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We study the capture of a diffusing ‘‘lamb’’ by diffusing ‘‘lions’’ in one dimension. The capture
dynamics is exactly soluble by probabilistic techniques when the number of lions is very small, and
is tractable by extreme statistics considerations when the number of lions is very large. However, the
exact solution for the general case of three or more lions is still not known. ©1999 American

Association of Physics Teachers.

I. INTRODUCTION

What is the survival probability of a diffusing lamb which
is hunted byN hungry lions? Although this capture process
is appealingly simple to define~see Fig. 1!, its long-time
behavior1–3 poses a theoretical challenge because of the deli-
cate interplay between the positions of the lamb and the clos-
est lion. This model also illustrates a general feature of non-
equilibrium statistical mechanics: life is richer in low
dimensions. For spatial dimensiond.2, it is known that the
capture process is ‘‘unsuccessful’’~in the terminology of
Ref. 1!, as there is a nonzero probability for the lamb to
survive to infinite time for any initial spatial distribution of
the lions. This result is a consequence of thetransience of
diffusion for d.2,4,5 which means that two nearby diffusing
particles in an unboundedd.2 domain may never meet. For
d52, capture is ‘‘successful,’’ as the lamb dies with cer-
tainty. However, diffusing lions ind52 are such poor preda-
tors that the average lifetime of the lamb is infinite! Also, the
lions are essentially independent,1 so that the survival prob-
ability of a lamb in the presence ofN lions in two dimen-
sions isSN(t)}S1(t)N, whereS1(t), the survival probability
of a lamb in the presence of a single lion, decays as5 (ln t)21.

Lions are more efficient predators ind51 because of the
recurrence of diffusion,4,5 which means that two diffusing
particles are certain to meet eventually. Thed51 case is also
special because there are two distinct generic cases. When
the lamb is surrounded by lions, the survival probability at a
fixed time decreases rapidly withN because the safe zone
which remains unvisited by lions at fixed time shrinks rap-
idly in N. This article focuses on the more interesting situa-
tion of N lions all to one side of the lamb~Fig. 1!, for which
the lamb survival probability decays as a power law in time
with an exponent that grows only logarithmically inN.

We begin by considering a lamb and a single stationary
lion in Sec. II. The survival probability of the lambS1(t) is
closely related to the first-passage probability of one-
dimensional diffusion4,5 and leads toS1(t);t21/2. It is also
instructive to consider general lion and lamb diffusivities.
We treat this two-particle system by mapping it onto an ef-
fective single-particle diffusion problem in two dimensions
with an absorbing boundary to account for the death of the
lamb when it meets the lion,6 and then solving the two-
dimensional problem by the image method. We apply this
approach in Sec. III by mapping a diffusing lamb and two
diffusing lions onto a single diffusing particle within an ab-

sorbing wedge whose opening angle depends on the particle
diffusivities,7 and then solving the diffusion problem in this
absorbing wedge by classical methods.

In Sec. IV, we studyN@1 diffusing lions.2,3 An essential
feature of this system is that the motion of the closest
~‘‘last’’ ! lion to the lamb is biased towards the lamb, even
though each lion diffuses isotropically. The many-particle
system can be recast as a two-particle system consisting of
the lamb and an absorbing boundary which, from extreme
statistics,8 moves to the right asA4DLt ln N, whereDL is the
lion diffusivity. Because this time dependence matches that
of the lamb’s diffusion, the survival probability depends in-
timately on these two motions,9–11 with the result that
SN(t);t2bN and bN} ln N. The logarithmic dependence of
bN on N reflects the fact that each additional lion poses a
progressively smaller marginal peril to the lamb—it matters
little whether the lamb is hunted by 99 or 100 lions. Amus-
ingly, the value ofbN implies an infinite lamb lifetime for
N<3 and a finite lifetime otherwise. In the terminology of
Ref. 1, the capture process changes from successful to
‘‘complete’’ when N>4. We close with some suggestions
for additional research on this topic.

II. SURVIVAL IN THE PRESENCE OF ONE LION

A. Stationary lion and diffusing lamb

We begin by treating a lamb which starts atx0.0 and a
stationary lion atx50. In the continuum limit, the probabil-
ity densityp(x,t) that the lamb is at any pointx.0 at time
t satisfies the diffusion equation

]p~x,t !

]t
5D l

]2p~x,t !

]x2 , ~1!

where D l is the lamb diffusivity~or diffusion coefficient!.
The probability density satisfies the boundary condition
p(x50,t)50 to account for the death of the lamb if it
reaches the lion atx50, and the initial conditionp(x,t50)
5d(x2x0). Equation~1! may be easily solved by the famil-
iar image method.5 For x.0, p(x,t) is the superposition of a
Gaussian centered atx0 and an ‘‘image’’ anti-Gaussian cen-
tered at2x0

p~x,t !5

1

A4pD lt
@e2(x2x0)2/4D lt2e2(x1x0)2/4D lt#. ~2!

The image contribution ensures that the boundary condition
at x50 is automatically satisfied, while the full solution sat-
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isfies both the initial condition and the diffusion equation.
Thus, Eq.~2! gives the probability density of the lamb for
x.0 in the presence of a stationary lion atx50.

The probability that the lamb meets the lion at timet
equals the diffusive flux tox50 at timet. The flux is

F~ t !51D l

]p~x,t !

]x U
x50

5

x0

A4pD lt
3

e2x0
2/4D lt. ~3!

The flux F(t) is also thefirst-passage probability to the ori-
gin, namely, the probability that a diffusing lamb which
starts atx0 reachesx50 for the first time at timet. Note that
in the long-time limit, defined byD lt@x0

2, the first-passage
probability reduces toF(t)→x0 /t3/2. This t23/2 time depen-
dence is a characteristic feature of the first-passage probabil-
ity in one dimension.5

The probability that the lamb dies by timet is the time
integral ofF(t) up to timet. The survival probability is just
the complementary fraction of these doomed lambs, that is,

S1~ t !512E
0

t

F~ t8!dt8,

512E
0

t x0

A4pD lt8
3

e2x0
2/4D lt8 dt8. ~4!

The integral in Eq.~4! can be reduced to a standard form by
the substitutionu5x0 /A4D lt8 to give

S1~ t !5erfS x0

A4D lt
D ;

x0

ApD lt
as t→`, ~5!

where erf(z)5(2/Ap)*0
z e2u2

du is the error function.12 The
same expression forS1(t) can be obtained by integrating the
spatial probability distribution in Eq.~2! over all x.0.

An amusing feature of thet21/2 decay of the lamb survival
probability is that although the lamb dies with certainty, its
average lifetime, defined aŝt&5*0

`tF(t)dt5*0
`S(t)dt

'*`t21/2dt, is infinite. This infinite lifetime arises because
the small fraction of lambs which survive tends to move
relatively far away from the lion. More precisely, the super-
position of the Gaussian and anti-Gaussian in Eq.~2! leads to

a lamb probability distribution which is peaked at a distance
(D lt)

1/2 from the origin, while its spatial integral decays as
(D lt)

21/2.

B. Both species diffusing

What is the survival probability of the lamb when the lion
also diffuses? In the rest frame of the lamb, the lion now
moves if either a lion or a lamb hopping event occurs, and
their separation diffuses with diffusivity equal toD l1DL

~see, for example, Ref. 5!, whereDL is the lion diffusivity.
From the discussion of Sec. II A, the lamb survival probabil-
ity has the asymptotic time dependenceS1(t)
;x0 /Ap(D l1DL)t.

It is also instructive to determine the spatial probability
distribution of the lamb. This distribution may be found con-
veniently by mapping the two-particle interacting system of
lion at xL and lamb atx l in one dimension to an effective
single-particle system in two dimensions6 and then applying
the image method to solve the latter~see Fig. 2!. To con-
struct this mapping, we introduce the scaled coordinatesy1

5xL /ADL and y25x l /AD l to render the two-dimensional
diffusive trajectory (y1 ,y2) isotropic. The probability den-
sity in the plane,p(y1 ,y2 ,t), must satisfy an absorbing
boundary condition wheny2AD l5y1ADL, corresponding to
the death of the lamb when it meets the lion. For simplicity
and without loss of generality, we assume that the lion and
lamb are initially atxL(0)50 and x l(0)51, respectively;
that is,y1(0)50 andy2(0)5AD l. The probability density is
therefore the sum of a Gaussian centered at (y1(0),y2(0))
5(0,AD l) and an anti-Gaussian image. From the orientation
of the absorbing boundary~Fig. 2!, this image is centered at
(AD l sin 2u,2AD l cos 2u), whereu5tan21ADL /D l.

From this image representation, the probability density in
two dimensions is

p~y1 ,y2 ,t !5

1

4pt
@e2[ y1

2
1(y22AD l)

2]/4t

2e2[( y12AD l sin 2u)2
1(y21AD l cos 2u)2]/4t#.

~6!

The probability density for the lamb to be aty2 is the integral
of the two-dimensional density over the accessible range of
the lion coordinatey1

Fig. 1. Space–time evolution in one dimension ofN54 diffusing lions
~dotted lines! which all start atx50 and a single diffusing lamb~dashed!
which starts atx5x0 . The trajectory of the closest~‘‘last’’ ! lion, whose
individual identity may change with time, is indicated by the heavy solid
path.

Fig. 2. Mapping of the lion and lamb coordinates in one dimension to the
planar coordinatesy15xL /ADL andy25x l /AD l. The initial y-coordinates
of the lion–lamb pair, (0,AD l), and its image are indicated by the solid and
open circles, respectively. Survival of the lamb,y1ADL,y2AD l, translates
to the diffusing particle in the plane remaining above and to the left of the
absorbing liney1ADL5y2AD l.
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p~y2 ,t !5E
2`

y2 cot u

p~y1 ,y2 ,t !dy1 . ~7!

If we substitute the result~6! for p(y1 ,y2 ,t), the integral in
Eq. ~7! can be expressed in terms of the error function. We
then transform back to the original lamb coordinatex l

5y2AD l by usingp(x l ,t)dx l5p(y2 ,t)dy2 to obtain

p~x l ,t !5

1

A16pD lt
F e2(x l21)2/4D lt erfcS 2

x l cotu

A4D lt
D

2e2(x l1cos 2u)2/4D lt erfcS sin 2u2x l cotu

A4D lt
D G ,

~8!

where erfc(z) (512erf(z)) is the complementary error func-
tion. A plot of p(x l ,t) is shown in Fig. 3 for various values
of the diffusivity ratior[D l /DL . The figure shows that the
survival probability of the lamb rapidly decreases as the lion
becomes more mobile. Note that when the lion is stationary,
u50, and Eq.~8! reduces to Eq.~2!.

III. TWO LIONS

To find the lamb survival probability in the presence of
two diffusing lions, we generalize the above approach to
map the three-particle interacting system in one dimension to
an effective single diffusing particle in three dimensions with
boundary conditions that reflect the death of the lamb when-
ever a lion is encountered.7 Let us label the lions as particles
1 and 2, and the lamb as particle 3, with respective positions
x1 , x2 , andx3 , and respective diffusivitiesD i . It is again
useful to introduce the scaled coordinatesy i5x i /AD i which
renders the diffusion in they i coordinates spatially isotropic.
In terms of y i , lamb survival corresponds toy2AD2

,y3AD3 and y1AD1,y3AD3. These constraints mean that
the effective particle in three-space remains behind the plane
y2AD25y3AD3 and to the left of the planey1AD1

5y3AD3 @Fig. 4~a!#; this geometry is a wedge region of
opening angleQ defined by the intersection of these two
planes. If the particle hits one of the planes, then one of the
lions has killed the lamb.

This mapping therefore provides the lamb survival prob-
ability, since it is known that the survival probability of a
diffusing particle within this absorbing wedge asymptotically
decays as13

Swedge~ t !;t2p/2Q. ~9!

For completeness, we derive this asymptotic behavior by
mapping the diffusive system onto a corresponding electro-
static system in Appendix A. To determine the value ofQ
which corresponds to our three-particle system, notice that
the unit normals to the planesy1AD15y3AD3 and y2AD2

5y3AD3 are n̂135(2AD1,0,AD3)/AD11D3 and n̂235(0,
2AD2,AD3)/AD21D3, respectively. Consequently, cosf
5n̂133n̂23 @Fig. 4~b!#, and the wedge angle isQ5p2f

5p2cos21@D3 /A(D11D3)(D21D3)#. If we takeD15D2

5DL for identical lions, andD35D l , the survival exponent
for the lamb is

b2~r !5

p

2Q
5F22

2

p
cos21

r

11rG
21

, ~10!

wherer5D l /DL .
The dependence ofb2(r) on the diffusivity ratio r is

shown in Fig. 5. This exponent monotonically decreases
from 1 atr50 to 1/2 forr→`. The former case corresponds
to a stationary lamb, where the two lions are statistically
independent andS2(t)5S1(t)2. On the other hand, whenr
→` the lamb diffuses rapidly and the motion of the lions
becomes irrelevant. This limit therefore reduces to the diffu-
sion of a lamb and a stationary absorber, for whichS2(t)
5S1(t). Finally, for D l5DL , b253/4,2b1 , and equiva-

Fig. 3. Probability distribution of the lamb in one dimension at timet510
@Eq. ~8!# when the lion and lamb are initially atxL50 andx l51, respec-
tively. The cases shown arer5D l /DL50.1, 1, and 10~bottom to top!.

Fig. 4. ~a! Mapping between the coordinatesx i of three diffusing particles
on the line and a single isotropically diffusing particle in the three-
dimensional spacey i5x i /AD i, subject to the constraintsy1AD1,y3AD3

and y2AD2,y3AD3. The lamb survives if it remains within the wedge-
shaped region of opening angleQ. ~b! Projection of the wedge onto a plane
perpendicular to theê axis defined by the intersection of the two planes.
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lently, S2(t).S1(t)2. This inequality reflects the fact that
the incremental threat to the lamb from the second lion is
less than the first.

IV. MANY LIONS

The above construction can, in principle, be extended by
recasting the survival of a lamb in the presence ofN lions as
the survival of a diffusing particle inN11 dimensions
within an absorbing hyper-wedge defined by the intersection
of the N half-spacesx i,xN11 , i51,2,...,N. This approach
has not led to a tractable analytical solution. On the other
hand, numerical simulations1 indicate that the exponentbN

grows slowly with N, with b3'0.91, b4'1.03, andb10

'1.4. The understanding of the slow dependence ofbN on
N is the focus of this section.

A. Location of the last lion

One way to understand the behavior of the survival prob-
ability is to focus on the lion closest to the lamb, because this
last lion ultimately kills the lamb. As was shown in Fig. 1,
the individual identity of this last lion can change with time
due to the crossing of different lion trajectories. In particular,
crossings between the last lion and its left neighbor led to a
systematic rightward bias of the last lion. This bias is stron-
ger for increasingN, due to the larger number of crossings of
the last lion, and this high crossing rate also leads tox last(t)
becoming smoother asN increases~Fig. 6!. This approach of
the last lion to the lamb is the mechanism which leads to the
survival probability of the lamb decaying ast2bN, with bN a
slowly increasing function ofN.

To determine the properties of this last lion, suppose that
N@1 lions are initially at the origin. If the lions perform
nearest-neighbor, discrete-time random walks, then at short
times,x last(t)5t. This trivial dependence persists as long as
the number of lions at the last site in their spatial distribution
is much greater than one. In this case there is a large prob-
ability that one of these lions will hop to the right, thus
maintaining the deterministic growth ofx last. This growth

will continue as long as (N/A4pDLt) e2t2/4DLt
@1, that is,

for t!4DL ln N. At long times, an estimate for the location
of the last lion is provided by the condition8

E
x last

` N

A4pDLt
e2x2/4DLt dx51. ~11!

Equation~11! specifies that there is one lion out of an initial
group of N lions which is in the range@x last,`#. Although
the integral in Eq.~11! can be expressed in terms of the
complementary error function, it is instructive to evaluate it
explicitly by writing x5x last1e and re-expressing the inte-
grand in terms ofe. We find that

E
x last

` N

A4pDLt
e2x last

2 /4DLte2x laste/2DLte2e2/4DLt de51.

~12!

Over the range ofe for which the second exponential factor
is non-negligible, the third exponential factor is nearly equal
to unity. The integral in Eq.~12! thus reduces to an elemen-
tary form, with the result

N

A4pDLt
e2x last

2 /4DLt
2DLt

x last
51. ~13!

If we definey5x last/A4DLt and M5N/A4p, the condi-
tion in Eq. ~13! can be simplified to

yey2
5M , ~14!

with the solution

y5Aln M S 12

1

4

ln~ ln M !

ln M
1¯ D . ~15!

In addition to obtaining the mean location of the last lion,
extreme statistics can be used to find the spatial probability
of the last lion. For completeness, this calculation is pre-
sented in Appendix B.

To lowest order, Eq.~15! gives

x last~ t !;A4DL ln Nt[AANt, ~16!

for finite N. For N5`, x last(t) would always equalt if an
infinite number of discrete random walk lions were initially
at the origin. A more suitable initial condition therefore is a
concentrationc0 of lions uniformly distributed from2` to
0. In this case, onlyN}Ac0

2DLt of the lions are ‘‘danger-
ous,’’ that is, within a diffusion distance from the edge of the
pack and thus potential candidates for killing the lamb. Con-

Fig. 5. The survival exponentb2(r) given by Eq.~10! versus the diffusivity
ratio r.

Fig. 6. Time dependence ofx last for a single realization ofN54, 64, and
1028 lions~bottom to top!. This data was generated by tracking the position
of the rightmost amongN lions, each of which performs a nearest-neighbor
discrete-time random walk starting fromx50. The coincidence of the data
and the linear early-time growth ofx last are artifacts of the discrete random
walk motion. The straight line of slope 1/2 indicates the expected long-time
behavior.
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sequently, forN→`, the leading behavior ofx last(t) be-
comes

x last~ t !;A2DL ln~c0
2DLt !t. ~17!

As we discuss in Sec. IV B, the survival probability of the
lamb in the presence of many lions is essentially determined
by this behavior ofx last.

B. Lamb survival probability for large N

An important feature of the time dependence ofx last is that
fluctuations decrease for largeN ~Fig. 6!. Therefore, the
lamb andN diffusing lions can be recast as a two-body sys-
tem of a lamb and an absorbing boundary which
deterministically advances toward the lamb asx last(t)
5AANt.

To solve this two-body problem, it is convenient to change
coordinates from@x,t# to @x85x2x last(t),t# to fix the ab-
sorbing boundary at the origin. By this construction, the dif-
fusion equation for the lamb probability distribution is trans-
formed to the convection-diffusion equation

]p~x8,t !

]t
2

x last

2t

]p~x8,t !

]x8
5D l

]2p~x8,t !

]x8
2 , ~0<x8,` !

~18!

with the absorbing boundary conditionp(x850,t)50. In this
reference frame, which is fixed on the average position of the
last lion, the second term in Eq.~18! accounts for the bias of
the lamb towards the absorber with a ‘‘velocity’’2x last/2t.
Becausex last;AANt and x8;AD lt have the same time de-
pendence, the lamb survival probability acquires a nontrivial
dependence on the dimensionless parameterAN /D l .9–11

Such a dependence is in contrast to the casesx last!x8 or
x last@x8, where the asymptotic time dependence of the lamb
survival is controlled by the faster of these two coordinates.
Such a phenomenon occurs whenever there is a coincidence
of fundamental length scales in the system~see, for example,
Ref. 14!.

Equation~18! can be transformed into the parabolic cylin-
der equation by the following steps.3 First, introduce the di-
mensionless lengthj5x8/x last and make the following scal-
ing ansatz for the lamb probability density,

p~x8,t !;t2bN21/2F~j !. ~19!

The power law prefactor in Eq.~19! ensures that the integral
of p(x8,t) over all space, namely the survival probability,
decays ast2bN, andF(j) expresses the spatial dependence
of the lamb probability distribution in scaled length units.
This ansatz codifies the fact that the probability density is not
a function ofx8 andt separately, but is a function only of the
dimensionless ratiox8/x last(t). The scaling ansatz provides a
simple but powerful approach for reducing the complexity of
a wide class of systems with a divergent characteristic length
scale ast→`.14

If we substitute Eq.~19! into Eq. ~18!, we obtain

D l

AN

d2F

dj2 1

1

2
~j11!

dF

dj
1S bN1

1

2DF50. ~20!

Now, introduce h5(j11)AAN/2D l and F(j)

5e2h2/4
D(h) in Eq. ~20!. This substitution leads to the para-

bolic cylinder equation of order 2bN
15

d2
D2bN

dh2 1F2bN1

1

2
2

h2

4 GD2bN
50, ~21!

subject to the boundary condition,D2bN
(h)50 for both h

5AAN/2D l and h5`. Equation ~21! has the form of a
Schrödinger equation for a quantum particle of energy 2bN

1 1/2 in a harmonic oscillator potentialh2/4 for h
.AAN/2D l, but with an infinite barrier ath5AAN /2D l.

16

For the long-time behavior, we want the ground-state energy
in this potential. ForN@1, we may approximate this energy
as the potential at the classical turning point, that is, 2bN

1 1/2.h2/4. We therefore obtainbN;AN/16D l . Using the
value of AN given in Eqs.~16! and ~17! gives the decay
exponent

bN;5
DL

4D l
ln N, N finite

DL

8D l
ln t, N5`.

~22!

The latter dependence ofbN implies that for N→`, the
survival probability has the log-normal form

S`~ t !;expS 2

DL

8D l
ln2 t D . ~23!

Although we obtained the survival probability exponent
bN for arbitrary diffusivity ratior5D l /DL , simple consid-
erations give different behavior forr@1 andr!1. For ex-
ample, for r50 ~stationary lamb! the survival probability
decays ast2N/2. Therefore, Eq.~22! can no longer apply for
r,N21, wherebN(r) becomes of orderN. Conversely, for
r5` ~stationary lions!, the survival probability of the lamb
decays ast21/2. Thus Eq.~22! will again cease to be valid for
r. ln N, wherebN(r) becomes of order unity. By accounting
for these limits,3 the dependence ofbN on the diffusivity
ratio r is expected to be

bN~r !55
N/2 r!1/N

~1/4r !ln N 1/N!r! ln N

1/2 r@ ln N.

~24!

The r dependence ofbN in the intermediate regime of 1/N
!r! ln N generalizes the exponents given in Eq.~10! for the
three-particle system to generalN.

V. DISCUSSION

We investigated diffusive capture of a lamb in one dimen-
sion by using several essential techniques of nonequilibrium
statistical mechanics including first-passage properties of dif-
fusion, extreme value statistics, electrostatic analogies, scal-
ing analysis, and moving boundary value theory. These tools
provide an appealing physical description for the survival
probability of the lamb in the presence ofN lions for the
cases of very small and very largeN. Nevertheless, the exact
solution to capture of the lamb remains elusive forN>3.

We close by suggesting several avenues for further study:
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~1! Better simulation methods. Previous simulations of this
system1 followed the random walk motion of one lamb
andN lions until the lamb was killed. This type of simu-
lation is simple to construct. One merely places the lamb
and lions on a one-dimensional lattice and has them per-
form independent nearest-neighbor random walks until
one lion lands on the same site as the lamb. The survival
probability is obtained by averaging over a large number
of realizations of this process. However, following the
motion of discrete random walks is inefficient, because it
is unlikely for the lamb to survive long times and many
realizations of the process must be simulated to obtain
accurate long-time data. In principle, a much better ap-
proach would be to propagate the exact probability dis-
tribution of the particles in the system.17 Can such an
approach be developed for the lamb–lion capture pro-
cess? Another possibility is to devise a simple discrete
random-walk process to simulate the motion of the last
lion. Such a construction would permit consideration of
just the lamb and the last lion, thus providing significant
computational efficiency.

~2! The last lion. Extreme value statistics provides the spa-
tial probability distribution of the last lion. We may also
ask other basic questions: How long is a given lion the
‘‘last’’ one? How many lead changes of the last lion
occur up to timet? How many different lions may be in
the lead up to timet? What is the probability that a
particular lion is never in the lead? Methods to investi-
gate some of these issues are also outlined in the article
by Schmittmann and Zia18 in this journal issue.

~3! Spatial probability distribution of the lamb. As we have
seen for the case of one lion, the spatial distribution of
the lamb is a useful characteristic of the capture process.
What happens for largeN? In principle, this information
is contained in the solution to the parabolic cylinder
equation for the scaled probability distribution@Eq.
~21!#. The most interesting behavior is the form of the
distribution close to the absorbing boundary, where the
interaction between the lions and the lamb is strongest.
For N51 lion, this distribution decays linearly to zero as
a function of the distance to the lion, while forN52, the
distribution has a power law decay in the distance to the
last lion which depends on the diffusivity ratioD l /DL .
What happens for generalN and for the general diffusiv-
ity ratio? Is there a physical way to determine this be-
havior?

~4! Two-sided problem. If N lions are located on both sides
of the lamb, then the lamb is relatively short-lived be-
cause there is no escape route. One can again construct a
mapping between theN11-particle reacting system and
the diffusion of an effective particle in an absorbing
wedge-shaped domain inN11 dimensions. From this
mapping,SN(t) decays ast2gN, but the dependence of
gN on N and diffusivity ratio is unknown. It is clear,
however, that the optimal strategy for the surrounded
lamb is to remain still, in which case the lions are statis-
tically independent and we then recoverSN(t);t2N/2. Is
there a simple approach that provides the dependence of
gN on N for arbitrary diffusivity ratio? Finally,S`(t)
exhibits a stretched exponential decay in time,
exp(2t1/2).19,20What is that nature of the transition from
finite N to infinite N behavior?

~5! Intelligent predators and prey. In a more realistic cap-
ture process, lions would chase the lamb, while the lamb
would attempt to run away. What are physically reason-
able and analytically tractable rules for such directed
motion which would lead to new and interesting kinetic
behaviors?
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APPENDIX A: SURVIVAL PROBABILITY OF A
DIFFUSING PARTICLE WITHIN A WEDGE

The survival probability of a diffusing particle within an
absorbing wedge can be derived by solving the diffusion
equation in this geometry.7,13 We provide an alternative deri-
vation of this result that can also be obtained by developing
a correspondence between diffusion and electrostatics in the
same boundary geometry. Although the logic underlying the
correspondence is subtle, the result is simple and has wide
applicability.

The correspondence rests on the fact that the integral of
the diffusion equation over all time reduces to the Poisson
equation. This time integral is

E
0

` H D¹2p~r,u,t !5

]p~r,u,t !

]t J dt. ~A1!

If one defines an electrostatic potential byF(r,u)
5*0

`p(r,u,t)dt, Eq. ~A1! can be written as

¹2F~r,u !52

1

D
@p~r,u,t5` !2p~r,u,t50!#. ~A2!

For a boundary geometry such that the asymptotic survival
probability in the diffusive system is zero, then Eq.~A2! is
just the Poisson equation, with the initial condition in the
diffusive system corresponding to the charge distribution in
the electrostatic system, and with absorbing boundaries in
the diffusive system corresponding to grounded conductors.

To exploit this analogy, we first note that the electrostatic
potential in the wedge decays asF(r,u);r2p/Q for r→`,
for any localized charge distribution.21 Because the survival
probability of a diffusing particle in the absorbing wedge is
given byS(t)5*p(r,u,t)dA, where the integral is over the
area of the wedge, we find the following basic relation be-
tweenS(t) and the electrostatic potential in the same bound-
ary geometry:

E
0

t

S~ t !dt5E
0

t

dtE p~r,u,t !dA

'E
0

ADt
rdrE

0

Q

du F~r,u !

;E
0

ADt
r12p/Q dr}t12p/2Q. ~A3!

In evaluating the time integral of the survival probability, we
use the fact that particles have time to diffuse to radial dis-
tanceADt but no further. Thus, in the second line of Eq.
~A3!, the time integral of the probability distribution reduces
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to the electrostatic potential forr,ADt and is essentially
zero forr.ADt. Finally, by differentiating the last equality
in Eq. ~A3! with respect to time, we recover Eq.~9!.

APPENDIX B: SPATIAL DISTRIBUTION OF THE
LAST LION BY EXTREME STATISTICS

It is instructive to apply extreme statistics to determine the
probability distribution for the location of the last lion from
an ensemble ofN lions.8 Let p(x)5 (1/A4pDLt) e2x2/4DLt

be the ~Gaussian! probability distribution of a single lion.
Then,p.(x)[*x

`p(x8)dx8 is the probability that a diffusing
lion is in the range@x,`# and similarlyp,(x)512p.(x) is
the probability that the lion is in the range@2`,x#. Let
LN(x) be the probability that the last lion out of a group ofN
is located atx. This extremal probability is given by

LN~x !5Np~x !p,~x !N21. ~B1!

That is, one of theN lions is atx, while the remainingN
21 lions are in the range@2`,x#. If we evaluate the factors
in Eq. ~B1!, we obtain a double exponential distribution8

LN~x !

5

N

A4pDLt
e2x2/4DLtF12E

x

` 1

A4pDLt
e2x2/4DLt dxGN21

,

;
N

A4pDLt
e2x2/4DLt expF2

N21

A4pDLt
E

x

`

e2x2/4DLt dxG .

~B2!

When N is large, thenx/A4DLt is also large, and we can
asymptotically evaluate the integral in the exponential in Eq.
~B2!. Following Eq. ~14!, it is convenient to express the
probability distribution in terms ofM5N/A4p and y
5x last/A4DLt. If we useLN(y)dy5LN(x)dx, we obtain

LN~y !.2Me2y2
exp~2Me2y2

/y !. ~B3!

The most probable value ofx last is determined by the require-

ment that LN8 (y)50. This condition reproducesyey2
5M

given in Eq.~14!.
We may also estimate the width of the distribution from

its inflection points, that is, whenLM9 (y)50. By straightfor-
ward calculation,LN9 (y)50 at

y6.Aln~M /k6!'Aln M S 12

ln k6

ln M D , ~B4!

where k65(36A5)/2. Therefore, asN→`, the width of
LN(y) vanishes as 1/Aln M. This behavior is qualitatively
illustrated in Fig. 6, where the fluctuations inx last(t) decrease
dramatically asN increases. This decrease can also be un-
derstood from the form of the extreme distributionLN(x) in
Eq. ~B2!. The large-x decay ofLN(x) is governed byp(x),
while the double exponential factor becomes an increasingly

sharp step atxstep'A4DLt ln N asN increases. The product
of these two factors leads toLN(x), essentially coinciding
with p(x) for x.xstep andLN(x)'0 for x,xstep.
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