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Capturing additional genetic risk from family
history for improved polygenic risk prediction
Tianyuan Lu 1,2✉, Vincenzo Forgetta1, J. Brent Richards 1,3,4,5 & Celia M. T. Greenwood 1,3,4,6✉

Family history of complex traits may reflect transmitted rare pathogenic variants, intra-

familial shared exposures to environmental and lifestyle factors, as well as a common genetic

predisposition. We developed a latent factor model to quantify trait heritability in excess of

that captured by a common variant-based polygenic risk score, but inferable from family

history. For 941 children in the Avon Longitudinal Study of Parents and Children cohort, a

joint predictor combining a polygenic risk score for height and mid-parental height was able

to explain ~55% of the total variance in sex-adjusted adult height z-scores, close to the

estimated heritability. Marginal yet consistent risk prediction improvements were also

achieved among ~400,000 European ancestry participants for 11 complex diseases in the UK

Biobank. Our work showcases a paradigm for risk calculation, and supports incorporation of

family history into polygenic risk score-based genetic risk prediction models.
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Predicting phenotypic values of complex traits, or the risks
and outcomes of complex diseases have strong implications
in health care and biomedical research1,2. In recent years,

large-scale genome-wide association studies (GWASs) have
characterized the genetic architecture of many complex traits and
diseases3. Developing polygenic risk scores aggregating the effects
of well-profiled genetic determinants has become possible4,5.
Polygenic risk scores have demonstrated the potential to improve
risk stratification in large populations6–9, assist diagnosis and
clinical differentiation10–12, and refine risk management and
treatment strategies13–15.

However, most polygenic risk scores only capture linear
additive effects of common genetic variants. Currently, most
GWASs—even those based on the largest biobank studies—
restrict consideration to genetic variants with a minor allele fre-
quency > 0.1% or higher3,16. Furthermore, extremely rare patho-
genic variants with high penetrance are rarely detected with
array-based genotyping and imputation3,17. Furthermore, pow-
erful approaches to accurately model more complex non-linear
effects (i.e. dominance effects) and interaction effects (i.e. gene-
by-environment effects and gene-by-gene effects) in a high
dimensional setting are scarce, particularly since these effects are
in general weaker than the linear additive effects3,18. Despite
continuing methodological innovations in mining hidden herit-
ability, these under-captured genetic effects likely prevent poly-
genic risk scores from achieving a further-improved predictive
performance.

In contrast, family history information, such as parental
measures of phenotypic values and disease records, provides an
indirect measure of the overall genetic predisposition among
relatives19. Although traditionally considered as a crucial risk
factor for Mendelian diseases, family history has also shown
added value in polygenic risk prediction20–24. For instance,
individuals at an elevated level of risk for various types of cancer
and cardiovascular diseases are more likely to be identified by
assessments combining the family history of disease with poly-
genic risk scores20–24, compared to using polygenic risk scores or
family history alone.

Nevertheless, creating accurate joint predictors may be chal-
lenging, since it requires modelling individual-level training data
on phenotypes, genotypes, and family history information, as has

been explored previously7,25–27. This may not lead to effective
prediction models if datasets containing all the required infor-
mation are too small, particularly for diseases with a low pre-
valence in the population.

Therefore, in this work, we demonstrated both by theory and with
examples, the improved predictions associated with a scheme for
combining polygenic risk scores and parental disease histories. We
approached this goal by inquiring what proportion of trait variance
is captured by parental information and not by existing polygenic
risk scores. Then, in comparison to using polygenic risk scores alone
or predictors based only on parental trait measures or parental
disease history, we evaluated the performance of these joint pre-
dictors in predicting adult height among 2397 European ancestry
children in the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort28,29, as well as in predicting risk for 11 complex
diseases amongst ~400,000 European ancestry participants in the
UK Biobank30. An R toolkit implementing the method developed in
this work, called FHPRS (Family History-assisted Polygenic Risk
Score), is openly available at https://github.com/tianyuan-lu/PRS-
FH-Prediction.

Results
Inference of under-captured genetic components in family
history. We propose a conceptual latent factor model to account
for genetic components that are not modelled by polygenic risk
scores but could be inferred from parental history (Methods).
Briefly, for a continuous polygenic trait (Fig. 1a), we assume that
its genetic determinants can be partitioned into two orthogonal
genetic components: one component captured by a polygenic risk
score used for prediction, and the other component representing
under-captured genetic effects. The under-captured genetic
component could include the effects of unmeasured common
variants, rare variants, gene-by-environment interactions, epis-
tasis, intra-familial shared environmental or lifestyle factors, etc.
We suppose that these two genetic components are independently
passed on from the parents to the children, hence parental
measures of the trait may partially inform the under-captured
genetic component (Methods and Fig. 1a). This model can be
adapted for binary diseases, wherein the parental disease history
may inform the underlying genetic liability (Fig. 1b).

Fig. 1 Causal diagrams representing latent factor models. a For the parents and the children separately, a continuous trait Y is determined by a polygenic
component P captured by a polygenic risk score, and a latent genetic component G independent of P. b A binary trait Z is determined by the underlying
genetic liability H. Analogous to Y in a, H is jointly determined by P and G. Prediction combining a polygenic risk score and parental information is
equivalent to inference of the distribution of Y in a and H in b for the children. The two genetic components, P and G, are assumed to be independently
passed on from the parents to the offspring. Trait heritability is assumed to be constant across different generations.
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Based on this model, a multivariate predictive model for a
continuous trait or the genetic liability for a disease can be created
by combining a polygenic risk score and family history, requiring
only (1) the magnitude of association between a polygenic risk
score and the target trait or disease, and (2) the magnitude of
association between parents’ trait measures or disease history and
the target trait or disease among children (Methods). Impor-
tantly, these estimates can be obtained from separate well-
powered reference cohort studies, without the need to access
individual-level information for training a predictive model.
Subsequently, predictions for individuals in a test population or
patients in clinics can be obtained based on their genotypes and
parental trait measures or family disease history.

Improved height prediction among children by incorporating
parental height measures. We assessed the performance of this
joint predictor in predicting children’s adult height. A polygenic
risk score for age and sex-adjusted adult height z-score was
recently developed using resources from the UK Biobank and the
Genetic Investigation of ANthropometric Traits consortium7,30,31.
On an out-of-sample test dataset in the UK Biobank, this score
explained 36.7% of the total variance in height z-score7. On the
other hand, an observational study–the Erasmus Rucphen Family
Study–found that the mid-parental height z-score was able to
explain 44.9% of the total variance in offspring height z-scores32.
Based on these estimates, we derived that 58.1% of the total height
z-score variance was under-captured and could be partially
inferred from parental height measures (Methods).

A joint predictor combining this polygenic risk score and mid-
parental height was then obtained for European ancestry children
in the ALSPAC cohort (Methods and Supplementary Table 1).
Consequently, among 941 genotyped children who had both
biological parents’ height measures, this joint predictor was able
to explain 55.3% of the total variance in their sex-adjusted adult
height z-score (Fig. 2a). In contrast, similar to metrics obtained in
the literature, the polygenic risk score alone explained 38.2% of
the total variance, while the mid-parental height z-score alone
explained 43.1% (Fig. 2a). As expected, the joint predictor also
achieved the highest prediction accuracy with a root-mean-square
error (RMSE) of 4.212 cm, compared to 4.955 cm by the
polygenic risk score and 4.752 cm by the mid-parental height
z-score (Fig. 2b).

Furthermore, the polygenic prediction could also be improved
when only one parent’s height was measured (Methods). Specifically,
among 2246 children with maternal height measures, a joint
predictor incorporating the polygenic risk score and maternal height
z-score explained 47.1% of the total variance and achieved an RMSE
of 4.584 cm (Fig. 2c, d). Among 1092 children with paternal height
measures, a joint predictor incorporating the polygenic risk score
and paternal height z-score explained 47.0% of the total variance and
achieved an RMSE of 4.607 cm (Fig. 2e, f). Evidently, these joint
predictors demonstrated superior predictive performance over the
polygenic risk score or parental height alone.

Notably, all joint predictors demonstrated almost identical
predictive performance as an in-sample combination of the
polygenic risk score and parental height z-scores obtained from
multivariate linear regression using individual-level data (Meth-
ods and Fig. 2).

Improved complex disease risk prediction by incorporating
parental disease history. Next, we tested whether a joint predictor
could improve polygenic risk prediction for 11 complex diseases in
the UK Biobank (Supplementary Table 2). Polygenic risk scores have
been recently developed for each of these diseases and are docu-
mented in the PGS Catalog (Supplementary Table 3)33. Estimation

of under-captured genetic effects was conducted based on a training
dataset consisting of 10% of the participants from the UK Biobank
(Methods and Supplementary Fig. 1). For most of these complex
diseases, individuals having a parental disease history were sig-
nificantly more likely to have the corresponding disease (Supple-
mentary Table 4). The magnitudes of association reflect that a
substantial proportion of genetic influence is not captured by the
polygenic risk scores (Supplementary Table 4).

The incorporation of parental disease history into polygenic
risk predictions led to a re-stratification of the predicted risks
(Fig. 3a). Specifically, individuals with a parental disease history
would be considered at an elevated level of risk compared to those
with a similar polygenic risk score but without a parental disease
history. The discriminative power of polygenic risk scores in
identifying individuals who developed the corresponding diseases
was significantly improved (Table 1 and Supplementary Table 5).
For instance, combined with age, sex, genotyping array,
recruitment centre, and the first 10 genetic principal components,
a joint predictor for myocardial infarction achieved an area under
the receiver operating characteristic curve (AUROC) of 0.7625
(Fig. 3b) and an area under the precision-recall curve (AUPRC)
of 0.0834 (Fig. 3c), based on a test dataset consisting of 90% of the
participants from the UK Biobank (Methods and Supplementary
Fig. 1). In contrast, prediction based on the polygenic risk score
(with other covariates but without parental history) had an
AUROC of 0.7567 (DeLong’s test p-value= 5.3 × 10−13) and an
AUPRC of 0.0800; prediction based on the parental disease
history (with other covariates but without the polygenic risk
score) had an AUROC of 0.7375 (DeLong’s test p-value= 3.0 ×
10−126) and an AUPRC of 0.0671 (Fig. 3b, c).
Meanwhile, the joint predictor could more accurately assign

individuals into higher-vs-lower risk groups, indicated by positive
net-re-classification indices (NRI) across different percentile cut-
offs and positive integrated discrimination improvement (IDI)
indices (Table 1). For example, at the 95th percentile cut-off (i.e.
5% of the population to be considered at high risk), the joint
predictor for Alzheimer’s disease had the highest NRI of 5.76%
over the polygenic risk score for Alzheimer’s disease, followed by
the joint predictor for chronic obstructive pulmonary disease
(COPD), with an NRI of 5.07% (Table 1). Notably, the joint
predictor for Alzheimer’s disease was significantly associated with
carrying one or two APOE e4 alleles (Methods and Supplemen-
tary Fig. 2a and b), which is a well-known genetic risk factor for
Alzheimer’s disease34–36 but is not included in the polygenic risk
score for this analysis. In addition, individuals with a higher score
in the joint predictor for COPD were slightly yet significantly
more likely to be ever-smokers, while the polygenic risk score
alone did not capture the genetic predisposition to smoking
(Methods and Supplementary Fig. 2c).

For most diseases under investigation, the joint predictors
consistently achieved comparable predictive performance to gold-
standard predictors obtained by fitting multivariate logistic
regression models based on individual-level data from the
training datasets (Methods and Supplementary Fig. 1). For breast
cancer, lung cancer, stroke, and Alzheimer’s disease, the joint
predictors even achieved a marginally higher AUROC than the
data-driven predictors (Table 1 and Supplementary Fig. 3),
although the joint predictors for ischemic heart disease and type 2
diabetes did not appear to be ideal (Table 1 and Supplementary
Fig. 3). However, as expected, all of the individual-level data-
driven predictors demonstrated sensitivity to sample size (Fig. 3d
and Supplementary Fig. 3). For instance, for myocardial
infarction, if a regression-based predictor were to be derived
using ≤20% of the individuals included in the current training
dataset, its discriminative power would likely be worse than the
polygenic risk score alone (Fig. 3d).
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Discussion
Polygenic risk scores for complex traits are effective research tools
and may greatly improve personalized health care in clinical
practice1,2. The development of polygenic risk scores relies on the
accurate characterization of genetic determinants in large-scale
GWASs. Due to the limitation of resources, most existing poly-
genic risk scores are restricted to modelling linear additive effects
of common genetic variants, thus may benefit from being com-
bined with predictors that are able to capture more elusive genetic
effects. In this study, we have proposed a simple latent factor
model to quantify and extract heritability not captured by poly-
genic risk scores but inferable from family history. We have
systematically investigated the utility of adding family history into
polygenic risk score-based polygenic risk prediction models.

The combination of parental height measures and a polygenic
risk score for height brought substantial improvements in adult
height prediction. In fact, the proportion of variance explained in

adult height z-scores by our joint predictor in the ALSPAC cohort
was close to the estimated total SNP heritability of height
z-scores37–40. On the other hand, for 11 complex diseases, the
joint predictors consistently demonstrated stronger dis-
criminative power in identifying individuals at an elevated level of
risk, although the improvements appeared to be marginal. This
may reflect the limited sensitivity of relevant metrics to the
addition of new predictors41, as we observed in simulation studies
(Supplementary Note 1 and Supplementary Fig. 4). Nonetheless,
by jointly examining all metrics (AUROC, AUPRC, NRI, and
IDI) as well as the distribution of predicted risks, we posit that the
resulting risk re-stratification could still benefit up to thousands
of individuals at the biobank scale.

In developing this prediction scheme, we partitioned trait or
disease heritability onto two orthogonal genetic components,
where family history is assumed to partially inform a latent
genetic component despite being correlated with the polygenic

Fig. 2 Comparison of predictive performance in predicting children’s sex-adjusted adult height z-scores for a polygenic risk score, parental height
measures, and a joint predictor. A joint predictor combining the polygenic risk score and the mid-parental height predictor achieves a the highest
proportion of variance explained, and b the lowest root-mean-square error based on 941 child-parent trios. A joint predictor incorporating c, d only the
maternal height for 2246 child-mother pairs, or e, f only the paternal height for 1092 child-father pairs also outperforms the polygenic risk score and the
single parental height predictor alone. These joint predictors have similar predictive performance as the corresponding gold-standard in-sample best linear
unbiased predictors based on individual-level data, indicated by dashed lines.
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Fig. 3 A joint predictor improves risk stratification for myocardial infarction in the UK Biobank. a Incorporation of parental disease history leads to
calibration of polygenic risk scores. Individuals with a parental disease history are more likely to be considered at risk. The joint predictor achieves higher
b area under the receiver operating characteristic curve (AUROC) and c area under the precision-recall curve (AUPRC), compared to the polygenic risk
score and the parental disease history. d Performance of a data-driven joint predictor obtained from multivariate logistic regression is sensitive to sample
size when using individual-level data. Boxplots represent distributions of AUROC obtained in 100 replicates corresponding to different sample sizes.
AUROC of the joint predictor, polygenic risk score, and parental disease history are indicated by red, green, and blue dashed lines, respectively.
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risk score. To account for the polygenicity and complexity of the
underlying genetic effects, the genetic components were assumed to
be normally distributed. We recognize that while these assumptions
have strength in facilitating model specification and construction of
joint predictors, they may not be theoretically optimal. For example,
if strong gene-by-environment interaction effects exist, the under-
captured genetic component should, at least in part, be correlated
with the polygenic risk score. However, correlation or interaction
between the two genetic components is not identifiable without
accessing individual-level training data. Encouragingly, our simula-
tion studies indicated that our method could tolerate mild-to-
moderate violations of model assumptions as well as errors in esti-
mating model parameters (Supplementary Notes 2 and 3, and
Supplementary Figs. 5–10). Moreover, despite these strong
assumptions, we found in practice that polygenic prediction could
consistently be improved through our models built with this point of
view, regardless of the underlying genetic architecture of complex
traits, disease prevalence, and the methods adopted to develop
polygenic risk scores33. In contrast to multivariate regression-based
joint predictors, our method can leverage results of association tests
obtained from separate cohort studies with high statistical power,
thus this method does not suffer when large individual-level training
datasets are unavailable.

Our findings have important implications for developing
polygenic risk predictors, since the under-captured genetic
components may have known sources. For instance, a large
proportion of Alzheimer’s disease risk heritability is conferred by
the common allele of APOE e434–36. Not surprisingly, the par-
ental disease history of Alzheimer’s disease appeared to be more
predictive of the disease risk compared to a polygenic risk score
not including this allele, while the joint predictor demonstrated
clear advantages in risk stratification. Furthermore, by design,
inherited risk factor exposure was also included in the under-
captured genetic component. Smoking is one of the most
important risk factors for COPD42 and is heritable43,44. In our
model, a family disease history of COPD may partially capture
the genetic predisposition to smoking as well as other risk factors
that are not fully represented in the polygenic risk score. As a
result, the corresponding joint predictor aggregating additional
genetic risks demonstrated a prominent improvement over the
polygenic risk score. These results not only support the utility of
family history in enhancing predictive power but also encourage
explicit modelling of large effects such as monogenic causes or
significant intra-familial shared risk factor exposures in polygenic
risk prediction.

We note possible model mis-specification for ischemic heart
disease and type 2 diabetes because the joint predictors we con-
structed displayed compromised predictive performance com-
pared to the gold-standard predictors. We hypothesize that this
may be due to errors in the definitions of disease in the parental
histories as well as in the medical histories of the participants.
Specifically, sub-classifications of diseases were not available for
parental heart disease and diabetes, where the former may include
various types of diseases affecting the cardiovascular system, and
the latter may include both type 1 and type 2 diabetes. Consistent
disease definitions and comprehensive phenotyping are thus
required for validating our findings in clinical practice and in
research.

We anticipate that the predictive performance of the joint
predictors could be further enhanced with additional knowledge
of family history, such as the disease history of relatives other
than the parents, using empirical genetic relatedness based on
pedigree information. However, we expect that information
gained from second-degree or more distant relatives would be less
significant compared to first-degree relatives. Furthermore, in the
UK Biobank, the parental disease history largely reflected the
parents’ lifetime risk given that the participants (children) were
aged above 40 years upon recruitment. Hence, appropriate
modelling of age-dependent risks should be pursued for most
complex diseases that do not have an early onset, if the disease
history of younger relatives were to be considered.

Last, our findings should be considered specific to the study
populations. Participants in our study cohorts are predominantly
of European ancestries, yet it has been widely recognized that
polygenic risk scores can have largely attenuated predictive per-
formance when applied to populations of different genetic
ancestries45,46. Hence, we recommend extensive validations of
our results in diverse populations as well as the development of
ancestry-specific polygenic risk scores. Adding to this restriction,
we also note that participants in the UK Biobank have been
shown to be slightly healthier, less obese, and less likely to smoke
and drink alcohol than the general population in the United
Kingdom47. In particular, the average age of the study cohort was
substantially younger than the average age of onset for Alzhei-
mer’s disease and Parkinson’s disease48,49, thus the corresponding
disease prevalence was low. Therefore, if a joint predictor were to
be constructed for other populations, we strongly recommend
estimating model parameters based on reference cohort studies
with similar demographic characteristics and prevalence of the
disease. This may be particularly important for large cohort

Table 1 Improved discriminative power of a joint predictor in identifying individuals at an elevated risk of disease based on the
UK Biobank test dataset.

Disease AUROCa (p-value of DeLong’s testb) NRIc (%) at score percentile cut-off IDIc (%)

Polygenic risk score Parental history Joint predictor 50 80 95 99

Breast cancer 0.6443 (5.8 × 10−16) 0.5771 (8.9 × 10−213) 0.6500 +0.94 +0.84 +0.14 +0.17 +0.56
Prostate cancer 0.7567 (1.4 × 10−3) 0.7071 (2.6 × 10−197) 0.7588 +0.29 +0.24 +0.68 +0.12 +0.21
Colorectal cancer 0.6755 (5.4 × 10−8) 0.6676 (2.1 × 10−41) 0.6768 +0.27 +0.64 +0.45 0 +0.13
Lung cancer 0.6915 (1.6 × 10−7) 0.6947 (1.3 × 10−6) 0.6975 +2.46 +5.07 +3.01 +1.12 +2.60
Myocardial infarction 0.7567 (5.3 × 10−13) 0.7375 (3.0 × 10−126) 0.7625 +0.85 +0.70 +0.96 +0.09 +0.58
Ischemic heart disease 0.7445 (1.5 × 10−38) 0.7398 (3.4 × 10−297) 0.7520 +1.10 +0.96 +0.57 +0.22 +0.75
Stroke 0.6862 (6.2 × 10−10) 0.6802 (8.7 × 10−16) 0.6870 +0.41 +0.06 +0.38 +0.14 +0.49
Type 2 diabetes 0.7129 (6.7 × 10−31) 0.7072 (<1.0 × 10−350) 0.7266 +1.71 +2.50 +1.47 +0.89 +1.37
Alzheimer’s disease 0.7571 (1.4 × 10−7) 0.7616 (1.5 × 10−3) 0.7645 +4.48 +6.65 +5.76 +2.18 +4.02
Parkinson’s disease 0.7482 (2.6 × 10−2) 0.7412 (2.1 × 10−13) 0.7507 +1.86 +2.21 +0.59 +1.08 +1.22
COPD 0.7325 (4.4 × 10−58) 0.7448 (2.0 × 10−11) 0.7463 +7.03 +11.88 +5.07 +1.60 +5.96

aIncluding effects of age, sex (except for breast cancer and prostate cancer), genotyping array, recruitment centre, and the first 10 genetic principal components.
bComparing AUROC of the polygenic risk score or parental history to that of the joint predictor.
cComparing the joint predictors to the corresponding polygenic risk scores; a positive number indicates improved re-classification.
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studies and population-level screening programs where family
history information is less comprehensive than in clinical settings.

In summary, we have developed a risk calculation scheme by
incorporating family history into polygenic risk scores. We found
a substantial proportion of complex trait heritability was under-
captured and could be partly inferred from family history. Our
findings support the utility of combining family history with
polygenic risk scores as well as investigations into complex
genetic effects not captured by existing polygenic risk scores for
improved genetic risk prediction.

Methods
Related methods. Combining a genetic risk score with measures of traits or
disease status of relatives is not unprecedented. The most straightforward approach
is to fit a multivariate regression model including both the genetic risk score and
family history variables as predictors7,25. Alternatively, extensions of the best linear
unbiased prediction (BLUP) method have been proposed by appending an
empirical relatedness matrix based on pedigree information to a genotype-based
relatedness matrix for modelling random effects in a mixed model setting26,27.
Using a similar framework, family history may also improve the power of genetic
association tests19. However, these methods require access to a training dataset that
simultaneously contains phenotypes, genotypes, and family history information.
For modelling disease outcomes, a large number of cases is needed to ensure
statistical power. This is often unlikely due to confidentiality restrictions or
logistical constraints. In addition, the variance-covariance structure of genetic
components specified in our method is also similar to that implemented in a few
methods using family disease status to modify genetic risk estimates in known risk
loci50–52. Nonetheless, these methods require a pre-specified estimate of disease
heritability, which may be prone to error if no reference for the targeted population
is available or if unmeasured covariate effects are not properly accounted for.

A latent factor model for polygenic inheritance in parent-child trios. We first
consider a simple latent factor model for a normally distributed polygenic trait

YM ¼ αPM þ βGM þ ϵM ð1Þ

YF ¼ αPF þ βGF þ ϵF ð2Þ

YC ¼ αPC þ βGC þ ϵC ð3Þ
where the subscripts M, F, and C stand for the populations of mothers, fathers, and
children, respectively. The mothers and the fathers are assumed to be unrelated. P
represents the genetic component already captured by a polygenic risk score, while
G represents the under-captured genetic component, including under-captured
linear additive effects, non-additive effects, rare pathogenic variant effects, gene-
gene or gene-environment interaction effects, inherited exposure to risk factors, etc.
Importantly, G is assumed to be independent of P, and these two components are
independently passed on from the parents to the children. We realize that this may
be an unrealistic assumption, particularly for common genetic effects that were not
captured in existing polygenic risk scores, but this assumption enables the con-
ceptual development of our latent model. Results in Fig. 2 and Table 1 justify the
usefulness of the perspective. ϵ captures the non-genetic residual variance in Y,
where ϵ⊥(P,G). We assume both P and G are normally distributed because P,
under a polygenic model, consists of multiple independent effects, each having an
infinitesimal effect size, while G has a multifactorial nature. Without loss of gen-
erality, we suppose that Y, P, and G are scaled to have zero mean and unit variance.

We further assume that the effects of the modelled polygenic component and
the under-captured genetic component, α and β, are invariant in the populations of
parents and children from the same study. Naturally, the overall heritability of this
trait is α2+ β2.

Next, we describe the joint distribution of P, G, and Y, where
P ¼ ðPM ; PF ; PCÞ> , G ¼ ðGM ;GF ;GCÞ>, and Y ¼ ðYM ;YF ;YCÞ> :

P

G

Y

0
B@

1
CA � N

0

0

0

0
B@

1
CA;

ΣPP ΣPG ΣPY

ΣGP ΣGG ΣGY

ΣYP ΣYG ΣYY

0
B@

1
CA

0
B@

1
CA ð4Þ

Based on the polygenic model assumptions, the covariance between the
children’s genetic components and their parents’ corresponding genetic
components is expected to be 1

2, as each child inherits half of the trait-determining
alleles from their mother and the other half from their father. Hence, we specify
empirical covariance matrices for ΣPP and ΣGG:

ΣPP ¼ ΣGG ¼
1 0 1

2

0 1 1
2

1
2

1
2 1

0
B@

1
CA ð5Þ

It is noteworthy that by specifying these variance-covariance matrices, we
assume no consanguinity and no assortative mating.

Since P and G are assumed to be independent of each other, we set:

ΣPG ¼ ΣGP ¼ 0 ð6Þ
For associations between the trait and genetic components, we can derive that
Cov(Pk, Yk)= Cov(Pk, αPk+ βGk+ ϵk)= α for k∈ {M, F, C} and

CovðPC ;YM=F Þ ¼ CovðPC ; αPM=F þ βGM=F þ ϵM=FÞ ¼ α
2 (the subscript M/F

represents maternal or paternal component), thus

ΣPY ¼ ΣYP ¼
α 0 α

2

0 α α
2

α
2

α
2 α

0
B@

1
CA ð7Þ

Similarly,

ΣGY ¼ ΣYG ¼
β 0 β

2

0 β β
2

β
2

β
2 β

0
BB@

1
CCA ð8Þ

Furthermore, the covariance between the children’s trait and the parents’ trait

CovðYC ;YM=F Þ ¼ CovðαPC þ βGC þ ϵC ; αPM=F þ βGM=F þ ϵM=FÞ ¼ α2þβ2

2 .
Therefore,

ΣYY ¼
1 0 α2þβ2

2

0 1 α2þβ2

2

α2þβ2

2
α2þβ2

2 1

0
BB@

1
CCA ð9Þ

Equation (9) implies that if a combination of the parental trait measures, usually
the mid-parental trait measure, is used to predict the children’s trait, the expected
proportion of variance explained is

Corr2 YC ;
YM þ YF

2

� �
¼

1
2 CovðYC ;YMÞ þ 1

2 CovðYC ;YFÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYCÞVarðYMþYF

2 Þ
q

0
B@

1
CA

2

¼ ðα2 þ β2Þ2
2

ð10Þ
In practice, an estimate of α can be obtained from studies developing polygenic

risk scores, i.e. α̂2 ¼ dCorr2ðP;YÞ. Meanwhile, observational studies reporting the
magnitude of associations between parental trait measures and the children’s trait
measures can inform the under-captured heritability β2, e.g.

β̂
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dCorr2�YC ;

YM þ YF

2

�s
� α̂2 ð11Þ

Continuous trait prediction incorporating parental trait measures. Based on
the distributional assumptions in Eq. (4), we are able to infer YC with the parental
trait measures (YM and/or YF) and the children’s polygenic risk score (PC), if we
have estimates of α and β. Specifically, given the properties of the multivariate
normal distribution,

YC

YM

YF

PC

0
BBB@

1
CCCA � N

0

0

0

0

0
BBB@

1
CCCA;

1 α2þβ2

2
α2þβ2

2 α

α2þβ2

2 1 0 α
2

α2þβ2

2 0 1 α
2

α α
2

α
2 1

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA ð12Þ

For the jth individual with a polygenic risk score pC,j and parental measures of
the trait yM,j, yF,j, we use the conditional expectation as the predictor for the trait:

�YC;j ¼ EðYC jYM ¼ yM;j;YF ¼ yF;j; PC ¼ pC;jÞ ¼ α̂2þβ̂
2

2
α̂2þβ̂

2

2 α̂

� � 1 0 α̂
2

0 1 α̂
2

α̂
2

α̂
2 1

0
B@

1
CA

�1 yM;j

yF;j
pC;j

0
B@

1
CA
ð13Þ

Alternatively, we can create a predictor using the polygenic risk score with one
parental measure if only the maternal or the paternal measure is available:

�YC;j ¼ EðYC jYM=F ¼ yM=F;j;PC ¼ pC;jÞ ¼
α̂2 þ β̂

2

2
α̂

 !
1 α̂

2
α̂
2 1

 !�1
yM=F;j

pC;j

 !

ð14Þ
This framework is generalizable to any degree of family relationships, with

modification of the variance-covariance matrices, possibly using empirical
estimates of genetic relatedness. However, because information about more
distantly related family members is more difficult to obtain, and is rarely complete
in large cohort studies, and because parental information is the most relevant to
risk prediction, we focus on parental trait measures or disease history in this work.

Modelling latent genetic components for binary diseases. For binary diseases,
we combine a liability model with the above latent factor model and explicitly
model measurable covariate effects (such as age and sex) since they are non-trivial
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in this case. We denote the mothers’, fathers’ and children’s diseases of interest as
ZM, ZF, and ZC, respectively. We assume that

ðZkjPk ¼ p;Gk ¼ g;Qk ¼ qÞ � Bernoulli

�
eμ0þαpþβgþγq

1þ eμ0þαpþβgþγq

�
ð15Þ

for k∈ {M, F, C}, where Q represents measured (single or multiple) covariates with
effects γ, and μ0 denotes the baseline odds (on the logarithmic scale) of the disease
in the target population. P and G are assumed to be independently distributed with
P � N ð0; 1Þ and G � N (0, 1).

If we introduce H= αP+ βG, where (H � N ð0; α2 þ β2Þ) includes both genetic
components, then Eq. (15) simplifies to

ðZkjHk ¼ h;Qk ¼ qÞ � Bernoulli

�
eμ0þhþγq

1þ eμ0þhþγq

�
ð16Þ

With the Bernoulli distribution assumptions, we adopt a logit-link in modelling the
genetic liability, instead of the probit-link which is more commonly used for
liability threshold models19. This choice facilitates the estimation of the model
parameters from the results of widely-implemented logistic regression models.
Nevertheless, heritability estimates can still be obtained. As shown previously53, an
approximation to obtain the effect size estimate on the liability scale is

τα � Φ�1½FLogisticðμ0 þ αÞ� �Φ�1½FLogisticðμ0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fΦ�1½FLogisticðμ0 þ αÞ� �Φ�1½FLogisticðμ0Þ�g

2
VarðPÞ

q ð17Þ

and

τβ �
Φ�1½FLogisticðμ0 þ βÞ� � Φ�1½FLogisticðμ0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fΦ�1½FLogisticðμ0 þ βÞ� �Φ�1½FLogisticðμ0Þ�g
2
VarðGÞ

q ð18Þ

where Φ is the standard normal cumulative distribution function, FLogistic is the
cumulative distribution function of logistic distribution with a mean of 0 and
variance of π2

3 , i.e. FLogisticðxÞ ¼ 1
1þexpf� πffiffi

3
p xg, and Var(P)= Var(G)= 1.

Consequently, heritability captured by the polygenic risk score can be estimated
as τ2α , while the under-captured heritability can be estimated as τ2β . Notably, unlike
the model for continuous traits (Section A latent factor model for polygenic
inheritance in parent-child trios) where α and β are automatically bounded
(0 ≤ α2+ β2 ≤ 1), here, the effects of the genetic components P and G are
unconstrained.

Estimates of the unknown parameters can be obtained from summary statistics
of existing observational studies. That is, we can directly obtain α̂ based on the
magnitude of association between a polygenic risk score and the disease risk, i.e.
odds ratio (OR) per one standard deviation increase in the polygenic risk score,
together with μ̂0 and γ̂. Furthermore, we can empirically estimate β if we have an
estimate of the association between a parental disease history and the disease risk
amongst the children.

Specifically, from the joint distribution

f ðZC ;ZM=FÞ ¼
Z

HC ;HM=F

f ðZC ;ZM=F ;HC ;HM=F Þ

¼
Z

HC ;HM=F

f ðZC jHCÞf ðZM=F jHM=FÞf ðHC ;HM=F Þ
ð19Þ

where

f ðZkjHk ¼ hÞ ¼
�

eμ0þhþγq

1þ eμ0þhþγq

�zk� 1

1þ eμ0þhþγq

�1�zk
ð20Þ

for k∈ {M, F, C}, and

HC

HM=F

 !
� N 0

0

� �
;

α2 þ β2 α2þβ2

2

α2þβ2

2 α2 þ β2

0
@

1
A

0
@

1
A ð21Þ

we have an explicit expression for the OR based on either the maternal or the
paternal disease history as a function of the unknown β:

fORM=F ¼ f ðZC ¼ 1;ZM=F ¼ 1Þ=f ðZC ¼ 0;ZM=F ¼ 1Þ
f ðZC ¼ 1;ZM=F ¼ 0Þ=f ðZC ¼ 0;ZM=F ¼ 0Þ ð22Þ

Therefore, we perform a numerical line search to obtain an empirical estimate

of β such that the theoretical fORM=F is close to the observed cORM=F :

β̂ ¼ argminβfjðlogðcORMÞ � logðfORMÞÞ þ ðlogðcORF Þ � logðfORF ÞÞjg ð23Þ
It should be noted that the OR associated with the maternal disease history may

differ from that based on the paternal disease history because sex is included as a
covariate (in Q) in this model.

Binary disease risk prediction incorporating parental disease history. Similar
to predicting a continuous trait (Section Continuous trait prediction incorporating
parental trait measures), we aim to infer f(HC∣ZM, ZF, PC). since the distribution of

HC naturally informs f(ZC). Then we can use the conditional expectation as the
predictor.

We observe that

f ðHC jZM ;ZF ; PCÞ ¼ f ðHC jHM ;HF ; PCÞf ðHM jZMÞf ðHF jZF Þ ð24Þ
has no closed-form solution for its expectation, since

HC

HM

HF

PC

0
BBB@

1
CCCA � N

0

0

0

0

0
BBB@

1
CCCA;

α2 þ β2 α2þβ2

2
α2þβ2

2 α

α2þβ2

2 α2 þ β2 0 α
2

α2þβ2

2 0 α2 þ β2 α
2

α α
2

α
2 1

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA ð25Þ

and

f ðHkjZk ¼ zkÞ ¼
f ðZk ¼ zkjHkÞf ðHkÞ

f ðZk ¼ zkÞ
/ eμ0þhkþγq

1þ eμ0þhkþγq

� �zk 1
1þ eμ0þhkþγq

� �ð1�zkÞ
e
� h2

k
2ðα2þβ2 Þ

 !

ð26Þ
for k∈ {M, F, C}. Therefore, we implement an importance sampling scheme to
approximate this conditional distribution and derive its expectation:

For the jth individual with a polygenic risk score pC,j and parental disease
history zM,j∈ {0, 1}, zF,j∈ {0, 1}, we randomly generate L (a large number, e.g.
1,000,000) samples of HM,j and HF,j based on f(HM∣ZM= zM,j) and f(HF∣ZF= zF,j) in
Eq. (26), respectively;

For the l-th sample of HM,j and HF,j, denoted as hM,j,l and hF,j,l, we derive

EðlÞðHC jHM ¼ hM;j;l;HF ¼ hF;j;l ;PC ¼ pC;jÞ ¼ α̂2þβ̂
2

2
α̂2þβ̂

2

2 α̂

� � α̂2 þ β̂
2

0 α̂
2

0 α̂2 þ β̂
2 α̂

2
α̂
2

α̂
2 1

0
BB@

1
CCA

�1
hM;j;l

hF;j;l
pC;j

0
B@

1
CA
ð27Þ

We repeat for all L samples and obtain the predictor for the jth individual as

�HC;j ¼
1
L
∑
L

l¼1
EðlÞðHC jHM ¼ hM;j;l ;HF ¼ hF;j;l ; PC ¼ pC;jÞ ð28Þ

Alternatively, we can utilize the disease history of only one parent, particularly
when a disease is highly sex-specific, where Eq. (27) is modified as

EðlÞðHC jHM=F ¼ hM=F;j;l ; PC ¼ pC;jÞ ¼ α̂2þβ̂
2

2 α̂

� � α̂2 þ β̂
2 α̂

2
α̂
2 1

 !�1
hM=F;j;l

pC;j

 !

ð29Þ
and Eq. (28) is modified correspondingly as

�HC;j ¼
1
L
∑
L

l¼1
EðlÞðHC jHM=F ¼ hM=F;j;l ;PC ¼ pC;jÞ ð30Þ

Predicting adult height for children in the Avon Longitudinal Study of Parents
and Children. From 1991 to 1992, the ALSPAC cohort recruited 14,541 preg-
nancies in the Bristol and Avon areas in the United Kingdom28,29. In addition, 913
pregnancies were enrolled in later phases of the study. The total sample size for
analyses using data collected after the age of seven is therefore 15,454 pregnancies,
resulting in 15,589 foetuses. Of these, 14,901 were alive at 1 year of age. Ethical
approval for the study was obtained from the ALSPAC Ethics and Law Committee
and the Local Research Ethics Committees. Consent for biological samples has
been collected in accordance with the Human Tissue Act (2004). Informed consent
for the use of data collected via questionnaires and clinics was obtained from
participants following the recommendations of the ALSPAC Ethics and Law
Committee at the time.

Genotyping of the children initially recruited into this cohort was conducted
using the Illumina HumanHap550 quad genotyping platforms. The genotypes were
imputed to the 1000 Genomes Phase 3 reference panel54. The height of the
biological parents was measured during clinical visits. Children’s adult height was
measured at age 24. Measurement of height was performed using a Harpenden
stadiometer (Holtain Ltd). Among the genotyped children of European ancestries
who had measured adult standing height, 941 had both maternal and paternal
height measures of biological parents, 1305 only had maternal height measures of
biological mothers, and 151 only had paternal height measures of biological fathers
(Supplementary Table 1). We generated height z-scores by separately standardizing
the children’s, mothers’ and fathers’ measured height to have zero mean and unit
variance, where the standardization for the population of children was stratified
by sex.

From studies that did not involve the ALSPAC cohort, we obtained an empirical
estimate for α based on the association between a polygenic risk score for height
z-score and the measured height z-score7. We further obtained an empirical
estimate for β based on the association between the mid-parental height z-score
and the measured height z-score32 based on Eq. (11). Subsequently, following
Section Continuous trait prediction incorporating parental trait measures we
derived predicted height z-score for each child by combining their calculated
polygenic risk score with one or both parental height z-scores (Eq. (13) for children
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with mid-parental height measures and Eq. (14) for children with only maternal or
paternal height measures).

We evaluated the proportion of variance explained and the RMSE (after
transforming the predictor of z-scores back to the scale of absolute height
measures) of the joint predictors and compared these metrics of predictive
performance with those based on the polygenic risk score, the parental height
z-score alone.

Furthermore, a gold-standard predictor was obtained by fitting multivariate
linear regression including both the polygenic risk score and parental height
z-score as predictors on the test samples. This represents the upper bound of
predictive performance achievable by any linear predictors.

Predicting risk of complex diseases in the UK Biobank. From 2006 to 2010, the
UK Biobank study recruited approximately 500,000 participants who were aged
between 40-69 years, at multiple recruitment centres in the United Kingdom30.
Ethics approval for the UK Biobank study was obtained from the North West
Centre for Research Ethics Committee (11/NW/0382). The UK Biobank ethics
statement is available at https://www.ukbiobank.ac.uk/learn-more-about-uk-
biobank/about-us/ethics. All UK Biobank participants provided informed consent
at recruitment.

Upon recruitment, demographic and anthropometric information were
collected. Genotyping of more than 480,000 participants were conducted using the
Applied Biosystems™ UK BiLEVE Axiom™ Array or UK Biobank Axiom™ Array.
The genotypes were imputed to the Haplotype Reference Consortium reference
panel55.

Participants who had any of the following complex diseases were identified
based on inpatient International Classification of Diseases (ICD-10) diagnosis
codes, Office of Population Censuses and Surveys (OPCS-4) procedure codes, or
self-reported medical history during an interview with a trained nurse
(Supplementary Table 2). ICD-10 codes for cancer diagnoses were retrieved by the
UK Biobank through the national cancer registries. These disease outcomes
included both prevalent cases identified upon initial recruitment and incident cases
identified in more recent follow-up data collection.

Specifically, breast cancer included ICD-10 code C50 (malignant neoplasm of
breast), specific to women; prostate cancer included ICD-10 code C61 (malignant
neoplasm of prostate), specific to men; colorectal cancer included ICD-10 codes
C18 (malignant neoplasm of colon), C19 (malignant neoplasm of rectal sigmoid
junction), or C20 (malignant neoplasm of rectum); lung cancer included ICD-10
code C34 (malignant neoplasm of bronchus and lung); myocardial infarction
included ICD-10 code I21 (acute myocardial infarction); ischemic heart disease
included ICD-10 codes I20 (angina pectoris), I21 (acute myocardial infarction), I22
(subsequent myocardial infarction), I23 (complications following acute myocardial
infarction), I24 (other acute ischemic heart diseases), or I25 (chronic ischemic
heart disease), or OPCS-4 codes for coronary artery bypass grafting or coronary
angioplasty with or without stenting; stroke included ICD-10 codes I60
(subarachnoid haemorrhage), I61 (intracerebral haemorrhage), I62 (other
nontraumatic intracranial haemorrhage), I63 (cerebral infarction), or I64 (stroke,
not specified as haemorrhage or infarction); type 2 diabetes included ICD-10 codes
E11 (non-insulin-dependent diabetes mellitus), E13 (other specified diabetes
mellitus), or E14 (unspecified diabetes mellitus), self-reported physician-made
diagnosis, or self-reported use of anti-diabetic medications, excluding ICD-10 code
E10 (insulin-dependent/type 1 diabetes mellitus); Alzheimer’s disease included
ICD-10 code G30 (Alzheimer’s disease); Parkinson’s disease included ICD-10 code
G20 (Parkinson’s disease); and COPD included ICD-10 code J44 (chronic
obstructive pulmonary disease), self-reported physician-made diagnosis, or self-
reported use of medications for COPD.

Upon recruitment, a questionnaire inquired whether a participant had a
parental history of breast cancer, prostate cancer, bowel cancer, lung cancer, heart
disease, stroke, high blood pressure, diabetes, Alzheimer’s disease or dementia,
Parkinson’s disease, or chronic bronchitis or emphysema. Further classifications of
these diseases were not available, e.g. heart disease may include various types of
diseases affecting the cardiovascular system, and diabetes may include both type 1
and type 2 diabetes. Participants who responded “do not know" or “prefer not to
answer" were considered missing data. No participant reported paternal history of
breast cancer or maternal history of prostate cancer. We matched the participants’
diseases with these parental records of diseases that had the same or a similar
clinical definition.

Notably, while the disease history of siblings was also available in the UK
Biobank, it lacked information on whether the sibling was a full- or half-sibling,
and how many siblings were affected by the disease. Because these details were
essential for correctly specifying the model, we refrained from incorporating sibling
disease history in this study.

We retrieved polygenic risk scores for the above complex diseases from the PGS
Catalog33. These polygenic risk scores were developed using different
computational approaches based on source populations that did not overlap or at
most slightly overlapped with the UK Biobank (Supplementary Table 3). We used
the same well-powered polygenic risk score for predicting myocardial infarction
and ischemic heart disease, as myocardial infarction is a complication of ischemic
heart disease.

We first used a training dataset, comprising randomly selected 10% of the UK
Biobank participants for deriving these parameters (Supplementary Table 2 and
Supplementary Fig. 1). Specifically, for each disease, we fitted logistic regression
models separately for the corresponding polygenic risk score and parental disease
history (maternal disease history and paternal disease history as two independent
variables), while including covariate effects of age, sex (except for breast cancer and
prostate cancer), recruitment centre, genotyping array, and the first 10 genetic
principal components. These two logistic regression models led to empirical
estimates of α̂, β̂, the baseline odds of disease μ̂0, as well as the covariate effects γ̂
(Section Modelling latent genetic components for binary diseases; Supplementary
Table 4).

Next, we leveraged these parameters to obtain predictors of disease risk (at the
liability scale; Section Binary disease risk prediction incorporating parental disease
history) for the rest 90% of the UK Biobank participants (Supplementary Table 2
and Supplementary Fig. 1). We evaluated the discriminative power of these joint
predictors in identifying individuals at an elevated level of disease risk by AUROC
and AUPRC. We tested whether the joint predictors could more accurately
quantify the genetic risk than the polygenic risk score alone by comparing their
AUROC by DeLong’s test56. We evaluated whether the risk stratification of the
population could be improved by the joint predictors compared to the polygenic
risk score by calculating NRI and IDI.

Last, we compared our joint predictors with a gold-standard numerical solution
by jointly modelling the polygenic risk score and the parental disease history in a
multivariate logistic regression model based on the training dataset (Supplementary
Fig. 1), and evaluating its discriminative power on the test dataset. To assess the
robustness of this data-driven approach when individual-level data were
insufficient, multivariate logistic regression models were fitted on randomly
sampled subsets of the training dataset of smaller sample sizes (10%, 20%, and 50%
of the original training dataset, each having 100 replicates). The predictive
performance of these models was also evaluated on the test dataset.

We attempted to identify sources of the under-captured genetic component for
Alzheimer’s disease and COPD, for which the joint predictors demonstrated the
most improvements in risk stratification.

For Alzheimer’s disease, we determined the APOE genotype for each individual
in the test dataset based on genotyping data of two SNPs: rs429358 and rs7412. We
tested whether the polygenic risk score and the joint predictor were associated with
carrying at least one e4 allele or carrying two e4 alleles, respectively. For COPD, we
tested whether the polygenic risk score and the joint predictor were associated with
self-reported smoking status (ever-smokers vs. never-smokers), respectively. All
association tests were based on logistic regression, adjusted for the effects of age,
sex, genotyping array, recruitment centre, and the first 10 genetic principal
components.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Individual genotype and pheontype data from the UK Biobank (https://www.ukbiobank.
ac.uk/) and the ALSPAC (http://www.bristol.ac.uk/alspac/) are available through
successful applications to the research committees. The ALSPAC website contains details
of all the data that is available through a fully searchable data dictionary and variable
search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Source data
underlying Figs. 2–3 are presented in Supplementary Data 1-2. All other data are
available from the corresponding author on reasonable request.

Code availability
All computational scripts for analyses in this study are available from the corresponding
author on reasonable request. A computational toolkit57 implementing the latent factor
model developed in this study is available at https://github.com/tianyuan-lu/PRS-FH-
Prediction.
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