRNA Represses Cell Proliferation Pathways in Human Cells.
Cancer Res 67: 7713–7722. doi:10.1158/0008-5472.CAN-07-1083.

23. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps. Nature 460: 479–486. doi:10.1038/
nature08170.

24. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, et al. (2010)
Comprehensive discovery of endogenous Argonaute binding sites in Caenor-
habditis elegans. Nat Struct Mol Biol 17: 173–179. doi:10.1038/nsmb.1745.

25. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, et al. (2010)
Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA
Target Sites by PAR-CLIP. Cell 141: 129–141. doi:10.1016/j.cell.2010.03.009.

26. Wei JS, Song YK, Durinck S, Chen Q-R, Cheuk ATC, et al. (2008) The MYCN
oncogene is a direct target of miR-34a. Oncogene 27: 5204–5213. doi:10.1038/
onc.2008.154.

27. Rao DS, O’Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL, et al.
(2010) MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the
Forkhead Box Transcription Factor Foxp1. Immunity 33: 48–59. doi:10.1016/
j.immuni.2010.06.013.

28. Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, et al. (2010)
MicroRNAs Regulate Human Hepatocyte Nuclear Factor 4a, Modulating the
Expression of Metabolic Enzymes and Cell Cycle. Journal of Biological
Chemistry 285: 4415–4422. doi:10.1074/jbc.M109.085431.

29. Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G (2010) MicroRNA-
34a Inhibits Cell Proliferation by Repressing Mitogen-Activated Protein Kinase
Kinase 1 during Megakaryocytic Differentiation of K562 Cells. Molecular
Pharmacology 77: 1016–1024. doi:10.1124/mol.109.063321.

30. Li N, Fu H, Tie Y, Hu Z, Kong W, et al. (2009) miR-34a inhibits migration and
invasion by down-regulation of c-Met expression in human hepatocellular
carcinoma cells. Cancer Letters 275: 44–53. doi:10.1016/j.canlet.2008.09.035.

31. Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, et al. (2011)
Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-
199a/b in solid cancer. Oncogene 30: 2888–2899.

32. Kaller M, Liffers S-T, Oeljeklaus S, Kuhlmann K, Röh S, et al. (2011) Genome-
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