Capture of the lamb: Diffusing predators seeking a diffusing prey
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We study the capture of a diffusing “lamb” by diffusing “lions” in one dimension. The capture
dynamics is exactly soluble by probabilistic techniques when the number of lions is very small, and
is tractable by extreme statistics considerations when the number of lions is very large. However, the
exact solution for the general case of three or more lions is still not known199® American
Association of Physics Teachers.

[. INTRODUCTION sorbing wedge whose opening angle depends on the particle

diffusivities,” and then solving the diffusion problem in this
What is the survival probability of a diffusing lamb which absorbing wedge by classical methods. _

is hunted byN hungry lions? Although this capture process I Sec. IV, we studyN>1 diffusing lions=* An essential

is appealingly simple to definésee Fig. 1, its long-time feature qf this system is th_at the motion of the closest

behaviot~3 poses a theoretical challenge because of the delit 1ast”) lion to the lamb is biased towards the lamb, even

cate interplay between the positions of the lamb and the clodhough eachbllon diffuses |sotrop|cgllly. The many-particle ’

est lion. This model also illustrates a general feature of non,ESﬁ’St?m é:an de recagst agl a tvt\)/o—p%rtlc € shys:]errf\ conS|stt|ng 0

equilibrium statistical mechanics: life is richer in low € lamb and an absorbing boundary which, from extreme

dimensions. For spatial dimension>2, it is known that the S.tat'St.'CSB' moves to the ”gh.t ag4ab.t InN, whereD, is the

capture process is “unsuccessfu(’ih,the terminology of lion diffusivity. Because this time dependence matches that

Ref. 1), as there is a nonzero probability for the lamb toglf_ntgteeli?rg%Stﬂgfsl“'e‘c"?x’othnios,[%r\égﬁl \F/)v:?r? Ettalgtyrgsemtent?]ztm—

survive to infinite time for any initial spatial distribution of ~Bn I

the lions. This result is a consequence of trensience of Sn(t)~t and Bye<In N. The logarithmic dependence of

diffusion for d>2%5 which means that two nearby diffusing Bn on N reflects the fact that each additional lion poses a

. : . progressively smaller marginal peril to the lamb—it matters
particles in an unboundedt>2 domain may never meet. FOr jiyie \whether the lamb is hunted by 99 or 100 lions. Amus-

d=2, capture is “successful,” as the lamb dies with cer-jng)y the value ofg, implies an infinite lamb lifetime for
tainty. However, diffusing lions inl=2 are such poor preda- N<3 and a finite lifetime otherwise. In the terminology of
tors that the average lifetime of the lamb is infinite! Also, theref. 1, the capture process changes from successful to
lions are essentially independéngp that the survival prob- “complete” when N=4. We close with some suggestions
ability of a lamb in the presence ®f lions in two dimen-  for additional research on this topic.
sions isSy(t) =S, (t)N, whereS,(t), the survival probability
of a lamb in the presence of a single lion, decays(st) . Il. SURVIVAL IN THE PRESENCE OF ONE LION

Lions are more efficient predators éh=1 because of the
recurrence of diffusion® which means that two diffusing

particles are certain to meet eventually. Thel case is also We begin by treating a lamb which startsxagt>0 and a
special because there are two distinct generic cases. Whefationary lion ak=0. In the continuum limit, the probabil-

the lamb is surrounded by lions, the survival probability at ajty densityp(x,t) that the lamb is at any point>0 at time
fixed time decreases rapidly witR because the safe zone t satisfies the diffusion equation

which remains unvisited by lions at fixed time shrinks rap- )
idly in N. This article focuses on the more interesting situa- Ip(X,t) J p();,t) (1)
tion of N lions all to one side of the lam@Fig. 1), for which at axe !

the lamb survival probability decays as a power law in timeyhere D, is the lamb diffusivity (or diffusion coefficient
with an exponent that grows only logarithmically The probability density satisfies the boundary condition
We begin by considering a lamb and a single stationang(x=0t)=0 to account for the death of the lamb if it
lion in Sec. II. The survival probability of the lamB(t) is  reaches the lion at=0, and the initial conditiom(x,t=0)
closely related to the first-passage probability of one-= s5(x—x,). Equation(1) may be easily solved by the famil-
dimensional diffusiofi® and leads tc5,(t)~t™*2 Itis also  jar image method.Forx>0, p(x,t) is the superposition of a

instructive to consider general lion and lamb diffusivities. Gayussian centered = and an “image” anti-Gaussian cen-
We treat this two-particle system by mapping it onto an ef+graq at— Xo

fective single-particle diffusion problem in two dimensions

with an absorbing boundary to account for the death of the 1
lamb when it meets the lioh,and then solving the two- p(X,t)= JanDit
dimensional problem by the image method. We apply this 7Dt
approach in Sec. Il by mapping a diffusing lamb and twoThe image contribution ensures that the boundary condition
diffusing lions onto a single diffusing particle within an ab- atx=0 is automatically satisfied, while the full solution sat-

A. Stationary lion and diffusing lamb

[ef(x7x0)2/4D|t_ e (x+ x0)2/4D|t]_ ()
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P 3 ; Fig. 2. Mapping of the lion and lamb coordinates in one dimension to the
vy Y planar coordinateg,=x, /D, andy,=x,/yD,. The initial y-coordinates
time of the lion—lamb pair, (3/D,), and its image are indicated by the solid and

open circles, respectively. Survival of the lanyg/D, <y,\D;, translates
Fig. 1. Space-time evolution in one dimension M4 diffusing lions  to the diffusing particle in the plane remaining above and to the left of the
(dotted lineg which all start atx=0 and a single diffusing lamtdashed absorbing liney; D, =y,\D,.
which starts atx=x,. The trajectory of the closegtlast” ) lion, whose
individual identity may change with time, is indicated by the heavy solid

path. a lamb probability distribution which is peaked at a distance

(Dt)*? from the origin, while its spatial integral decays as
(D|t)_l/2.

isfies both the initial condition and the diffusion equation.

Thus, Eq.(2) gives the probability density of the lamb for B Both species diffusing

x>0 in the presence of a stationary lionxat 0.

The probability that the lamb meets the lion at time IWh(?]EfiS the’)slur\;ir\]/al pr(;bfability 0; ttr;]e I?mbwahenIFhe lion
equals the diffusive flux t&e=0 at timet. The flux is also dinuses 7 n the rest frame of the lamp, the flon now

moves if either a lion or a lamb hopping event occurs, and
ap(x,t) Xo 2 their separation diffuses with diffusivity equal ©,+D
F()=+Di—~ = \/ﬁe XDt (3 (see, for example, Ref.)5whereD, is the lion diffusivity.
x=0 V47Dt From the discussion of Sec. Il A, the lamb survival probabil-
The flux F(t) is also thefirst-passage probability to the ori- ity has the asymptotic time dependence,(t)
gin, namely, the probability that a diffusing lamb which ~x,/\#(D;+D)t.
starts atxy reachex=0 for the first time at timet. Note that It is also instructive to determine the spatial probability
in the long-time limit, defined bp,t>x§, the first-passage distribution of the lamb. This distribution may be found con-
probability reduces t& (t)—X,/t¥2 Thist 32 time depen- Vveniently by mapping the two-particle interacting system of
dence is a characteristic feature of the first-passage probablion at x_ and lamb atx, in one dimension to an effective
ity in one dimension. single-particle system in two dimensiSrand then applying
The probability that the lamb dies by tinteis the time  the image method to solve the lattesee Fig. 2 To con-
integral of F(t) up to timet. The survival probability is just Struct this mapping, we introduce the scaled coordingies
the complementary fraction of these doomed lambs, that is=%./VD, andy,=x/\D; to render the two-dimensional
. diffusive trajectory §4,y,) isotropic. The probability den-
Sl(t)zl_f F(t")dt’, sity in the plane,p(y;,y»,t), must satisfy an absorbing
0 boundary condition whey,\/D,=y;\/D,, corresponding to

the death of the lamb when it meets the lion. For simplicity

=1— J'tLefXSMDW dt’. (4p ~ and without loss of generality, we assume that the lion and
0\4mDt'3 lamb are initially atx, (0)=0 andx,;(0)=1, respectively;
The integral in Eq(4) can be reduced to a standard form by thatis,y1(0)=0 andy(0)= \/Hl The probability density is
the substitutioruzxo/\/m to give therefore the sum of. a Gausgap centeredy@(((),yZ(O)) .
=(0,4/D,) and an anti-Gaussian image. From the orientation
S (D =erf Xo Xo c of the absorbing boundaifig. 2), this image is centered at
n(t)=er JaD t - 7Dt as t—e, 5 (/D sin 26,— D, cos ), whered=tan* D, /D,.

) From this image representation, the probability density in
where erfz)=(2/\/;)f0e*” du is the error functiort? The  two dimensions is
same expression f@,;(t) can be obtained by integrating the

1 2
spatial probability distribution in Eq2) over allx>0. p(y1,Y2,t)= ﬂ[e*[yﬁ(yf\mz]"“
An amusing feature of the” ¥? decay of the lamb survival T
probability is that although the lamb dies with certainty, its — g~ [(y1= Dy sin 20)+ (yo+ Dy cos 2)?)/4t]

average lifetime, defined agt)=[gtF(t)dt=[S(t)dt
~ [t~ Y24, is infinite. This infinite lifetime arises because 6)

the small fraction of lambs which survive tends to move The probability density for the lamb to bewt is the integral
relatively far away from the lion. More precisely, the super-of the two-dimensional density over the accessible range of
position of the Gaussian and anti-Gaussian in(Bgleads to  the lion coordinatey;
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Fig. 3. Probability distribution of the lamb in one dimension at titrel0 (@)

[Eg. (8)] when the lion and lamb are initially a4 =0 andx,=1, respec-
tively. The cases shown are=D,/D =0.1, 1, and 1Qbottom to top.

Yy, cot 6 YI\/BI = Y3\/B3 i1z Y
(Y2,0)= J (Y1,y2,1)dy;. (7)
P(y2,0=|  p(y1y2,0)dys N\ 67 v\D, = .0,
If we substitute the resul6) for p(y;,y,,t), the integral in (b)

Eq. (7) can be expressed In term_S,Of the error func_tlon. WeFig. 4. (a) Mapping between the coordinatesof three diffusing particles
then transform back to the original lamb coordinate  on the line and a single isotropically diffusing particle in the three-
=y,\/D; by usingp(x, ,t)dx;=p(y,,t)dy, to obtain dimensional spacg;=x;/\D;, subject to the constrains,D;<y;\Dj
and y,yD,<ys;\Ds. The lamb survives if it remains within the wedge-
shaped region of opening ange (b) Projection of the wedge onto a plane

p(X,t)= —— ei(x'il)ZMD't erfc| — X cot perpendicular to thé axis defined by the intersection of the two planes
167Dt V4Dt '
— e (qtcos 20)2/4D)t erfc sin 26— x cotd
V4Dt This mapping therefore provides the lamb survival prob-

) ability, since it is known that the survival probability of a
diffusing a%article within this absorbing wedge asymptotically
where erfcg) (=1—erf(2)) is the complementary error func- decays

tion. A plot of p(x, ,t) is shown in Fig. 3 for various values 20

of the diffusivity ratior=D, /D, . The figure shows that the ~ Swedgd 1) ~1" """ ©

survival probability of the lamb rapidly decreases as the lionror completeness, we derive this asymptotic behavior by

becomes more mobile. Note that when the lion is stationarymapping the diffusive system onto a corresponding electro-

6=0, and Eq.(8) reduces to Eq(2). static system in Appendix A. To determine the value@of
which corresponds to our three-particle system, notice that
the unit normals to the plangs VD;=Yy3\/D3 andy,\D,

I1l. TWO LIONS =y3\D3 are fiz=(—D;,0,/D3)/ YD1+ D3 and fiz= (0,
—D,,\D3)//D,+ D3, respectively. Consequently, cos

To find the lamb survival probability in the presence of =fy3X fp3 [Fig. 4b)], and the wedge angle ®=m— ¢

two diffusing lions, we generalize the above approach to_ 7—c0S {D3/\(Dy+D3)(D,+Dg)]. If we takeD,;=D

map the three-particle interacting system in one dimensionto ¢~ identgical Iiéns ;ndjzz D3 the survival exlponént

an effective single diffusing particle in three dimensions Withfor t?]e lamb is ' S

boundary conditions that reflect the death of the lamb when-

ever a lion is encounteréd.et us label the lions as particles o 2

1 and 2, and the lamb as particle 3, with respective positions B,(r)= = [2— —cos *

X1, X2, andxs, and respective diffusivitie®; . It is again 4

useful to introduce the scaled coordinayes x; /\/ﬁi which  wherer=D,/D, .

renders the diffusion in thg; coordinates spatially isotropic. ~ The dependence oB,(r) on the diffusivity ratior is

In terms of y;, lamb survival corresponds t<y2\/D_2 shown in Fig. 5. This exponent monotonically decreases
<y3\D3 andy;/D;<yz\Ds. These constraints mean that from 1 atr =0 to 1/2 forr —o. The former case corresponds
the effective particle in three-space remains behind the plan® a stationary lamb, where the two lions are statistically
y,\D,=y3;yDs and to the left of the planey,yD; independent and,(t)=S;(t)2. On the other hand, when
=Y3\/D_3 [Fig. 4@]; this geometry is a wedge region of — the lamb diffuses rapidly and the motion of the lions
opening angle® defined by the intersection of these two becomes irrelevant. This limit therefore reduces to the diffu-
planes. If the particle hits one of the planes, then one of theion of a lamb and a stationary absorber, for whifit)
lions has killed the lamb. =S,(t). Finally, for D,=D_, B,=3/4<2pB,, and equiva-

-1
: (10

r
1+r

1279 Am. J. Phys., Vol. 67, No. 12, December 1999 S. Redner and P. L. Krapivsky 1279



1.0 g \ ‘ ‘ ‘ 103 -
,\\ z
09 1
\
§
10? ¢
—~ 0.8\ -
& 5
Il N\ S
o \ oy
07+ ] "
S 10! |
—
0.6 TTTTe— ]
0.5 : : : 10° . DL
0 2 4 6 8 10 10° 10! 102 103 0t 10°
r time

Fig. 5. The survival exponersi;(r) given by Eq.(10) versus the diffusivity  Fig. 6. Time dependence of, for a single realization oN=4, 64, and

ratior. 1028 lions(bottom to top. This data was generated by tracking the position
of the rightmost among| lions, each of which performs a nearest-neighbor
discrete-time random walk starting frors=0. The coincidence of the data

lently, S,(t)>S,(t)%. This inequality reflects the fact that and the linear early-time growth o, are artifacts of the discrete random
the incremental threat to the lamb from the second lion igvalk mation. The straight line of slope 1/2 indicates the expected long-time
less than the first. behavior.

IV. MANY LIONS

) . e Equation(11) specifies that there is one lion out of an initial

The_above construction can, in principle, be extended bbroup of N lions which is in the rangéx.e;,>]. Although

recasting the survival of a lamb in the presencéldions as  the integral in Eq.(11) can be expressed in terms of the
the survival of a diffusing particle ilN+1 dimensions  complementary error function, it is instructive to evaluate it
within an absorbing hyper-wedge defined by the intersectiorypjicitly by writing x=>x,s+ € and re-expressing the inte-
of the N half-spaceS(i<XN+l, i= 1,2,...,N. This approaCh grand in terms of. We find that
has not led to a tractable analytical solution. On the other

hand, numericall simulat'iohsndicate that the exponery * N o XD tg~Xiase/2D tg €AD Lt g 1
grows slowly with N, with 8;~0.91, 8,~1.03, andpB;g Xiast /4’7TD|_t
~1.4. The understanding of the slow dependencgpion (12

N is the focus of this section. Over the range ot for which the second exponential factor

A. Location of the last lion is non-negligible, the third exponential factor is nearly equal
to unity. The integral in Eq(12) thus reduces to an elemen-

One way to understand the behavior of the survival prob-éary form, with the result

ability is to focus on the lion closest to the lamb, because thi

last lion ultimately kills the lamb. As was shown in Fig. 1, N ) 2D, t
the individual identity of this last lion can change with time =~ ——e ™ XiasfPL! -1 (13
due to the crossing of different lion trajectories. In particular, vamD, t last

crossings between the last lion and its left neighbor led to a ¢ \ye definey =X,/ V4Dt andM =N/+/4, the condi-
systematic rightward bias of the last lion. This bias is stron+;q in Eq.(13) can age simplified to ’

ger for increasingN, due to the larger number of crossings of )

the last lion, and this high crossing rate also leadsg(t) ye¥ =M, (14)
becoming smoother a$ increasegFig. 6). This approach of \yith the solution

the last lion to the lamb is the mechanism which leads to the 1 In(in M)

survival probability of the lamb decaying &sPv, with 8y a _ il 4 = ndn

slowly increasing function oN. y=\inM{1 4 InM ' (15

To d_etermlne_th_g properties Of_ th|s last I|or_1, Suppose thafn addition to obtaining the mean location of the last lion,
N>1 lions are initially at the origin. If the lions perform oyireme statistics can be used to find the spatial probability
nearest-neighbor, discrete-time random walks, then at shogk the |ast lion. For completeness, this calculation is pre-
times, xjo5(t) =t. This trivial dependence persists as long assented in Appendix B.
the number of lions at the last site in their spatial distribution  To |owest order, Eq(15) gives
is much greater than one. In this case there is a large prob-
ability thgt one of these lions will hop to the rightg,J th?Js Xias{ 1)~ V4D In Nt= JAt, (16)

maintaining the deterministic growth of.s;. This growth o, finite N. For N=rc0, Xa(t) Would always equat if an

. . _ 12 . P . h ..
will continue as long asN/ 47D t) e */Pit>1 that is, infinite number of discrete random walk lions were initially
for t<4D_ InN. At long times, an estimate for the location at the origin. A more suitable initial condition therefore is a

of the last lion is provided by the conditidn concentratiorcy of lions uniformly distributed from—o° to
. N 0. In this case, only\lx\/cozDLt of the lions are “danger-
J e XMDItgy—1, (11  ous,” thatis, within a diffusion distance from the edge of the
xastv4 D t pack and thus potential candidates for killing the lamb. Con-
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sequently, forN—x, the leading behavior ok s(t) be- dZDZBN 1 7z
comes a7 T 2Bnt 5= 4| P2p =0, (21)
Xias() ~ V2D In(coD Ot 17 subject to the boundary conditiorZD,zBN(n)zo for both »

As we discuss in Sec. IV B, the survival probability of the — [AN/2D, and n»=c. Equation(21) has the form of a
Iamb_in the presence of many lions is essentially determine@chr-mmger equation for a quantum particle of energgy2
by this behavior 0kjqt. +1/2 in a harmonic oscillator potentiab;?/4 for z

> /A\/2D,, but with an infinite barrier aty=\Ay/2D,.®
B. Lamb survival probability for large N For the long-time behavior, we want the ground-state energy
in this potential. FON>1, we may approximate this energy
as the potential at the classical turning point, that i8y2
+ 1/2= 5?/4. We therefore obtaigy~ Ay/16D, . Using the
value of Ay given in Egs.(16) and (17) gives the decay
exponent

An important feature of the time dependencegf;is that
fluctuations decrease for large (Fig. 6). Therefore, the
lamb andN diffusing lions can be recast as a two-body sys-
tem of a lamb and an absorbing boundary which
deterministically advances toward the lamb asg(t)

= VAN . . DLiiN, N finite
To solve this two-body problem, it is convenient to change 4D, '
coordinates fronx,t] to [X'=X—X5¢(t),t] to fix the ab- Bn~ (22)
sorbing boundary at the origin. By this construction, the dif- L
fusion equation for the lamb probability distribution is trans- ﬁlnt, N=co,
formed to the convection-diffusion equation !
/ / / The latter dependence @8y implies that forN—o, the
IP(X' 1) Xt AP(X',) (X', b) , . - N
. ﬁ DIz (0=x'<w) survival probability has the log-normal form
18 D
, , - (18 Sw(t)fvexr{——LInzt). (23
with the absorbing boundary conditigx’ =0,t) =0. In this 8D,

refergnce frame, which is f_ixed on the average positic_)n of the Although we obtained the survival probability exponent
last lion, the second term in E(L8) _acco‘L‘mts fqr t,r,1e bias of By for arbitrary diffusivity ratior=D, /D, simple consid-
the lamb towards the absorber with a "velocity* Xias/2t. erations give different behavior for=>1 andr<1. For ex-

Becausexjzsr~ VAnt andx’~ Dt have the same time de- ;16 forr=0 (stationary lamb the survival probability

Sg;gﬁggi’c éheolr?":ﬁesué?’ri:’:rl]ggon?:sgit}é:;qlﬁgte;fglng_nltlri\’ia ecays a$~ V2. Therefore, Eq(22) can no longer apply for

Such a d d L irast to th ! r<N~1, whereBy(r) becomes of ordeN. Conversely, for
ue a,l ependence IS in contrast fo the CagRe<X’ Or o (stationary liong, the survival probability of the lamb
Xjas?> X', Where the asymptotic time dependence of the Iamkﬂecays a$~ 2 Thus Eq.(22) will again cease to be valid for

survival is controlled by the faster of these two coordinates, ~In N, whereg,,(r) becomes of order unity. By accountin
Such a phenomenon occurs whenever there is a coincidencé ’ N y. By 9

of fundamental length scales in the systeee, for example, [0F these limits? the dependence gBy on the diffusivity
Ref. 14. ratior is expected to be

Equation(18) can be transformed into the parabolic cylin- N/2 r<1/N
der equation by the following stepsFirst, introduce the di-
mensionless length=x'/x,; and make the following scal-
ing ansatz for the lamb probability density,

p(x’,t)~t AR (¢). (19 1/2 r>InN.

The power law prefactor in Eq19) ensures that the integral Ther dependence oy, in the intermediate regime of N/

of p(x’,t) over all space, namely the survival probability, <r<In N generalizes the exponents given in Etp) for the
decays as AN, andF (&) expresses the spatial dependencethree-particle system to genefsl

of the lamb probability distribution in scaled length units.

This ansatz codifies the fact that the probability density is not

a function ofx’ andt separately, but is a function only of the

dimensionless rati@’/x,s(t). The scaling ansatz provides a V- DISCUSSION

simple but powerful approach for reducing the complexity of . . e . .

a wi%e clasz of systenr"n)g with a divergent gharacterigtic Ieﬁgth We investigated diffusive capture of a lamb in one dimen-

scale ag— o 14 sion by using several essential techniques of nonequilibrium
If we substitute Eq(19) into Eq. (18), we obtain

statistical mechanics including first-passage properties of dif-

) fusion, extreme value statistics, electrostatic analogies, scal-
D, d°F
Ay d¢

Bn(r)=1 (L/4r)InN  1I/N<r<InN (24

ing analysis, and moving boundary value theory. These tools
Bnt E)FZO- (20) provide an appealing physical description for the survival
] probability of the lamb in the presence bif lions for the
Now, ~introduce #=(¢+1)VA/2D; and  F(§)  cases of very small and very larde Nevertheless, the exact
=e” 7"*D(7) in Eq.(20). This substitution leads to the para- solution to capture of the lamb remains elusive Ifoe 3.
bolic cylinder equation of order 2y*° We close by suggesting several avenues for further study:

1 dF
+5(E+ l)d_§+
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(1) Better simulation methods. Previous simulations of this (5) Intelligent predators and prey. In a more realistic cap-
systent followed the random walk motion of one lamb ture process, lions would chase the lamb, while the lamb
andN lions until the lamb was killed. This type of simu- would attempt to run away. What are physically reason-
lation is simple to construct. One merely places the lamb ~ able and analytically tractable rules for such directed
and lions on a one-dimensional lattice and has them per- motion which would lead to new and interesting kinetic
form independent nearest-neighbor random walks until  behaviors?
one lion lands on the same site as the lamb. The survival
probability is obtained by averaging over a large numberACKNOWLEDGMENTS

of realizations of this process. However, following the
motion of discrete random walks is inefficient, because it We gratefully acknowledge NSF Grant No. DMR9632059

is unlikely for the lamb to survive long times and many &hd ARO Grant No. DAAH04-96-1-0114 for partial support

realizations of the process must be simulated to obtaifff this research.

accurate long-time data. In principle, a much better ap-

proach would be to propagate the exact probability disAPPENDIX A: SURVIVAL PROBABILITY OF A

tribution of the particles in the systeth.Can such an DIFFUSING PARTICLE WITHIN A WEDGE

approach be developed for the lamb—lion capture pro- . . e . o

cess? Another possibility is to devise a simple discrete 1€ survival probability of a diffusing particle within an

random-walk process to simulate the motion of the las@PSorbing wedge can be derived by solving the diffusion

lion. Such a construction would permit consideration of€guation |n.th|s geometry.® We provide an alternative der|-_

just the lamb and the last lion, thus providing significantvatlon of this result that can "’}ISO .be obtained by de\_/elqpmg

computational efficiency. a correspondence between diffusion and elgactrostaths in the
(2) The last lion. Extreme value statistics provides the spa-SaMe boundary geometry. Although the logic underlying the

tial probability distribution of the last lion. We may also ;ggﬁfg&ﬂg/ence is subtle, the result is simple and has wide
ask other basic questions: How long is a given lion the The correspondence rests on the fact that the integral of

13 1 l) H - . i i )
last” one* .HOW many lead c_hanges .Of the last I|_on the diffusion equation over all time reduces to the Poisson
occur up to tima? How many different lions may be in equation. This time integral is

the lead up to tima? What is the probability that a
particular lion is never in the lead? Methods to investi- jw[ DVZp(r.0.t)= ap(r,6,t) dt
gate some of these issues are also outlined in the article s at '
by Schmittmann and Z# in this journal issue.

(3) Spatial probability distribution of the lamb. As we have |t one defines an electrostatic potential b@(r,6)
seen for 'ghe case of one I|0n_, the spatial distribution szfg’p(r,e,t)dt, Eq. (A1) can be written as
the lamb is a useful characteristic of the capture process.
What happens for largd? In principle, this information
is contained in the solution to the parabolic cylinder

equation for the scaled probability distributidriEq. . .
(21)]. The most interesting behavior is the form of the For a boundary geometry such that the asymptotic survival

distribution close to the absorbing boundary, where theProPability in the diffusive system is zero, then BA2) is

interaction between the lions and the lamb is strongesﬂ‘JSt the Poisson equation, with the initial condition in the

A o . diffusive system corresponding to the charge distribution in
ForN—_l lion, th|s_d|str|but|on de_cays Im_early 1o zero as the electrostatic system, and with absorbing boundaries in
a function of the distance to the lion, while f=2, the ¢ iffysive system corresponding to grounded conductors.

distribution has a power law decay in the distance to the T4 exploit this analogy, we first note that the electrostatic
last lion which depends on the diffusivity ratio, /D, . potential in the wedge decays @r,6)~r~™® for r— o,
What happens for generiil and for the general diffusiv-  for any localized charge distributidh.Because the survival
ity ratio? Is there a physical way to determine this be-probability of a diffusing particle in the absorbing wedge is
havior? given by S(t) = [p(r,0,t)dA, where the integral is over the
(4) Two-sided problem. If N lions are located on both sides area of the wedge, we find the following basic relation be-

of the lamb, then the lamb is relatively short-lived be- tweenS(t) and the electrostatic potential in the same bound-
cause there is no escape route. One can again construchg, geometry:

mapping between thi + 1-particle reacting system and . .

the diffusion of an effective particle in an absorbing fS(t)dt=f dtf p(r,6,t)dA
wedge-shaped domain iIN+1 dimensions. From this 0 0

mapping,Sy(t) decays as™ "N, but the dependence of

(A1)

V2d>(r,0)=—%[p(r,e,tzw)—p(r,0,t=0)]. (A2)

VDt (C]
vy ONn N and diffusivity ratio is unknown. It is clear, ~f Dtrdrf dod(r,0)
however, that the optimal strategy for the surrounded 0 0
lamb is to remain still, in which case the lions are statis- ot
tically independent and we then reco®&(t)~t V2. Is ~ fo ri=mO droctl =720, (A3)

there a simple approach that provides the dependence of
vn ONn N for arbitrary diffusivity ratio? Finally,S,(t) In evaluating the time integral of the survival probability, we
exhibits a stretched exponential decay in time,use the fact that particles have time to diffuse to radial dis-
exp(—tY?).19%%®What is that nature of the transition from tance Dt but no further. Thus, in the second line of Eq.
finite N to infinite N behavior? (A3), the time integral of the probability distribution reduces
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to the electrostatic potential far< Dt and is essentially ~sharp step akges~ 4D tINN asN increases. The product
zero forr>/Dt. Finally, by differentiating the last equality of these two factors leads tion(x), essentially coinciding

in Eq. (A3) with respect to time, we recover E(). with p(x) for x>XgepandLy(x)~0 for X<Xgep.
APPENDIX B: SPATIAL DISTRIBUTION OF THE IM. Bramson and D. Griffeath, “Capture problems for coupled random
LAST LION BY EXTREME STATISTICS walks,” in Random Walks, Brownian Motion, and Interacting Particle

Systems: A Festschrift in Honor of Frank Spitzer, edited by R. Durrett and
It is instructive to apply extreme statistics to determine the H. Kesten(Birkhauser, Boston, 1991 pp. 153-188.

probability distribution for the location of the last lion from H. Kesten, “An Absorption Problem for Several Brownian Motions,” in

. 8 . — 214D, t Seminar on Stochastic Processes, 1991, edited by E. @lar, K. L. Chung,
an ensemble oN lions”® Let p(x)= (1/Vy4=Dt) e L and M. J. SharpéBirkhauser, Boston, 1992

be the (Gaussiah probability distribution of a single lion. 3p . Krapivsky and S. Redner, “Kinetics of a diffusive capture process:
Then,p>(x) Effp(x’)dx’ is the probability that a diffusing lamb besieged by a pride of lions,” J. Phys.28, 5347-53571996.

; i i —1_ ; “W. Feller, An Introduction to Probability Theory (Wiley, New York,
lion is in the rangg x,] and similarlyp-(x)=1—p=(X) is 1971, Vol 1.

the probability that the lion is in the rande-c,x]. Let 5G. H. Weiss, Aspects and Applications of the Random Walk (North-
Ln(x) be the probability that the last lion out of a grouphof Holland, Amsterdam, 1994

is located ai. This extremal probability is given by ®For a similar construction see M. E. Fisher, “Walks, Walls, Wetting, and
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That is, one of theN lions is atx, while the remainingN Gelfand, “The reunions of three dissimilar vicious walkers,” J. Stat. Phys.
—1 lions are in the range—,x]. If we evaluate the factors 53, 175-189(1988.
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The Asymptotic Theory of Extreme Order Satistics (Krieger, Malabar, FL,
Ln(x) 1987. For a more recent discussion of extreme statistics with applications
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5 NagarajaRecords (Wiley, New York, 1998.
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H. E. Daniels, “The minimum of a stationary Markov superimposed on a
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application,” Z. Wahrscheinlichkeitstheor. Verwandte Gé4, 75-116
(B2) (1980; P. Salminen, “On the hitting time and the exit time for a Brownian
. . motion to/from a moving boundary,” Adv. Appl. ProbaB0, 411-426
WhenN is large, thenx/\4Dt is also large, and we can (19gg.
asymptotically evaluate the integral in the exponential in EQ°L. Turban, “Anisotropic critical phenomena in parabolic geometries: The
(B2). Following Eg. (14), it is convenient to express the directed self-avoiding walk,” J. Phys. &5, L127-1.134(1992; F. Igldi,
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ment thatL,’\l(y):O_ This condition reproduce;{ey =M BH. S. Carslaw and J. C. Jaeg&@onduction of Heat in Solids (Oxford
i i University Press, Oxford, 1959Chap. XI.
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its inflection points, that is, whehy,(y) =0. By straightfor-  15c . Bender and S. A. Orszag\dvanced Mathematical Methods for

ward calculationj_Kl(y) =0 at Scientists and Engineers (McGraw-Hill, New York, 1978.
1see, for example, L. |. SchifiQuantum Mechanics (McGraw-Hill, New
Ink. York, 1968, 3rd ed.
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where k— (3 \/E)/z Therefore, afN—e, the width of 188, Schmittmann and R. Zia, “Weather Records: Musings on Cold Days
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illustrated in Fig. 6, where the fluctuationsxps(t) decrease °S. Redner and K. Kang, “Kinetics of the scavenger reaction,” J. Phys. A
dramatically asN increases. This decrease can also be un- 17, L451-L455(1984.

g . . 20A. Blumen, G. Zumofen, and J. Klafter, “Target annihilation by random
derstood from the form of the extreme distributibg(x) in walkers,” Phys. Rev. B30, 5379-53821984).

Eqg. (B2). The largex decay ofLy(x) is governed byp(x), 23, D. JacksonClassical Electrodynamics (Wiley, New York, 1999,
while the double exponential factor becomes an increasingly 3rd ed.
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