
 

Capturing and exploiting abstract views of states in OO
verification
Citation for published version (APA):
Middelkoop, R. (2011). Capturing and exploiting abstract views of states in OO verification. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR719302

DOI:
10.6100/IR719302

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.6100/IR719302
https://doi.org/10.6100/IR719302
https://research.tue.nl/en/publications/4708e673-7404-4946-bb12-d077078d5beb


Capturing and Exploiting

Abstract Views of States in OO Verification

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op woensdag 30 november 2011 om 14.00 uur

door

Ronald Middelkoop

geboren te Utrecht



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.G.J. van den Brand

Copromotoren:
dr. R. Kuiper
en
dr. C. Huizing





The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics)

A catalogue record is available from the Eindhoven University of Technol-
ogy Library

ISBN: 978-90-386-2879-0

IPA dissertation series 2011-18
c© 2011 Ronald Middelkoop

Typeset using LATEX
Cover design by Frans Goris
Printed by Printservice Technische Universiteit Eindhoven



Preface

While briefly considering going into industry after finishing my Master’s, I knew I
wanted the opportunity to really sink my teeth into a subject, get a chance to get
to the core of a problem. When I was offered a PhD position with much freedom
of direction and a subject of practical interest, it did not take me long to decide
and it is a choice I’ve never regretted. My past few years in industry have shown
me how much this PhD has taught me about objects, their structure, and the
appropriate abstract views, and that experience makes me enjoy my current work
so much more.

I’d like to express my gratitude to a number of people who have given me this
opportunity and helped me along the way.

First of these are the co-promoters of this thesis, Ruurd Kuiper en Kees Huizing.
The combination of your depth-first and breadth-first approaches really suited my
style and made it a joy to work with you. I’m grateful for freedom that you gave
me, while at the same time structuring my work and never letting me get away
with a ’solution’ that I hadn’t thought through. As a very close second, Erik Luit,
for countless hours of reading through countless revisions. Erik, I know I’m still
not following all your guidelines, but you’ve made me a far better technical writer.
Third, my promotor, Mark van den Brand, for his continued support. There is no
doubt that without him, this thesis would have still been in the making.

Furthermore, professor Peter O’Hearn and Cristiano Calcagno, for first sparking
my interest in research during my internship at Queen Mary University. Rustan
Leino, for making my stay at Microsoft Research one of the highlights of my time
as a PhD student, teaching me everything from SMT solvers to step aerobics. I
am very proud to have you as a member of my doctoral committee. The members
of FM and SET groups at the TU/e for a nice working environment, and in
particular Francien Dechesne for being such a great roommate during the first

i



ii

years of my promotion. Professor Bruce Watson, for supervising the first years of
my promotion. The members of my doctoral committee, for taking the time to
read through a lengthy thesis.

The people at my current employer, ISAAC, for their flexibility in allowing me to
complete my PhD, as well as for providing me the interesting new problems I was
looking for.

My friends, among others for their continued ’support’ in the form of banter. Had
I ever lost my intrinsic motivation, I’m sure I would have finished this thesis just
to not give you the pleasure of rubbing it in. I’m glad that two of you will be
available for me to consult during my defense.

My family, for always being supportive no matter what choices I make in life. I
have been very, very lucky to have all of you.

And finally, Rianne, the love of my life. Thank you for seeing this through with
me, I know this wasn’t always easy on you. I’m ready for a new challenge and I
can’t wait to start it with you.



Contents

1 Introduction 1

1 OO Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . 10

2 Algebraic Specification and its Class-Based Implementation 13

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Specifier’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementer’s Perspective: Satisfaction for Computation . . . . . . 28

4 Implementer’s Perspective: An Implementation Approach . . . . . 51

5 Verifier’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 Cooperation-Based Invariants for OO Languages 99

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Calls from Inconsistent States . . . . . . . . . . . . . . . . . . . . . 105

iii



iv Contents

5 Proof Obligations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Invariants for Non-Hierarchical Object Structures 113

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2 Invariants in OO development . . . . . . . . . . . . . . . . . . . . . 114

3 Non-local Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Formalization of the Proof Technique . . . . . . . . . . . . . . . . . 124

6 Related and Future work . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Specifying and Exploiting Layers in OO Designs 133

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2 Programming and Specification Language . . . . . . . . . . . . . . 135

3 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Layers and the Layered Relevant Invariant Interpretation . . . . . 140

5 Establishing the Layered Relevant Invariant Interpretation . . . . . 142

6 Static Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Future and Related Work . . . . . . . . . . . . . . . . . . . . . . . 154

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Proving Consistency of Pure Methods and Model Fields 159

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

2 Avoiding Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . 163

3 Heuristics for Establishing PO1 . . . . . . . . . . . . . . . . . . . . 165

4 Defining the Ordering ➔ . . . . . . . . . . . . . . . . . . . . . . . . 168

5 Related Work and Experience . . . . . . . . . . . . . . . . . . . . . 173

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



Contents v

A Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7 Conclusions 181

1 Question 1: Client-level Algebraic Specification . . . . . . . . . . . 181

2 Question 2: Programmer-level Algebraic Specification . . . . . . . 182

3 Question 3: Programmer-Level OO Specification . . . . . . . . . . 183

4 Question 4: Verification . . . . . . . . . . . . . . . . . . . . . . . . 184

Bibliography 187

Summary 195

Curriculum Vitae 197





CHAPTER 1

Introduction

In this thesis, we study several implementation, specification and verification tech-
niques for Object-Oriented (OO) programs. Our focus is on capturing conceptual
structures in OO states in abstractions, and then exploiting such an abstract view
of the state in specification and implementation approaches in a way that allows
for formal verification.

These days, no introductory section is needed to explain the importance of soft-
ware. Software has become pervasive in both industrial development and everyday
life and there is no sign of its continued increase in importance to stop in the near
future.

What we do introduce in this chapter is the concept of OO implementation
(Sect. 1). In particular, we highlight the importance of an abstract view of a state
in the execution of an OO implementation. We also introduce two formalisms for
formal specification that are studied in this thesis. These are algebraic specification
(Sect. 2.1) and OO specification (Sect. 2.2). Then, we give a short introduction to
the problem of verifying that an implementation satisfies its specification (Sect. 3).

In the course of these introductions we formulate several research questions that
underly the work in this thesis. In Sect. 4, we outline the thesis and sketch our
contributions with regards to these research questions.
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2 Chapter 1. Introduction

class Point {
int x, y;

new Point(int xCoordinate, int yCoordinate) {
x = xCoordinate;

y = yCoordinate;

}

void moveRight(int distance) {
x = x + distance;

}
}

Example 1.1: Point class

class Line {
Point first, second;

new Line(Point firstPoint, Point secondPoint) {
first = firstPoint;

second = secondPoint;

}

void moveRight(int distance) {
first.moveRight(distance);second.moveRight(distance);

}
}

Example 1.2: Line class

1 OO Implementations

To introduce OO implementations and the need for abstract views of the state, we
consider the OO implementation of a simple program for two-dimensional draw-
ing. The core concepts of our implementation are points and lines. Consider
Exmpls. 1.1 and 1.2, which show a class for each of these two core concepts. A
class is the basis of an OO program. It defines state and behavior. State is de-
fined by fields and behavior by methods. For example, the Point class has two
integer fields that represent the coordinates of a Point. The two methods new and
moveRight define the behavior that a Point can be created, and can move right
(we have omitted other behavior for simplicity). Note that a class can define that
another class is part of its state. For example, the Line class defines that its state
consists of two Points.

During the execution of an object oriented program, classes act as blueprints.
More specifically, a class can be instantiated to create an object of that class. For
example, the code snippet
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class Square {
Line left, top, right, bottom;

new Square(int bottomLeftX, int bottomLeftY, int size) {
Point bottomLeft = new Point(bottomLeftX, bottomLeftY);

Point topLeft = new Point(bottomLeftX, bottomLeftY + size);

left = new Line(bottomLeft, topLeft);

Point leftTop = new Point(bottomLeftX, bottomLeftY + size);

Point rightTop = new Point(bottomLeftX + size, bottomLeftY +

size);

top = new Line(leftTop, rightTop);

Point topRight = new Point(bottomLeftX + size, bottomLeftY +

size);

Point bottomRight = new Point(bottomLeftX + size, bottomLeftY);

right = new Line(topRight, bottomRight);

Point rightBottom = new Point(bottomLeftX + size, bottomLeftY);

Point leftBottom = new Point(bottomLeftX, bottomLeftY);

bottom = new Line(rightBottom, leftBottom);

}

void moveRight(int distance) {
left.moveRight(10);

top.moveRight(10);

right.moveRight(10);

bottom.moveRight(10);

}
}

Example 1.3: Square class, implementation 1

x = new Point(0,0); y = new Point(2,2); z = new Line(x,y);

creates two Points and uses them to create one Line. Once an object has been
created, methods can be called on it. For example, we can continue the previous
code with z.moveRight(4); to move our Line right by four units. What the actual
behavior of a method is, is determined by the implementation of that method.
For example, the implementation of the moveRight method of a Line moves both
its points right by calling the moveRight methods of those Points. Calling the
moveRight method on a Point updates its x coordinate.

The program may also offers more advanced things to draw that are constructed
from lines, like a Square. To create a Square, all the user needs to provide are the
coordinates of one of the corner Points and the size of the square (i.e., the length
of each of its Lines). Likewise, when moving a Square, the user does not have
to describe the impact on the four individual Lines. In other words, the abstract
view of the Square is not as four Lines, but as a single, rectangular object.
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class Square {
Line left, top, right, bottom;

new Square(int bottomLeftX, int bottomLeftY, int size) {
Point bottomLeft = new Point(bottomLeftX, bottomLeftY);

Point topLeft = new Point(bottomLeftX, bottomLeftY + size);

left = new Line(bottomLeft, topLeft);

Point rightTop = new Point(bottomLeftX + size, bottomLeftY +

size);

top = new Line(topLeft, rightTop);

Point bottomRight = new Point(bottomLeftX + size, bottomLeftY);

right = new Line(rightTop, bottomRight);

bottom = new Line(bottomRight, bottomLeft);

}

void moveRight(int distance) {
left.moveRight(10);right.moveRight(10);

}
}

Example 1.4: Square class, implementation 2

class Square {
Point bottomLeft;

int theSize;

new Square(int bottomLeftX, int bottomLeftY, int size) {
Point bottomLeft = new Point(bottomLeftX, bottomLeftY);

theSize = size;

}

void moveRight(int distance) {
bottomLeft.moveRight(10);

}
}

Example 1.5: Square class, implementation 3

A Square can then be implemented in different ways. For example, consider
Exmpl. 1.3. Note that in this implementation, the conceptual action of drawing
a square, which is implemented by new, leads to the creation of no less then
thirteen objects (a Square, four Lines and eight Points). This implementation
is conceptually simple. When we are implementing the moveRight method of
Square, our abstract view of the state is that of four independent lines. To move
the Square, all we have to understand is how to move a Line.

The implementation in Exmpl. 1.4 ’only’ needs nine objects to represent a square
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(a Square, four Lines and four Points). In this implementation, every Point is
referenced by two different Lines (the start of one line is the end of another). This
is known as aliasing. This has a consequence on the behavior of moving right a
Line of the Square, despite the implementation of the moveRight method of Line
being the same as in the first implementation; As a side-effect of moving one Line,
the start or end of another Line is moved as well. So, despite the Square having
the same four Line fields as in the first implementation, our abstract view differs
as the lines are not independent and we somehow have to take that into account
when moving the Square.

The third implementation (Exmpl. 1.5) needs fewer objects still, but is concep-
tually the most complicated. When we implement the moveRight method, our
abstract view is not of lines, but of the more complex square (although in this
case, that is an abstraction we can probably manage).

Our first observation is that different implementations lead to different ways in
which objects reference each other, and to different abstract views of the objects
in the implementation.

Which implementation is chosen may depend on the personal preference of the
implementer and the other methods that have to be implemented. It does not
matter to the user of the program, who only cares that a Square is displayed on
the drawing canvas (the part of the screen designated for drawing) as a square.

Even in these simple examples, we see that the OO state consists of many objects,
and that these objects reference each other in possibly complicated ways. At the
same time, we see that at any one point in the execution of the program, we can
reason about what is happening using an abstract view of the state that is much
less complicated.

More generally, in a well-designed OO program, most objects have a singular
purpose. For example, the purpose of a Square object is to represent a square on
the drawing canvas. Also, objects do not depend on random other parts of the
object structure (these properties are often called high cohesion and loose coupling
[YC78]).

Note that the objects that we have considered so far all represent concepts from
the problem domain of the user. However, there are many other types of objects
in a program as well. For example, some objects may direct a specific process,
like drawing the created drawing objects on a canvas. Some may be structures of
drawing objects, like a linked list used by the object directing the drawing process
to access the top-level objects to draw. Others may be needed for communication
with external systems, like saving a drawing to the disk. Finally, some may not
even be relevant to any of the processes the user is interested in. For example,
there may be objects that keep track of what is going on and objects that can
send a report of what was going on to the implementer if something the user does
goes wrong.

Our second observation is that all in all, looking at the naked OO state outside
of its context, it will be difficult to make sense of. All we see is a whole bunch of
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objects with fields that reference each other in many complicated ways. However,
given the reasoning above, all sorts of conceptual notions that group objects can
be distinguished. Furthermore, it can be distinguished which process(es) an object
belongs to, and within such a process, what its purpose is. If we understand this
grouping and purpose, then it can be determined if the object is relevant to what
is currently important to us, or if it can be abstracted away when we are trying
to capture what is going on at that particular point in the program execution.

For example, before the user of our drawing program has drawn his first object, it
is likely that a hundred objects have been created. From the abstract view of the
user however, the state is a blank canvas.

2 Specifications

For the purpose of this thesis, we distinguish two types of specification. These
are client-level and programmer-level specification. Client-level specification is
considered first.

Complex OO implementations are usually not written by the implementer for the
implementer. Instead, there is a client that needs a particular problem solved.
For example, the client may need a simple drawing program. Often the client
understands his problem quite well, but the implementer may not. Likewise, we
are assuming that the client knows what he wants the implementation to do, but
maybe not how the implementation can solve the problem (in fact, often the client
will not even care about the ’how’).

How does the client communicate his problem to the implementer? There are
several options.

• The client may sit down with the implementer and have a chat about the
problem. As programmers are smart people, this approach works surprisingly
well if the problem is not too complex and if there is room for trial and error.

• The client may use informal or semi-formal tools to help communicate the
problem. A well-know example is the Unified Modeling Language (UML)
[RJB99], which provides a number of diagrams that are tailored to specific
views of the program. This is a great way to make the complexity of a
problem more manageable, but ambiguities in the diagrams may lead to
misunderstandings between the implementer and the client.

• The client may write a formal specification. A formal specification is an
unambiguous way to describe the functionality that is desired of the system.
This is the problem communication style considered in this thesis (we do not
consider techniques for specifying non-functional requirements, like those
regarding performance. For such techniques, see e.g. [CdPL09]).
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Note that writing a formal specification requires a considerable effort on the part
of the client, because by its nature it requires all ambiguities to be considered
and resolved. It will often require expert help in the form of a specifier who has
in-dept understanding of the formalism and can make sure (up to a limit) that
the formal specification indeed represents the client’s problem. This additional
effort means that formal specification becomes more suitable when the problem
considered becomes more complex or has a higher cost of failure. For example,
NASA, who write programs with over a million lines of code on a regular basis,
has one of the most rigorous specification processes in the industry.

This does not guarantee that their software is flawless though. Despite their
specification efforts, they still lost a satellite for four months, had one Mars explorer
spontaneously reset itself every now and then, and another fail temporarily because
unneeded files filled up its memory [Bra07].

To further improve the quality of implementations, better techniques must be
developed for 1) specification of the abstract views that are used by the client
and the programmer, and 2) the verification that an implementation satisfies its
specification. This thesis contributes to that effort.

Two specification formalisms are considered in this thesis: Algebraic Specification
and OO Specification. These formalisms differ in the basic abstract view that is
used. We discuss Algebraic Specification first.

2.1 Algebraic Specification

Client-level specification. The purpose of a client-level specification is to
give formal, unambiguous meaning to statements of the client about his problem
domain. For example, when describing the simple drawing program, the client
can say ”I want to be able to draw on the canvas a square of size two that was
created with its lower left corner at point (0,0) and then moved right by 4 units”.
In an algebraic specification (at least in the form considered in this thesis), such
statements are formalized by a list of data types, a list of operators that operate
on the data types, and a list of axioms about the operators. Roughly, we can
think of the data types as the nouns in the problem domain, and of the operators
as the verbs. The axioms formalize universal truths about operators, in terms
of operators. So, in our simple drawing program the specification includes data
types for point, line, square and canvas, and operators for move right, create and
draw. Furthermore, there may be an axiom in the specification that captures
that moving a square with it bottom left corner at point (x , y) right by z units,
is the same as creating a new square of the same size with its bottom left corner
at point (x + z , y). The axiom would look something like the following.

∀s : Square, size, x , y , distance : int , p1, p2 : Point •
p1 = createPoint(x , y) ∧ p2 = createPoint(x + distance, y) ⇒

moveRight(createSquare(p1, size), distance) = createSquare(p2, size)
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However, by itself, this suggests but does not really specify the desired behavior
of the move right operation. To make this more clear, consider the specification
of a simple calculator in which rational numbers can be added. The axioms are
well known, e.g.

∀n0,n1, d : int • d ⑧= 0 ⇒ (
n0

d
+

n1

d
⇔

n0 + n1

d
)

∀n0,n1, d0, d1 : int • d0 ⑧= 0 ∧ d1 ⑧= 0 ⇒ (
n0

d0

=
n1

d1

⇔ n0 × d1 = n1 × d0)

These axioms allow to derive the following sequence of equalities.

2

4
+

2

6
=

12

24
+

8

24
=

20

24
=

5

6
=

100

120

The equalities express that each of the fractional expressions above represents the
same rational number. However, when the client inputs the first expression to the
calculator, he expects the expression 5

6
as output. This expected input/output

behavior cannot be derived from the axioms. In other words, the axioms describe
what is (and is not) true about the operators. The axioms do not, however, drive
the computation. This observation leads us to our first research question.

Question 1 What are the syntax and semantics of a client specification based
on algebraic specification, independent of the implementation used?

Programmer-level specification. A formal client specification can be used to
assign blame in case an output does not match the expectation of the client. It can
also be used as a starting point for a development style that allows formal reasoning
about the implementation. As was argued, reasoning about OO implementations
is difficult due to the complexity of a state in the execution of a OO program.

However, consider the following informal reasoning.

1. Moving a rectangle to the right by distance units, is the same as drawing a
new rectangle distance units further to the right.

2. Drawing a new rectangle is the same as drawing the four lines of which it
consists.

3. Moving a line to the right by distance units, is the same as drawing a new
line distance units to the right.

4. Therefore, moving a rectangle to the right by distance units, is the same as
moving each of the four lines of which it consists to the right by distance
units.

This reasoning can be formalized in an algebraic specification, in a way similar to
the formalization of addition and equality on rational numbers and the subsequent
derivation of equalities given above. Note that this reasoning exactly matches the
reasoning behind the implementation of the moveRight method of class Square
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in Exmpl. 1.3. More generally, when the specification captures the abstract view
that the implementer has of the state, it can be exploited to reason formally about
the implementation. This leads us to the second research question.

Question 2 When reasoning about an OO implementation, how can we use
programmer-level algebraic specification to capture and exploit an abstract view
of a state?

2.2 OO Specification

Specification in terms of object configurations. Note that the informal
reasoning with which we concluded Sect. 2.1 applies to the implementation in
Exmpl. 1.3, but not to the implementation in Exmpl. 1.4. In this implementation,
moving the Square is not the same as moving its four Lines as moving one of the
Square’s Lines affects another. We may be able to find other natural data types
with an axiomatization that abstracts from this side-effect. However, in OO there
are several design patterns that are conceptually understood in terms of coopera-
tion between objects, i.e., where a configuration of objects together implement a
common goal. A well-know example is the Observer Pattern [GHJV95]. In this
pattern the intuition is that when an object designated as the Subject is changed,
it notifies a set of objects designated as its Observers, so that they can update
their state as well.

OO specifications have the potential for more natural formalization of such pat-
terns. An OO specification specifies, for every method, two properties of states
known as the precondition and the postcondition. The semantics of the specifica-
tion of any given method is as follows. For every state for which the precondition
holds, the execution of that method terminates in a state for which the postcon-
dition holds.

That is, an OO specification invites to think about the implementation in terms
of methods that change object configurations. However, given the complexity of
the OO state discussed in Sect. 1, it is vital that abstractions in the state are
still captured and exploited somehow. So, the second research question is equally
interesting when it is considered in the context of OO specifications rather than
algebraic specifications. This leads us to the third research question.

Question 3 When reasoning about an OO implementation, how can we use
programmer-level OO specification to capture and exploit an abstract view of a
state?

Class invariants. One way of exploiting abstractions in OO state is of particular
interest to this thesis. This is the exploitation of abstractions through the use of
class invariants. A class invariant describes, from the perspective of the class
in which it is specified, a property of an object configuration that is relevant to
an object of that class. Roughly, the intuition is that the property is expected
to hold, unless the conceptual value that the object represents is in the process
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of being changed. An example is an invariant of class Square from Exmpl. 1.3
that captures that the top of the left Line is the same point as the left of the
top Line (and likewise for other Line pairs of the Square). Given the code in
Exmpl. 1.3, if we assume that the fields shown are not assigned to from elsewhere,
then the property holds unless the object is in the process of moving right. More
specifically, note that the property does not hold in the state where the first line
has been moved right, but the second one has not. When this property does not
hold for a Square object, we cannot think of that Square as a square.

More generally, if the invariant of a class C does not hold for a certain C object,
then the object cannot be thought of in terms of its abstract value. If the imple-
menter of a class D reasons about that object in terms of its abstract value, then
it must be ensured that the invariant holds if execution is in a method of class D .
Capturing which classes reason about an object in terms of its abstract value (and
which do not), is a common theme of several chapters of this thesis.

3 Verification

Verification is the process of establishing that an implementation satisfies its spec-
ification. Having a problem-independent verification approach, can greatly reduce
the burden of verification compared to the use of ad-hoc problem-dependent rea-
soning. A verification approach consists of a fixed set of proof obligations and syn-
tactical restrictions. It comes with a set of meta-level proofs that establish that
the obligations and restrictions are sufficient to guarantee satisfaction. Ideally,
the approach is supported by tools that allow for (partial) automatic verification.
A verification approach has to be chosen with care as it is likely to impose re-
strictions that allow for problem-independence at the cost of being stronger than
strictly necessary for a specific problem. This leads us to the final research ques-
tion.

Question 4 Having used the techniques from research questions 2 and 3, how
can we provide matching verification approaches?

4 Contributions and Outline

In this section we give an outline of the further chapters of this thesis. These
chapters are presented and can be read as separate papers. We relate the chapters
to the research questions that we formulated in Sect. 2. We also relate the chapters
to our earlier publications.

• Chap. 2 (questions 1,2 and 4), Algebraic specification and its class-
based implementation: In this chapter, we consider both client-level and
programmer-level specifications based on algebraic specification. We con-
tribute a novel syntax and semantics for the former, and we contribute an
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implementation approach for OO implementations based on the latter. We
show that the implementation approach is suitable for problem-independent
verification.

• Chap. 3 (questions 3 and 4), Cooperation-based invariants for OO
languages: In this chapter, we contribute the programmer-level specifica-
tion constructs inc and coop. The inc construct allows a method specification
to make explicit that a certain enumeration of invariants does not have to
hold when that method is executed. The coop construct allows a field spec-
ification to make explicit that a certain enumeration of invariants might be
invalidated when the field is updated. This allows for the specification and
verification of OO designs in which in the process of updating one object,
other objects with which it together implements a common purpose must be
updated as well. The work in this chapter was published as [1].

• Chap. 4 (question 3 and 4), Invariants for non-hierarchical object
structures: In this chapter, we generalize the inc and coop constructs by
removing a restriction to enumerations of invariants. For instance, this is
needed in the Observer Pattern discussed in Sect. 2.2, where a Subject

can have an arbitrary and dynamically changing number of Observers. A
more general interpretation of invariants and accompanying proof system are
provided as well. The work in this chapter was published as [2].

• Chap. 5 (question 3 and 4), Specifying and exploiting layers in
OO designs: In this chapter, we contribute a programmer-level specifica-
tion technique to capture layers in OO architectures, and we exploit these
layers by providing a more liberal semantics of class invariants. We also pro-
vide a verification technique for the semantics. Layers are an abstraction at
the architectural level in OO implementations that designate certain object
structures in the design as sub-structures that are shared by other structures.
An object in a higher layer is not relevant to the purpose of an object in the
sub-structure. Given this intuition, an object in a higher layer is not part of
the abstract view from an object in a lower layer. Therefore, the invariant of
a higher layer object does not have to hold when a method of a lower-layer
object is executing. The work in this chapter was published as [3] and is
based on earlier work from [A]. The chapter has an accompanying technical
report [B].

• Chap. 6 (question 4), Consistency of pure methods and model
fields: In this chapter, we contribute a verification technique for pure meth-
ods and model fields, which are existing specification techniques for capturing
an abstract view of the state in OO specifications. A method that is pure
can be used as a function in predicates in class specifications. The function
is axiomatized using the pre- and postcondition that are specified for the
method. A model field abstracts part of the concrete state of an object into
an abstract value. This too introduces an additional axiom in the under-
lying reasoning. The technique contributed establishes that such additional
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axioms do no introduce inconsistencies into the formal reasoning. It comes
with heuristics that that make it amenable to automatic verification. The
work in this chapter was published as [4].
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CHAPTER 2

Algebraic Specification and its Class-Based Implementation

1 Introduction

In this chapter, we study algebraic specifications and class-based implementations.
Algebraic specification is a much-studied approach to specification. It is of partic-
ular interest to us because it is at the basis of many object-oriented specification
and verification techniques. The work in this chapter can be used as a foundation
for the study of some of the problems of such techniques, in a simpler setting.

The contributions of this chapter are the following.

• A novel syntax and semantics of client specifications that are based on alge-
braic specifications. The semantics matches the client’s view of the imple-
mentation as a black box.

• A novel notion of satisfaction for class-based implementations.

• An implementation approach that formalizes and extends ideas from [Hoa72],
Hoare’s seminal paper on data abstraction. In addition to the Hoare-style
notion of satisfaction, this approach accounts for the requirement to present
the result to the user. Key parts of the approach are suitable for automatic,
modular verification.

This chapter is structured as follows.

• In Sect. 2, we look at algebraic specifications from the perspective of the

13
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client and the specifier. In Sect. 2.1, we give a brief overview of first-order
logic, on which algebraic specifications are based. In Sect. 2.2, we discuss
and formalize algebraic specifications. We introduce a syntax and semantics
of algebraic specifications that views the implementation as a black box, and
that is independent of the implementation language.

• In Sect. 3, we switch to the perspective of the implementer and open up the
black box. The difficulty with algebraic specifications is that the connection
to implementations, i.e., to a notion of satisfaction, is not obvious. Our
solution is to separate the implementation into a presentation layer and a
business layer. This allows for a natural notion of satisfaction.

In Sect. 3.1, we present the syntax and semantics of a simple class-based
programming language for the business layer. In Sect. 3.2, we present the
separation into a presentation and business layers and the resulting notion
of satisfaction.

The business layer is responsible for the actual computation. The presenta-
tion logic layer is only responsible for the translation from the input provided
by the user to the input required by the computation in the business logic
layer, and for displaying the output of the computation to the user as a closed
application. In Sect. 3.3, we sketch generic (i.e., specification-independent)
algorithms for the presentation layer. This allows refine the notion of satis-
faction for an implementation, to a notion of satisfaction for the computation
concern (i.e., for the business layer).

• In Sect. 4, we present an implementation approach that has a Hoare-style
notion of data abstraction at its core.

In Sect. 4.1, we connect the satisfaction notion for the computation concern,
to a notion of satisfaction that is based on Hoare’s notion of data abstraction.
We observe that this Hoare-style satisfaction alone is not sufficient to estab-
lish satisfaction for computation as it does not account for the requirement
of displaying the output of the computation in a generic way. As a solution,
we add an additional step to the computation process that is responsible for
the transformation of the computed object, to an object that is suitable for
display.

In Sect. 4.2, we present an implementation approach for the Hoare-style sat-
isfaction notion. More specifically, we start with the satisfaction notion and
make a series of design decisions that formalize and extend ideas from Hoare’s
work. The advantage of the approach is that it allows the implementer of
a method to reason about method calls as if they do not have side-effects.
We observe that the downside of the approach is that it does not allow for
OO solutions where objects cooperate to achieve a goal, as side-effects are
an integral part of such solutions.

• In Sect. 5, we switch to the perspective of the verifier of the business layer.
We sketch a verification technique that allows to establish that a given im-
plementation of the computation concern that follows the implementation
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approach presented in Sect. 3, satisfies the specification. The technique is
suitable for automatic verification.

• In Sect. 6, we present conclusions and discuss future work.

1.1 Meta-level notation

Here, we discuss the meta-level notation that is used in this chapter.

Functions. f : A ã→ B introduces a partial function from A to B . Functions are
treated as single-valued relations. Given a property P(a, b), we write ’f (a) = b if
and only if (iff) P(a, b)’ to define f as the smallest single-valued relation such that
∀a ∈ A, b ∈ B • (a f b iff P(a, b) holds). With most of our definitions, existence
of a unique smallest single-valued relation is obvious. Additional remarks are
provided where this is not the case. f : A → B introduces a total function from A
to B . Domain(f ) and Range(f ) are sequences that denote the domain and range
of function f .
f [a 7→ b] is the function like f , but with a mapped to b. If f is a partial function,
then this can be used whether or not a ∈ Domain(f ). f [a 7→ b, . . . , c 7→ d ] is
shorthand for f [a 7→ b] . . . [c 7→ d ].

Aside. In the digital version of this chapter, all functions are hyperlinked to
their definition. Most PDF readers support backwards and forwards navigation
through hyperlinks, making it much easier to look up definitions while reading.

Sequences and sets. We use n as the typical element of the set of natural
numbers N (which includes 0). A sequence A1, . . . ,An can be the empty sequence,
whereas sequence A0, . . . ,An has at least one element. A record Record : f1 ∈
A1 × . . .× fn ∈ An denotes a tuple Record : A1 × . . .× An , of which the elements
are indexed by names f1, . . . , fn . Record .fi denotes the value of the field with
name fi of Record . Given a sequence Σ, Σ[i ], Σ[i , j ] and Σ[i ..] denote element,
consecutive subsequence and postfix. 〈〉 denotes the empty sequence. Σ0 ⊲ Σ1

denotes the concatenation of sequences Σ0 and Σ1. We write x ∈ Seq(x ) to denote
that x is a sequence of elements from X . Given a set X , we write xSet ∈ Set(X ) to
denote that xSet is a set of elements from X . |A | denotes the length of sequence
or set A.

Equality. ’A is B ’ denotes that A and B are syntactically the same. A = B
(strong equality) denotes that A and B are both defined and have the same inter-
pretation, i.e., that both evaluate to a value, and that these values are syntactically
the same.
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2 Specifier’s Perspective

In this section, we look at algebraic specifications from the perspective of the client
and the specifier.

(1) In Sect. 2.1, we give a brief overview of first-order logic, on which algebraic
specifications are based.

(2) In Sect. 2.2, we discuss and formalize algebraic specifications. We introduce
a novel syntax and semantics of algebraic specifications that views the im-
plementation as a black box, and that is independent of the implementation
language.

2.1 The Formalism: First-Order Logic

Many-sorted first-order logic is at the basis of many program specification and
verification techniques. In this section, we give a brief introduction to many-sorted
partial first-order logic with equality to fix the notation and terminology that we
use. More thorough treatments can be found in, e.g., [CMR98, ST99]. Note that
operations in the problem domain are often partial (consider e.g. the division
operation i/j , which is undefined when j = 0). The use of partial logic allows
to specify such operations more directly (which does not mean that a verification
system has to use partial logic, see section Sect. 5).

2.1.1 Syntax

Here, we formalize the syntax of multi-sorted first order logic.

Sorts, variables and operators. In this paragraph, we introduce the primitive
elements of (the syntax of) a first-order logic.

Definition 2.1.1. Sort is the set of sorts

Definition 2.1.2. Var is the set of variables. Each variable has associated with
it a sort S . VarS denotes the set of variables of sort S . We write vS to denote
that vS ∈ VarS .

Consider Def. 2.1.3. The function VarSort yields the sort of a variable.

Definition 2.1.3. VarSort : Var → Sort
VarSort(vS ) = S .

Consider Def. 2.1.4, in which we define a notion of an operator. Note that for sim-
plicity, we do not consider polymorphism in this chapter. If we did, this definition
would have to be changed slightly.
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Definition 2.1.4. Op is the set of operators. Every operator has associated with
it a tuple of domain sorts 〈S1, . . . ,Sn〉 and a range sort S0, where S0, . . . ,Sn ∈
Sort . We write o : S1 × . . . × Sn ã→ S0 to denote an operator with domain sorts
〈S1, . . . ,Sn〉 and range sort S0.

Consider Defs. 2.1.5 and 2.1.6. The functions DomainSorts and RangeSort yield
the domain sorts and the range sort of an operator.

Definition 2.1.5. DomainSorts : Op → Seq(Sort)
DomainSorts(o : S1 × . . .× Sn ã→ S0) = 〈S1, . . . ,Sn〉.

Definition 2.1.6. RangeSort : Op → Sort
RangeSort(o : S1 × . . .× Sn ã→ S0) = S0.

Definition 2.1.7. A constant is an operator o such that DomainSorts(o) = 〈〉.
Constant is the set of all constants.

Signatures. A signature fixes a set of symbols that are used to construct terms.
Every signature contains three sets of special-purpose operators (that come with
a predefined meaning, see Sect. 2.1.2).

We first introduce the three sets of predefined operators (Def. 2.1.8-2.1.11). Then
we formally define signatures (Def. 2.1.12).

Definition 2.1.8. BoolOp is the set that consists of the two constants true : ã→
Bool and false : ã→ Bool .

Definition 2.1.9. LogConOp is the set that consists of the usual logical connec-
tives (e.g. ∧ : Bool ×Bool ã→ Bool). LogConOp also includes, for every S ∈ Sorts,
the operator =S : S × S ã→ Bool .

Definition 2.1.10. QuantOp is the set that consists of, for every S ∈ Sorts, the
operators ∀S : S × Bool ã→ Bool and ∃S : S × Bool ã→ Bool .

Definition 2.1.11. PredefinedOp is the set BoolOp ∪ LogConOp ∪ QuantOp.

Consider Def. 2.1.12. A signature sig is a record that consists of three parts: a set
of sorts sig .sorts, a set of operators sig .ops, and a subset sig .tOps of sig .ops (this
is the subset of total operators, see Def. 2.1.2). sig .tOps contains every predefined
operator with all domain sorts in sig .sorts. Note that this includes the set BoolOp.
Furthermore, for every operator o in sig .ops, every domain and range sort of o is
a sort from sig .sorts. Note that therefore Bool ∈ sig .sorts, as BoolOp ∈ sig .ops.

Definition 2.1.12. A signature is a record sig : sorts ∈ Set(Sort) × ops ∈
Set(Op)× tOps ∈ Set(Op) such that

sig .tOps ⊆ sig .Ops, and
{o ∈ PredefinedOp | DomainSorts(o) ⊆ sig .sorts} ⊆ sig .tOps, and
for every o ∈ sig .ops,

DomainSorts(o) ⊆ sig .sorts, and
RangeSort(o) ∈ sig .sorts.

Sig is the set of all signatures.
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Consider Def. 2.1.13. SigUnion(sig0, sig1) returns the signature that unites sig0
and sig1 in the obvious way.

Definition 2.1.13. SigUnion : Sig × Sig → Sig
SigUnion(sig0, sig1) = sig2 iff

sig2.sorts = sig0.sorts ∪ sig1.sorts, and
sig2.ops = sig0.ops ∪ sig1.ops, and
sig2.tOps = sig0.tOps ∪ sig1.tOps.

Terms. Terms are constructed from variables and operators.

Definition 2.1.14. A term t (and its sort) is inductively defined as one of the
following:

(1) A variable v of a sort S . In this case, the sort of t is S .
(2) A tuple 〈o, 〈t1, . . . , tn〉〉 of (A) an operator o : S1 × . . .× Sn ã→ S0, and (B) a

tuple of terms 〈t1, . . . , tn〉 such that
for every i ∈ [1,n], ti has sort Si , and
if o ∈ QuantOp, then t1 is a variable.

In this case, the sort of t is S0 (the range sort of the operator).

Term is the set of all terms.

We usually write a term 〈o, 〈t1, . . . , tn〉〉 as o(t1, . . . , tn). Additionally, when o ∈
QuantOp, we know that n is 2 and t1 is a variable vS , and we usually write the
term as o v : S • t2. Furthermore, we usually write o() as o if it is clear from
the context that o is a used as an term and not as an operator. E.g., we often
write true instead of true() and 1 instead of 1(). Finally, we often write certain
well-known operators using infix notation. E.g., we may write 4 + 2 instead of
+(4, 2).

Consider Def. 2.1.15. An application is a term that is not a variable, and in which
no predefined operators occur (the latter is for technical reasons).

Definition 2.1.15. An application is a term o0(t1, . . . , tn) in which no o1 ∈
PredefinedOp occurs. Application is the set of all applications.

We conclude this section with several definitions that are used in the rest of the
chapter, most of which are well-known.

Definition 2.1.16. Variable v0 is free in term t iff (1) t is v0, or (2) t is o v1 : S • t
and v0 is not v1 and v0 is free in t , or (3) t is o(t1, . . . , tn) and o /∈ QuantOp and
there is a i ∈ [1,n] such that v0 is free in ti . Free(t) denotes the set of free variables
in t .

Definition 2.1.17. Term t is closed if it contains no free variables. ClosedAppl
is the set of all closed applications.

Definition 2.1.18. A predicate is a term of sort Bool . Predicate is the set of all
predicates.
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Definition 2.1.19. A sentence s is a closed predicate. Sentence is the set of all
sentences.

Consider Def. 2.1.20. Roughly, Terms maps a signature sig to the set of all terms
that can be built from operators and sorts from sig .

Definition 2.1.20. Terms : Sig → Set(Term)
t ∈ Terms(sig) iff

or there are S ∈ sig .sorts, v ∈ VarS such that t is v,
or there are o ∈ sig .ops, t1, . . . , tn ∈ Terms(sig) such that t is o(t1, . . . , tn).

Definition 2.1.21. o0 ∈ Op occurs in tn+1 ∈ Term iff
there are o1 ∈ Op, t1, . . . , tn ∈ Term such that

t is o1(t1, . . . , tn), and
either o0 is o1, or there is an i ∈ [1,n] such that o0 occurs in ti .

Consider Def. 2.1.22. ClosedAppls(sig) is the set of all closed applications
(Def. 2.1.17) in Terms(sig).

Definition 2.1.22. ClosedAppls : Sig → Set(ClosedAppl)
ca ∈ ClosedAppls(sig) iff ca ∈ Terms(sig)

2.1.2 Semantics

In this section we formalize the well-known notions of an algebra and a valuation
to define the semantic meaning of a term. More specifically, we define how to
evaluate a term to a value (Def. 2.1.31). We then use this evaluation to formalize
the notion of a model, which relates algebras and sentences.

Algebras. Consider Defs. 2.1.23 to 2.1.26, in which we define an algebra and its
parts. A carrier function associates certain sorts with non-empty sets of values. An
interpretation function associates certain operators with functions. Note that an
interpretation function does not associate pre-defined operations with functions.
An algebra has an interpretation function that associates operators with functions
of which the domain and range values are from the carrier sets of the domain and
range sorts of the operator. Note that the interpretation of an o ∈ PredefinedOp
does not depend on the algebra, but is always the same and is as expected. For
example, interpretation(∧ : Bool × Bool → Bool) is the function and : {T ,F} ×
{T ,F} → {T ,F} such that and(a, b) = T iff a = T and b = T .

Definition 2.1.23. V is the set of values.

Definition 2.1.24. A carrier function is a function carrier : Sort ã→ Set(V) such
that

carrier(Bool) = {T ,F}, and
for every S ∈ Domain(carrier), |carrier(S ) |> 0.

Carrier is the set of all carrier functions.
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Definition 2.1.25. An interpretation function is a function interpretation : Op ã→
Function such that
for every o ∈ PredefinedOp, interpretation(o) is as usual (see e.g. the interpre-
tation of ∧ above).

Interpretation is the set of all interpretation functions.

Definition 2.1.26. An algebra is a record A : carrier ∈ Carrier ×
interpretation ∈ Interpretation such that for every o : S1 × . . . × Sn ã→ S0 ∈
Domain(A.interpretation),

Domain(A.interpretation(o)) = 〈A.carrier(S1), . . . ,A.carrier(Sn)〉, and
Range(A.interpretation(o)) = A.carrier(S0).

Alg is the set of all algebras.

Consider Def. 2.1.27. For convenience, it defines a notion of inclusion on algebras
in the obvious way.

Definition 2.1.27. ⊆: Alg × Alg → Bool
A0 ⊆ A1 iff
A1.carrier ⊆ A0.carrier , and
A1.interpretation ⊆ A0.interpretation.

Valuations. Consider Def. 2.1.28. A valuation (sometimes called a variable
assignment) maps variables to values.

Definition 2.1.28. A valuation is a partial function va : Var ã→ V. Valuation is
the set of all valuations.

Definition 2.1.29. emptyva is the valuation with Domain(emptyva) = {}.

Definition 2.1.30. va ∈ Valuation is well-sorted for A ∈ Alg iff for every vS ∈
Var , if va(vS ) = ν, then ν ∈ A.carrier(S ). WellSortedVasA is the set of all
valuations that are well-sorted for A.

Term evaluation. The semantics of terms in total first order logic is well-known
(see e.g. [GH93]). Partial logic has to in addition deal with undefined terms, where
for a given algebra A, the arguments of an application of operator o evaluate to
values outside the domain of A.interpretation(o), or where a variable is not in
the domain of the valuation. To deal with undefined terms, several choices can
be made (see [CMR98] for an overview) For concreteness, this chapter follows
the approach from [CMR98], where logical connectives and quantifiers are total
operators that are false when applied to terms that do not evaluate to a value
(sometimes called ‘negative logic’). Other choices, however, are possible and do
not really influence the problems studied in this chapter.

Consider Def. 2.1.31. Function Sem(t , va,A) evaluates term t in algebra A under
valuation va. The definition of Sem(t , va,A) is straightforward.
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Definition 2.1.31 (semantics of terms). Sem : Term × Valuation × Alg ã→ V

Sem(t0, va,A) = ν iff
or t0 ∈ Var and ν = va(t0),
or t0 is true and ν = T ,
or t0 is false and ν = F ,
or there are o ∈ Op, t1, . . . , tn ∈ Term such that

t0 is o(t1, . . . , tn), and
let f be A.interpretation(o) in ν = f(Sem(t1, va,A), . . . ,Sem(tn , va,A)),

or there are vS ∈ Var , t1 ∈ Term such that
or t0 is ∃v : S • t1, and

if there is a ν ∈ A.carrier(S ) such that Sem(t1, va[vS 7→ ν],A) = T ,
then ν = T , else ν = F ,

or t0 is ∀v : S • t1, and
if for every ν ∈ A.carrier(S ), Sem(t1, va[vS 7→ ν],A) = T ,
then ν = T , else ν = F ,

or there are t1, t2 ∈ Term such that
t0 is t1 = t2, and
if Sem(t1, va,A) = Sem(t2, va,A), then ν = T , else ν = F .

Models. Consider Def. 2.1.32. Note that the value of a sentence s does not
depend on the valuation as a sentence does not contain free variables. So, if there
is a va ∈ Valuation such that Sem(s, va,A) = T , then for every va ∈ Valuation,
Sem(s, va,A) = T .

Definition 2.1.32. A ∈ Alg is a model for s ∈ Sentence iff for every va ∈
Valuation, Sem(s, va,A) = T .

Definition 2.1.33. A ∈ Alg is a model for Sen ∈ Set(Sentence) iff for every
s ∈ Sen, A is a model for s.

Consider Def. 2.1.34. If Sen is a set of sentences, then Models(Sen) is the set of
all models of Sen.

Definition 2.1.34. Models : Set(Sentence) → Set(Alg)
A ∈ Models(Sen) iff A is a model for Sen.

2.2 Algebraic Client Specification

In this section, we discuss client specifications that are based on algebraic specifi-
cations. Our aim is to come up with a flexible, foundational notion of specification.
To this end, we introduce a novel syntax (Sect. 2.2.1) that incorporates a notion
of canonicity, and a novel semantics (Sect. 2.2.2) that closely matches the client’s
view of the implementation as a black box.

These specifications are particularly suited to situations where the client is in-
terested only in the input/output behavior of the implementation, i.e., situations
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where the client has a set of possible questions that the implementation should
compute the answers to. In such situations, the client expects the implementation
to rewrite an input into an equivalent, most basic form. Note that the client can
then use this output as the basis for another input.

In our formalism, a client specification consists of an algebraic specification and
a canonicity function. An algebraic specification consists of 1) a signature that
describe the sorts and operators of the client’s problem domain, and 2) a set
of sentences, called axioms in this context, that formalize the properties that the
client desires of the operators in the signature. The canonicity function determines
which elements of the set of possible outputs are of a most basic form.

The meaning of a client specification consisting of a signature sig , a set of axioms
ax and a canonicity function isCanonical is as follows.

• Every model A of ax provide a notion of equality that is acceptable to
the client, as ax formalizes the desired properties of the operators in the
signature. In particular, two closed applications ca0 and ca1 are equal in a
model A iff Sem(ca0 = ca1, emptyva,A) = T .

• Therefore, every model A of ax induces a division of ClosedAppls(sig), which
are the closed applications that can be formed using only the operators in
the signature, into equivalence classes.

• The canonicity function isCanonical determines for each such set of equiv-
alence classes, the set of class representatives (with a small caveat: our
formalism does not forbid multiple representatives per equivalence class, in-
stead the representatives of a given class are determined by the specifier
through the canonicity function).

• An implementation satisfies the specification iff for one of these sets of equiv-
alence classes, given any input in of any equivalence class EqClass, the im-
plementation outputs a representative of EqClass.

For example, assume that CS is the specification of a simple calculator with signa-
ture sig . Then sig defines the sort N, constants like 1,2,... and operators like +
and *. Any closed application built from the operators of the problem domain, i.e.,
every element of ClosedAppls(sig), represents a question from the problem domain
and can be used as an input to the implementation. For example, ClosedAppls(sig)
contains +(3,5) and *(4,3).

For the input +(3,5) the client will expect the output 8, and for *(4,3) the
expected output is 12. More generally, the client expects the implementation to
transform an input in into an output out that is a canonical form of in. That is,

• like in, out should be expressed using the operators of the client’s problem
domain, i.e., out should be an element of ClosedAppls(sig).
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• out should be canonical, i.e., it should be of a certain basic form. A possible
notion of canonicity for our calculator example is that a closed application
is canonical iff it is a constant. E.g., 8 is canonical, but +(3,5) is not.

• in and out should be equal. Every model A of the axioms of the specifica-
tion provide a notion of equality that is acceptable to the client (as explained
above). Which of these notions of equivalence is used by the implementa-
tion is up to the implementor. So, in our example, the specifier should
ensure that the axioms for + are such that for every model A of the axioms,
Sem( + (3, 5) = 8, emptyva,A) = T (and that +(3,5) is not equal to any
other constant).

We formalize the above in more detail in Sections 2.2.1 and 2.2.2.

2.2.1 Syntax of Specifications

In this section, we formalize the notions of algebraic specification, canonicity func-
tion and client specification.

Consider Def. 2.2.1. An algebraic specification consists of a signature and a set of
sentences, called axioms. These axioms only contains operators from the signature.

Definition 2.2.1. An algebraic specification AS is a record sig ∈ Sig × ax ∈
Set(Sentence) such that

AS .ax ⊆ Terms(AS .sig)
AlgSpec is the set of all algebraic specifications.

Consider Def. 2.2.2. Recall that every model of the axioms of the specification,
induces a notion of equality that is acceptable to the client. The intention is
that given such a model, the canonicity function of a specification determines
whether a given closed application is a representative of an equivalence class and
thus suitable as output of the implementation. In other words, the canonicity
function determines whether a given closed application is ’most basic’. For this to
be the case, there should be no equivalent ’more basic’ closed application. Which
closed applications are equal is determined by the supplied algebra (two closed
applications ca0 and ca1 are equal in an algebraA iff Sem(ca0 = ca1, emptyva,A) =
T ).

Definition 2.2.2. A canonicity function is a function canonFunc : ClosedAppl ×
Alg → Bool .
CanonFunc is the set of all canonicity functions.

Consider Defs. 2.2.3 and 2.2.1. Roughly, a client specification consists of an al-
gebraic specification and a canonicity function such that for every model of the
axioms, every meaningful closed application has a canonical form. The latter is
ensured by IsEachEqClassRepresented(CS .isCanonical ,CS .as) = T . More gen-
erally, IsEachEqClassRepresented(canonFunc,AS ) = T iff for every model A of
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AS .sig , for every closed application ca0 that 1) is defined by AS .sig , and 2) can be
evaluated to a value using A, there is canonical representation ca1 of ca0. In other
words, iff for any given notion of equivalence that follows from AS .ax , canonFunc
is such that every equivalence class has at least one representative.

Note that these definitions reflect the intended separation of concerns. The concern
of the axioms is to capture the desired properties of the operators and thus define
the acceptable notions of equality. Given any such acceptable notion of equality,
the concern of the canonicity function is to determine the representatives of the
equivalence class of a given closed application.

Definition 2.2.3. IsEachEqClassRepresented : CanonFunc × AlgSpec → Bool
IsEachEqClassRepresented(canonFunc,AS ) = T iff
for every ca0 ∈ ClosedAppls(AS .sig), A ∈ Models(AS .ax ), ν ∈ V,
if Sem(ca0, emptyva,A) = ν,
then there is a ca1 ∈ ClosedAppls(AS .sig) such that

canonFunc(ca1,A) = T , and
Sem(ca1, emptyva,A) = ν.

Definition 2.2.4. A client specification CS is a record as ∈ AlgSpec ×
isCanonical ∈ CanonFunc such that

IsEachEqClassRepresented(CS .isCanonical ,CS .ax ) = T .
ClientSpec is the set of all client specifications.

Before we present the semantics of algebraic specifications in Sect. 2.2.2, we show
three examples of the syntax (Exmpls. 2.1 to 2.3).

Example 2.1. (Rationals, specification)

signature and axioms
We distinguish between partial and total operators using ã→ and →, and use
some other self-explanatory shorthand as well. For technical reasons, we write
newRat(n, d) instead of the more usual n/d . Also note that among the omitted
operators and axioms are those that establish that every integer is a rational,
thus excluding trivial models of the specification.
sorts Rat , Int
operators

newRat : Int × Int ã→ Rat
add : Rat × Rat → Rat
equals : Rat × Rat → Bool

axioms
∀n0,n1, d0, d1 ∈ Int •

add(newRat(n0, d0),newRat(n1, d0)) = newRat(n0 + n1, d0)
∧ equals(newRat(n0, d0),newRat(n1, d1)) = true ⇔ n0 ∗ d1 = n1 ∗ d0

operators and axioms for Int , the sort that models unbounded integers, are
omitted.
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canonicity
A Rat r is canonical iff there are n, d ∈ Int such that 1) r is newRat(n, d), and
2) n and d are canonical, and 3) the greatest common divider of n and d is 1.
A formal definition is straightforward and is therefore omitted.

Example 2.2. (Multiple notions of equality)

This example shows a common pattern for the canonicity function. It also shows
how the canonicity function can determine representatives in the case where several
notions of equality are induced by the axioms.

Below is the definition of the signature and axioms of the algebraic specification
(using some self-explanatory syntactic sugar).
sorts X
operators

zero : → X
succ : X → X
add : X × X → X

axioms
∀x , x0, x1 ∈ X •

add(x , zero()) = x
∧ add(x0, succ(x1)) = succ(add(x0, x1))
∧ succ(succ(x )) ⑧= succ(x )

Now consider the following two algebras A0 and A1:

1. in A0, the carrier for X is N, zero() is interpreted as 0 ∈ N, succ as the
successor function and add as the + (i.e., the addition function on natural
numbers).

2. in A1, the carrier for X is Bool , zero() is interpreted as F , succ as the logical
not and add as the exclusive or.

Note that both A0 and A1 are a model of the axioms.

Next, we define the canonicity function isCanonical of the specification. Roughly, a
closed application ca is canonical iff only zero and succ occur in ca (i.e., ca is one
of zero(), succ(zero()), succ(succ(zero())), . . .), and there is no equivalent closed
application with less occurrences of succ. This follows a common pattern for the
canonicity function, where a closed application ca is canonical iff every operator
that occurs in ca comes from a set of generators, and there is no equivalent closed
application that consists of fewer applications of these generators.

The definition of the canonicity function uses a helper function sCount that returns
the number of occurrences of operator succ in a closed application in which only
succ and zero occur. It is defined as follows:
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sCount : ClosedAppl ã→ N

sCount(ca0) = n iff
or ca0 is zero() and n = 0,
or there is a ca1 ∈ ClosedAppl such that ca0 is succ(ca1) and n = 1 + sCount(ca1).

isCanonical(ca0,A) = T iff
only zero and succ occur in ca0, and
for every ca1 ∈ ClosedAppl ,
if only zero and succ occur in ca1, and

Sem(ca0 = ca1, emptyva,A) = T ,
then sCount(ca0) ≤ sCount(ca1).

Assume that ca = succ(succ(zero())). Note that isCanonical(ca,A0) = T , but
that isCanonical(ca,A1) = F as Sem(ca = zero(), emptyva,A1) = T .

Example 2.3. (the Stack of Int example, specification) Here we present the clas-
sic example of an algebraic specification, that of a Stack, in the setting of our
specification technique.

Note that the last 2 axioms essentially define equality on stacks.
sorts Stack , Int
operators

newStack : → Stack
push : Stack × Int → Stack
pop : Stack ã→ Stack
top : Stack ã→ Int

axioms
∀s, s0, s1 ∈ Stack , i , i0, i1 ∈ Int •

pop(push(s, i)) = s
∧ top(push(s, i)) = i
∧ newStack () ⑧= push(s, i)
∧ push(s1, i1) = push(s2, i2) ⇔ s1 = s2 ∧ i1 = i2

operators and axioms for Int, the sort that models unbounded integers,
are omitted.

The canonicity function follows the common pattern shown in Exmpl. 2.2. A
closed application ca of sort Stack is canonical iff ca only consists of the gen-
erators newStack , pop and integer constants, and there is no equivalent closed
application that consists of fewer applications of these generators. We omit the
formal definition.

Aside. We omit a division of its operators into two sets: interface operators
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and auxiliary operators. The intuition is that interface operators are the verbs
of the problem description. Auxiliary operators only serve to axiomatize the in-
terface operators. For example, the example from Hoare’s classic paper on data
abstraction revolves around sets which are axiomatized using, among others, a
size operator. But the paper states that only the insert , remove and has oper-
ators occur in the abstract program. That is, only these operators are interface
operators. The other operators, like size, are auxiliary (only used to axiomatize
the SmallIntSet).

Aside. By interpreting the axioms of an algebraic specification as left-to-write
rewrite rules, it is possible to specify the canonicity function indirectly (where a
closed application is canonical is none of the rules applies to it). For example,
Maude [CDE+02, BJM97] is a program that, given an signature and a set of
rewrite rules, allows the user to input a closed application and outputs a closed
application (assuming that the rewrite rules are Church-Rosser, terminating and
sort-decreasing).

2.2.2 Semantics of Specifications

In this section, we present an intuitive semantics of specifications that is indepen-
dent of the choice of a programming language.

A client specification intends to capture a set of implementations that are ac-
ceptable to the client. A core assumption of the client specification technique is
that the client only cares about the input/output behavior of the implementation.
Roughly, an implementation is acceptable to the client if, given a meaningful input,
the implementation outputs a canonical equivalent. For example, the implemen-
tation may be an executable that takes one command line parameter, which is a
closed application (typed in by the user). Execution returns a closed application
(the answer), and displays it as a string on the screen. Note that the client can
use the output as the basis for another input.

Consider Def. 2.2.5 and Fig. 2.1. An answer function is the obvious semantics that
matches this black box view of the implementation.

Definition 2.2.5. An answer function is a function answer : ClosedAppl ã→
ClosedAppl .

Answer is the set of all answer functions.
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Figure 2.1: Answer function: black box model of implementation

Consider Def. 2.2.6. Note that not given an algebraic specification CS .as, not
every answer function provides the ’right answer’ for any given input ca0. The
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intuition is that the semantics of CS determines the set of answer functions that
do provide the ’right answer’ for any give input. Roughly, the semantics of a
specification is the set of those answer functions for which there exists a model
of the axioms such that for every input ca0 that evaluates to an value, there is a
canonical output ca1 that evaluates to the same value. Note that it suffices that
there is a model, as every model induces a notion of equivalence that is acceptable
to the client.

Definition 2.2.6. SemAS : ClientSpec → Set(Answer)
answer ∈ SemAS (CS ) iff
there is an A ∈ Models(CS .as.ax ) such that
for every ca0 ∈ ClosedAppls(CS .as.sig), ν ∈ V

if Sem(ca0, emptyva,A) = ν,
then there is an ca1 ∈ ClosedAppls(CS .as.sig) such that

answer(ca0) = ca1, and
Sem(ca1, emptyva,A) = ν, and
CS .isCanonical(ca1,A) = T .

This semantics is intuitive, as it directly describes the set of (semantics of) black
box implementations that are acceptable to the client. Another advantage is that it
is independent of the choice of a programming language. Abstracting the semantics
of program in a concrete programming language to an answer function can be
treated as a separate concern. In sections Sections 3.1 and 3.2, we present a class-
based programming language and a notion of satisfaction that connects class-based
implementations to algebraic specifications.

3 Implementer’s Perspective:

Satisfaction for Computation

In this section, we connect class-based implementations to client specifications
through a notion of satisfaction. The structure of this section is as follows.

(1) In Sect. 3.1, we formalize a simple class-based programming language.
(2) In Sect. 3.2, we connect programs in this language to client specifications

through the introduction of a presentation layer, which allows to define a
straightforward notion of satisfaction.

(3) In Sect. 3.3, we sketch an implementation of the presentation layer.
(4) In Sect. 3.4, we use the implementation of the presentation layer to refine

the notion of satisfaction for implementations to a notion of satisfaction for
class-based programs.
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3.1 A Class-Based Language

In this section, we formalize an imperative, class-based language. In the next
section, we make a connection between algebraic specifications and programs in
this class-based language.

The problem of how to implement an algebraic specification is usually studied
in the context of a functional programming language (see e.g. [EKP79, Moi82,
Wan82]). Little attention has been paid to implementing algebraic specifications
in imperative programming languages [Lin93]. A main advantage of using an im-
perative programming language is that it is well suited to implementing (some of
the) operations with more efficient ‘in-place’ algorithms. For example, when im-
plementing operation push from Exmpl. 2.3, one would like to extend the existing
data structure with the new integer, rather than duplicate the entire structure and
add the integer to the copy. Studying the implementation of algebraic specifica-
tions in an imperative programming language is not just an interesting exercise by
itself, it is also useful because algebraic specifications underly many of the spec-
ification techniques for imperative programs, including those for object-oriented
(OO) programs.

We choose a class-based implementation language because it presents several of
the key challenges in OO specification and verification, while at the same time
avoiding the complexity of a full-fledged OO language. Furthermore, this choice
allows us to stay close to Hoare’s work on data abstraction. For simplicity, we
omit subclassing and subsorting. Extending the language to accommodate these
is possible but this extension can be treated as a separate concern (see e.g. [Lei95]).

Roughly, we model an imperative program as follows: it takes a sequence of state-
ments, and computes an evaluation context (which can be thought of as the state
of the computation’s memory at a given point in time) in the context of a set of
class definitions. This is visualized in Fig. 3.1.
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Figure 3.1: computation

The formal syntax of the class-based programming language is presented in
Sect. 3.1.1. Its semantics is presented in Sect. 3.1.2.
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3.1.1 Syntax

In this section, we define the syntax of our class-based programming language. To
this end, we first define the syntax of statements, then that of method and class
definitions. We also define a notion of an extended method body in which the
return statement, which is implicit in our method definitions, is made explicit.

To define the syntax of statements, we first define the primitive sorts1 and oper-
ators of the programming language. Then, we define the set of methods. Next,
we define the different kinds of variables that can occur in a statement. We then
use these definitions to define the statement grammar. Finally, we define when a
statement is well-typed.

Aside. Note that a practically useful language would impose more syntactical
restrictions than presented in this section. However, for the purpose of this
chapter, additional restrictions are not necessary and are therefore omitted.

Sorts and operators. We keep the syntax of statements in line with that of
applications, e.g., we write v0 := o(v1, v2) instead of v0 = v1.o(v2). It is straight-
forward to add a layer of syntactic sugar to bring the syntax in line with that of
well-known OO languages like Java and C#.

Consider Defs. 3.1.1 and 3.1.2. The primitive sorts and operators of the program-
ming language are defined by the primitive signature (Def. 3.1.2). For uniformity,
constants of primitive sorts are considered total parameterless operations, e.g.,
1 :→ N ∈ PrimSig .ops. For simplicity, apart from constants we only consider
primitive operators that have exactly two parameters, i.e., that are elements of
Op2. The generalization to an arbitrary number of parameters is straightforward.

Definition 3.1.1. Op2 ⊂ Op is the set {f : S1 × S2 ã→ S0 ∈ Op | T }.

Definition 3.1.2. PrimSig ∈ Sig (the primitive signature) is a signature such
that

PrimSig .ops ⊂ (Op2 ∪ Constant), and
PrimSig .ops ∩ Constant ⊆ PrimSig .tOps.

Consider Def. 3.1.3. The intuition is that ClassSort is the set of sorts that can be
used as a class name. This set does not include any primitive sorts.

Definition 3.1.3. ClassSort is a set such that ClassSort and PrimSig .sorts are
disjoint.

Consider Defs. 3.1.4 to 3.1.6, in which we define the set of methods. For simplicity,
we only consider methods that have exactly two parameters. Again, the general-
ization to an arbitrary number of parameters is straightforward. There are two
types of methods: constructors and non-constructor methods.

1At the level of programming languages, sorts are often referred to as types
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Consider Def. 3.1.4. The intuition is that newC identifies the constructor of class
C and must return an object of sort C .

Consider Def. 3.1.5. The intuition is that the first parameter of a non-constructor
method is the receiver, i.e., the object on which the method is called.

Consider Def. 3.1.6. Note that Method and PrimSig .ops are disjoint, as methods
have a ClassSort in either their domain sorts or their range sort, and primitive
operators do not.

Definition 3.1.4. For every C ∈ ClassSort ,S1,S2 ∈ Sort , there is a a special-
purpose operator newC : S1 × S2 ã→ C (a constructor). Constructor ⊂ Op2 is the
set of all constructors.

Definition 3.1.5. NonConstrMethod ⊂ Op2 (the non-constructor methods) is a
set such that for every m ∈ NonConstrMethod , DomainSorts(m)[0] ∈ ClassSort .

Definition 3.1.6. Method ⊂ Op2 (the methods) is the set Constructor ∩
NonConstrMethod .

Consider Def. 3.1.7. OpSort(o) determines a sort based on the signature of oper-
ator o. The intuition is if o is a method, then this is the class to which o belongs.
For constructors, this is the return sort, and for other methods this is the sort of
the first parameter (the receiver).

Definition 3.1.7. OpSort : Op → Sort
OpSort(o) = S iff
or o ∈ Constructor ∪ Constant , and S = RangeSort(o),
or o /∈ Constructor ∪ Constant , and S = DomainSorts(o)[0].

Variables. Consider Defs. 3.1.8 to 3.1.14, which define the kinds of variables
that can occur in a statement. Such a variable is either a field, or a stack variable.
A stack variable is either a local variable, a formal parameter, or the special-
purpose variable this. For simplicity, we assume that these sets are disjoint, i.e.,
that the kind of a variable in a statement can be determined syntactically. The
following intuitions are formalized in Sect. 3.1.2. A non-constructor method has
two formal parameters called this and p. Constructors have an implicitly defined
variable called this, and two formal parameters called q and p. Constructors
and void methods return (the value stored by) this. Other methods return (the
value stored by) the special-purpose local variable result. Special-purpose dummy
variables are used to simplify the treatment of statements that assign the result
of a call to a field. Special-purpose lvi variables are used to store intermediate
results during translation (see Sect. 3.3.1).

Definition 3.1.8. ThisVar ⊂ Var is the set {thisC | C ∈ ClassSort}.

Definition 3.1.9. FPar ⊂ Var (the set of formal parameters) is the set {pS | S ∈
Sort} ∪ {qS | S ∈ Sort}.
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Definition 3.1.10. There is a set LocVar ⊂ Var (the set of local variables) that
is disjoint from ThisVar and FPar . For every i ∈ N ,S ∈ Sort , there are special-
purpose variables dummyS , lviS ∈ LocVar .

Definition 3.1.11. ResultVar ⊂ LocVar (the set of special-purpose result vari-
ables) is the set {resultS | S ∈ Sort}.

Definition 3.1.12. ReturnVar (the set of return variables) is the set ThisVar ∪
ResultVar .

Definition 3.1.13. StackVar is the set FPar ∪ LocVar ∪ ThisVar .

Definition 3.1.14. There is a set Field ⊂ Var that is disjoint from StackVar .

Statements. Consider Fig. 3.2, which defines the syntax of statements. Note
that return statements are left implicit. For uniformity, we let a void method
return the receiver (i.e., the this variable). This avoids the need for a separate
void method call statement m(r , r).

Note that reference f is essentially shorthand for this.f (see Sect. 3.1.2 on se-
mantics). Having it as an explicit language construct makes the work in following
sections easier at the cost of some elegance here.

t ∈ StackVar , f ∈ Field , po ∈ PrimSig .ops,m ∈ Method , s ∈ Seq(Statement)

r ∈ Ref ::= t | t .f | f
e ∈ Expr ::= r | po(r , r) | po()
rhs ∈ RHS ::= e | m(r , r)
s ∈ Statement ::= if (r) s | while (r) s | r := rhs

Figure 3.2: Statement grammar.

Consider Def. 3.1.15. We only want to consider statements that are well-typed.
To formalize this notion, RefSort associates a sort with a reference in the obvious
way.

Definition 3.1.15. RefSort : Ref → Sort
RefSort(r) = S iff there are t , tS ∈ StackVar , fS ∈ Field such that

or r is tS ,
or r is t .fS ,
or r is fS .

Consider Def. 3.1.16. Roughly, the restriction of statements to the set Stmt en-
sures a property that is often referred to as type-safety (where the sort of the
value a variable evaluates to, matches the sort of the variable). Furthermore, the
restriction ensures that if- and while-guards are of sort Bool .

Definition 3.1.16. Stmt ⊂ Statement (the set of well-formed statements) is
inductively defined as follows.
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s ∈ Stmt iff
there are r0, r1, r2 ∈ Ref , s ∈ Seq(Stmt), po : ã→ S ∈ PrimSig .ops, o : S1×S2 ã→
S0 ∈ (Method ∪ PrimSig .ops) such that
or s is r0 := r1 and RefSort(r0) = RefSort(r1),
or s is r0 := po() and RefSort(r0) = S ,
or s is r0 := o(r1, r2) and RefSort(r0) = S0 and RefSort(r1) = S1

and RefSort(r2) = S2.
or s is if (r0) s and RefSort(r0) = Bool ,
or s is while (r0) s and RefSort(r0) = Bool .

Consider Def. 3.1.17. Informally, we say s0 ∈ Stmt is a substatement of s1 ∈
Seq(Stmt) iff (1) s0 ∈ s1, or (2) s1 has an element while (r) s2, and s0 is a
substatement of s2, or (3) s1 has an element if (r) s3, and s0 is a substatement
of s3.

Definition 3.1.17. SubStmts() : Seq(Stmt) → Set(Stmt)
Given the informal definition above, the formal definition is straightforward and
is omitted.

Method and class definitions. In this paragraph, we formalize method and
class definitions.

Consider Def. 3.1.18. Roughly, a method definition consists of a method signature
(which defines the method’s name, the sorts of its parameters, and its return sort),
a method body, and an indication whether the method is a void method. Note
that constructors are not void methods, and that void methods return an object of
the sort of their receiver (as OpSort(methDef .sig) returns the sort of the receiver
for non-constructor methods, see Def. 3.1.7). For simplicity, we do not require to
define the names of the formal parameter(s) in a method definition. Instead, we
use fixed names this and p (for non-constructors) or q and p (for constructors).

Definition 3.1.18. A method definition is a record methDef : sig ∈
Method × body ∈ Seq(Stmt)× isVoid ∈ Bool such that
if methDef .sig ∈ Constructor , then methDef .isVoid = F , and
if methDef .isVoid = T , then RangeSort(methDef .sig) = OpSort(methDef .sig).

MethDef is the set of all method definitions.

Consider Def. 3.1.19. Roughly, it defines the following restrictions on the definition
of a class C . The class definition 1) defines at least one field (for convenience),
2) does not define two methods with the same signature, 3) only defines methods
that belong to the class (i.e., that have a receiver of the sort that is the name of
the class, or that are a constructor of the class), and 4) if a method body of a
method defined in C uses the shorthand field assignment statement f := rhs, then
f is a field of C . Other natural restrictions are omitted as they are not relevant
to this chapter. Note that for simplicity, there is no notion of subclassing in the
language.
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Definition 3.1.19. A class definition is a record classDef : name ∈ ClassSort ×
mds ∈ Seq(MethDef )× fields ∈ Seq(Field) such that
|classDef .fields |> 0, and
for every methDef0,methDef1 ∈ classDef .mds,
or methDef0 = methDef1,
or methDef0.sig ⑧= methDef1.sig , and

for every methDef ∈ classDef .mds,
OpSort(methDef .sig) = classDef .name, and
for every f ∈ Field ,
if f := rhs ∈ SubStmts(methDef .body),
then f ∈ classDef .fields.

ClassDef is the set of all class definitions.

Consider Def. 3.1.20. Roughly, a set of class definitions is well-formed if it does
not contain two classes with the same name.

Definition 3.1.20. A set cds ∈ Set(ClassDef ) is well-formed iff
for every classDef0, classDef1 ∈ cds,
or classDef0 = classDef1,
or classDef0.name ⑧= classDef1.name.

ClassDefSet is the set {cds ∈ Set(ClassDef ) | cds is well-formed }.

Consider Def. 3.1.21. Given a method signature and a set of class definitions,
GetMethDef returns the definition of that method (if there is one). Note that a
method signature m ∈ Method uniquely defines a method definition methDef in a
well-formed set of class definitions cds, as the range sort C of sig (i.e., the return
type of the method) is the name of the class definition classDef that defines it (as
cds does not define two classes with the same name), and as classDef does not
define two methods with the same signature.

Definition 3.1.21. GetMethDef : Method × ClassDefSet ã→ MethDef
GetMethDef (m, cds) = methDef iff

there is a classDef ∈ cds such that
methDef ∈ classDef .mds, and
methDef .sig = m.

Consider Defs. 3.1.22 and 3.1.23. Given a method signature m and a set of class
definitions cds, the convenience functions GetBody(m, cds) and IsVoid(m, cds)
use GetMethDef (m, cds) to return the body of m, and whether or not m is a void
method.

Definition 3.1.22. GetBody : Method × ClassDefSet ã→ Seq(Stmt)
GetBody(m, cds) = s iff
there is a methDef ∈ MethDef such that

GetMethDef (m, cds) = methDef , and
methDef .body = s.
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Definition 3.1.23. IsVoid : Method × ClassDefSet ã→ Bool
IsVoid(m, cds) = b iff
there is a methDef ∈ MethDef such that

GetMethDef (m, cds) = methDef , and
methDef .isVoid = b.

Extended method bodies. In an extended method body, the implicit return
statement of a method body is made explicit.

Consider Def. 3.1.24. An extended statement is a well-formed statement concate-
nated with a return statement.

Definition 3.1.24. ExtStmt (the set of extended statements) is the set Stmt ∪
{return v | v ∈ ReturnVar}.

Consider Defs. 3.1.25 and 3.1.26. Roughly, GetExtBody(m, cds) returns the
method body of m as defined in cds, concatenated with the appropriate return
statement. As defined by GetReturnVar(m, cds), this return statement returns
this when m is a constructor or void method, and returns result otherwise.

Definition 3.1.25. GetReturnVar : Method × ClassDefSet ã→ ReturnVar
GetReturnVar(m : S1 × S2 ã→ S0, cds) = rv iff
if m ∈ Constructor or IsVoid(m, cds) = T ,
then rv is thisS0

,
else rv is resultS0

.

Definition 3.1.26. GetExtBody : Method × ClassDefSet ã→ Seq(ExtStmt)
GetExtBody(m, cds) = s0 iff
there are s1 ∈ Seq(Stmt), rv ∈ ReturnVar such that

GetBody(m, cds) = s1, and
GetReturnVar(m, cds) = rv , and
s0 = s1 ⊲ 〈return rv〉.

Other definitions. Here we define several straightforward functions that are
not needed to define the semantics, but that are useful later on.

Consider Def. 3.1.27. Recall that a non-constructor method has two formal pa-
rameters called this and p, and that a constructor has two formal parameters
called q and p. GetFormalParams returns these formal parameters.

Definition 3.1.27. GetFormalParams : Method ×ClassDefSet ã→ Seq(StackVar)
GetFormalParams(m : S1 × S2 ã→ S0, cds) = sv iff
|sv |= 2, and
sv [1] = pS2

, and
or m /∈ Constructor and sv is thisS1

,
or m ∈ Constructor and sv is qS1

.

Consider Def. 3.1.28. Roughly, given a set of class definitions cds,
GetFields(C , cds) returns the fields defined in class C of cds.
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Definition 3.1.28. GetFields : ClassSort × ClassDefSet ã→ Seq(Field)
GetFields(C , cds) = f iff
there is a classDef ∈ cds such that

classDef .name = C , and

classDef .fields = f .

Consider Def. 3.1.29. Roughly, given a set of class definitions cds, if class C of cds
defines fields 〈f1, . . . , fn〉, then GetFieldSorts(C , cds) returns the sequence of the
sorts of 〈f1, . . . , fn〉.

Definition 3.1.29. GetFieldSorts : ClassSort × ClassDefSet ã→ Seq(Sort)
GetFieldSorts(C , cds) = 〈S1, . . . ,Sn〉 iff
there is a 〈f1, . . . , fn〉 ∈ Seq(Field) such that

GetFields(C , cds) = 〈f1, . . . , fn〉, and
for every i ∈ [1,n],

VarSort(fi) = Si .

Consider Def. 3.1.30. Roughly, GetClassNames(cds) returns the set of names of
the class definitions in cds.

Definition 3.1.30. GetClassNames : ClassDefSet → Set(ClassSort)
C ∈ GetClassNames(cds) iff
there is a classDef ∈ cds such that

classDef .name = C .

3.1.2 Semantics

In this section we present a semantics for the syntax presented in Sect. 3.1.1.
This semantics leads to a fairly standard model of computation in a class-based
language formalized in Def. 3.1.55. The novelty is that we use a small-step (or
natural) semantics. The motivation is that a small-step semantics is more suitable
to the formalization of properties that hold in specific states of the executions,
like class invariants. For an example of an OO language defined using natural
semantics, see e.g. [Pie06].

The implementation algebra. First, we introduce an algebra that gives a
semantics to primitive operations and defines a carrier set for every sort.

Definition 3.1.31. A ⊂ V is the set of objects (or addresses).

Consider Def. 3.1.32. Roughly, the implementation algebra (1) gives a semantics to
every primitive operation, (2) defines a carrier set for every sort, (3) defines a set of
addresses as the carrier set for every non-primitive sort, and (4) has disjoint carrier
sets (for convenience). We sometimes write AC for the set Aimpl .carrier(C ).
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Definition 3.1.32. Aimpl ∈ Alg (the implementation algebra) is such that
Domain(Aimpl .interpretation) = PrimSig .ops, and
Domain(Aimpl .carrier) = Sort , and
for every C ∈ ClassSort , Aimpl .carrier(C ) ⊆ A, and
for every S0,S1 ∈ Sort ,
if S0 differs from S1, then Aimpl .carrier(S0) ∩ Aimpl .carrier(S1) = {}.

Language values. Consider Defs. 3.1.33 and 3.1.35. A language value is either
a primitive value, an object, or the special purpose value nil .

Definition 3.1.33. P ⊂ V (the set of primitive values of the programming
language) is the set {ν ∈ V | there is an S ∈ PrimSig .sorts such that ν ∈
Aimpl .carrier(S )}.

Definition 3.1.34. There is a special-purpose value nil ∈ V such that nil /∈
(P ∪ A).

Definition 3.1.35. L ⊂ V (the set of language values) is defined as P∪A∪{nil}.

Consider Def. 3.1.36. Recall that for convenience, we have required that all carrier
sets of Aimpl are disjoint. This requirement, while not essential, allows us to think
of a language value λ as having sort S . SortL(λ) returns this sort S .

Definition 3.1.36. SortL : L ã→ Sort
SortL(λ) = S iff λ ∈ Aimpl .carrier(S ).

States. Consider Def. 3.1.37. A stack frame is a finite mapping from variables
to language values such that 1) at most one this variable is mapped to a value,
and 2) variables of primitive sorts are mapped to a value from their carrier set,
and 3) variables of non-primitive sorts are either mapped to a value from their
carrier set, or mapped to nil . Note that StackFrame ⊂ Valuation.

Definition 3.1.37. A stack frame is a function sf : Var ã→ L such that
Domain(sf ) is finite, and
|Domain(sf ) ∩ ThisVar | ≤ 1, and
for every vS ∈ Domain(sf ),
if S ∈ PrimSig .sorts,
then sf (vS ) ∈ Aimpl .carrier(S ),
else sf (vS ) ∈ ({nil} ∪ Aimpl .carrier(S )).

StackFrame is the set of all stack frames.

Consider Defs. 3.1.38 and 3.1.39. An object store is a finite mapping from locations
to language values, where a location can be thought of as a field of an object. This
mapping is such that 1) fields of primitive sorts are mapped to a value from their
carrier set, and 2) fields of non-primitive sorts are either mapped to a value from
their carrier set, or mapped to nil .
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Definition 3.1.38. A location is a tuple A× Field .
Loc is the set of all locations.

Definition 3.1.39. An object store is a function os : Loc ã→ L such that
Domain(os) is finite, and
for every 〈α, fS 〉 ∈ Domain(os),
if S ∈ PrimSig .sorts,
then os(〈α, fS 〉) ∈ Aimpl .carrier(S ),
else os(〈α, fS 〉) ∈ {nil} ∪ Aimpl .carrier(S ).

ObjStore is the set of all object stores.

Consider Def. 3.1.40. An evaluation context allows to evaluate a language expres-
sion to a value (as formalized in Def. 3.1.47).

Definition 3.1.40. An evaluation context is a record sf ∈ StackFrame × os ∈
ObjStore.

EvalContext is the set of all evaluation contexts.

Definition 3.1.41. emptysf and emptyos are the stack frame and object store of
which the domain is empty. emptyec is the evaluation context 〈emptysf , emptyos〉.

Consider Def. 3.1.42. The intuition (formalized later) is that at a method call,
the current stack frame and the local variable to which the result of the method
is to be assigned are pushed on the call stack, to be popped when the method call
returns.

Definition 3.1.42. A call stack is a sequence of tuples StackFrame × LocVar .
CallStack is the set of all call stacks.

Consider Def. 3.1.43, which formalizes the central notion of the semantics, that of
an (execution) state.

Definition 3.1.43. A state is a record ec ∈ EvalContext × cs ∈ CallStack ×
stmtSeq ∈ Seq(ExtStmt).
State is the set of all states.

Expression Evaluation. Next, we define how to evaluate an expression to a
value using an evaluation context.

Consider Def. 3.1.44. Recall from Def. 3.1.37 that a stack frame sf maps at most
one this variable to a value. ThisObj (sf ) returns that value, if it exists.

Definition 3.1.44. ThisObj : StackFrame ã→ A

ThisObj (sf ) = α iff there is a C ∈ ClassSort such that sf (thisC ) = α.

Consider Defs. 3.1.45 and 3.1.46. If reference r is not a stack variable, then
RefToLoc maps r to the location that holds its value. RefToL evaluates a reference
to a language value in the obvious way.
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Definition 3.1.45. RefToLoc : Ref × StackFrame ã→ Loc
RefToLoc(r , sf ) = 〈α, f 〉 iff
or there is a t ∈ StackVar such that r is t .f , and sf (t) = α,
or r is f , and ThisObj (sf ) = α.

Definition 3.1.46. RefToL : Ref × EvalContext ã→ L

RefToL(r , 〈sf , os〉) = λ iff
or r ∈ StackVar , and sf (r) = λ,
or there is an l ∈ Loc such that RefToLoc(r , sf ) = l , and os(l) = λ.

Consider Def. 3.1.47. Eval evaluates an expression to a value in the obvious way.

Definition 3.1.47. Eval : Expr × EvalContext ã→ L

Eval(e, ec) = λ0 iff
or e ∈ Ref and RefToL(e, ec) = λ0,
or e ∈ PrimSig .ops ∩ Constant , and Sem(e,Aimpl , emptyva) = λ0,
or there are po : S1 × S2 ã→ S0 ∈ PrimSig .ops, r0, r1 ∈ Ref , λ1, λ2 ∈ L,

v0, v1 ∈ Var such that
e is po(r0, r1), and
RefToL(r0, ec) = λ1, and
RefToL(r1, ec) = λ2, and
let va be emptyva[v0 7→ λ1, v1 7→ λ2] in Sem(po(v0, v1),Aimpl , va) = λ0

Allocation. Consider Defs. 3.1.48 to 3.1.50. The intuition is that if
Alloc(C , os0, cds) = 〈α, os1〉, then os1 is the object store like os0, except that it
contains a newly allocated object α of class C (as defined in cds) of which all the
fields have been initialized. Here, a field of sort S is initialized to InitialValue(S ).
InitialValue(S ) is nil if S ∈ ClassSort , otherwise it is an element of the carrier set
of S (which element this is, is not relevant here). Note that allocation is always
possible (i.e., we assume an infinite amount of memory).

Definition 3.1.48. IsAllocated() : A× ObjStore → Bool
IsAllocated(α, os) = T iff there is an f ∈ Field such that 〈α, f 〉 ∈ Domain(os).

Definition 3.1.49. There is a function InitialValue : Sort → L such that
for every S ∈ ClassSort , InitialValue(S ) = nil , and
for every S /∈ ClassSort , InitialValue(S ) ∈ Aimpl .carrier(S ).

Definition 3.1.50. There is a function Alloc : ClassSort × ObjStore ×
ClassDefSet ã→ A× ObjStore such that
if there is a classDef ∈ cds such that classDef .name = C ,
then there are α ∈ A, os1 ∈ ObjStore such that

Alloc(C , os0, cds) = 〈α, os1〉, and
IsAllocated(α, os0) = F , and
os1 is the object store like os0, except that
for every fS ∈ classDef .fields, os1(〈α, fS 〉) = InitialValue(S ).
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Computation. Consider Def. 3.1.51, which defines a transition relation on states
in the context of a cds ∈ ClassDefSet . If cds is clear from the context, it can be
omitted. One or more applications ofùc cds are denoted byù+c

cds , zero or more
byù∗c

cds , and n applications byùnc
cds . The intuition is that this relation defines

the small-step statement semantics of our programming language. The rules for if
statements, while statements and sequential composition (IF, WHILE and COMP)
are standard (recall that ⊲ denotes sequence concatenation). In the READ rule, the
value of the stack variable sv on the left-hand side of the assignment is updated
with the value to which the expression on the right-hand side evaluates. In the
WRITE rule, the location to which reference r on the left-hand side of the assignment
evaluates, is updated with the value to which the expression on the right-hand
side evaluates. The SH rule shows how we treat a statement r0 := m(r1, r2) as
shorthand for the statement sequence 〈dummyS := m(r1, r2), r0 := dummyS 〉, which
can be dealt with by the READ and WRITE rules. Next, consider the CALL rule,
which considers the execution of a method call statement sv := m(r0, r1) from an
evaluation context sf , os. The current stack frame sf and the stack variable sv to
which the outcome of the method call is to be assigned, are pushed on the call stack.
Execution continues with an stack frame in which only this and p are defined (the
formal parameters of the method). The actual first parameter r0 is the receiver,
and its value is assigned to this. The second is a ’normal’ parameter and its value
is assigned to p. Execution continues with the execution of the extended method
body. Consider the CONSTR rule, which considers a constructor call. The rule is
similar to the CALL rule. Recall that like other methods, constructors have two
parameters. However, unlike other methods, constructors do not have a receiver.
Therefore, a constructor has two formal parameters called q and p. The value
of the first actual parameter is assigned to q, the value of the second to p. As
usual, the newly created object is assigned to the this variable of the constructor.
Finally, consider the RET rule. In this rule, the stack frame sf1 and stack variable
sv that are on top of the call stack are popped. The current stack frame sf0 is
replaced by sf1, and then the value of result variable rv is assigned to sv .

Definition 3.1.51. Small-step semantics in the context of cds ∈ ClassDefSet.
Brackets around states are omitted to improve readability. r , r0, r1, r2 ∈ Ref , ec ∈

EvalContext , cs ∈ CallStack , s0 ∈ ExtStmt , s0, s1, s2 ∈ Seq(ExtStmt), sv ∈
StackVar , e ∈ Expr , f ∈ Field ,S ,S0,S1 ∈ Sort ,C ∈ ClassSort , α ∈ A, λ, λ0, λ1 ∈
L, rv ∈ ResultVar , sf , sf0, sf1 ∈ StackFrame, os, os0, os1 ∈ ObjStore, cs ∈

CallStack , α ∈ A.

Eval(r , ec) = T

ec, cs, 〈if (r) s0〉 ù
c

cds ec, cs, s0
IFt

Eval(r , ec) = F

ec, cs, 〈if (r) s0〉 ù
c

cds ec, cs, 〈〉
IFf
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Eval(r , ec) = T

ec, cs, 〈while (r) s0〉 ùc cds ec, cs, s0 ⊲ 〈while (r) s0〉
WHILEt

Eval(r , ec) = F

ec, cs, 〈while (r) s0〉 ùc cds ec, cs, 〈〉
WHILEf

|s1 |> 0 ec, cs, 〈s0〉ù
c

cds ec′, cs ′, s2

ec, cs, 〈s0〉 ⊲ s1 ùc cds ec′, cs ′, s2 ⊲ s1
COMP

Eval(e, 〈sf , os〉) = λ

〈sf , os〉 , cs, 〈sv := e〉 ùc cds 〈sf [sv 7→ λ], os〉 , cs, 〈〉
READ

RefToLoc(r , sf ) = 〈α, f 〉 〈α, f 〉 ∈ Domain(os) Eval(e, 〈sf , os〉) = λ

〈sf , os〉 , cs, 〈r := e〉 ùc cds 〈sf , os[〈α, f 〉 7→ λ]〉 , cs, 〈〉
WRITE

r0 /∈ StackVar r0 ∈ VarS

ec, cs, 〈r0 := m(r1, r2)〉 ùc cds ec, cs, 〈dummyS := m(r1, r2), r0 := dummyS 〉
SH

GetExtBody(m, cds) = s0 DomainSorts(m) = 〈C ,S 〉
m /∈ Constructor Eval(r0, 〈sf , os〉) = α Eval(r1, 〈sf , os〉) = λ

〈sf , os〉 , cs, 〈sv := m(r0, r1)〉 ùc cds

〈emptysf [thisC 7→ α, pS 7→ λ], os〉 , 〈sf , sv〉 ⊲ cs, s0

CALL

DomainSorts(newC ) = 〈S0,S1〉
Eval(r0, 〈sf , os0〉) = λ0 Eval(r1, 〈sf , os0〉) = λ1

GetExtBody(newC , cds) = s0 Alloc(C , os0, cds) = 〈α, os1〉

〈sf , os0〉 , cs, sv := newC (r0, r1) ùc cds

〈emptysf [thisC 7→ α, qS0
7→ λ0, pS1

7→ λ1], os1〉 , 〈sf , sv〉 ⊲ cs, s0

CONSTR

sf0(rv) = λ

〈sf0, os〉 , 〈sf1, sv〉 ⊲ cs, return rv ùc cds 〈sf1[sv 7→ λ], os〉 , cs, 〈〉
RET

Aside. For simplicity, we have omitted the statement v := null. Extending the
methodology to allow this statement is feasible, but is a significant complication
as null has to be treated as a constant of every sort, to which no operations can
be applied successfully.

Next, we formalize several well-known notions of termination.

Consider Def. 3.1.52. The intuition is that if ExecTerminatesIn(σ0, cds) = σ1,
then the execution of σ0 in the context of cds terminates in σ1.

Definition 3.1.52. ExecTerminatesIn : State × ClassDefSet ã→ State
ExecTerminatesIn(σ0, cds) = σ1 iff
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σ0 ù
∗c
cds σ1, and

there is no σ2 ∈ State such that σ1 ù
c

cds σ2.

Consider Def. 3.1.53. If IsExecTerminating(σ, cds) = T , then the execution of σ
in the context of cds, terminates. It is defined in the obvious way.

Definition 3.1.53. IsExecTerminating : State × ClassDefSet → Bool
IsExecTerminating(σ0, cds) = T iff

there is a σ1 ∈ State such that ExecTerminatesIn(σ0, cds) = σ1.

Consider Def. 3.1.54. The intuition is that if
ExecTerminatesNormallyIn(σ0, cds) = ec, then the execution of σ0 in the
context of cds terminates normally in a state with evaluation context ec. We
say execution terminates normally in ec, rather than in 〈ec, σ.ec, 〈〉〉, as the stack
frame and statement sequence follow implicitly.

Definition 3.1.54. ExecTerminatesNormallyIn : State × ClassDefSet ã→ State
ExecTerminatesNormallyIn(σ, cds) = ec iff
the execution of σ in the context of cds terminates in 〈ec, σ.ec, 〈〉〉.

Consider Def. 3.1.55. A program in the class-based language consists of a set of
well-formed class definitions cds and a sequence of well-formed statements s that
can be thought of as the body of the main method. A computation takes a such
a program, and returns the evaluation context in which the execution of s in the
context of cds terminates normally (if there is any).

Definition 3.1.55. Compute : Seq(Stmt)× ClassDefSet ã→ EvalContext
Compute(s, cds) = ec iff

ExecTerminatesNormallyIn(〈emptyec, 〈〉 , s〉 , cds) = ec.

3.2 A Notion of Satisfaction

In this section, we open up the black box, now looking from the implementer’s
perspective rather than that of the client. The task of the implementer is to create
an implementation that meets an agreed notion of satisfaction with regard to the
specification.

The problem that we face when formalizing this notion of satisfaction is the follow-
ing. In the previous section, we introduced a fairly standard model of computation
in a class-based language. However, this model does not match the input/out be-
havior desired from the answer functions in the semantics of the specification
(i.e., take a closed application and compute a closed application). Therefore, we
separate the implementation into a presentation logic layer and a business logic
layer. This is visualized in Fig. 3.3. The presentation logic layer is responsible
for the translation from the input provided by the user to the input required by
the computation in the business logic layer, and for displaying the output of the
computation to the user as a closed application.
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Aside. In some implementations it may be more efficient to intertwine the
presentation logic and the business logic. Modeling such implementations may
be feasible but requires ’polluting’ the class based language presented in Sect. 3.1
with concepts needed for translation and display.
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Figure 3.3: answer function flowchart

In this section, we formalize the translation and display concerns (Defs. 3.2.1
and 3.2.2). This, combined with the earlier formalization of the computation
concern (Def. 3.1.55), allows to formalize a straightforward, suitable notion of
satisfaction (Def. 3.2.5).

Consider Defs. 3.2.1 and 3.2.2. The translation and display concerns are both
modeled as a black box. The intuition, sketched in Fig. 3.3, is as follows. The
translation function takes the closed application that is provided by the user as
input to the implementation, and maps this closed application to a sequence of
statements that perform the actual computation (when executed in the context of
a set of class definitions that are written by the implementer). If this computation
terminates normally in an evaluation context ec, then the display function takes ec
and maps it to closed application that is represented by ec. This closed application
is presented as the output of the implementation to the user.

Definition 3.2.1. A translation function is a function translate : ClosedAppl ã→
Seq(Stmt).
Translate is the set of all translation functions.

Definition 3.2.2. A display function is a function display : EvalContext ã→
ClosedAppl .

Display is the set of all display functions.

Consider Def. 3.2.3. In our approach, an implementation consists of a translation
function, a set of class definitions and a display function.
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Definition 3.2.3. An implementation is a tuple impl : Translate ×ClassDefSet ×
Display .
Implementation is the set of all implementations.

Consider Def. 3.2.4. The refinement of the implementation into translation, com-
putation and display concerns allows to formalize the semantics of implementations
in terms of answer functions.

Definition 3.2.4. SemImpl : Implementation → Answer
SemImpl(〈translate, cds, display〉) = answer iff
for every ca0, ca1 ∈ ClosedAppl ,

answer(ca0) = ca1 iff display(Compute(translate(ca0), cds)) = ca1.

Consider Def. 3.2.5. As the semantics of an implementation is an answer function,
we can use the standard notion of satisfaction without making additional design
decisions; An implementation impl satisfies a specification AS iff the semantics
of the implementation (an answer function) is an element of the semantics of the
specification (a set of answer functions).

Definition 3.2.5. impl ∈ Implementation satisfies CS ∈ ClientSpec iff
SemImpl(impl) ∈ SemAS (CS ).

Given this notion of satisfaction, we now present an implementation approach for
the presentation layer (Sect. 3.3). This allows to refine the notion of satisfaction
to a notion of satisfaction for the computation concern (Sect. 3.4).

3.3 An Implementation Approach for Translation and Dis-

play

In this section, we sketch algorithms for the presentation layer, i.e. for the trans-
lation and display concerns. Our goal is for the presentation layer to be generic,
i.e to be independent of or inferrable from the client specification and the imple-
mentation of the computation concern.

• For the translation concern, the approach is to let the input and output of
the translation function be structurally very similar. This is achieved by
having a method for every non-primitive operator in the client specification,
and a class for every non-primitive sort.

• For the display concern, the approach is to require that the closed application
ca that is to be displayed, is encoded in the input of the display function (an
evaluation context) in a predefined and structured way. To this end, we use
a special-purpose variable that refers to the root of a parse tree representing
ca.
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We discuss the translation concern in Sect. 3.3.1, and the display concern in
Sect. 3.3.2. In Sect. 3.4, we use the implementation of the presentation layer to
present a straightforward refinement of the satisfaction notion for implementations
(Def. 3.2.5) to a satisfaction notion for the computation concern.

3.3.1 The Translation Concern

In this section we sketch a generic algorithm for the translation concern.

As stated above, this is achieved by letting the input and output of the trans-
lation function be structurally very similar. So, ideally, the translation func-
tion would translate an arbitrary closed application ca of a sort S to the single
statement resultS := ca. However, our simple programming language requires
that the actual parameters of a call statement are variables (and not applica-
tions). For example, consider an algebraic specification AS that defines operations
f : S × S ã→ S , g : ã→ S , and h : ã→ S . Then f (g(), h()) ∈ ClosedIfaceAppl(AS ),
but resultS := f(g(), h()) /∈ Stmt . This slightly complicates the definition of the
translation function. We present a translation function that treats the closed ap-
plication provided as input, as a parse tree. The statements produced by the
function execute this parse tree from the bottom up, storing intermediate results
into variables that are used as actual parameters. We then discuss why this simple
approach restricts the implementation of the computation concern, and present a
simple solution. Finally, we sketch the algorithm that is the generic implementa-
tion of the translation concern.

Aside. In Sect. 2.2, we mentioned that the client may use an incremental
process where the output of the implementation is the basis for another input.
With the translation function described here, this is not very efficient as the
answer to the original input is be computed again. Amending the implementation
to retain and reuse the earlier result is certainly feasible.

Bottom-up translation. Consider Def. 3.3.1. The intuition is that if ca is a
closed application of sort S , and TransBottomUp(ca,n) = s, then

(1) s computes the value of ca and stores it in lvnS (the special purpose variables
lviS are defined in Def. 3.1.10), and

(2) for every i < n, for every S ∈ Sort , s does not assign to lviS (this prevents
intermediate results from being overwritten).

Note that intuition is formalized and proven correct in Lem. 4.2.

Definition 3.3.1. TransBottomUp : ClosedAppl × N ã→ Seq(Stmt)
TransBottomUp(ca0,n) = s0 iff
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there are f : S1 × . . .× Si ã→ S0 ∈ Op, ca1, . . . , cai ∈ ClosedAppl,
s1, . . . , s i ∈ Seq(Stmt) such that

ca0 is f (ca1, . . . , cai), and
TransBottomUp(ca1,n + 1) = s1, and
...
TransBottomUp(ca2,n + i) = s i , and
s0 = s1 ⊲ . . . ⊲ s i ⊲ 〈lvnS0

:= f (lv(n + 1)S1
, . . . , lv(n + i)Si

)〉.

The definition is illustrated by Exmpl. 3.1 and Exmpl. 3.2.

Example 3.1. Consider a closed application f (g(), h()) such that operators f , g
and h all have sort S . Then
TransBottomUp(f (g(), h()), 0) =
〈lv1S := g(), lv2S := h(), lv0S := f (lv1S , lv2S )〉.

Example 3.2. Consider a closed application l(f (g(), h()), i(j (), k())) such that
operators f , g , h, i , j , k and l all have sort S .
TransBottomUp(l(f (g(), h()), i(j (), k())), 0) =
〈 lv2S := g(), lv3S := h(), lv1S := f (lv2S , lv3S ),

lv3S := j (), lv4S := k(), lv2S := i(lv3S , lv4S ),
lv0S := l(lv1S , lv2S ) 〉.

Note that the reuse of lv3S is harmless as the intermediate value it stores is no
longer needed when it is reused.

Aside. The set of client specifications for which TransBottomUp can be used,
is restricted somewhat by the desire to map every operator in the specification
to either a primitive operator or a method. This is partly due to simplifications
we have made (e.g., all methods have exactly two parameters) that are easily
generalized. Furthermore, there may not be a primitive operator or a method
with the same name due to syntactic restrictions of class-based programming
languages in general (e.g., a naming scheme for constructors). In this case a
slightly more involved problem-specific mapping is needed.

Unfortunately, TransBottomUp is not directly suitable for use as the generic trans-
lation function. We sketch the reason and present a slightly modified version that
is suitable.

Problem: bottom-up translation restricts the computation imple-
mentation. Assume that as the generic translation function, we use the
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translation function translate that, given a closed application ca, returns
TransBottomUp(ca, 0). The problem is that this translate unnecessarily restricts
the computation implementation. More specifically, this translate forces all inter-
mediate results to encode for a canonical closed application in the predefined and
structured way that is optimized for display. As illustrated by Exmpl. 3.3, this is
due to the restriction that the display function places on the evaluation context
yielded by the computation of a translated closed application.

Example 3.3. Consider closed application f (g(), h()) from Exmpl. 3.1. As-
sume that ca is the canonical form of f (g(), h()). Assume that computation of
TransBottomUp(f (g(), h()), 0) yields an evaluation context ec0. Recall that the
display function requires ec0 to encode ca in a predefined and structured way.
Then lv1S must refer to an object α that encodes ca in a predefined and struc-
tured way (e.g. α is the root of a parse tree). Then f (lv1S , lv2S ) must return
α.

Now consider closed application l(f (g(), h()), i(j (), k())) from Exmpl. 3.2. Note
that f (g(), h()) is contained in this application. Consider the computation of
TransBottomUp(l(f (g(), h()), i(j (), k())), 0). Assume that ec1 is the evaluation
context after the execution of lv1S := f (lv2S , lv3S ). Then ec1 and ec0 differ only
on the naming of stack variables. Then f (lv2S , lv3S ) must return α. So, while
f (lv2S , lv3S ) is used to compute an intermediate result, it must still return an
object that encodes for a canonical closed application, in a way that is optimized
for display.

Solution: bottum-up translation followed by canonical parse tree com-
putation. As a solution to the problem with bottom up translation sketched
above, we add one additional statement to the translation. This statement is re-
sponsible for converting the evaluation context computed by TransBottomUp, to
an evaluation context that encodes for a canonical closed application in a prede-
fined and structured way.

More specifically, if the input to translation is a closed application of sort S , then
we add a statement resultParseTree := makeCanonS(lv0S).

Consider Defs. 3.3.2 to 3.3.3. The intuition is that a ParseTree represents a closed
application in a predefined and structured way. The details of a ParseTree, in-
cluding the closed application it represents, are not relevant to the translation
concern. Calling makeCanon on a variable, returns a ParseTree. For every primi-
tive sort S , there is a primitive operation makeCanonC in the language. For classes,
makeCanon methods have to be implemented as part of the development process.
Note that due to our earlier simplifications, makeCanon has two parameters. The
second parameter of makeCanon is not relevant and is silently omitted. The minor
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technical difficulties introduced by using primitive operators with a class as their
domain sort are straightforward to solve and are ignored.

Definition 3.3.2. There is a special purpose class ParseTree ∈ ClassSort .

Definition 3.3.3. For every C ∈ ClassSort , there is a special purpose method
makeCanonC : C ã→ ParseTree ∈ Method . For every S ∈ PrimSig .sorts, there is
a special purpose primitive operator makeCanonS : S ã→∈ PrimSig .ops.

Consider Def. 3.3.4. Trans(ca) simply takes the outcome of TransBottomUp(ca, 0)
(in which lv0S stores the value of ca), and adds a statement resultParseTree :=

makeCanonS(lv0S). Example 3.4 illustrates the definition.

Definition 3.3.4. Trans : ClosedAppl ã→ Seq(Stmt)
Trans(ca) = s0 iff

there are s1 ∈ Seq(Stmt), S ∈ Sort such that
TransBottomUp(ca, 0) = s1, and
ca has sort S , and
s0 = s1 ⊲ 〈resultParseTree := makeCanonS (lv0S )〉.

Example 3.4. Consider a closed application f (g(), h()) such that operators f , g
and h all have sort S (like in Exmpl. 3.1).
Trans(f (g(), h())) = 〈lv1S := g(), lv2S := h(), lv0S := f (lv1S , lv2S ),
resultParseTree := makeCanonS (lv0S )〉.

The translation algorithm. Note that Trans , while not presented as an algo-
rithm, is easily converted into one. The TransBottomUp part of this algorithm
may require the signature of the algebraic specification of the client specification,
to determine which operators may occur in the input.

3.3.2 The Display Concern

In this section we sketch a generic algorithm for the display concern.

As stated earlier, the simplest approach is to require that the closed application
ca that is to be displayed, is encoded in the input of the display function (an
evaluation context) in a predefined and structured way. To this end, our algo-
rithm requires that in the evaluation context that is its input, the special-purpose
resultParseTree variable refers to the root of a parse tree representing ca. Note
that we have set up the translation algorithm to make sure that resultParseTree

is defined. It is the concern of the computation implementer to ensure that the
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right parse tree is referred to by this variable (i.e., a parse tree that represents a
canonical representation of the input of the black box).

Our main task is to define which closed application is represented by a given parse
tree. Having done that, we then sketch the generic display algorithm.

The closed application represented by a parse tree. Here, we first define
which closed application is represented by a given variable in a given state. We
then use this definition to present a function that can infer a display function from
the signature of the client specification.

Consider Def. 3.3.8. We require that ParseTree has fields sort, o, p and q. The
intuition is that variable v represents a closed application ca0 in an evaluation
context ec, in the context of a signature sig , if and only if the following holds.

• v is of sort ParseTree and refers to an object α.

• Consider Def. 3.3.5. Roughly, ViewOf moves the fields of α from the object
store to a stack frame. The intuition is that this gives the view of the
evaluation context from the α object. More formally, ViewOf (α, os0) yields
an evaluation context 〈sf , os1〉 such that 1) if location 〈α, f 〉 is mapped to
value ν by os0, then f is mapped to ν by sf , and 2) os1 is like os0, but with
the locations 〈α, f 〉 removed from the domain.

• Let ec be the view of 〈sf , os〉 from α. Then the outermost operator of ca is
determined by fields sort and op of α (which are on the stack in the view
of ec from α) in the following way.

• Consider Def. 3.3.7. A stack frame sf represents an operator o in the context
of a signature sig if and only if sort has value i and the i ’th sort in sig is
S , and op has value j and the j ’th operator of sort S is o. Note that the
operators of a given sort are determined using OpsOfSort (Def. 3.3.6), which
uses OpSort defined in Def. 3.1.7 to determine the sort of an operator (this
is the return sort for constructors and constants, and the sort of the first
parameter otherwise).

• Assume that ec.sf represents operator o. If o is a constant, then ca0 is o().
Otherwise, recall that we have simplified the programming language to only
consider non-constant methods and operators with exactly two parameters.
In this case, fields q and p of α refer to parse trees that represent the closed
applications that are the actual parameters of o. These closed application
ca1 and ca2 are determined by recursive calls to obtain ca0.

• We informally assume that for every primitive sort S , if makeCanonS is called
on a variable v from an evaluation context ec, then it returns a parse tree
that represents a closed application that evaluates to the abstract value of v
in ec.
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Note that the recursive definition of CARepre is well-formed due to the removal
of elements from the domain of the object store by ViewOf .

Definition 3.3.5. ViewOf : A× ObjStore ã→ EvalContext
ViewOf (α, os0) = 〈sf , os1〉 iff
there is fSet ∈ Set(Field) such that

fSet = {f | 〈α, f 〉 ∈ Domain(os0)}, and
Domain(sf ) = fSet , and
for every f ∈ Domain(sf ),

sf (f ) = os0(〈α, f 〉), and
Domain(os1) = Domain(os0)− {〈α, f 〉 | f ∈ fSet}, and
for every l ∈ Domain(os1),

os1(l) = os0(l).

Definition 3.3.6. OpsOfSort : Sort × Sig → Seq(Op)
OpsOfSort(S , sig) = o iff o is sig .ops restricted to operators o such that
OpSort(o) = S .

Definition 3.3.7. RepresentedOp : StackFrame × Sig ã→ Op
RepresentedOp(sf , sig) = o iff
there are i , j ∈ N, S ∈ Sort such that

sf (sort) = i , and
sig .sorts[i ] = S , and
OpsOfSort(S , sig) = o, and
sf (op) = j , and
o[j ] = o, and

Definition 3.3.8. CARepre : Var × EvalContext × Sig ã→ ClosedAppl
CARepre(v , 〈sf , os〉 , sig) = ca0 iff

RefSort(v) = ParseTree, and
there are α ∈ A, ec ∈ EvalContext , o ∈ Op such that

sf (v) = α, and
ViewOf (α, os) = ec, and
RepresentedOp(ec.sf , sig) = o, and
or o ∈ Constant , and

ca0 is o(),
or o /∈ Constant , and

there are ca1, ca2 ∈ ClosedAppl such that
ca1 = CARepre(q, ec,AS ), and
ca2 = CARepre(p, ec,AS ), and
ca0 = o(ca1, ca2).

Consider Def. 3.3.9. The intuition is that DisplayFactory can infer a display func-
tion from the signature of the client specification. This display function display
maps an evaluation context ec to a closed application ca iff in ec, the result variable
refers to a parse tree that represents ca in the context of sig .
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Definition 3.3.9. DisplayFactory : Sig → Display
DisplayFactory(sig) = display iff

for every ec ∈ EvalContext, ca ∈ ClosedAppl,
display(ec) = ca iff CARepre(resultParseTree , ec, sig) = ca.

The display algorithm. Note that CARepre (and therefore DisplayFactory),
while not presented as an algorithm, is easily converted into one. Essentially, this
conversion results in an implementation of the visitor pattern, which traverses the
tree, constructing the closed application to display in a bottom-up fashion (i.e., the
outermost operator o is determined last, and applied to two closed applications ca1

and ca2 which have been determined by visits to q and p.) Proof of satisfaction for
display then reduces to proving that the straightforward conversion from CARepre
into an algorithm is correct. Details are outside the scope of this chapter.

Aside. CARepre depends on the signature of the algebraic specification pro-
vided by the client, but only for the (order of the) available of classes and op-
erators. To make CARepre independent of the client specification all together,
one could use e.g. a string representation instead (at the cost of more complex
definitions and possibly a less efficient display implementation).

3.4 Satisfaction for Computation

Consider Def. 3.4.1. Given the generic translation and display functions, it is
straightforward to refine the notion of satisfaction for implementations (Def. 3.2.5)
to a notion of satisfaction for the computation concern. This notion is the main
result of Sect. 3.

Definition 3.4.1. cds ∈ ClassDefSet satisfiesc CS ∈ ClientSpec iff
SemImpl(〈Trans(), cds,DisplayFactory(CS .as.sig)〉) ∈ SemAS (CS ).

Theorem 3.1. For every CS ∈ ClientSpec, cds ∈ ClassDefSet,
if cds satisfiesc CS,
then 〈Trans(), cds,DisplayFactory(CS .as.sig)〉 satisfies CS.

Proof is trivial, as this theorem basically only states that Trans() and
DisplayFactory(CS .as) are a translation function and a display function.

4 Implementer’s Perspective:

An Implementation Approach

In this section, we present an implementation approach that formalizes and extends
ideas from [Hoa72], Hoare’s seminal paper on data abstraction.

(1) In Sect. 4.1, we connect the satisfaction notion for computation that we intro-
duced in Def. 3.4.1, to a notion of satisfaction that is based on Hoare’s notion
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of data abstraction. We observe that this Hoare-style satisfaction alone is not
sufficient to establish satisfaction for computation as it does not account for
the requirement of displaying the output of the computation in a generic way.
As a solution, we add an additional step to the computation process that is
responsible for the transformation of the computed object, to an object that
is suitable for display.

(2) In Sect. 4.2, we formalize an implementation approach for Hoare-style satis-
faction that allows a method implementer to use an abstract view of the state
when reasoning about the execution of the method body.

4.1 Separation of Satisfaction Concerns for Computation

In this section, we connect the satisfaction notion for computation that we intro-
duced in Def. 3.4.1, to a notion of satisfaction that has a Hoare-style notion of
data abstraction at its core. This connection is made in the following way.

• Hoare’s approach allows the user of the computation implementation (in
this case the translator) to treat the execution of a method or primitive
operation as the evaluation of the operator with the same name in a model
of the specification. In Sect. 4.1.1, we formalize this notion of an abstract
execution. The essential property for our approach is the following. Assume
A is an arbitrary model of the specification. If closed application ca evaluates
to a value ν in A, then the abstract execution of the sequence of statements
TransBottomUp(ca) (see Def. 3.3.1), terminates in a valuation in which lv0
is mapped to ν.

• In Sect. 4.1.2, we formalize a Hoare-style notion of satisfaction. At the core
of this notion is a mapping from evaluation contexts to valuations that fol-
lows from an implementer-defined encoding of values in objects. If evaluation
context ec is mapped to a valuation va, then we call va the abstract view of
ec. Hoare-style satisfaction ensures that if the abstract execution of a state-
ment sequence s terminates in a valuation va, then the concrete execution
of s terminates in an evaluation context of which the abstract view is va.

• We observe that Hoare-style satisfaction alone is not sufficient to estab-
lish satisfaction for computation as defined in Def. 3.4.1. More specifically,
Hoare-style satisfaction ensures that, given a closed application ca, the con-
crete execution of the sequence of statements TransBottomUp(ca) terminates
in an evaluation context that encodes the value of ca in the object referred
to by lv0. However, it does not account for the concern of producing a
parse tree that encodes the canonical representation of ca. In Sect. 4.1.3, we
introduce a notion of satisfaction for the makeCanon() method that accounts
for this concern.

• In Sect. 4.1.4, we prove that satisfaction for the computation concern can
indeed be separated into Hoare-style satisfaction and satisfaction for the
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makeCanon() method.

4.1.1 Abstract Executions

In this section, we formalize the notion of an abstract execution by providing a
syntax and semantics.

Syntax. Consider Def. 4.1.1, which defines the set of variables that can occur in
abstract statements. Note that AVar ⊂ Ref .

Definition 4.1.1. AVar is the set Field ∪ FPar ∪ LocVar .

Consider Fig. 4.1, which defines a grammar for abstract statements AStatement .
Note that AStatement ⊂ Statement (Fig. 3.2). The main restriction is that there
is no abstract statement that reads a field of a stack variable other than this. Also
note that we no longer have to distinguish between primitive operation calls and
methods calls: at the abstract level, these are treated in the same way. Likewise,
we don’t have to distinguish between calls and variables in the right-hand side of
assignments.

v ∈ AVar , s ∈ Seq(AStatement), o ∈ Op2, po ∈ PrimSig .ops

c ∈ ACall ::= po() | o(v , v)
e ∈ AExpr ::= c | v
s ∈ AStatement ::= if (v) s | v := e

Figure 4.1: abstract statement grammar.

Aside. For simplicity, we have omitted the while statement. It can be
treated in the standard way, using a loop invariant. Alternatively, a loop could
be mimicked by a call of a method m with a body that, if the loop guard holds,
first executes the loop body, and then calls m again.

Aside. For simplicity, we require abstract statements to be a subset of concrete
statements. In Hoare’s work, there an explicit mapping from operators to meth-
ods which gives additional flexibility. For example, due to our direct mapping,
the constructor newC of a class C (the name of which cannot be chosen by the
implementer) must be an operator in the specification. The extension with an
additional mapping is straightforward.

Consider Def. 4.1.2. We are only interested in the subset of abstract statements
that are well-typed (Def. 3.1.16). AStmt is the subset of all abstract statements
that are well-typed. Note that AStmt ⊂ Stmt (see Sect. 3.1.1).

Definition 4.1.2. AStmt is the set Stmt ∩ AStatement .

Consider Def. 4.1.3. Although method calls and primitive operation calls are
treated in the same way at the level of abstract executions, abstract method call
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statements still play a prominent role in the remainder of this chapter. For con-
venience, AMCStmt is defined as the set of all well-typed abstract method call
statements.

Definition 4.1.3. AMCStmt is the set {v0 := m(v1, v2) | v0, v1, v2 ∈ AVar ,m ∈
Method} ∩ AStmt .

Semantics. Consider Def. 4.1.4. The operational small-step semantics of AStmt
is based around abstract states, which consist of a valuation and a sequence of
well-typed abstract statements.

Definition 4.1.4. An abstract state is a record va ∈ Valuation × stmtSeq ∈
Seq(AStmt). AState is the set of all abstract states.

The semantics of an abstract execution is given by transition relationùa A defined
in Fig. 4.2.

va(vBool) = T

va, 〈if (vBool) s0〉ù
a

A va, s0
IFt

|s1 |> 0 va0, 〈s0〉ù
a

A va1, s2

va0, 〈s0〉 ⊲ s1ù
a

A va1, s2 ⊲ s1
COMP

va(vBool) = F

va, 〈if (vBool) s0〉ù
a

A va, 〈〉
IFf

Sem(e, va,A) = ν

va, 〈v := e〉ùa A va[v 7→ ν], 〈〉
ASSIGN

Figure 4.2: Small-step semantics for abstract execution of AStmt . Brackets around
abstract states are omitted to improve readability. va, va0, va1 ∈ Valuation,A ∈

Alg , ν ∈ V, vBool , v , v0, v1 ∈ AVar , s0 ∈ AStmt , s0, s1, s2 ∈ Seq(AStmt), c ∈
ACall .

Consider Def. 4.1.5. In an abstract execution, we can ’create’ fields by assigning
to them. Using FieldsAssignedTo, we can reason about (and thus control) the set
of fields that is assigned to by an abstract statement sequence.

Definition 4.1.5. FieldsAssignedTo : Seq(AStmt) → Seq(Field)
f ∈ FieldsAssignedTo(s) iff
there are s ∈ SubStmts(s), e ∈ AExpr such that

s is f := e.

4.1.2 Hoare-style Satisfaction for Computation

In this section, we use the notion of abstract executions to present a notion of
satisfaction for a set of class definitions that allows to reason about properties of
the concrete execution at the level of the much simpler abstract execution. In
particular, this allows the user of the classes, in this case the translator, to be an
abstract programmer in the sense of [Hoa72].
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To relate the concrete execution to the abstract execution, the computation imple-
menter must define an abstraction operator for every class (called an abstraction
function in [Hoa72]). This allows to map an evaluation context to a valuation. If
evaluation context ec is mapped to a valuation va, then we call va the abstract
view of ec.

First, we show how the computation implementer defines the abstraction opera-
tors. Then, we formalize how the abstraction operators are used to determine the
abstract view of an evaluation context. Finally, we present a Hoare-style notion
of satisfaction which roughly requires the following. If the abstract execution of a
statement sequence s terminates in a valuation va, then the concrete execution of
s terminates in an evaluation context of which the abstract view is va.

Defining abstraction operators. We show how the computation implementer
defines the abstraction operators in Def. 4.1.6. A concrete example can be found
in Exmpl. 4.1.

Consider Def. 4.1.6. In our approach, the computation implementer defines the
abstraction operators using an algebraic specification AS1. For every class C in
the implementation cds, AS1.sig contains a special-purpose abstraction operator
abstrC . The domain sorts of abstrC are the sorts of the fields defined in class C ,
and the range sort of abstrC is C . The intention is that the set of axioms AS1.ax
define abstrC in terms of the operators from the algebraic specification AS0 of
the client specification, possibly using additional auxiliary operators defined in
AS1.sig . AbstrOpDefs(cds,AS0) returns the set of all possible definitions of the
abstraction operators.

Definition 4.1.6. AbstrOpDefs : ClassDefSet × AlgSpec → Set(AlgSpec)
AS1 ∈ AbstrOpDefs(cds,AS0) iff
for every C ∈ GetClassNames(cds),
there is an abstrC ∈ AS1.sig .ops such that

DomainSorts(abstrC ) = GetFieldSorts(C , cds), and
RangeSort(abstrC ) = C , and

AS1.ax ⊆ Terms(SigUnion(AS0.sig ,AS1.sig)).

Example 4.1. (Implementing Rationals)

Recall the algebraic specification of rationals in Exmpl. 2.1. Here, we present
an implementation, including an axiom that defines the abstraction operator
abstrRat . The signature of the abstraction operator definition is left implicit
as it is clear from the context. Note that we use some self-explanatory syntactic
sugar. The makeCanonRat() method is further discussed in Exmpl. 4.5.

class Rat {
Int n; //nominator

Int d; //denominator

abstr axioms
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∀n, d ∈ Int •
d > 0 ⇒ abstrRat(n, d) = newRat(n, d)

newRat(Int i, Int j) {
n := i;

d := j;

}

void add(Rat r) {
Int n1 := n * r.d;

Int n2 := r.n * d;

n := n1 + n2;

d := d * r.d;

}

Bool equals(Rat r) {
Int n1 := n * r.d;

Int n2 := r.n * d;

return (n1 == n2);

}

ParseTree makeCanonRat() {
//make this Rat canonical by calculating and using the greatest

common divider.

Int gcd := n;

Int a := d;

while (a != 0) {
Int remainder := gcd % a;

gcd := a;

a := remainder;

}
n := n \ gcd;

d := d \ gcd;

//create a parseTree from this Rat

ParseTree result := newParseTree(0, 0, makeCanonInt(n),

makeCanonInt(d));

return result;

}
}

Formalizing abstract views. We formalize the notion of an abstract view in
Defs. 4.1.7 to 4.1.9. An concrete example can be found in Exmpl. 4.2.
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Consider Def. 4.1.9. The abstract view va of an evaluation context ec maps every
variable v on the stack frame of ec to its abstract value (if there is such a value).
This abstract value is determined using an algebra A and an algebraic specification
AS . The intuition is that A is a model of the algebraic specification provided by
the client, and that AS is an algebraic specification of the abstraction operators,
i.e., AS is an element of AbstrOpDefs (see Def. 4.1.6). This intuition is formalized
in the Hoare-style satisfaction notion presented later (Def. 4.1.11).

Consider Def. 4.1.8. Roughly, it defines the abstract value of a variable vS in
an execution state 〈sf , os〉. If vS is a primitive variable that is defined by sf ,
then its abstract value is sf (vS ). The intuition is that for primitive variables, the
abstract value is the same as the concrete value. If vS is not a primitive variable
but refers to an object α, then its abstract value is determined using the algebra
A and algebraic specification AS provided from AbstrView (see the intuition of
Def. 4.1.9 above). This is done by evaluating the application of the abstraction
operator of S to the sequence f of the fields defined by class S of cds.

So, the abstract value of an object depends on the abstract values of its fields
(there are what is often referred to as ’layers of abstraction’). Valuation va maps
every field of α to its abstract value (if it has one). This is accomplished by letting
va be the abstract view of ViewOf (α, os). Recall that ViewOf (Def. 3.3.5) moves
the fields of α from the object store to a stack frame, thus giving the concrete view
of the evaluation context from the α object.

Consider Def. 4.1.7. The intuition is that the evaluation of an application of the
abstraction operator only yields a value if all models A1 of AS1 that include A0

(i.e., that agree with A0 on the interpretation of the operators from the client
specification), agree on the value of the application of the abstraction operator.
Requiring this for every such A1, is a technical trick to deal with underspecified
abstraction operators. The benefit is illustrated by Exmpl. 4.3.

Note that the mutually recursive definitions of AbstrView and AbstrVal are well-
formed due to the removal of elements from the domain of the object store by
ViewOf .

Definition 4.1.7. Eval : Term × Valuation × Alg × AlgSpec ã→ V

Eval(t , va,A0,AS ) = ν iff
for every A1 ∈ {A | A0 ⊆ A ∧A ∈ Models(AS .ax )}
ν = Sem(t , va,A1).

Definition 4.1.8. AbstrVal : Var ×EvalContext×Alg×AlgSpec×ClassDefSet ã→
V

AbstrVal(vS , 〈sf , os〉 ,A,AS , cds) = ν iff
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or S ∈ PrimSig .sort and ν = sf (vS ),
or S ∈ ClassSort , and

there are α ∈ A, va ∈ Valuation, f ∈ Seq(Field), ec ∈ EvalContext
such that

sf (vS ) = α, and
ViewOf (α, os) = ec, and
va = AbstrView(ec,A,AS , cds), and

f = GetFields(S , cds), and

Eval(abstrS (f ), va,A,AS ) = ν.

Definition 4.1.9. AbstrView : EvalContext × Alg × AlgSpec × ClassDefSet ã→
Valuation

AbstrView(ec,A,AS , cds) = va iff
Domain(va) = Domain(ec.sf ), and
for every v ∈ Domain(va),

va(v) = AbstrVal(v , ec,A,AS , cds).

Example 4.2. (Determining an abstract view)

Consider the algebraic specification AS0 of rationals in Exmpl. 2.1. Consider the
set of class definitions cds that consists only of class Rat defined in Exmpl. 4.1.
Consider the algebraic specification AS1 that consists only of the specification of
abstrRat() in class Rat. Consider an arbitrary A0 ∈ Models(AS0.ax ).

Now extend A0 with an interpretation of abstrRat that is in accordance with ax .
That is, consider an A1 such that A0 ⊆ A1 ∧ A1 ∈ Models(ax ).

Consider an evaluation context ec0 that consists of a stack frame {vRat 7→ α} and
an object store os such that os = {〈α,n〉 7→ 2, 〈α, d〉 7→ 4}. Then ViewOf (α, os),
the concrete view of ec0 from α, is the evaluation context ec1 such that ec1 =
〈{n 7→ 2, d 7→ 4} , 〈〉〉. Then AbstrView(ec1,A1,AS1, cds), the abstract view of ec1,
is a valuation va such that va = ec1.sf , as both fields of Rat are of the primitive
sort Int.

Then AbstrVal(vRat , ec0,A0,AS1cds), the abstract value of vRat in ec0, is
Sem(newRat(2, 4), emptyva,A0). The reasoning is the following. Extend A0 with
an arbitrary interpretation of abstrRat that is in accordance with AS1. That is,
consider an A1 such that A0 ⊆ A1 ∧ A1 ∈ Models(AS1.ax ). As A1 ∈ Models(ax ),
we know that Sem(abstrRat(2, 4), va,A1) = Sem(newRat(2,4), emptyva,A1). As
A0 ⊆ A1, and as newRat is an operator from the client specification, we know
that Sem(newRat(2, 4), emptyva,A1) = Sem(newRat(2,4), emptyva,A0). So, the
abstract value of vRat depends on the choice of the model of AS0.ax (i.e., on A0),
but not on the choice of interpretation of abstrRat (i.e., on how A0 is extended
to A1). This is because the evaluation of newRat(2, 4) does not depend on the
interpretation of abstrRat .

Then AbstrView(ec0,A0,AS1, cds) = {vRat 7→ ν}, where ν =
Sem(newRat(2, 4), emptyva,A0).
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Now consider an evaluation context ec2 that is like ec0 but with location
〈α, d〉 mapped to 0. Note that in this case, the interpretation of the applica-
tion of abstrRat does depend on the choice of the interpretation of abstrRat ,
as AS1 does not specify abstrRat(2, 0) in terms of operators from the client
specification. For example, there is an A1 such that 1) A0 ⊆ A1 ∧ A1 ∈
Models(AS1.ax ), and 2) Sem(abstrRat(2, 0), ec2.sf ,A1) is undefined. Therefore,

AbstrVal(vRat , ec0,A0,AS1, cds) is undefined, and AbstrView(ec2,A0,AS1, cds) =
emptyva.

Hoare-style satisfaction for computation. Consider Def. 4.1.11. The intu-
ition is that Hoare-style satisfaction is a notion of satisfaction of the implementa-
tion of the computation concern cds with regards to the algebraic specification AS0

that is part of the client specification. Note that it does not consider the canon-
icity function (for which we define a separate notion of satisfaction in Sect. 4.1.3).
Hoare-style satisfaction ensures that there are a model A of AS0 and an algebraic
specification AS1 of the abstraction operators, for which csd respectsh 〈A,AS1〉.

Consider Def. 4.1.10. Consider a sequence of abstract statements s that does not
assign to any fields. Note that the statement sequences constructed by Trans do
not assign to fields. Roughly, csd respectsh 〈A,AS1〉 if the following holds. If the
abstract execution of s terminates in a valuation va, then the concrete execution
of s terminates in an evaluation context of which the abstract view is va.

Note that there is no requirement for a statement sequence that contains an oper-
ator o that is not interpreted by A (for example because o does not occur in the
client specification), as the abstract execution of such a statement sequence does
not terminate normally.

Furthermore, note that the implementer of the computation concern must define
the abstraction operators (by means of algebraic specification AS1), but these
definitions are not part of the implementation. That is, AS1 does not have to be
provided to the client.

Some of the consequences of the satisfaction notion are illustrated by Exmpls. 4.3
and 4.4.

Definition 4.1.10. 〈cds,AS1〉 ∈ ClassDefSet × AlgSpec respectsh A ∈ Alg iff
for every s ∈ Seq(AStmt), va ∈ Valuation,
if FieldsAssignedTo(s) = {}, and

〈emptyva, s〉ù+a
A 〈va, 〈〉〉,

then there is an ec ∈ EvalContext such that
〈emptyec, 〈〉 , s〉ù+c

cds 〈ec, 〈〉 , 〈〉〉, and
AbstrView(ec,A,AS1, cds) = va.

Definition 4.1.11. cds ∈ ClassDefSet satisfiesh AS0 ∈ AlgSpec iff
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there are A ∈ Models(AS0.ax ), AS1 ∈ AbstrOpDefs(cds,AS0) such that
〈cds,AS1〉 respectsh A.

Aside. The notion of respectsh essentially formalizes the consequence of Hoare’s
criterion of correctness of data representations at the semantical level, which is
that an abstract execution of a program can be ’replaced’ by a concrete execution.
It uses total correctness rather than partial correctness. Note that the criterion
of correctness itself is formalized at the semantical level in Sect. 4.2, when we
discuss an implementation approach for Hoare-style satisfaction.

Example 4.3. (Hoare-style satisfaction: consequences 1)

Recall from Def. 4.1.8 : AbstrVal that a variable only has an abstract value when
every model of the axiomatization of the abstraction operators agrees on the value.
This example illustrates the benefit of that choice.

1. Consider the execution of vRat := newRat(1, 2), with class Rat defined as in
Exmpl. 4.1.

2. Roughly, satisfaction requires that there is a model A0 such that the abstract
view of the computed evaluation context, maps vRat to a value ν such that
ν = Sem(newRat(1, 2), emptyva,A0).

3. As in Exmpl. 4.2, consider an evaluation context ec2 that maps vRat to a
Rat object that has a d field with a value of 0.

4. Recall from Exmpl. 4.2 that the abstract view of ec2 is emptyva, due to the
abstract value definition.

5. Note however, that there is a model A1 of the axiomatization such that the
abstract value of vRat in ec2 is ν, i.e., such that AbstrVal(vRat , ec1,A1, cds) =
ν. The reason is that the axiomatization of abstrRat does not restrict the
value of abstrRat(n, d) when d is 0.

6. Therefore, the benefit of the abstract value definition is that it prevents that
a satisfying cds can be such that the execution terminates in ec2.

7. In contrast, consider an evaluation context ec1 that maps vRat to a Rat

object that has an n field with a value of 1 and a d field with a value of 2.
As desired, a satisfying cds can be such that the execution terminates in ec1.
The reason is that the abstract value of vRat is ν (see Exmpl. 4.2).
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Example 4.4. (Hoare-style satisfaction: consequences 2)

This example illustrates that Hoare-style satisfaction requires that translations
that produce the same result at the abstract level, may produce different results
at the concrete level as long as the abstract values are the same.

Recall the implementation of rationals in Exmpl. 4.1. Consider the three statement
sequences t1, t2 and t3.

t1 : lv0Rat := newRat(1,4); lv1Rat := newRat(3,4);

resultRat := add(lv0Rat, lv1Rat);

t2 : resultRat := newRat(4, 4);

t3 : resultRat := newRat(1, 1);

Note that TransBottomUp (Def. 3.3.1) yields t1 for the input
add(newRat(1, 4), newRat(3, 4)).

Also note that the abstract executions of t2 and t3 terminate in the same valuation
va0, and that the valuation va1 in which the abstract valuation of t1 terminates
differs only from va0 in that va1 additionally defines variables lv0 and lv1.

Let ec1, ec2 and ec3 be the evaluation contexts in which the concrete executions
of t1, t2 and t3 terminate. Note that ec1 and ec2 both map resultRat to a
Rational of which both the n field and the d field are 4. In ec3, resultRat maps
to a Rational of which both fields are 1. Hoare-style satisfaction requires the
abstract value of resultRat to be the same in all three evaluation contexts.

Note that this is indeed the case as the difference in the evaluation contexts is
made up for by the abstraction function. More specifically, abstrRat(1, 1) and
abstrRat(4, 4) are equal in every model of the axiomatization of abstrRat that
agrees with any model of the axiomatization of the rationals that is part of the
client specification.

We sketch a verification methodology for this notion of satisfaction in Sect. 5.

4.1.3 Satisfaction for the makeCanon Methods

In this section we define a second notion of satisfaction that complements the
Hoare-style satisfaction notion (Def. 4.1.11). In section Sect. 4.1.4 we prove that
together, these two notions of satisfaction imply satisfaction for the computation
concern as defined in Def. 3.4.1.

A complementing notion is needed because Hoare-style satisfaction alone is not
sufficient to establish satisfaction for computation. More specifically, Hoare-style
satisfaction ensures that, given a closed application ca, the concrete execution
of the sequence of statements TransBottomUp(ca) terminates in an evaluation
context that encodes the value of ca in the object referred to by lv0. However,
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it does not account for the concern of encoding a canonical representation, and
it does not account for the concern of encoding the result as a parse tree, i.e., in
a form that is suitable for display. The complementing satisfaction notion makes
these concerns the responsibility of the makeCanon methods.

Consider Def. 4.1.12. The intuition is that satisfiesmc is a notion of satisfaction
of the implementation of the computation concern cds with regards to the client
specification CS , given the algebra A and algebraic specification AS for which cds
respectsh CS .as. Recall that A defines a notion of equality that is acceptable to the
client (see Sect. 2.2), and that AS defines the abstraction operators. Assume that
1) cds satisfiesmc CS given 〈A,AS 〉, and 2) the execution of a statement sequence
s terminates normally in an evaluation context in which the abstract value of a
variable vC (as determined using A and AS ) is ν. Then calling the makeCanonC
method on vC returns a parse tree that represents a canonical closed application
ca that evaluates to ν in A.

Note that there are two separate concerns that a makeCanon method addresses.

(1) It must take the object referred to by vC , which is in an implementer-defined
encoding (made explicit by the abstraction operator), and return an equivalent
object in the encoding optimized for display (i.e. the parse tree encoding).

(2) It must ensure that the closed application that it represented by the parse
tree, is canonical.

Definition 4.1.12. cds ∈ ClassDefSet satisfiesmc CS ∈ ClientSpec given
〈A,AS 〉 ∈ Alg × AlgSpec iff
for every vC ∈ Var , ec0 ∈ EvalContext , ν ∈ V, s ∈ Seq(AStmt),
if 〈emptyec, 〈〉 , s〉ù+c

cds 〈ec0, 〈〉 , 〈〉〉, and
AbstrVal(vC , ec0,A,AS , cds) = ν,

then there are ec1 ∈ EvalContext , ca ∈ ClosedAppls(CS .as.sig) such that
〈ec0, 〈〉 , 〈resultParseTree := makeCanonC (vC )〉〉ù+c

cds

〈ec1, 〈〉 , 〈〉〉, and
CARepre(resultParseTree , ec1,CS .as.sig) = ca, and
CS .isCanonical(ca,A) = T , and
Sem(ca, emptyva,A) = ν.

Example 4.5. (Satisfaction for the makeCanon method of the rationals)

Consider the client specification CS of rationals in Exmpl. 2.1. Consider the
implementation cds of rationals in Exmpl. 4.1. Consider the algebraic specification
AS that consists only of the specification of abstrRat() in class Rat. Consider an
arbitrary A. We show that cds satisfiesmc CS given 〈A,AS 〉.

Consider the execution of resultParseTree := makeCanonC (v) from an evaluation
context ec0 in which v is mapped to a Rat object α of which fields n and d are n0

and n1. Assume AbstrVal(v , ec0,A,AS , cds) = ν. Assume that va maps the fields
of α to their abstract value. Then Sem(newRat(n0,n1) = ν, va,A) (Def. 4.1.8).
That is, the abstract value of v in ec is the value to which newRat(n0,n1) evaluates
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in va. Then makeCanonParseTree(v) must return a parse tree that represents a
canonical closed application ca that evaluates to ν given A.

The makeCanonParseTree() method first divides n0 and n1 by their greatest common
divider. We refer to these updated values as n2 and n3. It then returns a parse
tree with fields sort, o, q, p set to 0,0,makeCanonInt(n2) and makeCanonInt(n3),
respectively. Note that the first sort in CS .as.sig is Rat, and that the first operator
in the Rat specification of CS .as.sig is newRat . Furthermore, we have informally
assumed (see the last item of the intuition of Def. 3.3.8) that makeCanonInt(n2)
and makeCanonInt(n3) represent parse trees that evaluate to the same values as n2

and n3. Then ca and newRat(n2,n3) evaluate to the same value. As the greatest
common divider of n2 and n3 is 1, newRat(n2,n3) is canonical. Furthermore, as
the division of n0 and n1 by their greatest common divider does not change the
evaluation of newRat(n0,n1), we know that newRat(n2,n3) evaluates to ν given A.
Then ca evaluates to ν.

Then cds satisfiesmc CS given 〈A,AS 〉.

4.1.4 Separation Theorem

In this section, we prove that Hoare-style satisfaction and satisfaction for the
makeCanon methods together imply satisfaction for the computation concern.

Consider Thm. 4.1. Note that it does not use satisfiesh directly, but instead
uses its intermediate notion of respectsh . This allows to connect the two no-
tions on the algebra A and algebraic abstractor operator specification AS that
are used. Roughly, it states that for every client specification CS , and every
implementation of the computation concern csd , if there are a notion of equal-
ity A and an algebraic abstractor operator specification AS that cds respects
and for which cds satisfies the makeCanon method concerns, then cds satisfies
the computation concern. Recall from Thm. 3.1 that if this is the case, then
〈Trans(), cds,DisplayFactory(CS .as.sig)〉 satisfies CS .

Theorem 4.1. For every CS ∈ ClientSpec, cds ∈ ClassDefSet,
if there are A ∈ Models(CS .as.ax ), AS ∈ AlgSpec such that

〈csd ,AS 〉 respectsh A , and
csd satisfiesmc CS given 〈A,AS 〉,

then cds satisfiesc CS.

The proof requires an intermediate lemma for TransBottomUp that is presented
first.

Intermediate lemma for TransBottomUp Consider Lemma 4.2. It formalizes
the intuition behind Def. 3.3.1: TransBottomUp given in Sect. 3.3.1, and shows
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that TransBottomUp behaves as an abstract programmer in the sense of [Hoa72].
The lemma uses the intermediate notion IsAgreeingOnLV .

Consider IsAgreeingOnLV . Roughly, IsAgreeingOnLV (n, va0, va1) expresses that
two valuations va0 and va1 agree on a set of special purpose local variables lvmS ,
for every sort S .

Definition 4.1.13. IsAgreeingOnLV : N× Valuation × Valuation → Bool
IsAgreeingOnLV (n, va0, va1) = T iff

for every S ∈ Sort, ν ∈ V, m ∈ {0, . . . ,n}
va0(lvmS ) = ν iff va1(lvmS ) = ν.

Lemma 4.2. For every AS ∈ AlgSpec,
for every ca ∈ ClosedAppls(AS .sig), A ∈ Models(AS ), ν ∈ V, S ∈ Sort, va0 ∈
Valuation, n ∈ N,
if Sem(ca, emptyva,A) = ν, and

ca is of sort S ,
then there is a va1 ∈ Valuation, s ∈ Seq(AStmt) such that

TransBottomUp(ca,n) = s, and
〈va0, s〉ù+a

A 〈va1, 〈〉〉, and
va1(lvnS ) = ν, and
if n > 0, then IsAgreeingOnLV (n − 1, va0, va1) = T .

The proof outline for Lem. 4.2 is as follows.

1 Consider an arbitrary AS ∈ AlgSpec, A ∈ Models(AS ), ca ∈
ClosedAppls(AS .sig), S ∈ Sort and va0 ∈ Valuation (premise Lem. 4.2).

2 Assume ν ∈ V is such that Sem(ca, va,A) = ν. Assume ca is of sort S (premise
Lem. 4.2).

3 Assume f : S1 × . . . × Si ã→ S0 ∈ Op, and ca1, . . . , cai ∈ ClosedAppl are such
that ca0 is f (ca1, . . . , cai) (Def. 2.1.17 : ClosedAppl).

4 Proof is by induction on the number of subapplications in ca0.
5 Base case: 0 subapplications. Then ca0 = f ().

a Then TransBottomUp(ca0,n) = 〈lvnS0
:= f ()〉 (Def. 3.3.1:

TransBottomUp).
b Then we can assume va1 ∈ Valuation such that 〈va0, s〉 ù+a

A 〈va1, 〈〉〉 and
va1(lvnS0

) = ν (Fig. 4.2 : ùa ).
c Then if n > 0, then IsAgreeingOnLV (n − 1, va0, va1) = T (as va0 and va1

differ only on lvnS0
).

d Then the conclusion of Lem. 4.2 holds, which concludes the proof of the base
case.

6 Step case: number of subapplications > 0.

a the number of subapplications in every caj ∈ {ca1, . . . , cai} is smaller than
the number of subapplications in ca0. Therefore, the induction hypothesis
can be applied to every such caj .

b This allows to assume, for every caj ∈ {ca1, . . . , cai}, a s j such that there is
a va1 ∈ Valuation such that
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1 TransBottomUp(caj ,n + j ) = s j , and
2 〈va0, s j 〉ù

+a
A 〈va1, 〈〉〉, and

3 va1(lvn + jS1
) = Sem(caj , emptyva,A), and

4 IsAgreeingOnLV (j , va0, va1) = T .
c For simplicity and readability, we only prove the case where i = 2. The
generalization is straightforward.

d Informally, the induction hypothesis allows to assume that s1 computes the
value of ca1 and stores it in lv(n + 1)S1

. It does not assign to any lvm,
0 ≤ m ≤ n. More formally, it allows to assume va1 ∈ Valuation such that
〈va0, s1〉ù

+a
A 〈va1, 〈〉〉, where

1 va1(lvn + 1S1
) = Sem(ca1, emptyva,A), and

2 IsAgreeingOnLV (n, va0, va1) = T .

e Informally, the induction hypothesis allows assume that s2 computes the
value of ca2 and stores it in lvn + 2S2

. It does not assign to any lvm,
0 ≤ m ≤ n + 1. More formally, it allows to assume va2 ∈ Valuation such
that 〈va1, s2〉ù

+a
A 〈va2, 〈〉〉, where

1 va2(lvn + 2S2
) = Sem(t2, emptyva,A), and

2 IsAgreeingOnLV (n + 1, va1, va2) = T .

f As IsAgreeingOnLV (n + 1, va1, va2) = T , we know va2(lvn + 1S1
) =

Sem(ca1, emptyva,A). That is, lvn + 1S1
stores the value of ca1 after the

execution of s1 ⊲ s2, because execution of s1 computes the value and stores
it in lvn + 1S1

, and execution of s2 does not change the value of lvn + 1S1
.

g Then Sem(f (lvn+1S1
, lvn+2S2

), va2,A) = ν (as Sem(f (ca1, ca2), va2,A) =
ν).

h Then 〈va2, 〈lvnS0
:= f (lvn + 1S1

, lvn + 2S2
)〉〉 ùa A 〈va2[lvnS0

7→ ν], 〈〉〉
(see Fig. 4.2 :ùa ).

i Assume s0 ∈ Seq(Stmt) such that s0 = s1 ⊲ s2 ⊲
〈lvnS0

:= f (lvn + 1S1
, lvn + 2Si

)〉 (conclusion Lem. 4.2).
j Then 〈va0, 〈s0〉〉 ù

a
A 〈va2[lvnS0

7→ ν], 〈〉〉. That is, lvn + 1S1
stores the

value of f (ca1, ca2) after the execution of s0.
k Also, if n > 0, then IsAgreeingOnLV (n − 1, va0, va2[lvnS0

7→ ν]) holds
(as IsAgreeingOnLV (n + 1, va1, va2) and IsAgreeingOnLV (n, va0, va1) both
hold).

l That concludes the proof outline of the step case.

7 That concludes the proof outline of Lem. 4.2.

Proof outline of Thm. 4.1 The proof outline for the main theorem of this
section, Thm. 4.1, is as follows.

1 Consider an arbitrary CS ∈ ClientSpec, and cds ∈ ClassDefSet such that the
premise of Thm. 4.1 holds.

2 Then we can assume A ∈ Models(CS .as.ax ) and AS ∈
AbstrOpDefs(cds,CS .as) such that 1) 〈csd ,AS 〉 respectsh A, and 2)

csd satisfiesmc CS given 〈A,AS 〉 (premise Thm. 4.1).
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3 Then the goal is to prove that cds satisfiesh CS (conclusion Thm. 4.1).
4 Then the goal is to prove that

SemImpl(〈Trans(), cds,DisplayFactory(CS .as.sig)〉) ∈ SemAS (CS ) (Def. 3.4.1
: satisfiesh).

5 Consider an arbitrary ca0 ∈ ClosedAppls(CS .as.sig), ν ∈ V, S ∈ Sort such that
Sem(ca0, emptyva,A) = ν and ca0 is of sort S (premise Def. 2.2.6 : SemAS ).

6 Then we can assume va0 ∈ Valuation, s ∈ Seq(Stmt) such that
TransBottomUp(ca, 0) = s, and 〈emptyva, s〉ù+a

A 〈va0, 〈〉〉, and va0(lvnS ) =
ν (Lem. 4.2, the intermediate lemma we have just proven).

7 Then FieldsAssignedTo(s) = {} (Def. 3.3.1 : TransBottomUp does not assign
to fields).

8 Then we can assume ec0 ∈ EvalContext such that
1) 〈emptyec, 〈〉 , s〉ù+c

cds 〈ec, 〈〉 , 〈〉〉, and
2) AbstrView(ec,A,AS , cds) = va (Def. 4.1.10 : respectsh).

9 Then we can assume ec1 ∈ EvalContext , ca1 ∈ ClosedApplCS .as.sig such that
1) 〈ec0, 〈〉 , 〈resultParseTree := makeCanonC (lv0C )〉〉ù+c

cds 〈ec1, 〈〉 , 〈〉〉, and
2) CARepre(resultParseTree , ec1,CS .as.sig) = ca1, and
3) CS .isCanonical(ca1,A) = T , and
4) Sem(ca1, emptyva,A) = ν (Def. 4.1.12 : satisfiesmc).

10 Then we can assume display ∈ Display such that 1)
DisplayFactory(CS .as.sig) = display , and 2) display(ec1) = ca1 (Def. 3.3.9 :
DisplayFactory).

11 We know Trans(ca) = s0 ⊲ 〈resultS := lv0S 〉 (Def. 3.3.4: Trans).
12 Then we can assume answer ∈ Answer such that

1) SemImpl(〈Trans(), cds,DisplayFactory(CS .as.sig)〉) = answer , and
2) answer(ca0) = ca1 (Def. 3.2.4 : SemImpl).

13 That proves the earlier goal that
SemImpl(〈Trans(), cds,DisplayFactory(CS .as.sig)〉) ∈ SemAS (CS ) (conclu-
sion Def. 2.2.6 : SemAS ).

14 That concludes the proof outline for Thm. 4.1.

4.2 An Implementation Approach for Hoare-Style Satisfac-

tion

In this section, we formalize an implementation approach for Hoare-style satis-
faction that allows method body implementers to be abstract programmers. In
other words, it allows a method body implementer to reason about the abstract
execution of the body instead of the much more complicated concrete execution.

• In Sect. 4.2.1, we extend the notion of an abstract view introduced in
Sect. 4.1.2. Where the original notion is suitable only for top-level evalu-
ation contexts, the refined notion is suitable for evaluation contexts that are
part of method body executions as well. To this end, the refined notion of a
full abstract view not only considers stack variables, but additionally maps
the fields of the this object to their abstract value.
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• In Sect. 4.2.2, we refine the notion of respect (Def. 4.1.10) that was intro-
duced in Sect. 4.1.2 as a main part of the Hoare-style notion of satisfaction.
The original notion of respect relates the pre- and post states of concrete
and abstract executions of a statement sequence. The refined notion instead
relates the pre- and post states of concrete and abstract executions of a
method call. Essentially, the refined notion formalizes Hoare’s criterion of
correctness of data representations at the semantical level.

• In Sect. 4.2.3, we separate the notion of respect for method call executions,
into three concerns:

(1) Method calls must terminate.
(2) Terminating method calls of the form v0 := m(v1, v2) must be result

correct, i.e., must terminate normally and assign the right value to v0.
(3) When viewed abstractly, method calls that terminate normally must be

side-effect free.

The motivation for this separation is that these three concerns require three
different proof techniques.

• In Sect. 4.2.4, we refine the notion of result correctness of a method call, to
a notion of result correctness of the method body. This is a purely technical
step which does not require design decisions.

• In Sect. 4.2.5, we define a notion of result correctness that considers only the
abstract execution. We show that Hoare-style satisfaction is established if 1)
method calls terminate and are side-effect free (when viewed abstractly), and
2) the abstract execution of method bodies is result correct. This theorem
is at the heart of Sect. 4.2, as it shows under which conditions the method
body implementer can be an abstract programmer.

• In Sect. 4.2.6, we show under which conditions the implementer of a method
m can reason modularly, i.e., in such a way that changes to methods other
than m do not affect the reasoning about m. Essentially, this represents a
formalization and extension of Hoare’s main proof obligation at the seman-
tical level.

• In Sect. 4.2.7, we discuss the consequences of this implementation approach.

4.2.1 Full Abstract Views

In this section, we extend the notion of an abstract view introduced in Sect. 4.1.2.
Where the original notion is suitable only for reasoning top-level evaluation con-
texts, the refined notion of a full abstract view is suitable for reasoning about
evaluation contexts that are part of method body executions as well.

Consider Def. 4.2.1, which defines an intermediate notion that is used
in the definition of a full abstract view. The intuition is that
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AbstrViewThis(〈sf , os〉 ,A,AS , cds) gives the abstract view of this in evaluation
context 〈sf , os〉. Roughly, it maps the fields of the this object to their abstract
value. If no this object is defined (as is the case in a top-level execution context),
then the abstract view is the empty valuation.

Definition 4.2.1. AbstrViewThis : EvalContext×Alg×AlgSpec×ClassDefSet ã→
Valuation

AbstrViewThis(〈sf , os〉 ,A,AS , cds) = va iff
or (Domain(sf ) ∩ ThisVar) = {} and va = emptyva,
or there are α ∈ A, ec ∈ EvalContext such that

ThisObj (sf ) = α, and
ViewOf (α, os) = ec, and
AbstrView(ec,A,AS , cds) = va.

Consider Def. 4.2.2. The intuition is that the notion of a full abstract view can be
applied to both top-level evaluation contexts and evaluations context in a method
body execution. To this end, the notion combines the original notion of an abstract
view with that of the abstract view of this. So, a full abstract view determines
the abstract value of 1) all stack variables except for this, and 2) all fields of this.

Note that the domains of AbstrView(ec,A,AS , cds) and
AbstrViewThis(ec,A,AS , cds) are disjoint, as the former only contains stack
variables and the latter only contains fields.

Definition 4.2.2. AbstrViewFull : EvalContext ×Alg ×AlgSpec×ClassDefSet ã→
Valuation

AbstrViewFull(ec,A,AS , cds) = va0 iff
there are va1, va2 ∈ Valuation such that

AbstrView(ec,A,AS , cds) = va1, and
AbstrViewThis(ec,A,AS , cds) = va2, and
Domain(va0) = (Domain(va1)− ThisVar) ∪ Domain(va2), and
for every v ∈ Domain(va0),
or v ∈ Domain(va1) and va0(v) = va1(v),
or v ∈ Domain(va2) and va0(v) = va2(v).

4.2.2 Divide and Conquer: Respect for Top-level Method

Calls

In Sect. 4.1.2, we introduced a notion of respect (Def. 4.1.10 : respectsh) as a main
part of the Hoare-style notion of satisfaction. This notion of respect relates the
pre- and post states of concrete and abstract executions of a statement sequence.
In this section, we refine this notion to one that relates the pre- and post states of
concrete and abstract executions of a method call.

The refinement consist of the following steps.

(1) Consider a client specification CS , a computation implementation cds and
a specification AS of the abstraction operators. We show that 〈cds,AS 〉
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satisfiesh CS .as if there is a model A of CS .as such that 〈cds,AS 〉 respects ev-
ery top-level statement execution of every relevant statement sequence (where
a statement sequence s is relevant toA only if its abstract execution terminates
normally).

(2) We prove that 1) the execution of a read statement v0 := v1 is always re-
spected, and 2) primitive operation calls are always respected as well, as long
as the model A of CS .as agrees with the implementation algebra Aimpl on the
interpretation of primitive operations (Lem. 4.5).

(3) We combine the previous steps to prove the refinement to relevant top-level
method call executions (Thm. 4.6).

Essentially, the resulting notion of respect for top-level method call executions
formalizes Hoare’s criterion of correctness of data representations at the semantical
level.

Refining respectsh to respect for relevant top-level statement executions,
respectsse . This first step represents a design decision that requires that individ-
ual statement executions can be reasoned about at the abstract level. While this
might excludes some implementations that meet the respectsh notion (which only
requires this for sequences of statements), this refined property is the basis for an
implementation approach in which method bodies can be reasoned about at the
level of abstract executions.

The refinement consists of the following steps.

(1) We generalize respectsh to start the concrete execution from a given evaluation
context (Def. 4.2.3 : respectssse).

(2) We specialize the generalized notion to consider only a single statement exe-
cution (Def. 4.2.4 : respectsse).

(3) We formalize the intermediate notions of relevant statement sequences
(Def. 4.2.5) and top-level statement executions (Def. 4.2.5).

(4) We use the intermediate notions to formalize and prove the refinement to
relevant top-level statement executions. More specifically, given a computation
implementation cds and a specification AS of the abstraction operators AS , we
show that if 〈cds,AS 〉 respects algebra A for all top-level statement executions
of all relevant statement sequences of A, then 〈cds,AS 〉 respectsh A (Lem. 4.3).

Consider Def. 4.2.3, which formalizes a notion of respect for statement sequence ex-
ecutions. Assume that 〈cds,AS 〉 respectssse A for 〈ec0, s〉. Recall from Def. 4.1.10
: respectsh that the intuition is that A is a model of the specification and that AS
specifies the abstraction operators. Roughly, the following holds. If the abstract
execution of s from the abstract view va0 of evaluation context ec0 terminates
normally in va1, then the concrete execution of s from ec0 terminates normally in
an evaluation context of which the abstract view is va1.

Definition 4.2.3. 〈cds,AS 〉 ∈ ClassDefSet × AlgSpec respectssse A ∈ Alg for
〈ec0, s〉 ∈ EvalContext × Seq(AStmt) iff
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for every va0, va1 ∈ Valuation,
if va0 = AbstrViewFull(ec0,A,AS , cds), and

〈va0, s〉ù+a
A 〈va1, 〈〉〉,

then there is an ec1 ∈ EvalContext such that
〈ec0, 〈〉 , s〉ù+c

cds 〈ec1, 〈〉 , 〈〉〉, and
va1 = AbstrViewFull(ec1,A,AS , cds).

Consider Def. 4.2.4. It defines a notion of respect for the execution of a single
statement using the earlier definition of respect for a statement sequence execution
in the obvious way.

Definition 4.2.4. 〈cds,AS 〉 ∈ ClassDefSet × AlgSpec respectsse A ∈ Alg for
〈ec0, s〉 ∈ EvalContext × AStmt iff
〈cds,AS 〉 respectssse A ∈ Alg for 〈ec0, 〈s〉〉

Consider Lem. 4.3. This lemma uses the intermediate notions of relevant state-
ment sequences and top-level statement executions to relate respectsse to respectsh .
The intuition is that cds is an implementation of the computation concern, AS is a
specification of the abstraction operators, and A is a model of the algebraic speci-
fication of the client specification. The lemma formalizes that 〈cds,AS 〉 respectsse
A for all top-level statement executions of all relevant statement sequences of A,
then 〈cds,AS 〉 respectsh A.

Consider Def. 4.2.5. The intuition is if A is a model of the algebraic specification
of a client specification, then RelevantStmtSeqs(A) returns a set of all abstract
statement sequences s that are relevant to A. Here, s is relevant to A only if 1)
its abstract execution in the context of A terminates normally, and 2) it does not
assign to fields. Note that this is exactly the set of abstract statement sequences
for which respectsh imposes a requirement.

Definition 4.2.5. RelevantStmtSeqs : Alg → Set(Seq(AStmt))
s ∈ RelevantStmtSeqs(A) iff
there is a va such that
〈emptyva, s〉ù+a

A 〈va, 〈〉〉, and
FieldsAssignedTo(s) = {}.

Consider Def. 4.2.6. Roughly, a 〈ec, s〉 is a top-level statement execution in the
execution of a statement sequence s if s is executed from ec during the top level
of the execution of s (where an execution state is top-level if it is not part of a
method call execution).

Note that the lemma allows to establish Hoare-style satisfaction through respectsse ,
rather than through respectsh . Recall from Def. 3.4.1 that cds satisfiesh an alge-
braic specification if it has a model A such that there is a specification AS of the
abstraction operators such that 〈cds,AS 〉 respectsh A.

Definition 4.2.6. TopLevelStmtExecs : Seq(AStmt) × EvalContext ×
ClassDefSet → Set(EvalContext × AStmt)
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〈ec1, s〉 ∈ TopLevelStmtExecs(s0, ec0, cds) iff
there is a s1 ∈ Seq(AStmt) such that
〈ec0, 〈〉 , s0〉ù

∗c
cds 〈ec1, 〈〉 , 〈s〉 ⊲ s1〉.

Lemma 4.3. For every cds ∈ ClassDefSet, A ∈ Alg, AS ∈ AlgSpec,
if for every s ∈ RelevantStmtSeqs(A), va ∈ Valuation,

for every 〈ec, s〉 ∈ TopLevelStmtExecs(s, emptyec, cds),
cds respectsse 〈A,AS 〉 for 〈ec, s〉,

then cds respectsh 〈A,AS 〉.

The proof of Lem. 4.3 depends on the following intermediate lemma.

Lemma 4.4. For every cds ∈ ClassDefSet, A ∈ Alg, AS ∈ AlgSpec, s ∈
Seq(AStmt), ec0 ∈ EvalContext,

if for every 〈ec1, s〉 ∈ TopLevelStmtExecs(s, ec0, cds),
cds respectsse 〈A,AS 〉 for 〈ec1, s〉,

then cds respectssse 〈A,AS 〉 for 〈ec0, s〉.

The proof outline of Lem. 4.4 is as follows.

1 Consider arbitrary cds ∈ ClassDefSet , A ∈ Alg , AS ∈ AlgSpec, s ∈ Seq(AStmt),
ec0 ∈ EvalContext such that the premise of Lem. 4.4 holds.

2 Assume va0, va1 ∈ Valuation such that
AbstrViewFull(ec0,A,AS , cds) = va0, and
〈va0, s0〉ù

∗a
A 〈va1, 〈〉〉 (premise Def. 4.2.3 : respectssse).

3 Then the goal is to prove that there is an ec1 ∈ EvalContext such that
〈ec0, 〈〉 , s0〉ù

∗c 〈ec1, 〈〉 , 〈〉〉, and
AbstrViewFull(ec1,A,AS , cds) = va1 (conclusion Def. 4.2.3 : respectssse). Proof
is by induction on the length of s0.

4 Base case: Assume | s0 |= 0. Then s0 = 〈〉. Then 1) va1 = va0, and 2) the
concrete execution of s0 from ec0 terminates normally in ec0. That concludes
the proof of the base case.

5 Step case: Assume |s0 |> 0.

a Then we can assume s ∈ AStmt , s1 ∈ Seq(AStmt) such that s0 = 〈s〉 ⊲ s1.
b Then 〈ec0, s〉 ∈ TopLevelStmtExecs(s0, emptyec, cds) (Def. 4.2.6 :

TopLevelStmtExecs).
c Then 〈cds,AS 〉 respectsse A for 〈ec0, s〉 (premise Lem. 4.3).
d Then we can assume va2 ∈ Valuation, ec2 ∈ EvalContext such that

va2 is the abstract view of ec2, and
the abstract execution of s from va0 terminates normally in va2, and
the concrete execution of s from va0 terminates normally in ec2 (Def. 4.2.4 :
respectsse , as we know that the abstract execution of s0 terminates normally).

e We know that the abstract execution of s1 from va2 terminates normally in
va1 (as the abstract execution of s0 terminates normally in va0).

f As | s1 |<| s0 | , we can use the induction hypothesis. Then we can assume
ec1 ∈ EvalContext such that
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the concrete execution of s1 from ec2 terminates normally in ec1, and
va1 is the abstract view of ec1.

g Then the concrete execution of s0 from ec0 terminates normally in ec1.
h That concludes the proof of the step case.

That concludes the proof of Lem. 4.4.

The proof outline of Lem. 4.3 is as follows.

1 Consider an arbitrary cds ∈ ClassDefSet , A ∈ Alg , AS ∈ AlgSpec such that the
premise of Lem. 4.3 holds.

2 Assume s0 ∈ Seq(AStmt), va ∈ Valuation such that
FieldsAssignedTo(s) = {}, and 〈emptyva, s0〉ù

+a
A 〈va, 〈〉〉 (premise Def. 4.1.10

: respectsh).
3 Then s0 ∈ RelevantStmtSeqs(A) (Def. 4.2.6: RelevantStmtSeqs).
4 Then cds respectssse 〈A,AS 〉 for 〈emptyec, s0〉 (Lem. 4.4).
5 Then we can assume (conclusion Def. 4.2.3 : respectssse) ec ∈ EvalContext such
that
〈emptyec, 〈〉 , s0〉ù

∗c 〈ec, 〈〉 , 〈〉〉, and
AbstrViewFull(ec,A,AS , cds) = va.

6 We know va does not does not define any fields (as emptyva does not define
any fields and as FieldsAssignedTo(s) = {}). Furthermore, va does not define
a this variable (as this is not defined in emptyva and as this does not occur
in abstract statements).

7 Then AbstrViewFull(ec,A,AS , cds) = AbstrView(ec,A,AS , cds) (Def. 4.1.9 :
AbstrView , Def. 4.2.2 : AbstrViewFull).

8 Then AbstrView(ec,A,AS , cds) = va (as AbstrViewFull(ec,A,AS , cds) = va).
9 Then the conclusion of Def. 4.1.10 : respectsh holds.

That concludes the proof of Lem. 4.3.

Respecting primitive operation calls and read statement executions. In
this second step, we show that a minor restriction on the model A of the algebraic
specification in the client specification suffices to establish that for any computa-
tion implementation cds and any specification AS of the abstraction operators,
〈cds,AS 〉 respectsse A for any primitive operation call and every read statement
execution.

Consider Def. 4.2.7. Roughly, IsFieldsAssignedToDefined(s, ec) = T only if every
field that is assigned to in s, is defined as a field of the object referred to by
this in the prestate. Note that if this property holds, then a concrete execution
does not terminate abnormally because of an assignment to an undefined field (as
this is not assigned to by a sequence of abstract statements and fields cannot be
’undefined’).

Definition 4.2.7. IsFieldsAssignedToDefined : Seq(AStmt) × EvalContext →
Bool
IsFieldsAssignedToDefined(s, ec) = T iff
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for every f ∈ FieldsAssignedTo(s),
there is an α ∈ A such that

ThisObj (ec) = α, and
〈α, f 〉 ∈ Domain(ec.os).

Consider Lem. 4.5, which is defined using the intermediate notion of respectable
algebras. Roughly, it states that given a respectable algebra A, any pair 〈cds,AS 〉
of a computation implementation and a specification of the abstraction operators
respectsse A for any primitive operation call or read statement execution (as long
as it does not assign to a field that does not exist).

Consider Def. 4.2.8. Roughly, a respectable algebra agrees with the implementa-
tion algebra (Def. 3.1.32) on the interpretation of primitive operations.

Definition 4.2.8. A ∈ Alg is respectable iff
for every op ∈ PrimSig .ops ∩ Domain(A.interpretation),
A.interpretation(op) = Aimpl .interpretation(op).

RespectableAlg is the set of all respectable algebras.

Lemma 4.5. For every A ∈ RespectableAlg, ec ∈ EvalContext, v ∈ AVar, e ∈
Expr ∩ AExpr,
if IsFieldsAssignedToDefined(〈v := e〉 , ec) = T ,
then for every cds ∈ ClassDefSet, AS ∈ AlgSpec,

〈cds,AS 〉 respectsse A for 〈ec, v := e〉.

Aside. In practice, the restriction to respectable algebras should not be much
of a burden. The specifier of the client specification CS can expect the specifier
of the programming language to provide an algebraic specification ASimpl of
the primitive signature (Def. 3.1.2) such that Aimpl is a model of ASimpl . Every
model of CS .as is a respectable if the specifier of CS .as includes ASimpl in CS .as
and does not define any axioms that restrict the primitive operations.Note that
this restriction is implicit in Hoare’s work.

The proof outline of Lem. 4.5 is as follows.

1 Consider A ∈ Alg , cds ∈ ClassDefSet , 〈sf , os〉 ∈ EvalContext , v ∈ AVar ,
e ∈ Expr such that the premise of Lem. 4.5 holds.

2 Assume va0, va1 ∈ Valuation such that that
AbstrViewFull(〈sf , os〉 ,A,AS , cds) = va0, and
〈va0, 〈v := e〉〉ù+a

A 〈va1, 〈〉〉 (premise Def. 4.2.4: respectsse).
3 Then we can assume ν ∈ V such that

Sem(e, va0,A) = ν, and
va1 = va0[v 7→ ν] (Fig. 4.2:ùa ).

4 We know e is either a formal parameter, a local variable, a primitive operation
call, or a field (as e ∈ Expr ∩ AExpr).

5 If e is a primitive operation call, then Eval(e, 〈sf , os〉) = ν, as

a Then A and Aimpl agree on the primitive operator interpretation (Def. 4.2.8
: RespectableAlg).
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b Furthermore, as all domain sorts of a primitive operator are primitive sorts
and as as Sem(e, va0,A) = ν, va0 and sf agree on all actual parameters of
the call.

c Then Eval(e, 〈sf , os〉) = ν (Def. 3.1.47 : Eval).

6 If e is a formal parameter or a local variable, then AbstrView(〈sf , os〉) defines
e and Eval(e, 〈sf , os〉) = sf (e), as

a Then AbstrView(〈sf , os〉) defines e (Def. 4.2.2 : AbstrViewFull , as va0(e)
is defined and as AbstrViewThis() only defines fields).

b Then sf (e) is defined (Def. 4.1.9 : AbstrView).
c Then Eval(e, 〈sf , os〉) is sf (e) (Def. 3.1.47 : Eval).

7 If e is a field, then Eval(e, 〈sf , os〉) = os(〈ThisObj (〈sf , os〉), e〉), due to the
following.

a Then e must be defined by AbstrViewThis(〈sf , os〉 ,A,AS , cds) (as va0 de-
fines e and as AbstrView does not define fields).

b Then e is on the stack frame of ViewOf (ThisObj (〈sf , os〉), os) (Def. 4.2.1 :
AbstrViewThis).

c Then os(〈ThisObj (〈sf , os〉), e〉) is defined (Def. 3.3.5 : ViewOf ).
d Then Eval(e, 〈sf , os〉) is os(〈ThisObj (〈sf , os〉), e〉) (Def. 3.1.47 : Eval).

8 Then if e is a formal parameter, a local variable or a field, and e is of a primitive
sort, then Eval(e, 〈sf , os〉) = ν (Def. 4.1.9 : AbstrView , as the abstract value
of a primitive variable is its stack frame value).

9 We can distinguish the following cases.
10 Case: v /∈ Field and e is a formal parameter, a local variable, a field or a

primitive operation call, and e is of a primitive sort.

a Then 〈〈sf , os〉 , 〈〉 , 〈v := e〉〉 ùc cds 〈〈sf [v 7→ ν], os〉 , 〈〉 , 〈〉〉 (the READ rule
from Def. 3.1.51 :ùc , as we have shown that Eval(e, 〈sf , os〉) = ν in this
case).

b Then AbstrViewFull(〈sf [v 7→ ν], os〉 ,A,AS , cds) = va1 (Def. 4.2.2 :
AbstrViewFull , as va1 = va0[v 7→ ν]).

11 Case: v /∈ Field and e is a formal parameter, a local variable or a field, and e
is of a class sort.

a Then we can assume α ∈ A such that 〈〈sf , os〉 , 〈〉 , 〈v := e〉〉 ùc cds

〈〈sf [v 7→ α], os〉 , 〈〉 , 〈〉〉 (the READ rule from Def. 3.1.51 :ùc , as we have
shown that Eval(e, 〈sf , os〉) is defined in this case).

b By definition, AbstrViewFull(〈sf [v 7→ ν], os〉 ,A,AS , cds) can only differ
from va0 on v (Def. 4.2.2 : AbstrViewFull).

c We know AbstrViewFull(〈sf [v 7→ ν], os〉 ,A,AS , cds) maps v to ν, as va0

maps e to ν and the object store has not changed.
d Then AbstrViewFull(〈sf [v 7→ ν], os〉 ,A,AS , cds) = va1 (as va1 = va0[v 7→

ν]).

12 Case: v ∈ Field .

a Then we can assume α ∈ A such that



4. Implementer’s Perspective: An Implementation Approach 75

ThisObj (〈sf , os〉) = α, and
〈α, v0〉 ∈ Domain(os) (Def. 4.2.7 : IsFieldsAssignedToDefined).

b Then the proof follows the two cases above, except that it uses the WRITE

rule from Def. 3.1.51 :ùc , and the fact that AbstrViewFull maps the fields
of this to their abstract value, using AbstrViewThis .

13 Then in every case, AbstrViewFull(〈sf [v 7→ ν], os〉 ,A,AS , cds) = va1.
14 Then 〈cds,AS 〉 respectsse A for 〈〈sf , os〉 , s〉 (Def. 4.2.4 : respectsse).
15 Then the conclusion of Lem. 4.5 holds.

That concludes the proof outline of Lem. 4.5.

Respect for relevant top-level method calls implies Hoare-style satisfac-
tion. In this third and last step we combine the previous two steps to produce
the main result of Sect. 4.2.2, which is Thm. 4.6. Note that the proof of the the-
orem uses a lemma (Lem. 4.4) with a premise that essentially formalizes Hoare’s
criterion of correctness of data representations at the semantical level.

Consider Def. 4.2.9. Recall that TopLevelStmtExecs(s, ec, cds) yields the
set of top-level statement executions in the execution of s from ec.
TopLevelMCExecs(s, ec, cds) simply restricts these top-level statement executions
to method call executions (see Def. 4.1.3 : AMCStmt).

Definition 4.2.9. TopLevelMCExecs : Seq(AStmt) × EvalContext ×
ClassDefSet → Set(EvalContext × AStmt)
〈ec, s〉 ∈ TopLevelMCExecs(s, ec, cds) iff
〈ec, s〉 ∈ TopLevelStmtExecs(s, ec, cds), and
s ∈ AMCStmt .

Consider Def. 4.2.10. For convenience, it combines the notions of a model of a
specification and a respectable algebra, into a notion of a respectable model of a
specification.

Definition 4.2.10. RespectableModels : AlgSpec → Set(Alg)
A ∈ RespectableModels(AS ) iff
A ∈ Models(AS .ax ) ∩ RespectableAlg .

Consider Thm. 4.6. a computation implementation cds satisfiesh the algebraic
specification AS of a client specification if there are a respectable model A of AS0

and a specification AS1 of the abstraction operators such that 〈cds,AS1〉 respectsse
every top-level method call of every relevant statement sequence.

Theorem 4.6. For every cds ∈ ClassDefSet, AS0 ∈ AlgSpec,
if there are A ∈ RespectableModels(AS0), AS1 ∈ AbstrOpDefs(cds,AS0)

such that
for every s ∈ RelevantStmtSeqs(A), va ∈ Valuation,

for every 〈ec, s〉 ∈ TopLevelMCExecs(s, emptyec, cds),
〈cds,AS1〉 respectsse A for 〈ec, s〉,

then cds satisfiesh AS0.
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The proof of Thm. 4.6 depends the following intermediate lemma (which is reused
when we reason about the method body).

Lemma 4.7. For every cds ∈ ClassDefSet, A ∈ RespectableAlg, AS ∈ AlgSpec,
s ∈ Seq(AStmt), ec0 ∈ EvalContext,

if IsFieldsAssignedToDefined(ec0, s) = T , and
for every 〈ec1, s〉 ∈ TopLevelMCExecs(s, ec0, cds),

cds respectsse 〈A,AS 〉 for 〈ec1, s〉,
then cds respectssse 〈A,AS 〉 for 〈ec0, s〉.

Aside. Essentially, the premise of this lemma formalizes Hoare’s criterion of
correctness of data representations at the semantical level, and its conclusion for-
malizes the consequence of the criterion that abstract executions can be ’validly
replaced’ by concrete executions.

The proof outline of Lem. 4.7 follows that of Lem. 4.4. We sketch the proof,
highlighting only the differences. First, we assume that the premise of the lemma
holds for a s0. Then we assume that the abstract execution of s0 terminates
normally in va1 (premise Def. 4.2.3 : respectssse). Then we prove, by induction on
the length of s0, that the concrete execution terminates normally in an evaluation
ec1 of which va1 is the abstract view. The base case is trivial. In the step case, we
assume that s0 = s ⊲ s1. We want to conclude that 〈cds, abstrViewEC 〉 respectsse
A for 〈ec0, s〉. Unlike in step 5c of the proof of Lem. 4.4, this does not follow
directly from the premise. Instead, it follows from the following case distinction
on s.

1 Case: s ∈ AMCStmt (i.e., s is a method call statement).
Then 〈ec0, s〉 ∈ TopLevelMCExecs(s0, emptyec, cds) (Def. 4.2.9 :
TopLevelMCExecs). Then it follows from the premise of Thm. 4.6 that
〈cds,AS1〉 respectsse A for 〈ec0, s〉.

2 Case: there are v ∈ Field , e ∈ Expr ∩ AExpr , such that s is v := e (i.e., s is
the assignment of a field, variable or primitive operation to a field or variable).

a Then IsFieldsAssignedToDefined(ec0, s) = T (as
IsFieldsAssignedToDefined(ec0, s) = T , Def. 4.2.7 :
IsFieldsAssignedToDefined).

b Then 〈cds,AS1〉 respectsse A for 〈ec0, s〉 (Lem. 4.5).

3 Case: assume v ∈ AVar , s4 ∈ Seq(AStmt) such that s is if (v) s4. Then
it follows from Def. 4.1.9 : AbstrView that va0(v) = ec.sf (v), as va0 is the
abstract view of ec0, and v is of primitive sort Bool . Then two cases can be
distinguished:

a Case: va0(v) = F . Then the abstract execution of s from va0 terminates
normally in va0, and the concrete execution of s from ec0 terminates normally
in ec0 (Fig. 4.2 :ùa and Def. 3.1.51 :ùc ). Then 〈cds,AS1〉 respectsse A
for 〈ec0, s〉, as va0 is the abstract view of ec0.

b Case: va0(v) = T . Then
1) 〈va0, s〉ùa A 〈va0, s4〉 (Fig. 4.2 :ùa ), and
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2) 〈ec0, s〉ùc cds 〈ec0, s4〉 (Def. 3.1.51 :ùc ). As |s4 |<|s0 | , it follows from
the induction hypothesis that 〈cds,AS1〉 respectsse A for 〈ec, s4〉. Then it is
straightforward to conclude that 〈cds,AS1〉 respectsse A for 〈ec0, s〉.

Then the concrete execution of s from ec0 terminates normally in an evaluation
context ec2. We want to use the induction hypothesis for the remaining execution
of s1 from ec2 (step 5f in the proof of Lem. 4.4). This additionally requires us
to prove that IsFieldsAssignedToDefined(ec1, s1) = T . This holds, as s does not
assign to this (no abstract statement does), and as fields cannot be ’undefined’.
That concludes the proof outline of Lem. 4.7.

The proof outline of Thm. 4.6 follows that of Lem. 4.3, but uses Lem. 4.7 instead
of Lem. 4.4.

4.2.3 Separation of Concerns: Termination, Result Correct-

ness and Side-effect Freeness

Consider a client specification CS , a computation implementation cds and a spec-
ification AS of the abstraction operators. In Sect. 4.2.2, we have shown that
〈cds,AS 〉 satisfiesc CS .as if there is a respectable model A of CS .as such that
〈cds,AS 〉 respectsse A for every top-level method call execution of every relevant
statement sequence.

Here we separate that notion of respect for method call executions, into three
concerns:

(1) Method calls must terminate.
(2) Terminating method calls of the form v0 := m(v1, v2) must be result correct,

i.e., must terminate normally and assign the right value to v0.
(3) When viewed abstractly, method calls that terminate normally must be side-

effect free.

The motivation for this separation is that only result correctness can be reasoned
about at the level of the abstract execution of the method body (as a consequence,
these three concerns require three different proof techniques).

To separate into the three concerns, we take the following steps.

(1) We briefly revisit the notion of termination.
(2) We define a notion of correctness of the result of a method call execution

(Def. 4.2.11).
(3) We define a notion of side-effect freeness (Def. 4.2.12).
(4) We show that respectsse can be separated into the three defined concerns

(Lem. 4.8).
(5) We show that 〈cds,AS 〉 satisfiesc CS .as if there is a respectable model A of

CS .as such that the three concerns are met for every top-level method call of
relevant every statement sequence (Thm. 4.9).
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Concern (1): termination. The first concern is captured by the ex-
isting notion of termination of an execution. That is, execution of
method call v0 := m(v1, v2) from evaluation context ec terminates if
IsExecTerminating(〈ec, 〈〉 , 〈v0 := m(v1, v2)〉〉 , cds) = T .

Concern (2): result correctness. The second concern is captured by the
notion of result correctness of the result of a method call execution.

Consider Def. 4.2.11. Roughly, IsResultCorrect(ec0,mcs,A,AS , cds) = T only
when the following holds. If 1) the abstract execution of method call statement
v0 := m(v1, v2) from the abstract view va0 of evaluation context ec0 terminates
normally in va1, and 2) the concrete execution of v0 := m(v1, v2) from ec0 termi-
nates, then 1) the concrete execution terminates normally in an evaluation context
with abstract view va2, and 2) va2 and va1 map v0 to the same value.

Definition 4.2.11. IsResultCorrect : EvalContext ×AMCStmt ×Alg ×AlgSpec ×
ClassDefSet → Bool
IsResultCorrect(ec0, v0 := m(v1, v2),A,AS , cds) = T iff

for every va0, va1 ∈ Valuation,
if IsExecTerminating(〈ec0, 〈〉 , 〈v0 := m(v1, v2)〉〉 , cds) = T , and

AbstrView(ec0,A,AS , cds) = va0, and
〈va0, 〈v0 := m(v1, v2)〉〉ù

a
A 〈va1, 〈〉〉,

then there are ec1 ∈ EvalContext , va2 ∈ Valuation such that
〈ec0, 〈〉 , 〈v0 := m(v1, v2)〉〉ù

+c
cds 〈ec1, 〈〉 , 〈〉〉, and

AbstrView(ec1,A,AS , cds) = va2, and
va2(v0) = va1(v0).

Concern (3): side-effect freeness. The third concern is captured by the no-
tion of side-effect freeness of a method call execution.

Consider Def. 4.2.12. Roughly, IsSideEffectFree(ec0, v0 := f (v1, v2),A,AS , cds) =
T only when the following holds. If 1) the abstract execution of method call
statement v0 := f (v1, v2) from the abstract view va0 of evaluation context ec0
terminates normally, and 2) the concrete execution of v0 := f (v1, v2) from ec0
terminates normally in an evaluation context with abstract view va2, then va0 and
va2 differ only on v0.

Definition 4.2.12. IsSideEffectFree : EvalContext ×AMCStmt ×Alg ×AlgSpec×
ClassDefSet → Bool
IsSideEffectFree(ec0, v0 := m(v1, v2),A,AS , cds) = T iff
for every va0, va1 ∈ Valuation, ec1 ∈ EvalContext ,
if AbstrView(ec0,A,AS , cds) = va0, and

〈va0, 〈v0 := m(v1, v2)〉〉ù
a

A 〈va1, 〈〉〉, and
〈ec0, 〈〉 , 〈v0 := m(v1, v2)〉〉ù

+c
cds 〈ec1, 〈〉 , 〈〉〉,

then there is a va2 ∈ Valuation such that
AbstrView(ec1,A,AS , cds) = va2, and
va2 = va0[v0 7→ va2(v0)].
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Separating respect for method calls into the three concerns. What re-
mains is to show that Hoare-style satisfaction is established if the three concerns
are met for all top-level method call executions of all relevant statement sequences
(Thm. 4.9).

Consider Lem. 4.8. To establish Thm. 4.9, we first show that if the three concerns
are met for a method call execution, then that method call execution is respected
(Lem. 4.8).

Lemma 4.8. For every ec ∈ EvalContext, mcs ∈ AMCStmt, cds ∈ ClassDefSet,
A ∈ Alg, AS ∈ AlgSpec,

if IsExecTerminating(〈ec, 〈〉 , 〈mcs〉〉 , cds) = T , and
IsResultCorrect(ec,mcs,A,AS , cds) = T , and
IsSideEffectFree(ec,mcs,A,AS , cds) = T ,

then 〈cds,AS 〉 respectsse A for 〈ec,mcs〉.

The proof outline of Lem. 4.8 is as follows.

1 Assume ec0 ∈ EvalContext , v0 := m(v1, v2) ∈ AMCStmt , cds ∈ ClassDefSet ,
A ∈ Alg , AS ∈ AlgSpec such that the premise of Lem. 4.8 holds.

2 Assume va0, va1 ∈ Valuation such that
va0 = AbstrView(ec0,A,AS , cds), and
〈va0, 〈v0 := m(v1, v2)〉〉ù

+a
A 〈va1, 〈〉〉 (premise Def. 4.2.4 : respectsse).

3 Then we can assume ec1 ∈ EvalContext , va2 ∈ Valuation such that
〈ec0, 〈〉 , 〈v0 := m(v1, v2)〉〉ù

+c
cds 〈ec1, 〈〉 , 〈〉〉, and

AbstrView(ec1,A,AS , cds) = va2, and
va2(v0) = va1(v0) (conclusion Def. 4.2.11 : IsResultCorrect).

4 Then va2 = va0[v0 7→ va2(v0)] (conclusion Def. 4.2.12: IsSideEffectFree).
5 Then va2 = AbstrView(ec1,A,AS , cds).
6 Then 〈cds, abstrViewEC 〉 respectsse A for 〈ec,mcs〉 (conclusion Def. 4.2.4 :

respectsse).

That concludes the proof outline of Lem. 4.8.

Consider Thm. 4.9. Roughly, it states that an implementation of the computation
concern cds satisfiesc a specification AS0 if there are a respectable model A of AS0

and a specification AS1 of the abstraction operators such that the three concerns
are met for every top-level method call of every relevant statement sequence.

Theorem 4.9. For every cds ∈ ClassDefSet, AS0 ∈ AlgSpec,
if there are A ∈ RespectableModels(AS0), AS1 ∈ AbstrOpDefs(cds,AS0)

such that
for every s ∈ RelevantStmtSeqs(A), va ∈ Valuation,

for every 〈ec, s〉 ∈ TopLevelMCExecs(s, emptyec, cds),
IsExecTerminating(〈ec, 〈〉 , 〈s〉〉 , cds) = T , and
IsResultCorrect(ec, s,A,AS1, cds) = T , and
IsSideEffectFree(ec, s,A,AS1, cds) = T ,

then cds satisfiesh AS0.

Theorem 4.9 follows almost directly from Thm. 4.6 and Lem. 4.8.



80 Chapter 2. Algebraic Specification and its Class-Based Implementation

4.2.4 Refining Result Correctness from Method Call to

Method Body Level

In this section, we refine the notion of result correctness of a method call, to
a notion of result correctness of the method body. This is a purely technical
refinement which does not require design decisions.

The refinement consists of the following steps.

(1) Consider the execution of a method call v0 := m(v1, v2) from an evaluation
context ec0. Assume that the body of m is executed from an evaluation context
ec1. We relate the evaluation of the application of a method m to its actual
parameters in the full abstract view of ec1, to the evaluation of the application
of m to its formal parameters in the abstract view of ec1 (Lem. 4.10).

(2) Assume that the execution of the body terminates normally in ec2, and that
the execution of the call terminates normally in ec3. We relate the value of the
return variable in abstract view of ec2, to the value of v0 in the full abstract
view of ec3 (Lem. 4.11).

(3) We relate the value of a variable in an abstract view, to a value of a term in
the full abstract view (Lem. 4.12).

(4) We present the body-level result-correctness notion (Def. 4.2.14) and prove
that it is indeed a refinement (Lem. 4.13).

Steps 1-2: relating method call executions to method body executions.
In this step we present two lemmas that relate call executions to body executions.

Consider Lem. 4.10. This lemma relates the full abstract view of the evaluation
context from which a method call 〈v0 := m(v1, v2)〉 is executed, to the abstract
view of the evaluation context of the state σ from which its method body is exe-
cuted. Recall from Def. 3.1.27 that GetFormalParams(m, cds) returns the formal
parameters of method m, which are this and p variables if m /∈ Constructor and
q and p variables otherwise. Note that in step 2 of this section, we relate the value
of m(sv) in the abstract view of σ.ec, to its value in the full abstract view of σ.ec.

Lemma 4.10. For every ec ∈ EvalContext, cs ∈ CallStack, v0, v1, v2 ∈ Var,
m ∈ Method, σ ∈ State, A ∈ Alg, AS ∈ AlgSpec, cds ∈ ClassDefSet, va0, va1 ∈
Valuation, ν ∈ V, sv ∈ StackVar,
if 〈ec, cs, 〈v0 := m(v1, v2)〉〉ù

c
cds σ, and

AbstrViewFull(ec,A,AS , cds) = va0, and
AbstrView(σ.ec,A,AS , cds) = va1, and
Sem(m(v1, v2), va0,A) = ν, and
GetFormalParams(m, cds) = sv,

then Sem(m(sv), va1,A) = ν.

The proof outline of Lem. 4.10 is as follows.

1 Consider the execution of a method call 〈v0 := m(v1, v2)〉 from an evaluation
context ec.
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2 Then the first step of the execution is a context switch to a state σ such that
the body of the method is executed from σ.ec.

3 Assume GetFormalParams(m, cds) is sv .
4 Then the context switch assigns the value of v1 to sv [0] and the value of v2 to

sv [1]. It does not change the object store (Def. 3.1.51: CALL and CONSTR rules).
5 Then the abstract values of sv in σ.ec, are the same as the abstract values of v1
and v2 in ec (Def. 4.1.9 : AbstrView).

6 Therefore, given A to interpret m, if m(v1, v2) evaluates to ν in the abstract
view of ec, then m(sv) evaluates to ν in the abstract view of σ.ec.

That concludes the proof outline of Lem. 4.10.

Consider Lem. 4.11. Roughly, this lemma shows that the abstract value that is
returned by a method body execution, is assigned to the variable on top of the
stack. Note that this is the left-hand side variable of the corresponding method
call execution (see Def. 3.1.51:ùc ).

Lemma 4.11. For every ec ∈ EvalContext, sf ∈ StackFrame, v ∈ Var, cs ∈
CallStack, rv ∈ ReturnVar, cds ∈ ClassDefSet, σ ∈ State, A ∈ Alg, AS ∈
AlgSpec, va0, va1 ∈ Valuation, ν ∈ V,
if 〈ec, 〈sf , v〉 ⊲ cs, 〈return rv〉〉ùc cds σ, and

AbstrView(ec,A,AS , cds) = va0, and
AbstrViewFull(σ.ec,A,AS , cds) = va1, and
va0(rv) = ν,

then va1(v) = ν.

Proof of Lem. 4.11 is straightforward:

1 If ec.sf maps rv to λ, then σ.ec.sf maps v to λ (RET rule of Def. 3.1.51).
2 Furthermore, ec.os and σ.ec.os are the same (again, RET rule).
3 Then the abstract value of v in σ.ec is the same as the abstract value of rv in

ec (Def. 4.1.8 : AbstrVal).

That concludes the proof of Lem. 4.11.

Step 3: relating abstract views and full abstract views. Consider
Def. 4.2.13 and Lem. 4.12. The intuition is that ReplaceThis can be used to
relate a variable from the abstract view of an evaluation to a term in the full
abstract view. More specifically, if the first formal parameter of a method is
v and ReplaceThis(v , cds) = t0, then the value of v in the abstract view of
ec is the same as the value of t0 in the full abstract view of ec. Likewise, if
GetReturnVar(m, cds) = rv and ReplaceThis(rv , cds) = t1, then the value of rv
in the abstract view of ec is the same as the value of t1 in the full abstract view
of ec.

Definition 4.2.13. ReplaceThis : Var × ClassDefSet → Term
ReplaceThis(v , cds) = t iff
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or v /∈ ThisVar and t is v,

or there are C ∈ ClassSort, f ∈ Seq(Field) such that
v is thisC , and

GetFields(C , cds) = f , and

t is abstrC (f ).

Lemma 4.12. For every ec ∈ EvalContext, A ∈ Alg, AS ∈ AlgSpec, cds ∈
ClassDefSet, va0, va1 ∈ Valuation, v ∈ Var, t ∈ Term, ν ∈ V,
if AbstrView(ec,A,AS , cds) = va0, and

AbstrViewFull(ec,A,AS , cds) = va1, and
ReplaceThis(v) = t,

then
or va0(v) undefined and Eval(t , va1,A,AS ) is undefined,
or va0(v) = Eval(t , va1,A,AS ).

The proof of Lem. 4.12 is fairly given the definitions of AbstrView and
AbstrViewFull . The proof outline is as follows.

1 Assume ec ∈ EvalContext , A ∈ Alg , AS ∈ AlgSpec, cds ∈ ClassDefSet ,
va0, va1 ∈ Valuation, v ∈ Var , t ∈ Term, ν ∈ V such that the premise of
Lem. 4.12 holds. Two cases can be distinguished.

2 Case: v /∈ ThisVar . Then Def. 4.2.2 : AbstrViewFull defines the abstract value
of v using Def. 4.1.9 : AbstrView and the conclusion holds almost trivially.

3 Case: v ∈ ThisVar .

a Then we can assume C ∈ ClassSort , f ∈ Seq(Field) such that v is thisC ,
and GetFields(C , cds) = f , and t is abstrC (f ) (Def. 4.2.13).

b Assume A1 ∈ {A | A0 ⊆ A ∧A ∈ Models(AS .ax )} (Def. 4.1.7: Eval).
c Two cases can be distinguished.
d Case: va0(v) = ν.

1 Then va0 maps v to the evaluation of t in a valuation va2 that maps the
fields f to their abstract values, using A to interpret abstrC () (Def. 4.1.9).

2 Then va1 maps the fields f to the same abstract values as va2 (Def. 4.2.2
: AbstrViewFull).

3 Then Sem(t , va1,A1) = ν.
e Case: va0(v) is undefined. Then by reversing the reasoning in the case above,
we can conclude that Sem(t , va1,A1) is also undefined.

That concludes the proof outline of lemma Lem. 4.12.

Step 4: a body-level notion of result correctness. Consider Def. 4.2.14.
The intuition is that IsResCorBody defines the body-level refinement of method-
level result correctness notion (Def. 4.2.11: IsResultCorrect). Roughly, it states
that if 1) the body of a method m is execution from an evaluation context ec0 with
abstract view va0, and 2) the application of m to its formal parameters evaluates
to ν, then the execution terminates normally in an evaluation context with an
abstract view va1 that maps the variable rv that holds the return value to ν.
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Definition 4.2.14. IsResCorBody : EvalContext × Method × Alg × AlgSpec ×
ClassDefSet → Bool
IsResCorBody(ec0,m,A,AS , cds) = T iff

for every va0,Valuation, t0 ∈ Term,
if IsExecTerminating(〈ec0, 〈〉 ,GetBody(m, cds)〉 , cds) = T , and

AbstrViewFull(ec0,A,AS , cds) = va0, and
GetFormalParams(m, cds) = 〈sv0, sv1〉, and
ReplaceThis(rv , cds) = t0, and
Eval(m(t0, sv1), va0,A,AS ) = ν,

then there are ec1 ∈ EvalContext, va1 ∈ Valuation, rv ∈ ReturnVar
such that
〈ec0, 〈〉 ,GetBody(m, cds)〉ù+c

cds 〈ec1, 〈〉 , 〈〉〉, and
AbstrViewFull(ec1,A,AS , cds) = va1, and
GetReturnVar(m, cds) = rv, and
ReplaceThis(rv , cds) = t1, and
Eval(t1, va0,A,AS ) = ν.

Consider Lem. 4.13. This lemma formalizes that the body-level result correctness
notion is indeed a refinement of the method-call-level notion.

Lemma 4.13. For every ec ∈ EvalContext, v0, v1, v2 ∈ AVar, m ∈ Method,
σ ∈ State, A ∈ Alg, AS ∈ AlgSpec, cds ∈ ClassDefSet,

if 〈ec, 〈〉 , 〈v0 := m(v1, v2)〉〉ù
c

cds σ, and
IsResCorBody(σ.ec,m,A,AS , cds) = T ,

then IsResultCorrect(ec, 〈v0 := m(v1, v2)〉 ,A,AS , cds) = T .

The proof is fairly straightforward and therefore omitted. It uses Def. 4.2.14 :
IsResCorBody and Def. 4.2.11 : IsResultCorrect , and Lems. 4.10 to 4.12 above,
and must take into account that if v0 ∈ Field , then the SH (ShortHand) rule from
Def. 3.1.51: ùc introduces an additional step in the concrete execution that
assigns the outcome of the method call to dummy variable which is then assigned
to v0.

4.2.5 Abstract Reasoning About Method Body Executions

In this section, we show under which conditions the method body implementer
can be an abstract programmer. This is the main result of Sect. 4.2.

We take the following steps.

(1) We define a notion of result correctness that considers only the abstract ex-
ecution (Def. 4.2.15). This notion essentially formalizes Hoare’s main proof
obligation at the semantical level.

(2) We formalize and prove that Hoare-style satisfaction is established if 1) execu-
tions of method calls terminate and are side-effect free when viewed abstractly,
and 2) abstract executions of method bodies are result correct (Thm. 4.9).

The consequences of this style of reasoning are discussed in Sect. 4.2.7.
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Step 1: body-level result correctness of the abstract execution In this
first step we define a notion of result correctness that considers only the abstract
execution.

Consider Def. 4.2.15. Abstract body-level result correctness is very similar to the
original notion of body-level result correctness (Def. 4.2.14: IsResCorBody), but
requires that the right result is returned by the abstract execution, rather than by
the abstract view of the concrete execution. Note that we need the full abstract
view to reason about the abstract execution of the method body, as the body may
use the fields of the this object as abstract variables.

Definition 4.2.15. IsAbstrResCorBody : Valuation × Method × Alg × AlgSpec ×
ClassDefSet ã→ Bool
IsAbstrResCorBody(va0,m : S1 × S2 ã→ S0,A,AS , cds) = T iff
for every sv0, sv1 ∈ StackVar , t0 ∈ Term, ν ∈ V,
if GetFormalParams(m, cds) = 〈sv0, sv1〉, and

ReplaceThis(sv0, cds) = t0, and
Eval(m(t0, sv1), va0,A,AS ) = ν,

then there are va1 ∈ Valuation, rv ∈ ReturnVar , t1 ∈ Term such that
〈va0,GetBody(m, cds)〉ù∗a

A 〈va1, 〈〉〉, and
GetReturnVar(m, cds) = rv , and
ReplaceThis(rv , cds) = t1, and
Eval(t1, va1,A,AS ) = ν.

Aside. This property essentially formalizes Hoare’s main proof obligation at
the semantical level, except that it does not consider modular reasoning (see
Sect. 4.2.6).

Step 2: refined separation of concerns for Hoare-Style satisfaction. In
this second step, we show under which conditions the method body implementer
can be an abstract programmer.

Consider Thm. 4.14. Recall from Thm. 4.9 that Hoare-style satisfaction is estab-
lished if, for every relevant statement sequence, all top-level executions of method
calls terminate, are result correct, and side-effect free when viewed abstractly.
Here, we refine Thm. 4.9 and show that Hoare-style satisfaction is established if,
for every relevant statement sequence, 1) all executions of method calls termi-
nate and are side-effect free when viewed abstractly, and 2) all abstract executions
of method bodies are result correct. Intermediate notions are used to capture all
method call executions, and to relate a method call execution to the corresponding
abstract method body execution.

Consider Def. 4.2.16. Roughly, MethCallExecs(s0, ec0, cds) returns the set of all
method call executions from the execution of s from ec0, including those that are
part of method body executions.

Consider Def. 4.2.17. Consider the execution of a method call statement
mcs from an evaluation context ec. This execution consists of a context
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switch, a method body execution, and another context switch. Roughly, if
AbstrMethBodyExec(mcs, ec,A,AS , cds) = 〈va,m〉, then the method called is m,
and the full abstract view of the evaluation context from which the method body
is executed is va.

Definition 4.2.16. MethCallExecs : Seq(AStmt)×EvalContext ×ClassDefSet →
Set(EvalContext × AStmt)
〈ec1, s〉 ∈ MethCallExecs(s0, ec0, cds) iff
there is are cs ∈ CallStack , s1 ∈ Seq(AStmt) such that
〈ec0, 〈〉 , s0〉ù

∗c
cds 〈ec1, cs, 〈s〉 ⊲ s1〉, and

s ∈ AMCStmt .

Definition 4.2.17. AbstrMethBodyExec : EvalContext × AMCStmt × Alg ×
AlgSpec × ClassDefSet → Valuation × Method
AbstrMethBodyExec(mcs, ec,A,AS , cds) = 〈va,m〉 iff
there are v0, v1, v2 ∈ AVar , σ ∈ State such that

mcs is v0 := m(v1, v2), and 〈ec, 〈〉 , 〈mcs〉〉ùc σ, and
AbstrViewFull(σ.ec,A,AS , cds) = va.

Theorem 4.14. For every cds ∈ ClassDefSet, AS0 ∈ AlgSpec,
if there are A ∈ RespectableModels(AS0), AS1 ∈ AbstrOpDefs(cds,AS0)

such that
for every s ∈ RelevantStmtSeqs(A),

for every 〈ec,mcs〉 ∈ MethCallExecs(s, emptyec, cds),
IsExecTerminating(〈ec, 〈〉 , 〈mcs〉〉 , cds) = T , and
IsSideEffectFree(ec,mcs,A,AS1, cds) = T , and
there are va ∈ Valuation, m ∈ Method such that

AbstrMethBodyExec(mcs, ec,A,AS1, cds) = 〈va,m〉, and
IsAbstrResCorBody(va,m,A,AS1, cds) = T ,

then cds satisfiesh AS0.

Proof of Thm. 4.14 depends on two intermediate lemmas. These are presented
below, followed by the proof of the theorem.

Proof of step 2: intermediate lemma 1. Consider Lem. 4.15. Roughly,
IsAbstrResCorBody ensures that the abstract execution of the body of m returns
the right result, and that respectssse relates the concrete execution of the body
to its abstract execution. This first intermediate lemma is used in the second
intermediate lemma.

Lemma 4.15. for every ec ∈ EvalContext, m ∈ Method, cds ∈ ClassDefSet,
A ∈ RespectableAlg, AS ∈ AlgSpec, va ∈ Valuation,

if AbstrViewFull(ec,A,AS , cds) = va, and
IsAbstrResCorBody(va,m,A,AS , cds) = T , and
cds respectssse A for 〈ec,GetBody(m, cds)〉, and

then IsResCorBody(ec,m,A,AS , cds) = T .

The proof outline of Lem. 4.15 is as follows.
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1 Consider ec0 ∈ EvalContext , m ∈ Method , cds ∈ ClassDefSet , A0 ∈ Alg ,
AS ∈ AlgSpec, va0 ∈ Valuation such that the premise of Lem. 4.15 holds.

2 Assume (Def. 4.2.3 : respectssse) ec1 ∈ EvalContext , va1 ∈ Valuation such that
〈ec0,GetBody(m, cds)〉ù∗c

csd 〈ec1, 〈〉 , 〈〉〉, and
AbstrView(ec1,A,AS , cds) = va1.

3 Assume (premise Lem. 4.2.14 : IsResCorBody) va2 ∈ Valuation, sv0, sv1 ∈
StackVar , t0 ∈ Term, ν ∈ V such that

AbstrView(ec0,A,AS , cds) = va2, and
GetFormalParams(m, cds) = 〈sv0, sv1〉, and
ReplaceThis(sv0, sv1) = t0, and
Eval(m(t0, sv1), va2,A0,AS ) = ν.

4 Then we can assume (conclusion Def. 4.2.15 : IsAbstrResCorBody) va3 ∈
Valuation, rv ∈ ReturnVar , t1 ∈ Term such that
〈va0,GetBody(m, cds)〉ù∗a

A 〈va3, 〈〉〉, and
GetReturnVar(m, cds) = rv , and
ReplaceThis(rv , cds) = t1, and
Eval(t1, va2,A,AS ) = ν.

5 We know that va2 = AbstrViewFull(ec1,A,AS , cds) (Def. 4.2.3: respectssse).
6 Then IsResCorBody(ec0,m,A0,AS , cds) = T .

That concludes the proof outline of Lem. 4.15.

Proof of step 2: intermediate lemma 2. Consider Lem. 4.16. Note that
its premise is very similar to that of Thm. 4.14. The proof of this lemma brings
together all the main lemmas that we have proven in this section. The intuition
is the following. Consider an arbitrary method call execution in the execution of
s. This call execution consists of a context switch, a body execution, and another
context switch. It follows by induction that every call execution in the body
execution is respected. Therefore, the body execution is respected (Lem. 4.7).
Then, as the abstract execution of the body is result correct by assumption, its
concrete execution is result correct as well (Lem. 4.15). Then, as the method
call execution is terminating and side-effect free by assumption, it is respected
(Lem. 4.8).

Lemma 4.16. for every s ∈ Seq(AStmt), ec0 ∈ EvalContext, cds ∈ ClassDefSet,
A ∈ RespectableAlg, AS ∈ AlgSpec,

if for every 〈ec1,mcs〉 ∈ MethCallExecs(s, ec0, cds),
IsExecTerminating(〈ec1, 〈〉 , 〈mcs〉〉 , cds) = T , and
IsSideEffectFree(ec1,mcs,A,AS , cds) = T , and
there are va ∈ Valuation, m ∈ Method such that

AbstrMethBodyExec(mcs, ec1,A,AS , csd) = 〈va,m〉, and
IsAbstrResCorBody(va,m,A,AS , cds) = T ,

then for every 〈ec1,mcs〉 ∈ MethCallExecs(s, ec0, cds),
〈cds,AS 〉 respectsse A for 〈ec1,mcs〉.

The proof outline of Lem. 4.16 is as follows.
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1 Assume s0 ∈ Seq(AStmt), cds ∈ ClassDefSet , A ∈ Alg , AS ∈ AlgSpec such
that the premise of Lem. 4.16 holds.

2 Proof is by induction on the size of MethCallExecs(s0, cds).
3 Base Case: | MethCallExecs(s0, cds) |= 0. In this case,

MethCallExecs(s0, ec0, cds) = {} and the conclusion holds trivially.
4 Step Case: Assume n > 0 such that | MethCallExecs(s0, cds) |= n. The

induction hypothesis concludes respect for all method call executions in all
sequences with fewer than n method call executions.

5 Consider an arbitrary method call execution 〈ec1, v0 := m(v1, v2)〉 ∈
TopLevelMCExecs(s0, ec0, cds).

6 Then we can assume (premise Lem. 4.16) σ ∈ State, va0 ∈ Valuation such that
〈ec1, 〈〉 , 〈v0 := m(v1, v2)〉〉ù

c σ, and
AbstrViewFull(σ.ec,A,AS , cds) = va0.

7 Then MethCallExecs(GetBody(m, cds), σ.ec, cds) ⊂ MethCallExecs(s, ec0, cds)
(Def. 3.1.51:ùc ).

8 Then for every 〈ec2,mcs〉 ∈ MethCallExecs(GetBody(m, cds), σ.ec, cds),
〈cds,AS 〉 respectsse A for 〈ec2,mcs〉 (induction hypothesis).

9 In other words, if an arbitrary method call v0 := m(v1, v2) is executed from
top-level evaluation context ec1, and as a result, the body of m is executed from
an evaluation context σ.ec, then every method call execution in this method
body execution is respected. We now prove that 〈ec0, v0 := m(v1, v2)〉 itself is
respected as well, using Lem. 4.8.

a To this end, we first prove that IsResCorBody(σ.ec,m,A,AS , cds) = T
using Lem. 4.15.

1 To this end, we first prove 〈cds,AS 〉 respectssse A for
〈σ.ec,GetBody(m, cds)〉 using Lem. 4.7.

a We know TopLevelMCExecs(GetBody(m, cds), σ.ec, cds) ⊆
MethCallExecs(s, ec0, cds) (as the initial call stack does not

affect an execution).
b Then

for every 〈ec1, s〉 ∈ TopLevelMCExecs(GetBody(m, cds), σ.ec, cds),
cds respectsse 〈A,AS 〉 for 〈GetBody(m, cds), σ.ec〉 (already proven for
every method call execution in the method body execution).

c We also know IsFieldsAssignedToDefined(σ.ec,GetBody(m, cds)) =
T , as 1) a method body only assigns to fields that are defined in
its class (Def. 3.1.19 : ClassDef ), and 2) all fields of the class of an
object are defined when the object is allocated (Def. 3.1.50), and 3)
fields cannot be ’undefined’ (Def. 3.1.51 :ùc ).

d Then 〈cds,AS 〉 respectssse A for 〈σ.ec,GetBody(m, cds)〉 (Lem. 4.7).

2 Furthermore, we can assume (premise Lem. 4.16)
AbstrViewFull(σ.ec,A,AS , cds) = va, and
IsAbstrResCorBody(va0,mcs,A,AS , cds) = T .

3 Then IsResCorBody(σ.ec,m,A,AS , cds) = T (Lem. 4.15).

b Then IsResultCorrect(ec1, 〈v0 := m(v1, v2)〉 ,A,AS , cds) = T (Lem. 4.13).
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c Furthermore, we can assume (premise Lem. 4.16)
IsExecTerminating(〈ec1, 〈〉 , 〈v0 := m(v1, v2)〉〉 , cds) = T , and
IsSideEffectFree(ec1, v0 := m(v1, v2),A,AS , cds) = T .

d Then 〈cds,AS 〉 respectsse A for 〈ec1, v0 := m(v1, v2)〉 (Lem. 4.8).

10 So, for an arbitrary top-level method call execution, both the method call
execution itself and all the method call executions it contains are respected.

11 Then the conclusion of Lem. 4.16 holds, i.e., all method call executions in the
execution of s from ec0 are respected.

12 That concludes the proof of the step case.

That concludes the proof outline of Lem. 4.16.

Proof of step 2: proof of Thm. 4.14. Proof of Thm. 4.14 is straightforward
given Lem. 4.16 (which has a premise that is implied by the premise of Thm. 4.14,
and which concludes that all method call executions are respected) and Thm. 4.6
(which concludes that Hoare-style satisfaction is established when all top-level
method call executions are respected).

4.2.6 Modular Reasoning

In Sect. 4.2.5, we presented a reasoning approach to establish Hoare-style satis-
faction. This approach requires properties to be established for every method call
execution that can occur in any execution of a relevant statement execution in
the context of cds. The downside of the approach is that any change to cds can
invalidate this reasoning. In this section, we show under which conditions the
implementer of a method m can reason modularly, i.e., in such a way that changes
to methods other than m do not affect the reasoning about m.

Containment Consider Def. 4.2.18. The intuition is that
AreMethCallExecsContained(mceSet ,A, cds) holds only if the set of method
call executions mceSet contains all method call executions of all executions of
statement sequences that are relevant to A. Recall from Def. 4.2.5 that s is
relevant only if its abstract execution terminates normally. Note that this is
the set of method call executions for which the premise of Thm. 4.14 requires
termination and side-effect freeness.

Definition 4.2.18. AreMethCallExecsContained : Set(EvalContext ×
AMCStmt)× Alg × ClassDefSet → Bool
AreMethCallExecsContained(mceSet ,A, cds) = T iff
for every s ∈ RelevantStmtSeqs(A),

MethCallExecs(s, emptyec, cds) ⊆ mceSet .

Consider Def. 4.2.19. Recall from Def. 4.2.17 that AbstrMethBodyExec relates a
method call execution to the corresponding abstract method body execution. The
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intuition is that AreAbstrMethBodyExecsContained(ambeSet ,mcsSet ,A,AS , cds)
holds only if for every method call execution 〈ec,mcs〉 ∈ mceSet , the
corresponding abstract method body execution is contained in the set
ambeSet . Note that if AreMethCallExecsContained(mceSet ,A, cds) and
AreAbstrMethBodyExecsContained(ambeSet ,mcsSet ,A,AS , cds) both hold, then
ambeSet contains every abstract method body execution for which the premise of
Thm. 4.14 requires abstract result correctness.

Definition 4.2.19. AreAbstrMethBodyExecsContained : Set(Valuation ×
Method)× Set(EvalContext × AMCStmt)× Alg × AlgSpec × ClassDefSet → Bool
AreAbstrMethBodyExecsContained(ambeSet ,mcsSet ,A,AS , cds) = T iff
for every 〈ec,mcs〉 ∈ mceSet ,

AbstrMethBodyExec(mcs, ec,A,AS , cds) ∈ ambeSet

Modular reasoning Consider Thm. 4.17.

The intuition is that the implementer must establish termination and side effect
freeness only for an arbitrary method call execution mce for which he assumes a
specific set of properties to hold. In the theorem, mceSet represents the set of all
method call executions with these properties. Let relevantMceSet be the set of all
method call executions of all executions of statement sequences that are relevant to
A. Given the premise of Thm. 4.14, mceSet needs to contain relevantMceSet . Note
that this is the case when AreMethCallExecsContained(mceSet ,A, cds) = T . This
is typically established by 1) requiring that the method body implementer ensures
that a certain set of syntactical and/or semantical properties holds in mce, and 2)
providing a meta-level proof (i.e., a proof that is not problem-specific, proven by
the provider of the methodology) that these properties constrain relevantMceSet
enough to enure that mceSet contains relevantMceSet .

Similarly, the implementer must establish result correctness only for an
arbitrary abstract method body execution mcbe for which he assumes
a specific set of properties to hold. In the theorem, ambeSet repre-
sents the set of all abstract method body execution with these prop-
erties. Given the premise of Thm. 4.14, ambeSet must be such that
AreAbstrMethBodyExecsContained(ambeSet ,mcsSet ,A,AS1, cds) holds. Again,
this is typically established by requiring a set of syntactical and/or semantical
properties holds in mce, and providing a meta-level proof. In Exmpl. 4.6, we
discuss a well-known property that the implementer can assume to hold in the
abstract method body execution: the class invariant.

Theorem 4.17. For every cds ∈ ClassDefSet, AS0 ∈ AlgSpec,
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if there are A ∈ RespectableModels(AS0), AS1 ∈ AbstrOpDefs(cds,AS0),
mceSet ∈ Set(EvalContext × AMCStmt),
ambeSet ∈ Set(Valuation × Method) such that

AreMethCallExecsContained(mceSet ,A, cds) = T , and
AreAbstrMethBodyExecsContained(ambeSet ,mceSet ,A,AS1, cds) = T ,
and for every 〈ec,mcs〉 ∈ mceSet,

IsExecTerminating(〈ec, 〈〉 , 〈mcs〉〉 , cds) = T , and
IsSideEffectFree(ec,mcs,A,AS , cds) = T , and

for every 〈va,m〉 ∈ ambeSet,
IsAbstrResCorBody(va,m,A,AS1, cds) = T ,

then cds satisfiesh AS0.

Proof of Thm. 4.17 is straightforward given Thm. 4.14, Def. 4.2.18 and Def. 4.2.19.

Example 4.6. (Class Invariants)

In this context, a class invariant is a relation between the (abstract values of) fields
of an object. For example, a class invariant for class Rat from Exmpl. 4.1 could
be that the greatest common divider of fields n and d is 1.

Note that this property cannot be established by the caller of a Rat method. For
example, in the abstract view of the caller, newRat(1, 2) and newRat(2, 4) are the
same value. We discuss an informal specification and implementation approach
for invariants.

A class invariant of a class C can be specified in the same way as an abstraction
operator: introduce a special purpose operator inv that has the sorts of the fields
of C as its domain sorts and Bool as its range sort, and define one or more axioms
that relate inv to operators of the specification.

We say that the invariant of α ∈ A holds in ec0 ∈ EvalContext when 1) α is of
a class C , and 2) ViewOf (α, ec0.os) = ec1 (recall from Def. 3.3.5 that ViewOf
moves the fields of α from the object store to the stack frame of ec1), and 3) the
full abstract view of ec1 is va ∈ Valuation, and 4) C has fields f , and 5) inv(f )
evaluates to T in va.

Consider an arbitrary mceSet ∈ Set(EvalContext × AMCStmt), A ∈ Alg ,
cds ∈ ClassDefSet such that 1) AreMethCallExecsContained(mceSet ,A, cds) =
T , and 2) the body of every method in cds is a sequence of abstract state-
ments. Consider an arbitrary ambeSet ∈ Set(Valuation × Method), C ∈

ClassSort such that for every 〈va,m〉 ∈ ambeSet , if m /∈ Constructor and
OpSort(m) = C , then the class invariant of C holds in va. It can be proven
that AreAbstrMethBodyExecsContained(ambeSet ,mcsSet ,A,AS , cds) = T if 1)
for every 〈va0,m〉 ∈ ambeSet , m is of class C , and the abstract execution of the
body of m terminates normally in valuation va1, then the invariant of C holds in
va1, and 2) no object referred to by a field of an object, is aliased.

A key part of this meta-level proof uses the assumption that all method bodies
are abstract statements to show that
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1) an invariant of object α is not invalidated by a statement execution when no
method that has α as the receiver is active, i.e., when there is no stack frame on
the stack in which this refers to α.
2) there are no callbacks, i.e., if the this object of the stack frame of a state refers
to α, then there is no stack frame on the stack in which this refers to α.

Consider a non-constructor method m of a class C with fields f . Given the meta-
level proof, when reasoning about abstract result correctness of the execution of
the body of m from a valuation va, the implementer can assume that inv(f )
evaluates to T in va.

4.2.7 Consequences of the Implementation Approach

In this section, we discuss the main advantages and limitations of the implemen-
tation approach.

One main advantage of the approach is that it allows the implementer of a method
body to reason about the abstract execution of the body, rather than the much
more complicated concrete execution. Another is that the termination, side-effect
freeness and result correctness properties are suitable for verification. We sketch
verification techniques in Sect. 5.

One inherent and severe limitation of the approach is that certain well-established
OO design patterns that are based on cooperation between objects that are concep-
tually at the same level of abstraction, cannot be used. An example is the Observer
Pattern [GHJV95]. The reason is that these patterns use methods that are not
side-effect free when viewed abstractly. Use of such patterns requires a different
abstract view of an evaluation context that considers the state as a configuration
of objects, where a single statement execution can change the entire configuration.
This different style of reasoning requires a different style of specification as well
(one that is studied in the rest of this thesis). Note that this could still be com-
bined with a client specification that is based on algebraic specifications, although
we do not know of any research in this direction.

Another inherent limitation is that methods are required to be deterministic when
viewed abstractly (i.e., always produce the same result for the same input pa-
rameters). This is intuitive as our abstract view of methods is functional. More
specifically, consider a method call statement v0 := m(v0, v1). If abstract views
va0 and va1 agree on the values of v0 and v1, we expect the result of the abstract
execution of the call from va0 and va1 to be the same. As an example, consider
an algebraic specification AS that defines an underspecified operator choose: C

→ Bool that does not occur in any of the axioms of AS . Consider an imple-
mentation with a class C that has a field switch of sort Bool, and a choose

method with a body switch := !switch; return switch;. Then Hoare-style



92 Chapter 2. Algebraic Specification and its Class-Based Implementation

satisfaction cannot be established using the implementation approach, as we have
to choose a single model A of AS , in which choose evaluates either to T or to
F . More specifically, consider two abstract view va0 and va1 that do not agree on
the value of switch. Then the abstract execution of the body is result correct for
only one of these views, as switch must evaluate to the same value as choose in
the valuation in which the execution terminates. So, again, patterns that rely on
non-deterministic methods require a different style of reasoning and specification.

Finally, a minor limitation of the approach as we’ve presented it, is that every
method in the implementation must be an operator in the client specification.
This is fairly simple to remedy by having a second, implementer-defined algebraic
specification that contains the operators that are not relevant to the client.

This ends the treatment from the implementer’s perspective. We have defined an
implementation approach where the implementer can reason about the method
bodies at the abstract level. The next step is to define syntactical restrictions and
proof obligations that establish satisfaction for computation, i.e., to switch to the
verifier’s perspective.

5 Verifier’s Perspective

In this section we briefly sketch a proof system for the business layer, i.e., for the
computation concern.

Consider a computation implementation cds ∈ ClassDefSet and a client specifica-
tion CS . Our goal is to establish that cds satisfiesc CS , i.e., that the implementa-
tion satisfies the computation concern. Recall that we have proven in Sect. 3.4 that
in that case, the implementation that consists of cds and the problem-independent
presentation layer, satisfies CS .

In Sect. 4.1.4, we have proven that satisfaction for the computation concern can
be separated into the following concerns.

(1) Hoare-style satisfaction, and
(2) Satisfaction for the makeCanon methods.

In section Sect. 4.17, we have proven that Hoare-style satisfaction can be separated
into three different concerns. Roughly, these are the following.

(1a) Method call executions must terminate, and
(1b) Method call executions must be side-effect free when viewed abstractly, and
(1c) Abstract method body executions must be result correct.

So, there are four concerns that the verification approach has to establish. We
briefly discuss proof systems for each of them.



5. Verifier’s Perspective 93

5.1 Termination

Establishing this concern is much simplified by the requirement that method bod-
ies are finite sequences of abstract statements, due to simple syntax of such state-
ments. The verification of termination is treated in detail in e.g. [MP74, CS02].

5.2 Side-Effect Freeness

Reasoning about side-effect freeness requires reasoning about the footprint of an
abstract variable: the set of locations that determine its abstract value. Reasoning
about the footprint can be done indirectly, using a notion of ownership [Cla01,
Mül02].

To ensure side-effect freeness, it needs to be ensured that

(1) the footprints of any two abstract variables are disjoint, and
(2) if an object α0 inside the footprint is exposed to an object α1 outside it, then

α1 does not call modifying methods on α0, does not store α0, and does not
expose α0 to objects that modify or store it.

These two properties either require intricate reasoning within the ownership sys-
tem, or fairly severe syntactic restrictions. For example, read statements v0 := v1
must be disallowed or severely restricted, methods must not return objects referred
to by their fields, and modifying methods must not be called on formal parameters.
The severeness of the required restrictions reflects the severeness of the inherent
absence of cooperation between object in the methodology.

5.3 Abstract Method Body Execution Result Correctness

Recall from Def. 4.2.15 that IsAbstrResCorBody formalizes the concern of result
correctness of an abstract method body execution. Given a computation imple-
mentation cds ∈ ClassDefSet and a method m, IsAbstrResCorBody is separated
into three concerns. Recall from Def. 3.1.25 that GetReturnVar(m, cds) returns a
this variable for void methods and constructors, and returns a result variable
otherwise. Recall from Def. 4.2.13 that ReplaceThis replaces a thisC variable by
an application of the abstraction operator of C to the fields of C . The concerns
are as follows.

(1) The abstract execution terminates.
(2) If the abstract execution terminates, then the abstract execution terminates

normally.
(3) If the execution terminates normally in a valuation va, then

ReplaceThis(GetReturnVar(m, cds)) evaluates to the right value.

The second of these concerns can be further separated.

(2a) Variables are defined when they are evaluated.
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(2b) Applications are defined when they are evaluated.

Concern (1): termination of the abstract execution. Given the simple
syntax and semantics of abstract executions, it is straightforward to prove that
every abstract execution terminates.

Concern (2a): variables are defined when evaluated. Concern 2a is estab-
lished using definite assignment flow analysis. Definite assignment is the property
that a variable is assigned a value before it is read. Definite assignment ensures
that a variable is defined when it is read, as it is defined by the assignment and
cannot be undefined.

Flow analysis for definite assignment is studied in detail for C# in [Fru04] and
for Java in [SSB01]. The analysis needed in our setting is much simpler, due to
the simple syntax and semantics of abstract executions. Essentially, it needs to
be ensured that 1) in every method, every local variable is definitely assigned, 2)
in constructors, fields are definitely assigned, and 3) in constructors, all fields of
non-primitive sorts are assigned (which ensures that these fields are assigned in
the prestate of a non-constructor execution). Note that definite assignment (or a
property that is sufficiently similar) can also be established in a more liberal way
through the use of a proof system, at the cost of additional complexity.

The Boogie verification system. Concerns 2b and 3 can be established using
a automated theorem prover.

As a concrete example, we consider the Boogie verification system [Lei08,
BCD+06]. Essentially, the Boogie verification system provides a partial boolean
function Boogie that has two arguments.

(1) A sequence of abstract statements, annotated with assumptions and assertions.
(2) An algebraic specification.

Roughly, the verification system allows to assume following verification axiom. If
Boogie(s,AS ) returns true (i.e., verification succeeds), then for every A ∈ AS ,
for every va ∈ Valuation, if s is executed from va in the context of A and all
assumptions hold, then all assertions hold as well.

There is one complication. The Boogie verification system uses two-valued logic,
rather than the three-valued logic used in this chapter (as two-valued logic is more
suitable for verification, the underlying reasoning is based on [GS95]). The impact
on the axiom that we sketched above is the following.

(1) Partial operations in AS are interpreted as total operations (which affects the
set of models for which the property holds).

(2) The property only holds for a va ∈ Valuation if va defines all variables that
occur in s.
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Concern (2b): applications are defined when evaluated. The main prob-
lem in establishing this concern is that the verification system cannot establish
properties about undefinedness directly, as the Boogie function interprets all op-
erators in the algebraic specification that is provided to it, as total operators.

A solution is to require the specifier to make definedness explicit in the algebraic
specification AS of the client specification. To this end, we require AS to be such
that for every method m : S1 × S2 ã→ S0 in the signature, the following holds.

(1) AS contains a special-purpose operator prem : S1 × S2 → Bool
(2) AS contains a definedness axiom ∀s1 : S1, s2 : S2 • prem(s1, s2) ⇒ m(s1, s2) =

m(s1, s2). Roughly, this states that if the precondition holds, then m is defined
(3) Every axiom in AS in which m occurs is prefixed with the precondition.

It is assumed that the primitive operators are defined in this way as well. Then,
for every o(v0, v1) ∈ ACall (i.e., for every application of a method or primitive
operator), for every method body, before every substatement v := o(v0, v1) in the
body, assert that preo(v0, v1) = true.

Given this restriction and the verification axiom of the verification system, it is
straightforward to deduce that if verification succeeds, then every application that
is evaluated during an abstract execution, is defined.

As an example of a precondition, consider the Set example in Hoare’s paper on
data abstraction, [Hoa72]. Hoare informally states that the size of the set is not
greater than 100, and leaves the algebraic specification implicit. In our approach,
this requirement is made explicit by a precondition for the insert method (which
takes a Set and an integer). This precondition states that if the second parameter
is not an element of the first, then first actual parameter is a set with a size of at
most 99.

Concern (3): return the right result. One way of establishing this property
is by using the proof obligation proposed by Hoare in [Hoa72] (slightly adapted to
deal with non-void methods). Given a method m in a computation implementation
cds, require the following.

(1) If GetFormalParams(m, cds) = 〈sv0, sv1〉, and ReplaceThis(sv0, cds) = t0,
then assume that x = m(t , sv1) holds before the execution of the first state-
ment of the body of m (where x is a special purpose variable that is not
assigned to in the body).

(2) If ReplaceThis(GetReturnVar(m, cds)) = t1, then assert that t1 = x holds in
the evaluation context in which the abstract execution terminates.

The downside of this technique is that it cannot be used to prove the implemen-
tation of underspecified operators like the operator choose : C → Bool that we
discussed in Sect. 4.2.7, for which no axioms are defined. A more involved solution
that does allow this, requires to prove the following.

(1) For every axiom ax in the specification, for every occurrence of m



96 Chapter 2. Algebraic Specification and its Class-Based Implementation

in ax , if ax ′ is like ax , but with the occurrence of m replaced by
ReplaceThis(GetReturnVar(m, cds)), then ax ′ holds in the valuation in which
the abstract execution of the body terminates.

(2) The body is deterministic.

Details are outside the scope of this chapter.

Note that these approaches only work if we establish that the union of the al-
gebraic specification of the client specification and the algebraic specification of
the abstraction operators, is consistent. The reason is that the verification system
establishes the desired property for all models of this union of specifications, but it
does not establish that there is such a model. Establishing consistency is outside
the scope of this chapter. It is studied in more detail in Sect. 6.

5.4 Satisfaction for makeCanon methods

Satisfaction for a makeCanon method (Def. 4.1.12) can be established by reasoning
about the abstract execution of the body of that method. Therefore, it can be
established using the Boogie verification system introduced in Sect. 5.3.

This requires that the verification system can deduce properties of ParseTrees.
To this end, when verifying the body of a makeCanon method, the algebraic
specification is extended with a sort ParseTree and an underspecified operator
newParseTree : Int × Int × ParseTree× ParseTree.

There are two main difficulties in the formulation of proof obligations (i.e., asserts).

(1) The abstract value of the this object in the evaluation context from which
the method body is executed, must be related to the evaluation of the closed
application represented by the parse tree that is returned by the execution.

(2) It must be possible to reason axiomatically about the canonicity of a closed
application.

The key to a solution for the first difficulty is to extend the algebraic spec-
ification AS that is provided to the Boogie function with, for every S ∈
GetClassNames(cds) ∪ PrimSig .sorts,

(1) An operator toClosedApplS that takes a ParseTree and returns an S that
the parse tree represents, and with axioms that essentially follow the display
algorithm. This ensures that if a parse tree p represents a closed explication
ca in a valuation va, then toClosedApplS (p) = ca in va.

(2) An operator makeCanonS that takes an S and returns a ParseTree, with
an axiom ∀s ∈ S • toClosedApplS (makeCanonS (s)) = s. This captures the
intended behavior of the makeCanonS method and is allows to reason about
calls to that method from makeCanon methods of classes other than C .

Then for an arbitrary makeCanonC method, the statement sequence that needs
to be verified is the body of the method, annotated with an assumption that
abstrC (s) = X holds before the abstract execution of the body, and an assertion
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that toClosedApplC (result) = X holds after the execution.

The key to a solution for the second difficulty is to require the canonicity function
to be defined in terms of parse trees using an algebraic specification. To this end,
the algebraic specification of the client specification must define, for every relevant
sort S , a special-purpose partial operator isCanonS that takes a ParseTree and
that returns a Bool . For example, consider the specification of rationals from
Exmpl. 2.1. Note that Rat is sort 0 in the specification, and that newRat is operator
0 of class Rat. Then the axiom is the following (where it is assumed that gcd is
algebraically specified as the greatest common divider operator).

∀q , p ∈ ParseTree •
isCanonRat(newParseTree(0, 0, q , p)) = true

⇔ gcd(toClosedApplInt(q), toClosedApplInt(p)) = 1

Then for an arbitrary makeCanonC method, the statement sequence that needs
to be verified is the body of the method, annotated with an assertion that
isCanonC (resultParseTree) = true holds after the execution. Note that the this
verification can be combined with the previous one, i.e., the body does not have
to be verified twice with different annotations, but can be verified once with the
combination of the annotations instead.

6 Conclusions

In this chapter we have presented a novel syntax and semantics of client specifica-
tions that are based on algebraic specifications (Sect. 2). These client specifications
are suited to situations where the client is interested only in the input/output be-
havior of the implementation. A client specification has two components.

(1) An algebraic specification that consist of a signature that describes the sorts
and operators of the client’s problem domain, and a set of axioms. Every
model of the axioms provides a notion of equality between terms from that
signature that is acceptable to the client. Note that if there are no underspec-
ified operators, then these models are isomorphic.

(2) A notion of canonicity that defines which closed applications are acceptable
as output.

The semantics of specifications defines a set of black boxes that take a closed
application and return an equivalent canonical representation, using one of the
notions of equivalence defined by the axioms. We claim that this semantics is
intuitive, as it allows the client to think about the implementation as a black
box that answers any problem in the specified problem domain by rewriting the
problem into its canonical form.

We have also studied class-based implementations of client specifications. We have
defined when a set of classes satisfies a client specification (Sect. 3). This is done
through the introduction of a generic presentation layer that 1) translates the
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input of the black box to a statement sequence s, and 2) displays the result of the
execution of s as the output of the black box. This presentation layer requires that
for every non-primitive sort in the specification, the set of classes contains a class,
and for every operator of that sort, the class contains a method. It also requires
that the result of a computation is in a format that is suitable for display.

We have presented an implementation approach that formalizes and extends ideas
from Hoare’s seminal paper on data abstractions ([Hoa72]) at the semantical level
(Sect. 4). Effectively, this approach allows the implementer of a method body
to use an abstract view of the state when reasoning about the execution of the
method body, and requires that methods behave as the corresponding operator
from the language. The approach allows for modular reasoning. We conclude that
the approach allows to implement methods using efficient in-place algorithms, al-
though it is inherently unsuitable for OO implementations that rely on cooperation
between objects that are conceptually at the same level of abstraction.

Finally, we have sketched a proof system that allows to formally verify that an
implementation developed using the approach from Sect. 4 satisfies its specification
(Sect. 5).

Interesting future work is to formalize the proof system sketched in Sect. 5, and
to study the implementation of client specifications that are based on algebraic
specifications, while reasoning about (parts of) the implementation using OO spec-
ifications.



CHAPTER 3

Cooperation-Based Invariants for OO Languages

This chapter contains the following paper, with minor editorial changes: Ronald
Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik Luit. Cooperation-based
Invariants for OO Languages. In Proceedings of the International Workshop on
Formal Aspects of Component Software (FACS 2005), volume 160 of ENTCS,
pages 225-237. Elsevier, 2007. [MHKL07a] It is available online.

abstract In general, invariants may depend on the state of other objects. The
approach introduced in this chapter allows this for objects of mutually visible
classes, in a way that supports modular verification. To this end, dependencies are
made explicit by cooperation. In particular, invariants expressing non-hierarchical
object relations are supported. Furthermore, an inc-set allows a method to specify
explicitly that it does not depend on the validity of a certain invariant. This way,
it can be called even when that invariant is violated.

1 Introduction

We present an approach that allows the specification and verification of powerful
invariants and supports the modular style of Object-Oriented (OO) development.
Such modular development is essential for the component-based paradigm.

A class invariant describes the consistent states of objects instantiated from that
class. In general, such an invariant can relate the state of several objects. For
instance, in the well-known Observer Pattern [GHJV95], an observer is consistent
when its state matches that of its subject. Traditionally, one expects invariants to
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hold in the pre- and post-states of method executions. Two problems related to
such invariants are dealt with by our approach.

The first problem is that invariants that relate arbitrary objects can not be mod-
ularly verified. This means we have to restrict these relations. We introduce
the concept of cooperation to explicitly express relations in a way that minimizes
verification effort.

The second problem is that method calls from inconsistent states are sometimes
unavoidable. In the case of the Observer Pattern, when the subject’s state has
been updated, it calls the inconsistent observers to notify them of the update.
In our approach, invariants hold in all pre- and post-states of method executions
unless explicitly specified otherwise. To this end, our approach introduces the novel
specification construct inc (for inconsistent). This construct allows a method to
specify explicitly that it does not depend on the validity of a certain invariant.

We discuss the concepts introduced above in more detail in section 1.1, and give
an overview of the rest of the chapter in section 1.2.

1.1 Concepts

In this chapter we consider Java-like OO languages. Specifications of OO programs
are often based on two fundamental specification constructs, namely on pre- and
post-conditions for methods and on class invariants. Class invariants can simplify
proofs and specifications as the invariant predicates can be assumed to hold in
specific program states. Furthermore, by capturing a desired state relation, an
invariant can guide the design of methods that have access to that state.

The power of invariants is determined by their expressiveness, i.e. by the relations
they can describe in a program state, and by their semantic strength, which deter-
mines in which program states such a relation holds. However, for invariants to be
a useful ingredient of specifications, their power has to be balanced against their
manageability. Manageability is determined by the required specification effort
(the ease of specification of desired relations) and verification effort (the number
and complexity of the proof obligations associated with invariants).

Finally, verification should support the modular style of OO development [Mül02].
OO programs have an explicit structure in which classes are grouped into modules
(think of components or Java packages). Modular verification means a class C is
verified using only specifications of classes visible to C , where class D is visible to
class C when C and D are in the same module or when C ’s module imports D ’s
module. Furthermore, such verification requires proof that C is well-behaved. That
is, there are proof obligations not induced by the specification of C itself. This
is needed to guarantee that a class meets its specification in any well-behaved
context, as the behavior of a class can be affected by classes not visible to it.
For instance, consider overriding of methods, which requires a form of behavioral
subtyping [LW94, HK01].
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1.2 Overview

The next section introduces some basic terminology used in the chapter. Our
approach is presented in sections 3, 4 and 5. Section 3 discusses cooperation,
section 4 deals with method calls from inconsistent states and section 5 presents
proof obligations for the modular verification of invariants. We discuss existing
approaches in section 6 and future work in section 7. The last section presents our
conclusions.

2 Terminology

This section introduces terminology used in relation with invariants.

C and D identify classes (that is, C and D are typical elements of the set of class
names). f identifies a field (also known as instance variable). To simplify the
presentation, a subclass is not allowed to define a fieldname that has already been
defined in a superclass (known as field shadowing). Extending our approach to
allow field shadowing is straightforward.

α identifies an object, i.e. the instantiation of a class (think of α as an address).
A location α.fC stores the value of object α’s field f defined in class C . Class
C is often omitted as it can be inferred from the type of α. g denotes a field
access of the form .f . For i ≥ 1, define α1 g1 . . . gi inductively in the following
way: α1 g1 . . . gi = α2 gi when α1 g1 . . . gi−1 = α2. For instance, when α1.f1 = α2

and α2.f2 = α3, α1.f1.f2 = α3.

In Java-like languages, objects and their contents are accessed by reference expres-
sions. For simplicity, we only consider references that consist of a scope variable
and zero or more field accesses. A scope variable s is either the keyword variable
this, a method parameter p, a local variable v or a logical variable X . A reference
r is an expression of the form s g1 . . . gi , i ≥ 0. A this-reference t is a reference in
which the scope variable is this. Scope variable this is often omitted in Java-like
programs. When r = s g1 . . . gi and 1 ≤ j ≤ i , reference s g1 . . . gj is called a sub-
reference of r (note that r is a subreference of r but, for technical reasons, s is not).
While method selection is dynamic in Java-like languages, field selection is static.
statType(r) yields the static type of reference r . All references in this chapter are
assumed to be type-correct (and thus to have a static type). r ⊲ t , the concatena-
tion of reference r and this-reference t , is defined by r ⊲ (this g1 . . . gi) =

def r g1 . . . gi .
For instance, this.f1.f2 ⊲ this.f3.f4 = this.f1.f2.f3.f4. When α1 g1 . . . gi = α2, we say
this-reference this g1 . . . gi refers from α1 to α2.

We call the subset of predicates that are allowed as an invariant invariant pred-
icates. We use R as typical element of such predicates. In this chapter, we do
not consider invariants that quantify over objects (see section 7). Effectively, this
means every reference in an invariant is a this-reference. When this-reference t
occurs in invariant predicate R, we call every subreference of t a supplier reference
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of R. sup(R) yields the set of supplier references of invariant predicate R. When
t .f ∈ sup(R) and statType(t) = C , we say that R depends on field f of class C .

A program state is called a visible state if it is a pre- or post-state of a method ex-
ecution [MPHL06]. The traditional semantics of invariants, in which all invariants
hold in all visible states, is referred to as the visible state semantics.

The OO syntax in the examples is assumed self-explanatory. In the examples we
ignore the orthogonal issue of how to specify what a method leaves untouched
[Lei95, Rey02]. This problem is alleviated, but not solved by invariants. Fur-
thermore, all fields are considered publicly available at the specification level.
Hiding fields at this level [Par72, Mül02] is a separate concern. See for instance
[LBR06, Lei95, Mül02] for specification language support for information hiding.

3 Cooperation

This section introduces the concept of cooperation. Cooperation entails that a
field specifies explicitly, through the specification construct coop, which invari-
ants might be invalidated when the field is assigned to. Cooperation restricts
dependencies to those that are mutually visible (that is, when an invariant in class
C depends on a field of a class D , D is visible to C and vice versa). This restric-
tion enables modular verification of invariants given the visible state semantics.
Furthermore, this explicit specification greatly reduces the total verification effort
required.

Of course, the most expressive invariants are those that can depend on arbitrary
fields. However, in that case any assignment can possibly invalidate such an invari-
ant. That means that, given the visible state semantics, any pair of an invariant
and a method has to be verified. In [HK00], whole-program analysis is used to
verify these pairs. Unfortunately, such an approach does not support modular ver-
ification (section 1.1). When modularly verifying a class that defines an invariant,
it can not be proven that methods of other classes preserve the invariant as their
implementation is not available. Furthermore, when modularly verifying whether
a method is well-behaved, it can not be proven that it preserves all invariants of
all classes, as not all classes are visible. Therefore, a restriction of dependencies is
unavoidable.

In our approach, a class can define multiple, named invariants. An invariant is
defined in a class in the following way:

inv I def R

That is, an invariant has a name I and a definition R (which is an invariant
predicate). IC identifies the invariant with name I defined in class C . def(IC )
yields the invariant predicate R that is the definition of invariant IC . To simplify
the presentation, we do not allow a subclass to define an invariant name that
has already been defined in a superclass (which we call invariant shadowing).
Extending our approach to allow invariant shadowing is straightforward.
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class Node {
Node next coop I(this), J(next);

Node prev coop J(this), I(prev);

inv I def this.next = null ∨ this = this.next .prev;

inv J def this.prev = null ∨ this = this.prev .next;

Node() {this.prev := null; this.next := null;}

void insertAfter(Node n) {
pre: this.next = null ∧ this.prev = null ∧ n ⑧= null ∧ n.next = X

post: n.next = this ∧ this.next = X

this.prev := n; this.next := n.next; n.next := this;

if (this.next ⑧= null) { this.next.prev := this; }

}

}

Example 3.1: Doubly Linked Nodes

An invariant defined in a class must hold for every instantiation of that class. To
differentiate between these instantiations, we introduce instantiated invariants. In-
stantiated invariant IC (α) identifies the instantiation of invariant IC on object α.
To identify instantiated invariants in the specification language, reference invari-
ants are used. A reference invariant IC (r) identifies instantiated invariant IC (α)
when reference r refers to object α. We call r the dependent reference of IC (r).
Classname C is often omitted in instantiated or reference invariants as it can be
inferred from α’s type or r ’s static type.

When, in a given state, a change of the value of location α.f can invalidate instan-
tiated invariant I (α), we call I (α) vulnerable to α.f in that state. For instance, in
example 3.1, when α is a Node object, J(α) is vulnerable to α.prev in a state in
which α.prev stores null and α.prev.next doesn’t store α.

With every location, our approach associates a set of instantiated invariants that
may be vulnerable to that location. While this requires some additional specifica-
tion effort, it greatly reduces overall verification effort. In a well-behaved method,
the instantiated invariants associated with locations the method assigns to are
reproven, but nothing has to be proven for invariants not in this set (see section
5). Note that this benefits from having multiple, named invariants. Furthermore,
this means that the more accurate the set is, the less verification effort is required.
Properties of locations are specified by properties of fields. In our approach, a field
is specified in the following way:

modifier T f coop coop-set

The access modifier modifier, type T and name f of the field are all standard.
The coop-set is a set of reference invariants. We say the field cooperates with
these reference invariants. For instance, in example 3.1, field next of class Node
cooperates with I(this) and J(next). When class D defines a field f and C is a
subclass of D , coop(f ,C ) yields the coop-set of field f of class D .
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Now consider a location α1.fC . When this-reference t refers from α1 to α2 in a
given state, and I (t) ∈ coop(f ,C ), we say α1.fC cooperates with I (α2) in that
state.

The cooperation obligation below ensures that an instantiated invariant is only vul-
nerable to locations that cooperate with it. Only invariants that meet this obliga-
tion are admissible. An invariant meets this obligation when it can be written as a
disjunction of invariant predicates R1∨ . . .∨Ri

1, where dco(Rj , IC ) holds for every
disjunct Rj . dco(Rj , IC ) holds (disjunct Rj cooperates with IC ) when, for every
supplier reference t1.f of Rj , there is a this-reference t2 such that field f on which
the invariant depends cooperates with I (t2), and such that Rj ⇒ this = t1 ⊲ t2.
This implication guarantees cooperation with the appropriate instantiated invari-
ant when invariant predicate Rj holds.

Definition 3.1 (cooperation obligation). There exists a set of invariant predicates
R1 to Ri such that

def(IC ) ⇔ (R1 ∨ . . . ∨ Ri), and
∀j : 1 ≤ j ≤ i : dco(Rj , IC )

, where dco(R, IC ) =def ∀t1, f : t1.f ∈ sup(R) : (∃t2 :: I (t2) ∈ coop(f , statType(t1))
and R ⇒ this = t1 ⊲ t2)

Node’s invariant J, for instance, meets the cooperation obligation. When R1 is
this.prev = null and R2 is this = this.prev .next , def(JNode) ⇔ R1 ∨ R2. R1

has a single supplier reference, this.prev, which cooperates as the field prev has
J(this) in its coop-set and as this = this ⊲ this is trivially true. R2 has supplier
references this.prev and this.prev.next. The cooperation argument for this.prev is
the same as above. Consider this.prev.next. The static type of this.prev is Node.
Field next of class Node cooperates with J(this.next), as J(this.next) ∈ coop(next,
Node). Since this = this.prev .next ⇒ this = this.prev ⊲ this.next , the cooperation
obligation is met.

Treating individual disjuncts in the cooperation obligation allows the coop-set to
be more accurate than when the entire invariant is treated at once. Also, it allows
for a weaker obligation, which means that more invariants are admissible. The
static set of supplier references of an invariant defines a dynamic set of suppliers
to an instantiated invariant: location α1.f is a supplier to instantiated invariant
IC (α2) in a given state when IC has a supplier reference t .f and t refers from α1

to α2 in that state. In any state, the set of locations to which IC (α) is vulnerable
is a subset of its set of suppliers. The obligation ensures that suppliers to a
valid disjunct of the invariant cooperate. The invariant is not vulnerable to a
supplier that only occurs in invalid disjuncts, as assignment to such a supplier
might re-validate the disjunct, but can not invalidate it. Why the obligation
ensures cooperation with the right object is illustrated by the picture and text
below.

By definition, when t1.f ∈ sup(def(IC )) and t1 refers from α1 to α2, α2.f is a

1∨, ⇒ and ⇔ are symbols from the underlying predicate logic, ∃ and ∀ are not
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supplier to IC (α1). α2.f cooperates with IC (α1) when there is a this-reference
t2 such that IC (t2) ∈ coop(f , statType(t1)) and such that t2 refers from α2 to α1.
The first is guaranteed explicitly by the obligation. The second is guaranteed by
R ⇒ this = t1 ⊲ t2. As this refers from α1 to α1 by definition, this = t1 ⊲ t2
guarantees t1 ⊲ t2 also refers from α1 to α1. When t1 refers from α1 to α2 and
t1 ⊲ t2 refers from α1 to α1, t2 must refer from α2 to α1.

✲
this

α1 with IC

t1
✲

✛

t2
α2 contains f coop I (t2)

Besides mutual visibility, cooperation requires the existence of dependent refer-
ences (t2 in the example above). That is, the invariant’s class must be reachable
from the supplier’s class. However, no expressive power is lost due to the ad-
ditional requirement, as auxiliary state (i.e., state only used for the purpose of
specification and verification) can be used when needed.

A formalization of the obligations needed to ensure that invariants hold when they
should is postponed until section 5.

4 Calls from Inconsistent States

By means of the novel specification construct inc that is introduced in this section,
methods can make explicit that they will not rely on certain invariants of certain
objects. It is allowed to call these methods from inconsistent states where these
invariants do not necessarily hold. That is, inc allows the specifier to pinpoint
visible states in which the visible state semantics is too strong and weakens it for
those specific states only.

Sometimes, initialization or update of an invariant is impossible without a method
call as it requires access to a set of fields that can not be accessed by any single
method. Consider example 4.1. Invariant I of class Left relates Left’s field rVal
to class Right’s field val. Right’s method setVal assigns to field val. As shown by
the specification of val, this might invalidate invariant I of the Left-object referred
to by Right’s field l. However, setVal can not assign to Left’s rVal to restore the
invariant. Instead, it has to call Left’s method sync from an inconsistent state.
The challenge is to allow such programs without having to weaken the invariant.

As a solution, we propose a weakening of the visible state semantics based on the
idea that the most intuitive invariants will almost always hold. Therefore, we treat
the cases where they do not as the exceptions that require additional effort and
again rely on a form of cooperation. To this end, method specifications can be
extended by means of the specification construct inc:

inc: inc-set

The inc-set is a set of reference invariants the method will not rely upon to hold in
its precondition. Left’s method sync, for instance, makes explicit it does not rely
on I(this). A method inherits the inc-set of a method it overrides and can extend
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class Left {
protected Right r coop I(this),

J(r);

protected int val coop J(r);

protected int rVal coop I(this);

inv I def

this.rVal = this.r .val ∧ this.r .l = this;

Left() {
Right ri := new Right(this);

}

void setRight(Right ri) {
inc: I(this), J(ri)

pre: this = ri .l ∧ this.r = null ∧
this.val = X ∧ this.rVal = ri .val

post: I (this) ∧ this.r = ri ∧ this.val = X

this.r := ri;

}

void sync() {
inc: I(this)

pre: this.r .l = this

post: I (this)
int i := this.r.getVal();

this.rVal := i;

}

}

class Right {
protected Left l coop I(l),

J(this);

protected int val coop I(l);

protected int lVal coop J(this);

inv J def

this.lVal = this.l .val ∧ this.l .r = this;

Right(Left le) {
inc: I(le)

pre: le.r = null ∧ le.val = 0 ∧ le.rVal = 0
post: I (le)
this.l := le;

this.l.setRight(this);

}

void setVal(int newVal) {
post: this.val = newVal
this.val := newVal;

this.l.sync();

}

int getVal() {
inc: I(this.l)

post: return = this.val

return := this.val;

}

}

Example 4.1: Left/Right (int fields initialize to 0, reference fields to null)

it if needed. Our semantics of invariants is captured by the following definition.

Definition 4.1 (invariant property). A program has the invariant property iff for
every execution sequence of the program the following holds:

• in the prestate of a method execution, the set of invalid instantiated invari-
ants is a subset of the set of instantiated invariants identified by the reference
invariants in that method’s inc-set.

• In the poststate of a method execution, the set of invalid instantiated invari-
ants is a subset of the set of invalid instantiated invariants in the prestate of
that method execution.

Note that this semantics stays close to the visible state semantics. All invariants
hold in the pre- and post-state of a method with an empty inc-set. Only methods
that are involved in the initialization or update of certain invariants might need
a non-empty inc-set. For these methods, an important monotonicity-property is
maintained: every invariant that holds in the prestate of a method execution, holds
in the poststate of that method execution (even if it is in the method’s inc-set).
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inc can be used when the invariant’s class is visible to the class whose method is
to be called. When this is not the case, we have to rely on the more traditional
technique of weakening the invariant using a flag. A flag is a boolean condition b
(for instance an auxiliary boolean field of the class) that signals whether or not the
object is consistent. When the desired invariant predicate is R, define the invariant
as b ⇒ R instead. Then, when b is false, the invariant might be vulnerable to
the flag, but is not vulnerable to any other location. However, a consequence of
this technique is that the relation between the invariant and object consistency
is reversed. Instead of the object being consistent when the invariant holds, the
invariant holds when the object is consistent.

While very flexible, using a flag means verification or specification effort is re-
quired whenever the invariant is to be relied on. In particular, when specifying a
method it has to be decided whether or not it needs the invariant. In contrast,
inc requires deciding which methods are involved in initialization or update of cer-
tain invariants. This leaves more implementation freedom. That is, the inc-set is
typically empty, which means every invariant may be relied upon. inc also works
more naturally with subclassing. An overriding method in a subclass can rely on
invariants the superclass method does not rely on, for instance those added by the
subclass. Such an overriding method can also be used in the update or initializa-
tion of additional invariants as extending the inc-set in the subclass method does
not affect the superclass method or any of its users.

5 Proof Obligations

This section presents proof obligations suitable for the modular verification of
invariants. These proof obligations utilize the coop and inc constructs introduced
in the previous sections.

In the formulation of the proof obligations, it is assumed every method is fully
annotated, i.e. that every statement x has a precondition identified by Px and a
postcondition identified by Qx . The following theorem is established (an unpub-
lished proof exists for a sequential Java-like language):

Theorem 5.1. When a program is correctly annotated and when the proof obli-
gations presented in this section are met, the program has the invariant property.

In section 3, we have defined when a field cooperates with a reference invariant.
Reference invariants are added to the proposition language to describe how fields
cooperate. A reference invariant holds when there is no referenced object, or when
the referenced object’s instantiated invariant holds.

IC (r) =def noObj(r) ∨ def(IC )[r/this]

P [r/this] is the predicate P with all occurrences of this replaced by r . noObj(r)
is defined as:
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noObj(s g1 . . . gi) =
def ∃j : 0 ≤ j ≤ i : s g1 . . . gj = null

Method calls whose return value is assigned to a field with a non-empty coop-set
are disallowed (i.e., should be broken up into two statements). This avoids the
complication of invariants that are invalidated by a method return context switch.
The extension is straightforward.

Simply put, the dependency obligation ensures that when an assignment invalidates
an invariant: 1. it is re-proven in a later state, and 2. until it is re-proven, no
method that relies on the invariant is called. This simple notion is complicated
by two issues: 1. one needs to keep track of the instantiated invariant that might
be invalid, and 2. state(ment) ordering is complicated by branching and looping.
To simplify the presentation, the latter complication is avoided by disallowing
method calls in branches and loops. Allowing such calls is a fairly straightforward
extension. Then, the body of a method M is a sequence body(M ) of method calls
and local code blocks (lcbs) of statements that are not method calls. We write
x < y when x occurs before y in body(M ). calls(M ) and lcbs(M ) yield the sequence
of method calls and lcbs in body(M ), respectively. The pre- and postcondition of
an lcb are the precondition of the first, and the postcondition of the last statement
of the lcb, respectively.

The dependency obligation is given below. It uses a logical variable X to ’freeze’
a reference to the object whose invariant might be invalidated by the assignment.
The invariant must be re-proven in a postcondition Qz after the assignment. No
method called between the assignment and the postcondition Qz may rely on the
invariant, which is guaranteed by inInc defined below. To improve readability
of the obligations in this section, implies binds weakest, and all free variables
on the left-hand side of an implies are considered universally quantified over the
implication.

Definition 5.1 (dependency obligation).
if x ∈ lcbs(M ) contains an assignment s to r .f , and

I (t) ∈ coop(f , statType(r)),
then ∃X :: Ps ⇒ X = r ⊲ t, and

∃z : z ∈ body(M ) and x ≤ z :
Qz ⇒ I (X ), and
∀y : y ∈ calls(M ) and x < y ≤ z : inInc(y , I ,X )

inInc requires several other definitions. inc(M ) yields the inc-set of method M .
e identifies a side-effect free expression. When statement y is a method call on
r .m(e1, . . . , ei), callee(y) yields the fully qualified name M of the method deter-
mined by m and statType(r). When callee(y) has formal parameters p1 to pi ,
actualization act(r ′, y) equals r ′[r , e1, . . . , ei/this, p1, . . . , pi ], i.e. act(r ′, y) refers
to the same value in the prestate of method call y as r ′ refers to in the prestate of
called method M . inInc(y , I , r1) holds when there is a reference invariant in the
inc-set of callee(y) that identifies the same instantiated invariant as identified by
I (r1) in the prestate of the call.
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inInc(y , I , r1) =
def ∃r2 : r2 ∈ {r | I (r) ∈ inc(callee(y))} : Py ⇒ r1 = act(r2, y)

We illustrate the use of the dependency obligation. Consider method setVal in
example 4.1. It consists of a lcb and a method call. The lcb contains (consists
of) an assignment to this.val. As I(this.l) ∈ coop(val, Right), the left-hand side
of the dependency obligation is met. That means the following is required of
the annotation of the method. There must be a logical variable X such that
X = this ⊲ this.l holds in the precondition of the assignment. Furthermore, I(X )
must hold in the postcondition of either the assignment or that of the method call.
Looking at the example, the first will not be the case but the second will. In that
case, inInc(this.l .sync(), I ,X ) must hold as well. As the inc-set of Left’s method
sync contains I(this) and act(this, this.l .sync()) equals this.l , inInc requires that
X = this.l holds in the prestate of the call.

An invariant in a method M ’s inc-set may not be assumed to hold. The inconsis-
tency obligation ensures that no method called by M relies on such an invariant
unless it has been re-proven before the call. PM identifies the precondition of the
first statement in body(M ).

Definition 5.2 (inconsistency obligation).
If I (r) ∈ inc(M ),
then ∃X ::

PM ⇒ X = r, and
∀x : x ∈ calls(M ) :

inInc(x , I ,X ), or
∃y : y ∈ body(M ) and y ≤ x : Py ⇒ I (X )

This only leaves the issue of initialization. In general, an invariant I defined by
a class C will not hold in the prestate of a constructor of the class. In Java-like
languages, the first (possibly implicit) statement in a constructor is a call to a
superclass constructor. In the Java semantics, the dynamic type of the this-object
in the prestate of this call is either C or a subclass of C . Due to dynamic method
binding, a method call in a superclass constructor might execute a method of C .
Due to the semantics of invariants, this method assumes all objects are consistent
while in fact this is not the case. There is no modular way to prevent this sce-
nario without restricting either invariants (to hold by default) or the programming
language.

Such a restriction is avoided by assuming constructor behavior more akin to that of
C++. We assume that in the prestate of a constructor of class C , the dynamic type
of the this-object is Object. After the (possibly implicit) superclass constructor
call, there is an implicit statement that changes the dynamic type of the this-object
to type C . Note that, when D is the superclass of C , the type of the this-object
is D in the poststate of the superclass constructor call.

firstM identifies the first statement of method M . The construction obligation
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ensures invariants are initialized by constructors and are not relied upon before
initialization:

Definition 5.3 (construction obligation).
If method M is a constructor of class C and C defines an invariant I ,
then ∃y : y ∈ body(M ) and firstM < y :

Qy ⇒ I (this), and
∀x : x ∈ calls(M ) and firstM < x ≤ y : inInc(x , I , this)

6 Related work

As the previous sections have shown, one solution to the problem of vulnerability
(introduced in section 3) is to ensure that all invariants vulnerable to a location
are visible when this location is updated. The drawback is that this requires
dependencies to be mutually visible. Without this restriction, invariants that have
been invalidated by a method can not always be expected to be restored before the
end of that method. That means that in the prestate of a method execution, an
unknown set of invariants will not hold. Existing approaches without the mutual
visibility restriction use a notion of ownership to be able to express which invariants
do hold. Ownership means an object has control over updates of the objects it
owns.

The ownership approach presented in [MPHL06] relies on an ownership type sys-
tem [Mül02, CPN98]. In such a type system, every object has a context of owned
objects which are reachable only through their owner. The approach allows invari-
ants to depend on fields that are (transitively) owned. The semantics of invariants
is such that invariants of objects outside the context can not be assumed to hold
in pre- or post-conditions of methods. Methods are in general not allowed to call
methods on objects outside their context to prevent that an invariant is assumed
to hold when it does not.

The Boogie approach [BDF+04, LM04] uses a dynamic notion of ownership. The
main advantage is that this allows ownership transfer. Boogie equips every invari-
ant with a flag (see section 4). This flag can only be updated by special-purpose
statements that guarantee the invariant holds when the object is made consis-
tent. Furthermore, objects make explicit that an invariant of a consistent object
is vulnerable to their state. Updates of such objects are forbidden. In the Boogie
approach, the semantics of invariants is such that in every state in which an object
is consistent (i.e., in which the flag holds), its invariant holds.

Ownership is a concept that is natural to OO development. However, ownership
relations are non-cyclic by nature, and control over updates of the locations to
which an invariant is vulnerable is not always possible (or desired). Therefore,
it is not suitable for non-hierarchical situations like the Observer Pattern or the
examples in this chapter.

The visibility approach in [MPHL06], which generalizes work in [LM04], has mu-
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tual visibility as the only requirement. However, as argued in section 3, overall
verification effort is greatly reduced when it is made explicit which instantiated
invariants might be vulnerable to a location. Furthermore, it is argued that no
expressive power is lost in the process.

The most closely related work is that of the friendship approach [BN04]. The
friendship approach requires auxiliary state to relate locations to vulnerable in-
variants and uses special-purpose statements to prevent unwanted updates. This
chapter shows how this additional specification layer can be avoided at the cost
of some additional verification effort. The main difference between the two ap-
proaches, however, is in the semantics of invariants. The friendship approach has
been developed to complement the Boogie approach, and uses the same seman-
tics. This means that in cases where a flag is unavoidable, their solution is elegant.
However, the disadvantages of a flag-based solution as discussed in section 4 apply.

[PCdB04] introduces an extension of the friendship approach that supports static
invariants that quantify over objects and discusses uses for such invariants.

7 Future work

We see cooperation-based and ownership-based approaches as complementary.
The friendship approach [BN04] shows the benefits of such a combination. Comple-
menting our cooperation-based approach with a notion of ownership is considered
a priority.

More complex forms of cooperation can be achieved by supporting coop- and inc-
sets like {I (X ) | P}, where P is a predicate on X (that is, when P [r/X ] holds in
a given state, I (r) is in the set in that state). Perhaps quantification over objects
in invariants can also be supported this way.

Some invariants should not be publicly accessible as they expose hidden informa-
tion. In such cases, the definition of the invariant could be made private to the
class that defines it. As an invariant’s name does not expose information, it can
still be used in coop-sets. An interesting side-effect is that this can achieve that
field f has public read-access, but private write-access. For instance, consider a
publicly accessible field f whose coop-set contains I (this), where invariant I is
defined by inv I private def true.

Finally, consider the Observer Pattern again. As the concrete observer is not
visible to the concrete subject (which is exactly the purpose of the abstract classes
in the pattern), our approach does not allow the observer’s invariant to depend
on the subject’s state. However, implementations of the pattern that do not use
abstract classes [BN04] are supported. Specification of the full pattern requires a
notion of an abstraction of an invariant. Perhaps the abstract predicates of [PB05]
or dynamic contracts of [HK03] can provide such a notion.
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8 Conclusions

Given a strong semantics of invariants, modular verification is not possible when
invariants can arbitrarily depend on fields. The approach presented in this chapter
allows dependencies that are mutually visible. In particular, this allows invariants
over non-hierarchical object structures. The approach allows for the separation
of two concerns that are often entwined, namely that of vulnerability and that
of method calls from inconsistent states. The dynamic vulnerability relations are
made explicit with the cooperation construct coop, which reduces verification ef-
fort. The semantics of invariants is such that every object is consistent in every
visible state unless explicitly specified otherwise by means of the novel construct
inc. This semantics is flexible, yet captures the intuitive notion of invariants. Fi-
nally, the proof obligations that we have presented enable the modular verification
of invariants.

Acknowledgements. We would like to thank Mike Barnett and Erik Poll for
useful comments on earlier versions of this chapter.



CHAPTER 4

Invariants for Non-Hierarchical Object Structures

This chapter contains the following paper, with minor editorial changes: Ronald
Middelkoop, Cornelis Huizing, Ruurd Kuiper and Erik J. Luit. Invariants for Non-
Hierarchical Object Structures. In Proceedings of the 9th Brazilian Symposium on
Formal Methods (SBMF’06), volume 195C of ENTCS, pages 211–229. Elsevier,
2008 [MHKL08a]. It is available online. Thanks to Rob Verhoeven for pointing
out a typographical mistake in the published version.

abstract We present a Hoare-style specification and verification approach for in-
variants in sequential OO programs. It allows invariants over non-hierarchical
object structures, in which update patterns that span several objects and meth-
ods occur frequently. This gives rise to invalidating and subsequent re-establishing
of invariants in a way that compromises standard data induction, which assumes
invariants hold when a method is called. We provide specification constructs (inc
and coop) that identify objects and methods involved in such patterns, allowing
a refined form of data induction. The approach now handles practical designs, as
illustrated by a specification of the Observer Pattern.

1 Introduction

Traditionally, an invariant is a consistency property of the data of a single object,
enabling reduced specification effort. Data induction is, essentially, the observation
that if an object is only approached through its methods, a property is invariant
if it is established by the constructors and preserved by the methods [LW94]. But
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in practice, invariants may range over more than one object. Furthermore, an
invariant is sometimes invalid at a method call, in particular, when this method is
called to re-establish the invariant. Obviously this method can not rely on the in-
variant. Therefore, data induction must be refined. Some approaches successfully
exploit the dependency hierarchy between objects [Mül02, LM04]. However, there
are natural OO designs that are inherently non-hierarchical. A case in point is the
Observer Pattern [GHJV95]. The approach in [BN04] allows for non-hierarchical
invariants, but drops data induction. We present an alternative that retains it.

First, we introduce the specification construct inc that makes explicit that a
method preserves, but does not rely on, certain invariants of certain objects. We
extend results from [MHKL07a]: instead of the previously used fixed set of object
references, predicates are introduced to describe a set of objects involved. We ar-
gue that the additional flexibility offered by inc is essential in the use of invariants
over non-hierarchical object structures. Second, we introduce the coop construct
that specifies which invariants might be invalidated when a field is assigned to.
This enables verification of invariants even when their definition is not visible. In
particular, this supports modular development. We extend previous results with
predicates to describe the set of objects involved. Third, we remove a limitation
on method calls in while and if statements. Finally, the consequences of these
extensions are incorporated in a proof system. More invariants are admissible and
more implementations can be verified than before. In fact, whereas the approach
previously could only be used for somewhat tailor-made examples, the extensions
enable to specify the inspiration for the approach: the Observer Pattern.

Following this introduction, section 2 introduces invariants. Section 3 introduces
the inc construct, section 4 introduces the coop construct and section 5 contains
the formalization. Section 6 describes related and future work. Section 7 concludes
the chapter.

2 Invariants in OO development

OO programs are structured by a decomposition into classes, which group related
data and methods operating on this data. A method of one class can use (objects
of) another class in its implementation. A proper user of a class C is a method
that does not contain references to fields defined in C , but only interacts with
objects of class C via C ’s methods. Note that our proof technique does not
require restriction to proper use.

We say a method M preserves a property if, when the property holds when M
is called, it also holds when M terminates. An invariant property of an object is
established by the object’s constructor and preserved by all the object’s methods.
For every Book object in the (Java-like) example in Figure 2.1, “title is not null”
is an invariant property. Proper users of Book do not invalidate the invariant
property of a Book object. For every Book object, once the invariant property is
established by the constructor, it always holds. The program capitalizes on this.
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class Book {
String title;

Book() { this.title := ”unknown”; }

boolean hasTitle(String t) {
return this.title.equals(t);

}

int getTitle() { return this.title; }

void setTitle(String newT) {
if (newT != null) { this.title := newT; };

}
}

class UI {
void showHasTitle(Book b, String t) {
if (b != null) {

boolean ht := b.hasTitle(t);
//show boolean ht on the screen

}

void showTitle(Book b) {
if (b != null) {

String s := b.getTitle();
String s := s.concat(” is the title”))};
//show String s on the screen

}

}

Figure 2.1: Book/UI, invariant properties and their use

Book’s hasTitle doesn’t check if the title is non-null. UI’s method showHasTitle
appends to the result of getTitle without checking if it is null.

A Hoare-style method specification contains a pre- and a post-condition in terms
of the data of its class. For each method M , it should be verified that it terminates
normally and that its postcondition holds (we do not consider exception handling).
A verifier can assume that the precondition holds when M is called. When verifi-
cation of M fails without the assumption that a certain property holds when M is
called we say (the verification of) M relies on that property. In Figure 2.1, Book’s
method hasTitle and UI’s method showTitle rely on the invariant property of
Books this and b. If a property is specified as a precondition, a user (like method
showHasTitle) must prove that the property holds before a call. Thus any such
user relies on the property as well. Specification of a property in the precondi-
tion of these users means their users must prove the property holds before a call,
and so on. The property propagates throughout the program’s specification. An
invariant property can be specified with an invariant. Consider the following aim:

Aim: The verifier of a method M that relies on an invariant I can

1. assume that I holds when M is called, and
2. deduce if a method called by M preserves I .

When the aim is met, propagation of invariant properties is prevented, signifi-
cantly reducing specification overhead. Furthermore, the code is more flexible, as
a re-implementation of a method can rely on a different set of invariants with-
out affecting users. Besides these advantages, invariants allow the specification
of data consistency properties and behavioral properties to be separate concerns.
This makes communication of such properties much easier [Mey97]. Finally, they
support the specification of a class in terms of an abstraction of its data [Hoa72]
(see section 4).

The Book/UI example suggests that the assumptions in the aim above are sound
when an invariant is 1) established by the constructor of an object and 2) preserved
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class C {
int i,j;
inv this.i < this.j ;

int m() { this.i := this.calcVal(); this.j := this.calcVal(); } //constructor and calcVal omitted

}

Figure 2.2: the call-back problem

by every method in the program. Due to what is known as the call-back problem,
this is not the case. The call-back problem is illustrated in Figure 2.2. As the
example shows, an invariant is specified as a predicate on the logical variable this,
that represents the object the invariants applies to. Assume that method calcVal

always returns a value that is greater than this.i. Assume that the constructor
of a C object establishes its invariant and that every other method in the program
(including calcVal and m) preserves it. Then the invariant of C object this still
might not hold when the second call to calcVal in m is made (as the assignment
to this.i might invalidate it).

More generally, a method M may temporarily invalidate an invariant. When M
calls another method before the invariant is re-established, a method that relies
on the invariant might be called while the invariant does not hold. The most
straightforward solution to the call-back problem is to require that any invariant
that is invalidated by a method is re-established before a method call is made.
These observations lead to the following theorem, whose conclusion clearly meets
the aim.

Theorem 2.1 (data induction).
If, for any invariant I of any object,

1) the constructor of that object establishes I , and

2) all methods in the program preserve I , and

3) no method is called while I is invalid

Then, for any method M , for any invariant I of any object,

1) unless M is the constructor of that object, I holds when M is called, and

2) I holds when a method called by M terminates

Proof. Proof (by induction on the length of execution sequences) is straightforward

Execution of a program that has been proven correct with the classical technique
(described and proven sound in [MPHL06]) meets the premises of Theorem 2.1.
In the classical technique only local invariants are admissible. An invariant is local
if it only depends on the fields of the object it applies to (i.e., the predicate that
defines the invariant only contains references of the form this.f ).
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class Member {
Book loaned;

inv MI def this.loaned ⑧= null ⇒
this.loaned .loanedTo = this;

void loan(Book b) {
pre: this.loaned = null ∧

b.loanedTo = null ;
post: this.loaned = b;
impl: this.loaned := b; b.loanTo(this);

} //other fields and methods omitted

}

class Book {
Member loanedTo;

inv BI def this.loanedTo ⑧= null ⇒
this.loanedTo.loaned = this;

void loanTo(Member m) {
inc: MI(m);
pre: this.loanedTo = null ∧m.loaned = this;
post: this.loanedTo = m;
impl: this.loanedTo := m;

} //other fields and methods omitted

}

Figure 3.1: Example of a non-local invariant

3 Non-local Invariants

3.1 The specification construct inc

We call a specification feasible when there is an implementation of this specification
that can be verified. This section shows that many natural OO designs that include
non-local invariants are infeasible due to the third premise of Theorem 2.1. The
specification construct inc is presented as a solution to this problem. It allows a
method M to specify that M preserves, but does not rely on certain invariants
of certain objects. It is also argued that many non-hierarchical designs are only
feasible in a specification language that includes a construct like inc. There is a
hierarchy between two objects if, when a method M is called on one, no method
can be called (or field accessed) on the other until M terminates.

Non-local invariants are natural in many OO designs. This is illustrated by Figure
3.1, which could be part of a library management system. The invariants are
named to allow one to distinguish between different invariants of a class. We
ignore the orthogonal issue of how to specify what a method leaves untouched
[Lei95, Mül02, Rey02]. This problem is alleviated, but not solved by invariants.
We assume that relevant changes are reflected in the method’s postcondition. Due
to the third premise of Theorem 2.1, the design in Figure 3.1 is infeasible (given
proper use). The assignment to loaned invalidates the invariant of Member this.
To re-establish the invariant, field loanedTo of Book b needs to be updated. This
is not possible without a method call. Book provides method loanTo for this
purpose. However, the invariant needs to be re-established before the method call
that re-establishes it is allowed! Updating loanedTo before loaned is similarly
impossible. The essence of the problem is that no single method can update all
relevant fields when re-establishing an invariant.

The specification construct inc (for inconsistent), first introduced in [MHKL07a],
offers flexibility at little cost. In this particular example, the specification of
method loanTo includes inc: MI(m). This makes explicit that (the verification
of) loanTo does not rely on invariant MI of parameter m. This allows loanTo to be
called by method loan after the assignment to this.b. Method loanTo does not
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have to re-establish the invariant (but from its postcondition it can be deduced
that it does).

More generally, with every method M , a so called inc-set is associated. The inc-set
is specified by the inc construct. By default, the set is empty. In the approach
introduced in [MHKL07a] the inc-set can only be specified as a fixed set of reference
invariants I (r). This approach is generalized here. The inc-set of a method M
is a set of elements (C , I ,P), with C a classname, I the name of an invariant
specified in class C and P a predicate. References in P start with either a method
parameter (for instance, this) or the logical variable inc. The meaning is that for
any object inc of class C such that P holds when M is called, I (inc) is preserved,
but not relied upon by method M . An element I (r) is shorthand for the element
(C , I , inc = r), where C is the class that defines invariant I referred to by r .
Theorem 3.1 reflects the addition of the inc construct.

Theorem 3.1 (data induction with inc).
If, for any invariant I of any object,

1) the constructor of that object establishes I , and

2) all methods in the program preserve I , and

3) while I is invalid, any method that is called specifies that it does not rely
on I

Then, for any method M , for any invariant I of any object,

1) unless M is the constructor of that object or specifies that it does not rely
on I , I holds when M is called and

2) unless I is invalid when a method M ′ is called by M , I holds when M ′

terminates

Proof. Proof (by induction on the length of execution sequences) is straightforward

The premise of Theorem 3.1 is weaker than that of Theorem 2.1. For any method
M , for any invariant I , the conclusion is weaker only in two cases: 1) M calls a
method while I is invalid. However, given such a call, premise 3 of Theorem 2.1 is
not met and Theorem 2.1 cannot be applied. 2) M specifies that it does not rely
on I . In that case, I cannot be assumed to hold when M is called. However, the
choice to include an invariant in the inc-set of M is made by M ’s developer. In
Figure 3.2, the inc construct is applied to a more complex program. It shows how
non-local invariants can be verified in a setting without information hiding. This
example is derived from the Observer Pattern [GHJV95]. Users of a CSubject

object can set a value, here int d, with method setD. A CObserver object has a
field cs that refers to a CSubject object. We say it observes that CSubject. Users
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class CSubject {
int d;
CObserver co;

public void setD(int newD) {
post: this.d = newD ;
impl: this.d := newD;

if (this.co != null)
{ this.co.update(); }

}

public int getD() {
inc: I(o);
post: result = this.d ;
impl: return this.d;

}

public void attach(CObserver o) {
inc: I(o), J(o);
pre: this.co = null ∧ o.cs = this;
post: I (o) ∧ J (o);
impl: this.co := o; o.update(this.d);

}

}

class CObserver {
CSubject cs;
int i;

inv I def this.i = f (this.cs.d);
inv J def this = this.cs.co;

public CObserver(CSubject toObs) {
pre: toObs.co = null ;
post: this.cs = toObs;
impl: this.cs := toObs; toObs.attach(this);

}

public int getVal() {
post: result = f (this.cs.d);
impl: return this.i;

}

void update() {
inc: I(this);
post: I (this);
impl: this.i := f (this.cs.getD());

}

}

Figure 3.2: Observer Pattern, single observer: example of inc-sets

of a CObserver can retrieve a value derived from the observed CObserver’s field
d by calling method getVal. This value is represented by f (this.cs.d) (that is,
f (this.cs.d) is a placeholder for an integer expression that depends on this.cs.d).
The most straightforward way to implement getVal is to calculate f (this.cs.d)
every time getVal is called. However, assume that retrievals of f (this.cs.d) are
more frequent than changes to d, and assume that it is relatively expensive to
calculate f (this.cs.d). Then it is more efficient to store f (this.cs.d) in a variable
that is updated when d is updated. Also, this variable is returned when f (this.cs.d)
is requested. This implementation is specified in Figure 3.2. Note that a reference
invariant I (r), where I is the name of an invariant defined in (a supertype of) the
static type of reference r , may occur in a predicate. Reference invariant I (r) holds
iff r = null holds or P [r/this] holds, where P is the predicate identified by I (r)
and P [r/this] is the capture-avoiding substitution of this by r in predicate P .

To apply Theorem 3.1, every method must preserve all invariants. Consider an
arbitrary statement in a method M . Given non-local invariants without restric-
tions, this statement can invalidate an arbitrary invariant of an arbitrary object.
Preservation (of all invariants) is guaranteed when the verifier of M proves, for
any class C , for any invariant I defined in C , for an arbitrary object of class C ,
that invariant I of that object 1) cannot be invalidated by the statement or 2)
is re-established before the end of M . Perhaps surprisingly, such a proof is often
straightforward. For most invariants, it can be determined statically that they
cannot be invalidated by the statement (for instance, an assignment to a field that
is not involved in the invariant). Otherwise, a more elaborate proof is needed.
For example, method setD in Figure 3.2 contains an assignment to field d of class
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CSubject. A reference to such a field also occurs in invariant I of class CObserver.
To deduce that only CObserver this.co can be invalid, the proof has to use flank-
ing invariant J (we call J a flanking invariant because no method relies on J when
invariant I is removed). To re-establish the invariant, this.co.update() is called.
This call is allowed as update specifies that it does not rely on invariant I of the
object on which it is called. Note that the call from update to getD is allowed
due to the inc-set of getD and the validity of flanking invariant J in the prestate
of update.

We argue that a construct that specifies that a method does not rely on certain
invariants is essential. On the one hand, we have the examples in Figures 3.1 and
3.2. These show natural OO designs that cannot be implemented without a call
to a method that has a reference to an object with an invalid invariant. On the
other hand, we have Figure 2.1, which shows an equally natural design in which
methods implicitly rely on invariants of objects they have a reference to. When
this is disallowed, there is an unwanted propagation of properties throughout the
specification. Only given a construct that makes explicit that a method does not
rely on certain invariants are both designs possible.

3.2 Generalized inc-sets

The generalization of inc-sets allows additional restrictions on the conditions under
which an invariant is not relied upon to be specified conveniently. For instance,
inc: (C , I , inc = this.s ∧ (inc.a = 4 ∨ this.a = 4)) specifies that a method does
not rely on invariant I of object this.s when either field a of this.s of or field
a of object this has value 4.

More important, however, is that the generalized notation does not limit the inc-set
to a fixed set of reference invariants. For instance, inc: (CObserver, I, true)
specifies that a method does not rely on invariant I of any object inc of class
CObserver. The example in Figure 3.3 capitalizes on this increased expressivity.
This design is not feasible without generalized inc-sets. In this example, invariant J
contains a reference of the form r .f i , where i ≥ 0. Such a reference r .f i represents
reference r followed by i applications of field access .f . Invariant J specifies that
a CObserver occurs in the list of CObservers maintained by the CSubject it
observes. The call to the update method in setD is allowed as update specifies
that it does not rely on invariant I of any object inc of class CObserver that
observes the same CSubject as the object that update is called on. This set of
invariants cannot be specified as a fixed set of reference invariants. Note that
update preserves all invariants, even those specified in its inc-set. This allows
the verifier of setD to conclude that invariants of objects that have been updated
already are preserved by an update call. setD is not a proper user (see Sect. 2) of
ONode. This could be modified.
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class CSubject {
int d;
ONode on;

public void setD(int newD) {
post: this.d = newD ;
impl: this.d := newD; ONode iter := on;

while (iter != null) {
iter.obs.update(newD);
iter := iter.next; }

}

public int getD() {
inc: (CObserver, I, inc.cs = this);
post: result = this.d ;
impl: return this.d;

}

public void attach(CObserver o) {
inc: I(o), J(o);
pre: o.cs = this;
post: I (o) ∧ J (o);
impl: ONode n := new ONode(o, on);

on := n; o.update(this.d);
}

}

class ONode {
CObserver obs;
ONode next;

inv I def this.obs ⑧= null ;

public ONode(CObserver o, ONode n) {
inc: I(o), J(o)
post: this.obs = o ∧ this.next = n;
impl: this.obs := o; this.next := n;

}

}

class CObserver {
CSubject cs;
int i;

inv I def this.i = f (this.cs.d);
inv J def ∃i • this = this.cs.on.next i .obs;

public CObserver(CSubject toObs) {
pre: toObs.co = null ;
post: this.cs = toObs;
impl: this.cs := toObs; toObs.attach(this);

}

public int getVal() {
post: result = this.i ;
impl: return this.i;

}

void update() {
inc: (CObserver, I, inc.cs = this.cs);
post: I (this);
impl: this.i := f (this.cs.getD());

}

}

Figure 3.3: Observer Pattern, multiple observers: example of generalized inc-sets

4 Information Hiding

4.1 The specification construct coop

This section presents the specification construct coop, first introduced in
[MHKL07a]. This construct specifies which invariants might be invalidated when
a field is assigned to. This allows the verification of designs that include non-local
invariants, even when these invariants can be hidden from a class.

So far, an important concept in OO verification has been ignored, namely that
of information hiding. Information hiding [Par72] is an important OO design
principle. Design decisions that are not relevant to a user should be hidden from
that user (by means of abstraction). These decisions can then be changed without
affecting that user. With modular development [Mül02] of a class C we mean
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that all except a finite and explicit set of classes are hidden from the developer of
C . The benefit of modular development is that changes to hidden classes, or the
addition of new classes, do not affect the verification of C .

Invariants need to be restricted to allow for data induction (Theorem 3.1) in the
context of modular development. The reason is the second premise of Theorem
3.1. If invariants are not restricted, the verifier of a method M in a class C must
prove for every class D , for every invariant I in D , that M preserves I . As D can
be hidden from C , this comes down to proving for an arbitrary invariant of an
arbitrary object of an arbitrary class, that the invariant 1) cannot be invalidated
by the body of M or 2) is re-established before the end of M . This cannot be
proven if the body of M is non-trivial.

Every execution of a program that has been proven correct with the technique
that we introduce in section 5 meets the premises of Theorem 3.1, even when
invariants can be hidden from a class. To this end, the technique 1) restricts
invariants so that they can only be invalidated by assignment statements 2) has
an admissibility obligation on invariants that uses the specification construct coop.
Figure 4.1 illustrates the intuition behind this construct. An assignment to field
i of a CObserver object can invalidate invariant I of that object. As field i is
specified as int i coop I(this), a verifier can assume that that invariant is the
only invariant that might be invalidated.

More generally, a so called coop-set specified by the coop construct is associated
with every field f . By default, the coop-set is empty. We generalize the approach
in [MHKL07a]. A coop-set associated with a field f is a set of elements (C , I ,P),
with C a classname, I the name of an invariant specified in class C and P a
predicate in which all references consist of one of the keyword logical variables
this or dep, followed by zero or more field accesses. We say field f cooperates
with invariant I of any object dep of class C for which P holds at the time field
f is assigned to. The admissibility obligation guarantees the following property.
When a field f of an object is assigned to, any invariant not cooperated with by f
is not invalidated by the assignment. An element I (r) is shorthand for the element
(C , I ,dep = r), where C is the class that defines invariant I referred to by r (i.e,
it specifies that the field cooperates with invariant I of object r , when such an
object exists).

Figure 4.1 shows the potential of this solution. One goal of the Observer Pattern
is ’loose coupling’ between CSubject and CObserver [GHJV95]: class CObserver
should be hidden from class CSubject. Then, changing CObserver does not af-
fect CSubject. In particular, this allows objects of different classes to observe
a CSubject. The Observer pattern uses abstraction to allow this hiding. Class
Subject is an abstraction of all classes that can be observed. Likewise, class
Observer is an abstraction of all classes that can observe a Subject. Class
CObserver is hidden from classes CSubject and Subject, and class CSubject

is hidden from class Observer. The main problem is that different implementa-
tions of Observer have different invariants, which are hidden from class CSubject.
We borrow an abstraction technique from [Mül02] (but omit some of the associ-
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class Subject {
Observer o coop I(this.o), J(this.o);

public void attach(Observer o) {
inc: I(o), J(o);
pre: this.o = null ∧ o.s = this;
post: I (o) ∧ J (o);
impl: this.o := o; o.update(this.d);

}

}

interface Observer {
abstract Subject s coop J(this);

abstract inv I;
inv J def this = this.s.o;

void update(int d) {
inc: I (this);
post: I (this);

}

}

class CSubject extends Subject {
int d coop I(this.o);

public void setD(int newD) {
post: this.d = newD ;
impl: this.d := newD;

if (this.o != null) {
this.o.update(newD);

}
}

public int getD() {
inc: I(o);
post: result = this.d ;
impl: return this.d;

}

}

class CObserver implements Observer{
int i coop I(this);
CSubject cs coop I(this);

def s by this.cs;

def I by this.i = f (this.cs.d) ∧ J (this);

public CObserver(CSubject toObs) {
pre: toObs.o = null ;
post: this.cs = toObs;
impl: this.cs := toObs; toObs.attach(this);

}

void update(int d) {
impl: this.i := f (this.cs.getD());

}

}

Figure 4.1: Observer Pattern with information hiding and coop-sets

ated details). Abstract fields and invariants can be introduced by the keyword
abstract. Such fields and invariants can be implemented differently by different
subclasses. The specification of a method is inherited by an overriding method.
The need to include inherited flanking invariant J as a conjunct of I is a technical
detail that is due to the admissibility obligation (see section 5).

4.2 Generalized coop-sets

We argue that the generalization of the coop construct ensures that it is expressive
enough to be applied in all natural OO designs. Assume that field f is specified
in class C . Assume that class D defines an invariant with name I . Consider
the case where D is hidden from C . It follows from the discussion in Sect. 4.1
that any solution that allows for data induction (Theorem 3.1) in the context of
modular development, must forbid that an invariant of an object of a class that
is hidden from C can be invalidated by the a body of a method of C . Therefore,
f does not have to cooperate with invariant I . Now consider the case where
D is not hidden from C . Then invariant I of an arbitrary object of class D is
cooperated with by f when f ’s coop-set includes (D , I , true). Additional conditions
on this arbitrary object can be specified by a predicate other than true. For
instance, the specification of field d of class CSubject can be changed to int d

coop (CObserver, I, ∃i • dep = this.on.next i .obs). This specifies that only
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CObservers in the list on maintained by CSubject this can be invalidated.

5 Formalization of the Proof Technique

The proof technique introduced in this section can complement any proof system
that proves correctness of statement annotations (that has some standard proper-
ties for logical variables). Given this complemented proof system, any execution
of a program that is proven correct meets the premises of Theorem 3.1. Hence,
the conclusion of the theorem allows to assume the validity of (most) invariants
when a method is called or terminates.

5.1 Terminology

We first introduce basic terminology. A program consists of a set of classes. C
and D identify classes as before. A class defines a set of fields, methods and
invariants. All are inherited when a class is extended by a subclass. f identifies
a field. coop(f ,C ) yields the coop-set of field f defined in class C (section 4.2).
For simplicity, defining a subclass field with the same name as a superclass field
(field shadowing) is disallowed (removing this restriction results in a number of
additional typecasts). MC identifies method M defined in class C . inc(MC ) yields
the inc-set of method MC (see section 3). When MC overrides MD , inc(MC ) must
be a superset of inc(MD). α identifies an object, i.e. the instantiation of a class
(think of α as an address). A location α.f stores the value of object α’s field f . In
Java-like languages, objects and their contents are accessed only by references. A
reference r consists of a scope variable and zero or more field accesses of the form
.f . A scope variable sC is a local variable lC , a method parameter pC or a logical
variable XC (for convenience, the static type C of a variable is made explicit).
Every method of a class C implicitly defines a parameter thisC . (C )r denotes
the typecast of reference r to class C . P identifies a predicate. When r̄ and
r̄ ′ are vectors of references, P [r̄/r̄ ′] denotes the simultaneous, capture-avoiding
substitution of r̄ ′ by r̄ in predicate P . An invariant is a tuple (I ,P), with I a
name that identifies the invariant and P a predicate in which only this occurs
as scope variable. The restriction on P guarantees that an invariant can only be
invalidated by an assignment statement (in particular, not by object creation).
Reference r .f is called a supplier reference of an invariant (I ,P) when r .f either
occurs in P or is a subreference of a reference that occurs in P . For simplicity
and due to lack of space, we omit our treatment of supplier references of the shape
r .f i (section 3.2) and only allow references of the shape r .f in P . The names of
the invariants of a class C are distinct. For convenience, these names are also
assumed distinct from the names of invariants defined in superclasses of C . An
object invariant I (α) denotes invariant I of object α. A reference invariant I (r),
where I is the name of an invariant defined in (a supertype of) the static type of
reference r , may occur in a predicate (section 3.1).
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5.2 Representing Control Flow

The presentation of the proof obligations is orthogonal to the rest of the proof
system, i.e., it is assumed that every method body is fully and correctly anno-
tated. When, during method execution, control is at a certain program location,
the corresponding predicate holds in that state. The proof obligations force the
annotation to be of a certain shape. To formulate the proof obligations, a high-
level abstraction of the grammar of (fully) annotated statements suffices. We use
the following grammar:

S ::= {P} | {P}Stat; S

Stat ::= Basic | if(S ,S ′) | while(S )

Basic ::= assign(r) | mc(r ,MC ) | new(lC ,D) | dtc

The statement assign(r) is an assignment to reference r , where the right-hand
side is a reference or a primitive value. mc(r ,MC ) is a method call to method
MC with reference r as receiver (the call might be dynamically dispatched to a
subclass-method MD). For simplicity, method parameters (other than this) are
not allowed. Removal of this restriction is straightforward. The use of object
creation statement new(lC ,D) and constructor-only statement dtc is explained
in section 5.3.

In different executions of a method, control can flow through the method in dif-
ferent ways. Consider fully annotated method m (using square brackets for anno-
tation):

m(){
[P0]
this.f := 1; [P1]
if (a == b) { [P2]
this.g.m(); [P3]

}[P4]
this.h := 0; [P5]

}

Suppose this.f := 1 can invalidate an invariant (field f has a non-empty coop-
set). Then this invariant must either be implied by P1 or P2 (i.e., re-established
before the call) or be in the inc-set of this.g .m(). It must also be implied by either
P1, P4 or P5 (i.e., re-established before the end of the method). We associate
a graph with a method to express which methods may be called between two
statements. Control flow through the method is represented by a path in the
graph.

body(M ) yields M ’s body, the annotated statement S . In each state of a method
execution, control is at a specific program location in this method. Each program



126 Chapter 4. Invariants for Non-Hierarchical Object Structures

graph({P}) =
def

Let N = {(P , end)} in (N , {})

graph({P}Basic;S) =
def Let G = graph(S) and n = (P ,Basic) in

G ∪ {{n}, {(n, start(G))}}

graph({P}if(S1,S2);S0) =
def

Let G0 = graph(S0) and G1 = graph(S1) and G2 = graph(S2)
and n0 = (P , if(S1,S2)) and n1 = start(G0) and
E = { (n0, start(G1)), (n0, start(G2)),

(end(G1),n1), (end(G2),n1)}in
G0 ∪G1 ∪G2 ∪ {{n0},E}

graph({P}while(S1);S0) =
def

Let G0 = graph(S0) and G1 = graph(S1)
and n0 = (P ,while(S1)) and n1 = start(G0) and
n2 = start(G1) and n3 = end(G1) in
G0 ∪G1 ∪ {{n0}, {(n0,n1), (n0,n2), (n3,n1), (n3,n2)}}

Figure 5.1: graph construction algorithm

location identifies exactly one annotated statement S , which is represented as a
node in a graph. A node n is a tuple (P , eStat), where eStat identifies an element
of the set {Stat , end}. A program location that identifies an annotated statement
{P} is represented by a node (P , end). A program location that identifies an
annotated statement {P}Stat ;S is represented by a node (P ,Stat). Two functions
on a node are defined.

pre((P , eStat)) =
def P

stat((P , eStat)) =def eStat

An edge e is a tuple (n,n ′). When there is an edge (n,n ′) in the graph, the
program location n ′ can be reached from program location n in a single execution
step. When the program counter identifies n in a particular execution state, in
the next execution state it identifies a node n ′ such that (n,n ′) is an edge in the
graph. A graph G is a tuple of a set of nodes N and a set of edges E . A union
on graphs is defined: (N ,E ) ∪ (N ′,E ′) =def (N ∪ N ′,E ∪ E ′). The graph G of an
annotated statement contains exactly one node without incoming, and one node
without outgoing edge. start(G) and end(G) yield these nodes. graph(S ), defined
in Figure 5.1, yields the graph of annotated statement S .

start((N ,E )) = n iff n ∈ N and ∀n ′ • (n ′,n) /∈ E
end((N ,E )) = n iff n ∈ N and ∀n ′ • (n,n ′) /∈ E

Seq identifies a sequence. | Seq | yields the length of sequence Seq . Seq [i ] yields
the i ’th element of Seq . Seq [i , j ] yields the subsequence of Seq of elements i up to
and including j . Seq [i , j ) yields the subsequence of Seq of elements i up to but not
including j . Seq [i ..) yields the postfix of Seq that starts at element i . A sequence of
nodes nSeq is a path in graph (N ,E ) when the nodes in the sequence are (pair-wise)
adjacent, i.e., when nSeq [0] ∈ N and ∀i • (0 < i <|nSeq |⇒ (nSeq [i −1],nSeq [i ]) ∈
E ). When nSeq is a path in graph G , it is a path from node n when nSeq [0] = n
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and it is a path to node n when nSeq [|nSeq | −1] = n. nSeq is cycle-free when all
its elements are distinct, i.e, ∀i , j • (0 ≤ i < j <|nSeq |⇒ nSeq [i ] ⑧= nSeq [j ]).

An execution sequence Θ is a sequence of states. A state is a tuple (τ,n,Θ′), where
τ consists of a heap and a stack. nodes(Θ) is the sequence of nodes nSeq such
that when Θ[i ] = (τ,n,Θ′), nSeq [i ] = n. Let graph(body(MC )) = G . Then Θ
represents an execution of MC when 1) nodes(Θ) is a path from start(G) in G
that is either infinite or is a path to end(G) and 2) when Θ[i ] = (τ,n,Θ′), Θ′ is
the empty sequence unless stat(n) is of the form mc(r ,M ′

D) (then Θ′ represents
an execution of method M ′

D). So, when graph(body(MC )) = G , any possible way
control can flow in a (terminating) execution of method MC is represented by a
path from start(G) to end(G) in G .

Recall that sC is a scope variable of static type C . A node (P , eStat)
establishes I (sC ) iff P ⇒ I (sC )
respects I (sC ) iff if eStat is of the form mc(r ,MD),

then there is a P ′ such that
(C , I ,P ′) ∈ inc(MD), and
P ⇒ P ′[(sC , (D)r)/(inc, thisD)]

A sequence of nodes nSeq
respects I (sC ) iff ∀i ∈ nSeq • nSeq [i ] respects I (sC ))
establishes I (sC ) iff ∃i ∈ nSeq • ( nSeq [i ] establishes I (sC ) and

nSeq [o..i) respects I (sC ) )
is safe for I (sC ) iff nSeq respects or establishes I (sC )

In an execution represented by a path that respects I (sC ), no method is called that
relies on the object invariant represented by I (sC ). In an execution represented
by a path that establishes I (sC ), there is an execution state in which the object
invariant represented by I (sC ) holds and no method that relies on that object
invariant is called before that state.

5.3 Constructors

The semantics of constructors is treacherous due to dynamic binding. The first
(possibly implicit) statement in a constructor of class C is a call to the constructor
of C ’s superclass. When the superclass constructor calls a method, and it is
dynamically dispatched to an overriding method in a subclass, this method might
rely on an invariant yet to be established. We do not consider this good OO
design, but it is possible in Java. Rather than (slightly) changing Theorem 3.1
and introducing restrictions on programs to prevent such implementations, we use
a different (more logical) semantics for constructors [MHKL07a]. The body of
a constructor of class C is of the shape {P0}mc(this,MD); {P1}dtc;S , where
mc(this, MD) is a call to the constructor of C ’s superclass. new(lC ,D) creates
an object of class Object and calls the constructor of class D to initialize the
object. Statement dtc (dynamic type change) in a constructor of class C changes
the dynamic type of the object that is initialized to class C . No invariants of the
object that is initialized are invalid when the superclass constructor is called (class
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Object does not define any). This semantics of constructors is similar to that of
C++.

5.4 Proof Obligations

Finally, the proof technique for invariants can be presented. The admissibility
obligation below guarantees that, when a location α.f is assigned to, any object
invariant not cooperated with by f is not invalidated by the assignment. A proof
relies on the definition of coop in section 4.1 and a context switch.

Definition 5.1 (admissibility obligation).
For every invariant (I ,P) defined in a class C ,

for every supplier reference r .f of (I ,P),
if r .f refers to field f specified in class D,
then there is a (C , I ,P ′) ∈ coop(f ,D) such that

P ⇒ P ′[(this, (D)r)/(dep, this)]

In a setting where information hiding for invariants (or more generally, modu-
lar development) is not required, this obligation and the coop construct are not
needed. To still apply the proof technique, the default coop-set can be changed to
include (C , I , true) for every class C in the program, for every invariant I defined
by class C . This trivializes the admissibility obligation. For simplicity, we omit a
weaker version of the obligation. For instance, one can capitalize on the fact that,
in a state where P doesn’t hold, an invariant (P ∨ P ′) cannot be invalidated by
an assignment to a field that only occurs in P .

Before the remaining proof obligations are presented, a theorem is formulated that
is essential for both the soundness of the approach and the intuition behind it.

Theorem 5.1.
If every cycle-free path from n ′ in G is safe for I (XC ), and

every cycle-free path from n ′ to end(G) in G establishes I (XC ),
then every path from n ′ in G is safe for I (XC ), and

every path from n ′ to end(G) in G establishes I (XC )

Proof. Straightforward (by induction on the number of cycles in an arbitrary path)

As this theorem shows, only cycle-free paths have to be considered by the proof
obligations.In the remainder of this section, three more proof obligations are in-
troduced.

Definition 5.2 (constructor obligation).
For every constructor M of a class C , for every invariant (I ,P) defined in C ,

if graph(body(M )) = G = (N ,E ) and {(start(G),n), (n,n ′)} ⊆ E,
then every cycle-free path from n ′ in G is safe for I (thisC ), and

every cycle-free path from n ′ to end(G) in G establishes I (thisC )
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Here, node n ′ is the program location directly after the dtc statement (section
5.3). This proof obligation establishes that, no matter how control flows through
a constructor, the invariant of the newly constructed object is established, and
no method that relies on it is called before this is done, which is needed for the
third premise of Theorem 3.1. One way to establish that this proof obligation is
met is to use a breadth-first algorithm that searches for a node that establishes
the invariant (and stops after a full cycle is traversed). An example of such an
algorithm is apv , defined below. The intuition is that if apv(n,G , I (sC )), then 1)
every cycle-free path from n in G is safe for I (sC ), and 2) every cycle-free path
from n to end(G) in G establishes I (sC ). A proof by induction on the length of
cycle-free paths is straightforward.

apv(n, (N ,E ), I (sC )) =def

or n /∈ N ,
or n establishes I (sC ),
or n ⑧= end((N ,E )), and

n respects I (sC ), and
for every edge (n,n ′) ∈ E , apv(n ′, (N − {n},E ), I (sC )) holds.

The two other proof obligations use logical variables that keep track of which
invariants might be invalid.

Definition 5.3 (inc obligation).
For every method M of a class C , for every (C , I ,P) ∈ inc(M ), if
graph(body(M )) = G, then there exist a predicate P ′ and a logical variable XC

such that
XC does not occur free in P ′, and
pre(in(G)) ⇔ (P ′ ∧ (XC = null ∨ P [XC/inc])), and
every cycle-free path from in(G) in G is safe for I (XC )

Let the coop-set of method M include (C , I ,P). Then, for an arbitrary object
XC such that I (XC )∧P [XC/inc]1 holds in the prestate of an execution of M the
following property is established. No matter how control flows through method
M , no method that relies on I (XC ) is called unless I (XC ) has been established to
hold. Note that XC = null ∨ (I (XC )∧P [XC/inc]) can always be assumed to hold
(it says, either there is an arbitrary object XC such that (I (XC ) ∧ P [XC/inc])
holds, or there is not). A small example: Let inc(M ) include (C , I , false). Of
course, this is a meaningless inclusion in an inc-set, as this says that M will not
rely on the I -invariant of any C -object for which false holds (and there cannot
be such objects). However, the proof obligation is likewise trivial: Note that
(XC = null ∨ (I (XC ) ∧ P [XC/inc])) ⇒ XC = null . As I (null) is trivially true,
in(G) establishes I (XC ) and the proof obligation is met.

Definition 5.4 (cooperation obligation).
For every method M of a class C ,

1Many thanks to Stephanie Balzer for pointing out that there should be no obligation to
re-establish invariants that were already invalid at the time of the assignment, which is achieved
by the conjunct I (XC )
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if graph(body(M )) = G = (N ,E ), and (n,n ′) ∈ E, and stat(n) = assign(r .f )),
and r .f refers to field f of class D, and (C , I ,P) ∈ coop(f ,D),

then there exist a predicate P ′ and a logical variable XC such that
XC does not occur free in P ′, and
pre(n) ⇔ (P ′ ∧ (XC = null ∨ (I (XC ) ∧ P [(XC , (D)r)/(dep, this)]))), and
every cycle-free path from n ′ in G is safe for I (XC ), and
every cycle-free path from n ′ to end(G) in G establishes I (XC )

This obligation combines the techniques of the previous two to deal with assign-
ment statements. Note that, when n is an assignment node, there is exactly one
outgoing edge (n,n ′). An invariant that does not hold in the precondition of a
method is trivially preserved. For simplicity, this is not capitalized on by the proof
obligation.

5.5 Soundness

A full soundness proof (i.e., a full formal proof that the premises of Theorem 3.1
are met given the proof obligations) is beyond the scope of this thesis. Instead, we
sketch a proof of the following central property of the proof; If an assignment in a
method execution invalidates an invariant I (α1), then 1) it is re-established before
the method terminates, and 2) any method called before I (α1) is re-established
specifies that it does not rely on I (α1). In a similar way, one can prove that, when
an invariant is invalid when a method MC is called, any method that is called by
MC while the invariant is invalid specifies that it does not rely on it, and that
constructors establish their invariants.

A logical environment ω maps logical variables to values. τ, ω |= P iff P holds given
the mappings in τ and ω. ω[XC → α] is the state like ω, but with XC mapped
to α. Let Θ0 represent an arbitrary method execution. Let Θ0[i ] = (τ0,n, []). Let
n = assign(r0.f ), where f is defined in class D . Let τ0 map r0 to α0. Assume
invariant I (α1) is invalidated by the assignment. Assume this invariant is defined
in class C as (I ,P0). Then I (α1) holds in the prestate, i.e., ∀ω • τ0, ω[XC →
α1] |= P0[XC/this] (as this is the only scope variable in P0). As only α0.f is
changed by the assignment, P0 must have a supplier reference r1.f , with f defined
in C , that refers to α0.f . Then, due to the admissibility obligation, there is a
(C , I ,P1) ∈ coop(f ,D) such that P0 ⇒ P1[(this, (D)r1)/(dep, this)]. Then (using
two context switches) ∀ω •τ0, ω[XC → α1] |= P1[(XC , (D)r0)/(dep, this)] (as dep
and this are the only scope variables in P1). Let nodes(Θ0) = nSeq . Assume the
method execution terminates. From Theorem 5.1 and the cooperation obligation
it follows that there is a j > i such that nSeq [j ] establishes I (XC ) and nSeq(i ..j ]
is safe for I (XC ). The main theorem relied on for soundness is the following: Let
Θ[i ] = (τ,n,Θ′) and j > i and Θ[j ] = (τ ′,n ′,Θ′′). Then ∀ω•(τ, ω |= pre(n) implies
τ ′, ω |= pre(n ′)). A proof relies on the correctness of the annotation, the soundness
of the proof system and some (fairly standard) assumptions about logical variables.
From this theorem and the above it follows that, when Θ0[j ] = (τ1,n1,Θ1), then
∀ω • τ1, ω[XC → α1] |= I (XC ), which means I (α1) is valid in Θ[j ]. To prove that
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methods called do not rely on I (α1), assume that there is a k , i < k < j , such that
Θ0[k ] = (τ2,n2,Θ2) and stat(n2) = mc(r2,MD) (for some class D) and r2 refers
to α3 in τ2. Then, due to the cooperation obligation and Theorem 5.1, n2 respects
I (XC ) and therefore, there is a P2 such that (C , I ,P2) ∈ inc(MD) and pre(n2) ⇒
P2[(XC , (D)r2/(inc, thisD))]. Due to the main theorem above, ∀ω • τ2, ω[XC →
α1] |= pre(n2). Therefore, ∀ω • τ2, ω[XC → α1] |= P2[(XC , (D)r2/(inc, this))].
Thus, when Θ2 = (τ3,n3,Θ2) (as inc and this are the only scope variables in
P2), ∀ω • τ3, ω[inc → α1] |= P2. As any method overriding MD also includes
(C , I ,P2) in its inc-set, this proves that the method execution specifies that it
does not rely on I (α1). Finally, when method execution Θ0 does not terminate,
it follows that nSeq [i ..) is infinite and safe for I (XC ), and the proof is similar to
the one above.

This concludes our formal treatment. Note that proof rules that allow invariants to
be assumed at certain points in the proof are omitted but these are straightforward.

6 Related and Future work

Ownership-based approaches and our approach are complementary (an object
owns another when it has some form of control over access to the other’s data), and
combining them should be fairly straightforward. Several ownership mechanisms
have been proposed (e.g., [PNCB05, LM04, Mül02]). Given modular development,
a complementary approach is needed as invariants of which the name is hidden
from a class C 1) cannot be in the inc-set of a method of C and 2) cannot always
be expected to be preserved by methods of C when the structure is hierarchical.
Our coop construct is similar to the explicit dependencies in [Mül02], which gen-
eralizes earlier work in [Lei95]. However, these do not allow a specification as in
Figure 4.1. A liberal, but semantical admissibility obligation on invariants is used
in [Mül02]. In the Boogie ([LM04]) and the friendship ([BN04]) approaches (both
extending [BDF+04]), as well as in [PB05], flexible abstraction mechanisms are
provided that allow a method to specify that it relies on a hidden property, and
that allow a user to track the validity of such a hidden property. While very use-
ful for information hiding, these do not prevent the propagation of (abstractions
of) properties. We expect the friendship approach can achieve specifications of
similar strength, without propagation, when one adds either 1) an inc-like con-
struct to specify which inv-bits do not hold in a precondition and the program
invariant that all other inv-bits hold or 2) a default precondition that all inv-bits
hold and the possibility to override this default. Compared to cooperation-based
invariants, this gives a less intuitive semantics for invariants but a more intuitive
proof technique. However, it has the additional overhead of both pack/unpack and
attach/detach. The work in [PCdB05] shows uses of invariants that quantify over
(unreachable) objects, and how they can be allowed. The premises of theorem
3.1 do not disallow such invariants. An extension that allows such invariants is
considered future work.
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7 Conclusion

Data induction allows a method to rely on an invariant without it being specified
in pre- and postconditions. We have introduced an approach that allows this for
invariants over object structures. The inc construct specifies that a method does
not rely on certain invariants. We argue that this is essential for the specification
of many natural, non-hierarchical designs. The coop construct specifies which
invariants can be invalidated by an assignment. This allows the verification of
invariants even when their definition is hidden. In particular, this makes the
approach suitable to modular development. We introduce proof obligations that
guarantee data induction is allowed.



CHAPTER 5

Specifying and Exploiting Layers in OO Designs

This chapter contains the following paper, with minor editorial changes: Ronald
Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik J. Luit. Specification and
Verification of Invariants by Exploiting Layers in OO Designs. Fundamenta In-
formaticae, 85(1-4):377-398, 2008. Special issue: Concurrency, Specification and
Programming (CS&P’07).[MHKL08c]. It is available online. The chapter has an
accompanying technical report “A Proof System for Invariants in Layered OO
Designs” [MHKL08b].

abstract The layering that is present in many OO designs is not accounted for
in current interpretations of invariants. We propose to make layers explicit in
specifications and introduce a new interpretation of invariants that exploits these
layers. Furthermore, we present a sound, modular technique to statically verify
that programs satisfy the new interpretation.

1 Introduction

Object-oriented (OO) designs often contain classes and methods that provide
shared functionality (i.e., are used by several otherwise unrelated objects). Exam-
ples include a canvas in graphics applications, and static method sqrt from the
Java API. Current specification and verification techniques either disallow invo-
cation of such shared functionality, or do not guarantee that invariants needed by
the shared functionality hold when it is invoked. We introduce an approach that
resolves these issues.
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Together with pre- and postconditions, class invariants (invariants for short) have
a central role in most model-based OO specification techniques. A class invariant
is a boolean expression that is associated with a class. Conceptually, an invariant
of a class C captures a consistency property of objects of C that clients can
expect to hold [WK99]. The use of invariants can significantly reduce specification
overhead [Mey97]. Invariants can also be used for abstraction [Hoa72]. They
allow the specifier to keep parts of desired input/output relations implicit, thus
hiding information [Par72] and increasing modularity of the design [Mül02].1 The
interpretation2 of class invariants in OO designs is still under discussion. A key
issue is that commonly (i.e., in many designs), an object’s invariant is temporarily
violated while the state it depends on is updated. This is unproblematic as the
invariant is irrelevant to the methods called during the update: these method
executions do not rely on the invariant. Re-establishing an invariant may require
the invocation of shared functionality. For instance, it may require the calculation
of a square root, which in Java can be done by an invocation of method sqrt

(which, like most Java API methods, does not rely on any user-defined invariants).
We elaborate an example in section 3. The interpretation of invariants has to
account for such unproblematic scenarios.

Our observation is that to achieve loose coupling [Par72], OO designs are often
layered, where a layer uses functionality of lower layers, but in principle not of
higher layers. In particular, lower layer methods do not rely on invariants of
higher layer objects. Commonly, shared functionality is in a lower layer of the
design (for instance a library) than the classes that use it. For example, a class
that implements the Singleton Pattern [GHJV95] provides shared functionality
through global access to its instance. This class is often in a lower layer of the
design than its clients. The contributions of this chapter are the following:
1. We analyze a state-of-the-art interpretation of invariants that exploits

whole/part relations in OO designs and show that it is not suitable for sce-
narios that involve shared functionality (section 3).

2. We show how layers in a design can be made explicit with little specification
overhead (section 4).

3. We refine the state-of-the-art interpretation to exploit layers in OO designs
(section 4).

4. We present a modular verification technique to establishes that programs sat-
isfy the refined interpretation of invariants. This is done in three steps.
a. We present a semantic decomposition of the technique into separate con-

cerns (section 5).
b. We extend an existing technique for reasoning about whole/part relations

using simple syntactic checks (static reasoning). We capture additional
relations in the whole/part hierarchy, and refine the technique to reason
about layer relations as well (section 6).3

1 Our approach accounts for information hiding. To simplify the technical treatment, it is
omitted from the language.

2 We use interpretation instead of the term semantics which is used in, e.g., [MPHL06] as the
latter sometimes leads to confusion.

3Another existing technique (dynamic reasoning) is extended in an accompanying technical
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c. We introduce a proof technique based on static reasoning for each of the
concerns (section 7).

This three-step approach gives insight into the role of the syntactic restrictions,
proof obligations and captured relations. It also allows changing one technique
without affecting the others.

2 Programming and Specification Language

We consider the specification of invariants in the context of a single-threaded subset
of Java or C#, with minor changes made for presentational purposes. A program
in this language consists of a main method and a set of classes. Every class C
(except Object) has one direct superclass denoted super(C ). D ⊂ C denotes that
D is a proper subclass of C . Figure 2.1 shows the statement grammar. Note that
method parameters are treated as local variables, that method calls only occur
in statements v=r .m(~e), and that expressions SimpleE are side-effect free. Every
method has exactly one return statement, as the last statement. Methods with
return type void return null, which is assigned to a dummy variable. We relegate
type casts, constructors, static fields and static methods to [MHKL08b], and do not
consider exception handling, object de-allocation, inner classes, or field shadowing
(where a subclass field redeclares a superclass field [Pie06]). Our example uses
self-explanatory shorthand notations.

Invariants are most naturally formalized given a trace semantics for programs.
Such a semantics is presented in the appendix, which shows that the statements
in the language have the same interpretation as their Java counterparts. The
most relevant details are discussed below. The semantics of a program is a set of
program executions (i.e., traces). A program execution is a sequence of (execution)
states. A state σ contains, among other things, a stack frame σsf and an object
store σos . A stack frame is a partial function that takes a stack variable (this or
a local variable) and returns a value (an object, null , a boolean, or a number).
An object store is a partial function that takes a location (a tuple 〈object,field〉,
written x .f ) and returns a value. The semantics of simple expressions is defined
by a partial function eval that takes a simple expression, a stack frame and an
object store, and returns a value. A suitable Java-like definition is straightforward
(see e.g. [Pie06]) and is omitted. Simple expression s evaluates to value v in
σ if eval(s, σsf , σos) = v . type(x ) returns the dynamic type of object x [Lei95].
Intuitively, as(σ) (see appendix) returns the statement that will be executed from
σ (the ’active’ statement). For a sequence Σ, Σ[i ], Σ[i ..j ] and Σ[i ..] denote element,
consecutive subsequence and postfix. [A 7→ B ] denotes the partial function that
maps A to B .

As usual, the grammar of boolean expressions in the specification language resem-
bles first order logic over program variables. Details are not relevant and are left

report [MHKL08b]. This technique uses an encoding into an underlying proof system, which
offers more flexibility at the cost of more verification overhead.
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C ∈ classnames, T ∈ types, m ∈ methodnames, v ∈ local variablenames, f ∈ fieldnames

Stat ::= if (BoolE) Stat else Stat | while (BoolE) Stat | Stat; Stat | T v |
r = SimpleE | v = r.m(~e) | return SimpleE;

SimpleE ::= r | null | BoolE | NumE
r ::= this | v | r.f

Figure 2.1: Statement grammar (where ~e denotes a sequence of simple expressions).

implicit: suitable definitions can be found in e.g. [Pie06, LBR06]. For simplicity,
the boolean expressions in the programming and in the specification language are
not distinguished (in the interest of computability, the former should be restricted).

A class invariant is a boolean expression BoolE that is associated with a class.
A class invariant does not contain stack variables other than this (a modular
verification technique needs to impose additional restrictions, see sections 5 and
7.2). Every class C has one invariant, denoted invC . In our examples, invC is
defined by specification construct inv BoolE in C ’s specification (if the construct
is omitted, invC is true, and multiple inv constructs are conjoined into a single
BoolE). Several interpretations of class invariants are discussed in sections 3 and 4.
These interpretations make explicit which object invariants hold in which visible
states of a program execution: an object invariant is a tuple of a class invariant
and an object, written invC (x ). invC (x ) holds in state σ if type(x ) ⊆ C and
eval(invC , [this 7→ x ], σos) = true. The invariants of x denotes set of object
invariants {invC (x ) | type(x ) ⊆ C}. In program execution Σ, Σ[i ] is visible if it is
a pre- or a poststate. Σ[i ] is a prestate if either as(Σ[i − 1]) is a method call, or
i = 0. Σ[i ] is a poststate if as(Σ[i ]) is a return statement.

Matching pre- and poststates mark the first and last states of a method execution:
prestate Σ[i ] and poststate Σ[j ] match in Σ if i < j and every prestate Σ[k ],
i < k < j , is matched by a poststate Σ[l ], k < l < j . A subsequence Σ′ of Σ is a
method execution if there is a prestate Σ[i ] such that either (1) Σ′ = Σ[i ..j ] and
Σ[i ] and Σ[j ] match in Σ, or (2) Σ′ = Σ[i ..] and Σ[i ] is unmatched in Σ.

States σ and σ′ differ on x if there is a field f such that σos(x .f ) ⑧= σ′
os(x .f ).

Control is with object x in state σ if σsf (this) = x . Control is in class C in σ if
the static type of this in σ is C . Control flows to x in Σ[i ] if control is with x in
Σ[i ], and either Σ[i ] is a prestate, or Σ[i − 1] is a poststate.

3 Problem Analysis

This chapter builds on work from [MPHL06]. Sections 3.1 and 3.2 reiterate the
parts relevant to the problem analysis. The first section discusses the classical
invariant interpretation and its limitations, the second an existing, state-of-the-
art interpretation that addresses some of these limitations. Section 3.3 argues that
this interpretation can be improved and sketches how this can be done: the idea
behind the chapter.
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Figure 3.1: Conceptual Design of a Travel Agent Administration System

3.1 Classical Invariant Interpretation

The Classical Invariant Interpretation (CII) is based on visible states.

Definition 3.1 (CII). Program execution Σ satisfies the CII if, in every visible
state in Σ, for every object x 4, the invariants of x hold.

The CII is a suitable interpretation for local invariants, i.e., invariants that only
refer to the state of a single object. However, an invariant an object x often
depends on the state of other objects, for instance when x is a composition of
other objects. Executions of designs that include non-local invariants often do not
satisfy the CII. As an example, consider the design in figure 3.1, which represents
a simplified travel agent administration system. A ClientInfo object contains
the personal information of a specific client of the travel agent. A TripInfo

object contains the information of a specific trip that is offered by the travel
agent. TripInfo’s method book(ClientInfo c) contacts the carrier’s booking
system to reserve a seat for client c. For simplicity, this always succeeds. A
Trip object contains the information of a trip selected by a client. A Trip object
stores whether the trip has been booked. A RoundTrip consists of two Trips, one
outbound and one inbound (i.e., there is a whole/part relation [Boo94, WK99]
between RoundTrip and Trip). Figure 3.2 shows an implementation of Trip and
RoundTrip. A non-local invariant has been specified for RoundTrip, which relates
the state of RoundTrip’s parts. It is intended to ensure that a client is not faced
with a RoundTrip of which only one leg is booked.

Program executions in which a RoundTrip R is booked do not satisfy the CII.
Consider an execution of R.book(), which invokes R.outbound.book(). In the
poststate of R.outbound.book(), the invariant of R does not hold. This means it
does not hold in the prestate of R.inbound.book() either. Booking the inbound
Trip re-establishes the invariant: in the poststate of R.book(), the invariants of
R hold.

This is an example of a common scenario: an invariant of an object is temporarily

4In this chapter, quantifications range over allocated objects
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class Trip {
root TripInfo ti; root ClientInfo

client;

boolean booked = false;

void book() {
ti.book(this.client); booked =

true;

} //Other methods omitted

}

class RoundTrip {
rep Trip outbound; rep Trip inbound;

inv outbound.booked == inbound.booked;

void book() {
outbound.book(); inbound.book();}

} //Other methods omitted

}

Figure 3.2: Code annotated with an invariant and ownership information (rep and root, see
section 6.1).

violated while its parts are updated. This is unproblematic as the design accounts
for the violation. The CII is too strong to allow such scenarios. It must be refined
based on observations of common scenarios. Here, the violation is accounted for
by a subordinate relation between a RoundTrip and its parts:

Definition 3.2 (subordinate). Object y is a subordinate of object x if (1) the
invariants of x is are not relied on when control flows to y, and (2) the invariants
of y hold when control flows to x .

Observation 3.1. Commonly, if object y is a part of object x , then y is a subor-
dinate of x .

3.2 Ownership and the Relevant Invariant Interpretation

Ownership (see e.g. [Cla01, Mül02]) can make whole/part relations in the concep-
tual design explicit in the formal specification. The idea is that an object owns its
subordinate parts. Special purpose owner root owns objects that are not a sub-
ordinate part of any object (a slight deviation from the definition in [MPHL06]).

Definition 3.1 (ownership). The set of owners consists of the set of objects and
the special purpose owner root. In any given state, every object is directly owned
by exactly one owner. This relation is acyclic. The owned relation is its transitive
closure. Finally, owner(σ) = O if control is with an object that is directly owned
by owner O in state σ. The owner of an object is determined by the statement
that creates it.

As figure 3.1 shows, the inbound and outbound Trip of a RoundTrip R are part
of R. The TripInfo ti and ClientInfo client of a Trip are not part of any
object. Ownership reflects this. A RoundTrip directly owns its inbound and
outbound Trip, and the TripInfo ti and ClientInfo client of a Trip are
directly owned by root (made explicit in figure 3.2 by keywords rep and root,
see section 6.1). Figure 3.3 shows a possible configuration, in which a client C1
has selected a RoundTrip R1, and a client C2 has selected a Trip L3. L3 and L1
share a TripInfo: C1 and C2 travel together on C1’s outbound Trip. Scenarios
where an invariant of an object is temporarily violated while its subordinate parts
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are updated are allowed if the CII is replaced with the weaker Relevant Invariant
Interpretation (RII).

Definition 3.2 (RII). Program execution Σ satisfies the RII if, in every visible
state σ ∈ Σ, for every object x owned by owner(σ), the invariants of x hold.

Consider an execution of R1.book(). Unlike the CII, the RII allows for the vio-
lation of the invariants of R1 in the poststate of R1.outbound.book() and in the
prestate of R1.inbound.book() (as R1 is the owner of these states).

3.3 Class level subordinate relations

Unfortunately, subordinate relations do not just occur between a whole and its
parts. Therefore, the RII sometimes requires certain object invariants hold when
they are intended to be violated, and sometimes does not guarantee that certain
object invariants hold when they are intended to hold. In this section, we identify
a category of subordinate relations at the class level. We show that the RII is not
suitable for designs like the travel agent example because it does not account for
these subordinate relations.

To achieve loose coupling [Par72], there typically is a layering of the classes used in
a conceptual design. The intuition is that a layer uses functionality of its own layer
and lower layers, but has little or no dependency on higher layers [Boo94, RBL+90].
More specifically, we make the following observation.

Observation 3.2. Commonly, there are classes C and D in a design such that
any object of C is a subordinate of any object of D. In particular, when layers are
present in the design and class C is in a lower layer than class D, this property
almost always holds.

Shared functionality is commonly in a lower layer of the design than the classes
that use it. Ownership imposes a partial ordering on the object structure. We say
an object x provides shared functionality if different objects that are not ordered
by ownership invoke methods on x . A practical example is the use of a canvas
in graphics applications. In the travel agent example, TripInfo and ClientInfo,
which offer shared functionality, are in a lower layer of the design than Trip and
RoundTrip, which use this functionality. Not accounting for the layering in the
interpretation of invariants complicates both specification and verification. The
RII is well suited when re-establishing the invariants of an object x only requires
invocations of methods on objects owned by x , but not when lower-layer shared
functionality is used. This is illustrated by the observations below.

Observation 3.3. Commonly, to re-establish an invariant of an object x , control
must flow to a lower-layer object y with a direct owner that owns x . Given obser-
vation 3.2 (and the definition of subordinate), the invariants of x are not relied
on when control flows to y. The RII, however, is not satisfied: it requires the
invariants of x to hold when control flows to an object with a direct owner that
owns x .
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Figure 3.3: Possible Travel Agent object configuration. Objects refer to their direct owner with
a dashed arrow (see section 3.2). Solid arrows refer to objects that provide shared functionality.
Objects have a name, a class and a layer (see section 4).

For instance, consider figure 3.3. To book RoundTrip R1, R1.inbound.book()
invokes T2.book() when an invariant of R1 is violated. The RII is too strong to
allow this violation.

Observation 3.4. Commonly, when control flows to an object x with direct owner
O, an invariant of a lower layer object y that is not owned by O is relied on.
Given observation 3.2, the invariants of y hold when control flows to x . The RII,
however, does not guarantee this as O does not own y.

Again consider figure 3.3. An execution of L2.book() invokes T2.book(), which
is likely to rely on invariants of T2 (among others). Due to the layering of the
design, we can expect that the invariants of T2 hold in the prestate of methods
executed on L2. The RII is to weak to guarantee this.

The next section presents a refined interpretation of invariants that accounts for
these observations.

4 Layers and the Layered Relevant Invariant In-

terpretation

In this section, it is shown how the layers in a conceptual design can be made
explicit in the formal specification. Then, this layering is used to present a refined
interpretation of invariants.

Definition 4.1 (layers). There is a function layer that takes a class and returns
a rational number. layer(C), the layer of C , is determined by the specification of
C . Let l be a rational number. If the specification of C contains layer l , then
layer(C ) = l (if the layer construct is omitted, layer(C ) is a default value, see
below). The layer of an object x , layer(x ), is layer(type(x )). If control is with x
in state σ, then the layer of σ, layer(σ), is layer(x ).

The additional structure provided by layers is used to replace the RII by a more
flexible interpretation that reflects the observations of section 3.3. This Layered
Relevant Invariant Interpretation (LRII) is a conservative extension of the RII
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in the following sense: when every class in a program P has the same layer,
any execution of P that satisfies the RII also satisfies the LRII, and vice versa.
Roughly, the LRII states the following. If σ is a visible state in which control is
with an object that has layer l and direct owner O , then the invariants of all lower
layer objects and of all same-layer objects owned by O , hold in σ (item 1 below).
In addition, if σ is the poststate of a method execution Σ′, then any invariant of
a higher layer object with direct owner O that holds in Σ′ prestate, also holds in
σ (item 2).

Definition 4.2 (LRII). Program execution Σ satisfies the LRII iff
for every visible state σ ∈ Σ,

for every object x ,
(1) if or layer(x ) < layer(σ),

or (owner(σ) owns x and layer(x ) = layer(σ)),
then the invariants of x hold, and

(2) if σ is a poststate, and owner(σ) owns x , and layer(x ) > layer(σ),
then for every object invariant invC (x ),

if invC (x ) holds in the prestate matching σ,
then invC (x ) holds in σ.

Observation 3.2 is reflected in two differences between the RII and the LRII.
Consider an invC (x ) of an x with layer l . The LRII is stronger than the RII in
the sense that with the LRII, invC (x ) is guaranteed to hold in a visible state σ if
l < layer(σ). The LRII is weaker than the RII in the sense that with the LRII,
invC (x ) is not required to hold in a prestate σ if owner(σ) owns x but l > layer(σ).

Likely, the specifier of a class C is not be able (or willing) to change the layer
specifications of existing classes. An advantage of mapping to rational numbers
is that if needed, the specifier can always find a layer in between the layers of
two classes D and E as long as layer(D) ⑧= layer(E ). Furthermore, using rational
numbers requires very little specification overhead, in particular given default class
layers.5

Definition 4.3 (default class layers).
If class C does not specify its layer,
then or C is Object and layer(C ) = −1,

or C is a Java API class and super(C ) is Object and layer(C ) = 1,
or C is a user-defined class and super(C ) is Object and layer(C ) = 2
or super(C ) is not Object and layer(C ) = layer(super(C )).

The intuition behind these default values is that Java API classes do not rely on
user-defined invariants. A user-defined class that is intended to provide shared
functionality (section 3.3) can explicitly specify layer 1. A class that does not
specify its layer has its default layer. Therefore, user-defined classes Trip and

5If the specification language does not have rationals, floating point numbers have the same
benefits for all practical purposes.
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RoundTrip (figure 3.2) have layer 2. TripInfo and ClientInfo (not shown) spec-
ify layer 1, which means they have a lower layer than Trip and RoundTrip.

The differences between the RII and the LRII give the extra flexibility needed for
designs like that of the travel agent example. Again consider figure 3.3. Given
the LRII, the specification expresses that the invariants of T1 and C1 hold in
the prestate of an execution of book on one of R1’s Trips. Furthermore, the
invariants of R1 are not required to hold in a prestate of T1.book(). Note that
item 2 of the LRII guarantees that any invariant of R1 that does hold in a prestate
of T1.book(), also holds in the matching poststate. More generally, consider two
objects x and y that have the same owner. Assume layer(x ) < layer(y). The
additional flexibility of the LRII allows x to be called while an invC (y) does not
hold. As a consequence, the LRII can not require the invariants of y to hold in
the poststate. However, item 2 ensures that any invC (y) that did hold when x
was called, is preserved by the call.

Finally, note that the layer of an object will normally not be lower than the layer of
objects it owns. If object x owns object y , the intention is that y is a subordinate
part of x . That means the invariants of y should hold when control flows to x .
This is not guaranteed by the LRII when layer(x ) < layer(y).

This concludes the first part of this chapter. In section 3, we determined the
interpretation of invariants to be the origin of the problems to verify the running
example. At the semantical level, the problems have been solved by the LRII. The
second part discusses how to establish the LRII.

5 Establishing the Layered Relevant Invariant In-

terpretation

The verification technique is presented in three steps. This section identifies four
properties. A program execution that satisfies these, satisfies the LRII. Section 6
enables reasoning about layer and ownership relations. Section 7 treats the sepa-
rate concern of how to statically verify that every execution of a program satisfies
the properties identified here. These properties are similar to those underlying
model-based Abstract Data Type (ADT) specifications, where invariants range
over the type’s state, which is encapsulated from clients of the type [GH93]. In
turn, this allows a form of reasoning that is similar to the data type induction
used for ADTs. That is, establishing the LRII reduces to a local property, i.e., a
property that only considers the object that has control.

A modular verification technique needs to restrict the invariants that are consid-
ered [MHKL08a]. To this end, the following property of an invariant is defined.

Definition 5.1 (ownership based). Invariant invC is ownership based in program
P if, for every execution Σ of P, for every two consecutive states σ and σ′ in Σ,
for every object x , if invC (x ) holds in σ but not in σ′, then σ and σ′ differ either
on x , or on an object y that is owned by x in σ′, where layer(x ) ≥ layer(y).
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When all invariants are ownership based, a change of the state of an object x can
(only) invalidate invariants of x and its owners. A method can change the state
of an object x either directly, by an assignment to a field of x , or indirectly, by a
method call. Assignment to a field of x is ensured to only occur when control is
with x by the second property.

Definition 5.2 (classical encapsulation). Location x .f is classically encapsulated
in a program execution Σ if, for every two consecutive states σ and σ′ in Σ, if
σ(x .f ) ⑧= σ′(x .f ), then control is with x in σ′. Program execution Σ satisfies
classical encapsulation if every location is classically encapsulated in Σ.

The third property ensures that method calls are such that (1) if control is with x
in state Σ[i ], then control does not flow to y in Σ[i +1] unless layer(x ) ≥ layer(y),
and (2) if x directly owns y , then a method on y can only be invoked by a method
on x or on an object directly owned by x .

Definition 5.3 (ownership encapsulation). Program execution Σ satisfies owner-
ship encapsulation if, for every two consecutive states σ and σ′ in Σ, if σ′ is a
prestate, then

or layer(σ) ≥ layer(σ′) and owner(σ) = owner(σ′),
or layer(σ) ≥ layer(σ′) and control is with owner(σ′) in σ,
or layer(σ) > layer(σ′) and owner(σ′) = root.

With these three properties, establishing the LRII is reduced to establishing a
local property that only considers the object that has control. It is formulated
below, using the notion of a horizontal call state.

In program execution Σ, Σ[i ] is a horizontal call state if Σ[i + 1] is a prestate
and owner(Σ[i ]) = owner(Σ[i + 1]) and layer(Σ[i ]) = layer(Σ[i + 1]).

Definition 5.4 (local consistency). Program execution Σ satisfies local consis-
tency if, for every horizontal call state or poststate σ ∈ Σ, if control is with x in
σ, then the invariants of x hold in σ.

Theorem 5.1. Consider an execution Σ of a program in which every invariant
is ownership based. If Σ satisfies classical and ownership encapsulation as well as
local consistency, then Σ satisfies the LRII.

A detailed proof can be found in [MHKL08b]. The outline relies on intermediate
properties P1 and P2.

P1. If Σ[i ] is a program execution state in which control is with object x , then
for every object y , either (1) the invariants of y hold in Σ[i ], or (2) y = x , or (3)
y owns x , or (4) Σ[i ] is a prestate, or (5) an invariant of y does not hold in the
last unmatched prestate in Σ[0..i − 1].

Proof of P1 is by induction on the length of Σ. Consider a state Σ[i +1] in which
control is with an x and in which cases 2,3,4 and 5 do not hold for a y .
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If Σ[i ] is not a poststate, then control is with x in Σ[i ] and the last unmatched
prestate in Σ[0..i ] and Σ[0..i −1] is the same. Then the invariants of y hold in Σ[i ]
whether Σ[i ] is a prestate (case 5 doesn’t hold), or not (induction hypothesis).
If Σ[i ] and Σ[i + 1] differ on an object z , then z = x (classical encapsulation).
Therefore the invariants of y hold in Σ[i +1] (all invariants are ownership based).

If Σ[i ] is a poststate, assume that Σ[j ] is the last unmatched prestate in Σ[0..i −1].
Then the last unmatched prestate in Σ[0..j − 1] and Σ[0..i ] is the same. Then the
invariants of y hold in Σ[j −1] whether Σ[j −1] is a prestate (case 5 doesn’t hold),
or not (induction hypothesis). Then the invariants of y hold in Σ[j ] (invariants are
not invalidated by a context switch). Let control in Σ[j ] be with an object z . Then
(A) the invariants of y hold in Σ[i − 1], or (B) y = z , or (C) y owns z (induction
hypothesis). In case B, the invariants of y hold in Σ[i − 1] (local consistency). In
case C, either (CA) layer(x ) ≥ layer(z ) and x and z have the same direct owner,
or (CB) layer(x ) ≥ layer(z ) and x directly owns z (control in Σ[j − 1] is with x ,
ownership encapsulation, y owns z ). Both CA and CB contradict that cases 2 and
3 do not hold for y in Σ[i +1]. Then the invariants of y hold in Σ[i +1] (invariants
are not invalidated by a context switch).

P2. If control is with x in Σ[i ], then no owner of x has a lower layer than x . Proof
by induction on the length of Σ, using ownership encapsulation, is straightforward.

Induction hypothesis for the main proof is that Σ[0..i ] satisfies the LRII. Let
control in Σ[i +1] be with x , and let the LRII require invC (y) to hold in Σ[i +1].
Then Σ[i +1] is a visible state. If Σ[i +1] is a poststate, then invC (y) holds in the
matching prestate (by definition of LRII or by the induction hypothesis). Then
invC (y) holds in Σ[i +1], or y = x (P1, P2). Then invC (y) holds in Σ[i +1] (local
consistency). If Σ[i + 1] is a prestate, then invC (y) holds in the last unmatched
prestate in Σ[0..i ] (induction hypothesis and ownership encapsulation). Let control
in Σ[i ] be with z . Then invC (y) holds in Σ[i ], or y = z (P1, P2). Then invC (y)
holds in Σ[i ] (local consistency). Then invC (y) holds in Σ[i + 1] (invariants are
not invalidated by a context switch). Then Σ[0..i + 1] satisfies the LRII.

6 Static Reasoning

In section 6.1, it is shown how ownership relations can be captured using static
reasoning: simple syntactic restrictions like those of a type system suffice to estab-
lish the desired properties. Section 6.2 introduces syntactic restrictions that allow
layer information to be captured as well.

6.1 Capturing ownership relations

The function ownmod (defined below) associates an ownership modifier owned,

rep, peer, root or any with every reference r that is not of a primitive type. It
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is ensured that, if control is with object x in state σ, and r evaluates to object y
in σ, then osafe(x , y , ownmod(r)) holds in σ, where

osafe(x , y , owned) holds if x owns y ,
osafe(x , y , rep) holds if x directly owns y ,
osafe(x , y , peer) holds if x and y have the same direct owner,
osafe(x , y , root) holds if root directly owns y ,
osafe(x , y , any) holds always.

The owned modifier is useful to determine which references are allowed to oc-
cur in ownership-based invariants. The peer, rep and root modifiers allow
one to determine if a method call satisfies one of the three cases of ownership
encapsulation. This section is based on work on the Universe Type System
[Mül02, MPHL06, DM05]. We introduce the additional owned and root modi-
fiers.

First, the property above is formalized by the notion of ownership safety. Then, it
is shown how to determine the ownership modifier of an expression that can occur
in an assignment statement. Finally, two syntactic restrictions are introduced that
ensure that assignments respect the property.

If a field or local variable is not of a primitive type, then must be declared with
an ownership modifier. For example, in figure 3.2 the inbound and outbound

fields of RoundTrip are declared with a rep modifier. These modifiers allow the
formalization of the property at the level of stack variables and locations.

Definition 6.1 (ownership safety). Location x .f is ownership safe in state σ if:
if f has ownership modifier o, and σos(x .f ) is object y, then osafe(x , y , o) holds
in σ. If control is with object x in state σ, then stack variable s is ownership safe
in σ if: if s has ownership modifier o, and σsf (s) is object y, then osafe(x , y , o)
holds in σ. Execution state σ is ownership safe if every location and stack variable
is ownership safe in σ. Method execution Σ is ownership safe if every σ ∈ Σ is
ownership safe.

The value of a location or local variable can only be changed to another object
by an assignment. The right-hand side of such assignment is either a reference, a
method call, or an object creation. The latter is included for completeness as the
direct owner of an object is determined at creation. An object creation statement
has the shape v = new o C (. . .), where ownership modifier o is either rep, peer,
or root. If control is with x when the statement is executed, then the direct owner
of the newly created object is either x , the direct owner of x , or root, respectively.

If a method is not of a primitive return type, then it must be declared with an
ownership modifier. The function ownmod(E ) uses the ownership modifiers of
fields, local variables, and methods to associate an ownership modifier with each
expression E that can occur in an assignment. In the definition below, A represents
either a field f or a method call m(. . .) (which has the ownership modifier of m).
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shape of E ownmod(E)
new o C (. . .) o
this peer

local variable v ownership modifier of v
this.A ownership modifier of A
r.A, r different from this ownmod(r) ⊕ ownership modifier of A (see below)

omr ⊕ omA peer root any rep owned omA
omr peer peer root any any any

root root root any any any
any any root any any any
rep rep root any owned owned
owned owned root any owned owned

The rationale behind the definition of ownership combinator ⊕ is as follows. Con-
sider a reference r .f in a state σ in which control is with x . Assume that r
evaluates to y , and that σos(y .f ) = z . Let ownmod(r) = omr , and let f have type
C and modifier omA. If omA is peer, then y and z have the same direct owner
and the ownership relation between x and z is the same as that between x and y .
Therefore, ownmod(r .f ) = ownmod(r). If omA is root, then z is directly owned
by root, independent of omr , so ownmod(r .f ) = root. If omA is any, then any
ownership relation between y and z is possible. Then the same is true for x and
z . Therefore, ownmod(r .f ) = any. If omA is rep or owned, then y owns z , so x
owns z if x owns y (i.e., ownmod(r .f ) = owned). If x does not own y , the relation
can only be expressed by any.

For the purpose of the two syntactic restrictions that ensure ownership safety
(and those in section 6.2), a method call r .m(s0, . . . , sn) is treated as a series of
assignments r .p0=s0, . . . , r .pn=sn , where p0, . . . , pn are the formal parameters of
m. Furthermore, a statement return s in a method m is treated as an assignment
result = s, where the ownership modifier of result is the ownership modifier of
m.

Syntactic Restriction 6.1: If the left-hand side and right-hand side of an
assignment have ownership modifiers o and o′, respectively, then either o is any,
or o is o′, or o is owned and o′ is rep.

Syntactic Restriction 6.2: Every assignment r .f = SimpleE is such that
either r is this, or the ownership modifier of f is any, or ownmod(r .f ) /∈
{any, owned}.

Roughly, restriction SR6.1 ensures that osafe(x , y , o) holds after the execution of
an assignment r = E from a state in which control is with x , ownmod(E ) is o and r
evaluates to y . However, as the ownership modifier of a field is relative to the object
the field belongs to, one has to be careful when assigning to fields of objects other
than the this object. For instance, consider a class Node with a field rep Node

next. Then ownmod(this.next) = rep and ownmod(this.next.next) = owned.
Although SR6.1 is met, assignment this.next.next = this.next should not be
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allowed as this.next.next must refer to an object that is directly owned by
this.next. Such assignments that do not preserve ownership safety are prevented
by SR6.2.

The above leads to the following lemma (proof is omitted given similarities with
[DM05] and [Mül02]).

Lemma 6.1. If program P meets SR6.1 and SR6.2, then every execution of P is
ownership safe.

6.2 Capturing layer relations

This section shows how to use the layer of the static type of a reference to
determine the layer of the object it refers to. The following property is en-
sured: if a reference r with static type C refers to an object of class D , then
layer(C ) = layer(D), unless r is this, or ownmod(r) is any. Furthermore, if r
is this, then layer(D) ≥ layer(C ). This gives a lower bound on the layer of a
visible state, without which no invariants can be assumed to hold given the LRII.
As with reasoning statically about ownership, any is used to deal with atypical
cases. The property is first formalized in terms of stack variables and locations.
Then, the syntactic restrictions that establish the property are introduced.

Definition 6.1 (layer safety). this is layer safe in state σ if: if control in σ is
in class C and with an object of class D, then layer(D) ≥ layer(C ). Location or
local variable LorLV is layer safe in state σ if: if LorLV has declared type C , and
σ(LorLV ) is object y, then either ownmod(LorLV ) is any, or layer(y) = layer(C ).
Execution state σ is layer safe if every location and every stack variable is layer
safe in σ. Method execution Σ is layer safe if every σ ∈ Σ is layer safe.

Note that a location or local variable that is not mapped to an object is layer safe.
Restrictions SR6.3, SR6.4 and SR6.5 ensure that all program executions are layer
safe, resulting in lemma 6.2.

Syntactic Restriction 6.3: If C = super(D), and class D contains specifica-
tion layer l , then l ≥ layer(C ).

Syntactic Restriction 6.4: Every assignment of an expression with static type
D to a reference r with static type C is such that either layer(C ) = layer(D),
or ownmod(r) is any.

Syntactic Restriction 6.5: Every assignment r = this is such that
ownmod(r) = any.

Lemma 6.2. If program P meets SR6.1-SR6.5, then every execution of P is layer
safe.

The proof outline of this lemma is as follows. Let control in state σ be in class C
and with an object of class D . Then D ⊆ C . Due to SR6.3, layer(D) ≥ layer(C ),
which ensures layer safety of this. Now consider locations and local variables.



148 Chapter 5. Specifying and Exploiting Layers in OO Designs

These can only be changed by assignments and method calls. As in section 6.1,
a method call is treated as a series of assignments. Consider a local variable
v or field f with ownership modifier o and declared type C . Let reference r
be either v , or r ′.f . Assume assignment r = E is executed from a layer-safe
state σ. If o is any, then layer safety is preserved by definition. If o differs
from any, then SR6.2 ensures that ownmod(r) ⑧= any. Then SR6.1 ensures that
ownmod(E ) differs from any. Assume that E has static type D and is mapped
to an object that has layer l . Two cases can be distinguished: E is either (1) a
method call or a reference other than this, or (2) this. In case (1), layer safety
ensures that layer(D) = l (if E is a reference, proof by structural induction on
references is straightforward, and if E is a method call, proof is only slightly more
involved as a method call returns a reference result). Then SR6.4 ensures that
layer(C ) = layer(D). Therefore, layer(C ) = l and the assignment preserves layer
safety. Case (2) has to be restricted as the exact layer of this can not be reasoned
about statically. SR6.5 ensures the assignment preserves layer safety, as an any

reference can refer to an object with any layer. This restriction is weakened using
dynamic reasoning in [MHKL08b].

The use of static reasoning is illustrated by a short example. Consider a program
execution Σ that is ownership safe and layer safe. Consider an state σ in Σ
such that control is with an object x and in a class C . Assume that the active
statement as(σ) is a statement v = r .m(. . .), and that σ maps r to an object y .
If a syntactic check reveals that ownmod(r) is rep, that r has static type D , and
that layer(C ) ≥ layer(D), then x directly owns y , and layer(x ) ≥ layer(y).

7 Proof Techniques

This section first introduces the proof system and the LRII’s role in it. Then,
a proof technique based on static reasoning is introduced for each property in
section 5. A proof outline is presented with each technique. Detailed proofs can
be found in [MHKL08b]. The techniques are based on the ownership technique
from [MPHL06].

7.1 Proof system

The goal of verification of a program P is to guarantee that every execution of P
satisfies a set Props of desired properties. We only consider safety properties: if
prop ∈ Props holds for a program execution, then prop holds for each prefix of
that execution. The LRII is one such property. The statements assert BoolE

and assume BoolE (where BoolE is side-effect free) are added to the programming
language as a convenient way to make explicit where a predicate BoolE must be
proven to hold, or is guaranteed to hold. Either statement causes the program
execution to abort when executed from a state in which BoolE does not hold (it
assert-aborts or assume-aborts). Neither has an effect otherwise.
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For every property prop ∈ Props, a proof technique PTprop is devised. A proof
technique consists of a set SRprop of syntactic restrictions, and a set POprop of
proof obligations. Proof obligations dictate where assert statements should occur
in a program (i.e., proof obligations are syntactic restrictions that involve assert
statements). Let P ′ be a program like P , but with zero or more assert statements
inserted. A meta-level soundness proof must ensure that if P ′ meets PTprop , then
every execution of P ′ satisfies prop. This establishes that if no execution of P ′

aborts, then every execution of P satisfies prop (there is no execution of P ′ in
which an assert statement has an effect).

The verifier’s task is simplified by assume statements. With every prop ∈ Props,
a set Assumpprop of assumptions is associated. Assumptions allow assume state-
ments to occur at certain program locations. A meta-level soundness proof must
ensure that if every execution of a program P satisfies prop, and Assumpprop al-
lows assume statement S , then no execution of P aborts due to an execution of
S .

Let PTs be the union of all PTprop , and let Assumps be the union of all Assumpprop

(prop ∈ Props). Verification of a program P proceeds as follows. First, insert
assert statements into P , obtaining a program P ′. Show that P ′ meets PTs (note
that this is a syntactic check). Next, insert assume statements into P ′, obtaining
a program P ′′. Show that every assume statement in P ′′ is allowed by Assumps.
Finally, prove that no execution of P ′′ assert-aborts.

The crucial meta-level property is the following: If no execution of P ′′ assert-
aborts, then every execution of P satisfies every prop ∈ Props. Proof is as follows.
As P ′ meets PTs, P ′ meets every PTprop ∈ PTs. Then every execution of P ′

satisfies every prop ∈ Props (soundness of the proof techniques). Then every
execution of P ′′ satisfies every prop ∈ Props (prop is a safety property, an execution
of an assume either has no effect or aborts the execution). Then no execution of
P ′′ assume-aborts (soundness of the Assumps). Then no execution of P ′′ aborts
(no execution of P ′′ assert-aborts). Then every execution of P satisfies prop (there
is no execution of P ′ in which an assert or assume statement has an effect).

Note that the verifier underlying [BLS05] can automatically verify whether a pro-
gram that contains assert and assume statements might abort. Alternatively,
straightforward assume and assert rules can be added to a Hoare logic like the
one in [PHM99].

Sections 7.2-7.5 give, and prove sound, proof techniques for the four properties
introduced in section 5. PTLRII is the union of these proof techniques (soundness
of PTLRII then follows directly from theorem 5.1). As the language of boolean
expressions was left implicit, AssumpLRII is not made fully explicit. Let boolean
expression b be such that if, for every object x , items 1 and 2 defined in the
LRII hold in state σ, then b holds in σ. AssumpLRII allows assume b as the first
statement of every method, and allows assume b to precede any return statement
(soundness of AssumpLRII is trivial). Note that the latter allows b to be an implicit
(i.e., trivially proven) part of every postcondition.
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7.2 Establishing ownership-based invariants

To ensure that invariants are ownership based, a syntactic restriction is imposed
on invariants. An invariant BoolE is ownership admissible if BoolE is composed
of (quantifications over) primitive values, the usual unary and binary operators
(see e.g. [Mül02]), and references this.f1 . . . .fi (i ≥ 0) such that if i > 1, then
ownmod(this.f1 . . . .fi−1) is either rep or owned.

Syntactic Restriction 7.1: Every invariant is ownership admissible.

RoundTrip’s invariant (figure 3.2) is ownership admissible as its two references
have a rep modifier.

Lemma 7.1. If program P meets SR7.1, and every execution of P is ownership
safe, then every invariant is ownership based in P.

The reasoning is as follows. An object invariant invC (x ) can only be invalidated by
changing the value of a reference this.f1 . . . fi that occurs in invC . This requires
an update of a location y .fj+1, where this.f1 . . . fj (j < i), refers from x to
y . If j = 0, then y = x . Otherwise, ownmod(this.f1 . . . fi−1) is either rep or
owned (invC is ownership admissible). Then ownmod(this.f1 . . . fj ) is either rep
or owned (section 6.1). Then x owns y (ownership safety).

7.3 Establishing classical encapsulation

If two consecutive states σ and σ′ in a program execution are such that σ(x .f ) ⑧=
σ′(x .f ), then active statement as(σ) is a field assignment to a reference r .f such
that r refers to x in σ. Therefore, classical encapsulation can be established by
imposing a syntactic restriction on assignment r = SimpleE.

Syntactic Restriction 7.2: Every assignment r.f = SimpleE is such that r

is this.

Note that the code in figure 3.2 meets SR7.2: only fields of this are assigned to.
Given the reasoning above, proving the following lemma is straightforward.

Lemma 7.2. If program P meets SR7.2, then every execution of P satisfies clas-
sical encapsulation.

7.4 Establishing ownership encapsulation

With static reasoning (section 6), ownership encapsulation can typically be es-
tablished by simple syntactic checks. More specifically, the notion of statically
meeting encapsulation is introduced. A method call that statically meets encap-
sulation does not violate ownership encapsulation.

Definition 7.1 (statically meeting encapsulation). If reference r has static type
D, then statement v = r .m(. . .) in a method of class C statically meets encapsu-
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lation if
either layer(C ) ≥ layer(D) and ownmod(r) is peer,

or layer(C ) ≥ layer(D) and ownmod(r) is rep,
or layer(C ) > layer(D) and ownmod(r) is root.

Syntactic Restriction 7.3: Every method call statement statically meets en-
capsulation.

Note that every method call in figure 3.2 statically meets encapsulation. Class
Trip calls methods on TripInfo this.ti, where ownmod(this.ti) = root,
and layer(Trip) > layer(TripInfo). Class RoundTrip calls methods on its in-
bound and outbound Trips, which have a rep modifier, and layer(RoundTrip) =
layer(Trip). Static reasoning is only possible in programs that are layer and
ownership safe, leading to lemma 7.3.

Lemma 7.3. If program P meets SR7.3, then every execution of P that is own-
ership safe and layer safe, satisfies ownership encapsulation.

The reasoning is the following. The three cases of the definition of ownership
encapsulation can be recognized in the definition of statically meeting encapsula-
tion. If control is with an object x and in a class C , and a reference r of static
type D refers to an object y , and ownmod(r) is either peer, rep, or root, then
layer(y) = layer(D) and layer(x ) ≥ layer(C ) (layer safety). As ownmod(r) cor-
rectly represents the ownership relation between x and y (ownership safety), the
lemma holds.

7.5 Establishing local consistency

Let σ be a horizontal call state or poststate in which control is in class C and
with object x . To satisfy local consistency, the invariants of x must hold in σ,
i.e., every object invariant invD(x ), type(x ) ⊆ D , must hold in σ. Establishing
this is complicated by the fact that not all subclasses are available at superclass
verification time. Therefore, an inductive argument must guarantee that every
object invariant invD(x ), type(x ) ⊆ D ⊂ C holds in σ. That every object invariant
invB (x ), C ⊆ B , holds in σ can be established directly. Let upinvC denote the
conjunction of the invariants declared in class C and C ’s superclasses. Then every
invB (x ), C ⊆ B , holds in σ if upinvC holds in σ. If σ is a poststate, then proof
obligation PO7.1 ensures every invB (x ), C ⊆ B , holds in σ.

proof obligation 7.1: Every return statement in class C is preceded by assert

upinvC .

If σ is a horizontal call state, then PO7.2 ensures x is consistent for [C , Object]
in σ. PO7.2 relies on the fact that a method call does not lead to a horizontal call
state if it is not statically relevant.

Definition 7.1 (statically relevant). If reference r has static type
D, then statement v = r .m(. . .) in class C is statically relevant if
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or ownmod(r) is any,
or ownmod(r) is peer and layer(C ) = layer(D),
or ownmod(r) is root and layer(C ) = layer(D).

proof obligation 7.2: Every statically relevant method call in class C is pre-
ceded by assert upinvC .

Note that no method call in the code in figure 3.2 is statically relevant. To ensure
that every invD(x ), type(x ) ⊆ D ⊂ C holds in σ, it is ensured that for any state σ′,
if control is with x and in C , then invD(x ) holds. If SR7.1-SR7.3 are met, then an
inductive proof is straightforward if (1) an assignment cannot invalidate a subclass
invariant, and (2) if a subclass invariant holds in the prestate of an invoked method
execution Σ, then it also holds in Σ’s poststate. Note that a subclass invariant
may be temporarily violated by Σ, as long as it has been re-established in Σ’s
poststate.

Given SR7.2, a superclass method cannot assign to a subclass field. So, to establish
(1), it only has to be ensured that a subclass invariant does not depend on a
superclass field. This is ensured by SR7.4.

Syntactic Restriction 7.4: If invariant invC contains reference this.f0 . . . .fi
(i ≥ 0), then f0 is declared in class C .

Ownership admissibility and ownership safety ensure that if object invariant
invC (x ) contains a reference this.f0 . . . .fi , and i ≥ 1, then x .f0 . . . .fj (0 ≤ j < i)
refers to an object x owns. So only x .f0 is a field of x . SR7.4 ensures that f0 is
not a field of a superclass of C .

(2) is established by the use of a form of encapsulation that goes beyond that
provided by ownership. Consider an object x of class D . The objects owned by x
are divided into class frames [LM04]. There is a frame for every class C such that
D ⊆ C (called the C -frame of x ). It is ensured that invariants are frame based: if
invC (x ) holds in Σ[i ], but not in Σ[i +1], then Σ[i ] and Σ[i +1] differ either on a
field of x declared in class C , or on an object in the C -frame of x . Furthermore, it
is ensured that every program execution Σ satisfies frame encapsulation: if Σ[i ] is
a prestate in which control is with an object in the C -frame of x , then in Σ[i − 1]
control was either with an object in the C -frame of x , or with x and in C .

Frames can be reasoned about statically. If field f0 (local variable v , method m)
is declared in class C with a rep or owned modifier, then the frame of expression
this.f0 . . . .fi (v .f1 . . . .fi , this.m(. . .)) is C . It is ensured that if control is with x
in σ, and reference r evaluates to y and has a C -frame, then y is in the C -frame
of x . Formulated differently, (P1) if σos(x .f ) = y , and f is declared in a class C
with a rep or owned modifier, then y is in the C -frame of x , and (P2) if y is in
the C -frame of x , and σos(y .f ) = z , and f has rep, owned or peer modifier, then
z is in the C -frame of x . For the purpose of these definitions, if control is with x
and in C , then local variables are treated as fields of x declared in C . P1 and P2
are established by two restrictions that ensure that an expression with a C -frame
is not assigned to a reference with another frame.
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Syntactic Restriction 7.5: Every field declared with a rep or owned modifier
is private.

Syntactic Restriction 7.6: Every method or method parameter declared with
a rep or owned modifier is private.

Roughly, the proof is the following. When control is with x and in C , SR7.5
prevents x from reaching owned objects outside the C -frame via rep or owned
fields. SR7.6 prevents the exposure of owned objects outside the C -frame to x
via a method return. When control is not with x or not in C , SR7.5 prevents the
update of owned and rep fields of x declared in C . SR7.6 prevents the exposure
of owned objects outside the C -frame to x via (the parameters of) a C -method
call on x .

That invariants are frame based follows almost directly from SR7.1 (ownership
admissibility), SR7.4, P1 and P2. Proof of frame encapsulation is more involved:
If Σ[i ] is a prestate in which control is with y in the C -frame of x , then as(Σ[i −1])
is a method call v = r .m(. . .). As y is owned by x , owmmod(r) differs from root

(ownership safety). Then ownmod(r) is either peer, or rep (as the method call
statically meets encapsulation). Let control be with z in Σ[i − 1]. Then, due to
ownership safety, either (A) z is owned by x , or (B) z = x . In case (A), z can
reach y via r . In case (B), r has a subreference v or this.f that evaluates to an
object that can reach y (as r evaluates to y). In either case, P2 ensures that z is
in the C -frame. Then P1 and SR7.5 ensure that control is with C in Σ[i − 1].

Now we can present the outline for case (2). Let control in Σ[i − 1] be with x and
in class C . Let Σ[i ..j ] be a method execution. Let invD(x ) (D ⊂ C ) hold in Σ[i ].
If invD(x ) holds in Σ[k ] ∈ Σ[i ..j − 1], but not in Σ[k + 1], then Σ[k ] and Σ[k + 1]
differ either (A) on a field of x declared in class D , or (B) on an object y in the
D-frame of x (invD is frame based). In either case, there is a state σ ∈ Σ[i ..k ] in
which control is with x and in a class E , E ⊆ D : in case (A), control in Σ[k ] is with
x and in a class E , E ⊆ D (classical encapsulation, fields of subclasses cannot be
assigned to). In case (B), control is with y in Σ[k ] (classical encapsulation). Then
in the state Σ[l ] from which y was called, control was either (C) with x and in C ,
or (D) with another object in the C -frame of x (frame encapsulation). In either
case, i ≥ l < k . In case (D), to find σ, the reasoning of case (B) can be applied
again to Σ[l ]. Given this state σ, we know there must be a poststate σ′ ∈ Σ[k ..j ]
in which control is with x and in a class E , E ⊆ D . Due to PO7.1, invD(x ) is
re-established in σ′. Given this reasoning, it can be concluded that invD(x ) holds
in Σ[j ]. Combining all the above, we formulate the following lemma.

Lemma 7.4. If program P meets SR6.1-SR6.5, SR7.1-SR7.6, PO7.1 and PO7.2,
then every execution of P satisfies local consistency.

Proof is fairly straightforward: If control in poststate or horizontal call state σ
is with x and in C , PO7.1, PO7.2 ensure every invB (x ), C ⊆ B , holds in σ.
Furthermore, it has been ensured that if control is with x and in class C in state
σ, then every invD(x ), type(x ) ⊆ D ⊂ C , holds. Then the invariants of x hold,
which concludes the proof.
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8 Future and Related Work

Non-modular verification techniques for the CII are given in [HK00, PH97]. That
the CII is not suitable for non-local invariants is also observed in [BHKW01],
where it is proposed to make components explicit at the level of OCL designs. A
component invariant is interpreted to hold when control is outside the component.
The notions of component and ownership seem closely related. A problem might
be that components cannot easily capture class level subordinate relations.

Considering programs with executions where the LRII does not capture the inten-
tion of the specifier and where refactoring is either impossible or undesirable, two
cases can be distinguished.

(A) An invariant is not intended to hold where the LRII guarantees it (the LRII
is too strong). Observations 3.1 and 3.2 suggest that such an execution represents
an uncommon scenario. One can use specification constructs that make explicit
that a certain invariant does not have to hold in a specific pre- or postcondition
(note that this constitutes a refinement of the interpretation). In [MHKL08a], this
approach is used to deal with the callbacks in the Observer Pattern [GHJV95].
Alternatively, a construct could allow methods to be placed in a different layer
than the defining class.

(B) An invariant is intended to hold where the LRII does not require it (the LRII is
too weak). If the execution represents a common scenario that can be identified, a
further refinement of the interpretation of invariants might be needed. Otherwise,
the invariant property can be made explicit in the pre- or postcondition where
the property is expected to hold. The additional specification overhead is not an
issue as the scenario is uncommon. If the definition of an invariant is intended to
be hidden, predicate abstraction techniques [BDF+04, Kas06, LM04, MHKL08a,
Par05] can be used, which allow to reason about a predicate without exposing its
definition. These techniques are orthogonal to the discussion on the interpretation
of invariants.

Note that [BDF+04, LM04] use the Boogie methodology for invariants, in which
invariants only provide predicate abstraction. This methodology is very flexible, as
no additional property is guaranteed. However, specifying which invariants hold in
the pre- or poststates of a method is done ad-hoc and requires additional specifica-
tion overhead. Also, the specifier of a class C cannot specify that an invariant of C
holds in visible states of methods of other classes. A detailed investigation of this
trade-off is future work. Extensions of this methodology treat multi-threaded pro-
grams [JSPS07], as well as invariants that depend on quantifications over objects
[PCdB05], and/or static fields [LM05]. Finally, [BN04] provides a modular verifica-
tion technique for invariants that are not ownership based. Other such techniques
(not based on the Boogie methodology) are discussed in [MHKL08a, MPHL06].
These are largely orthogonal to our approach.

If needed, the layer ordering can be replaced by a partial ordering. Several way
to construct such a partial ordering can be found in the literature. For instance,
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[LM05] constructs an ordering where class C is preceded by class D if C imports
D or if D extends C (and uses it to express subordination between static class in-
variants). Alternatively, [JSPS07] constructs a partial order of locklevels (and uses
it to avoid deadlock), where a new locklevel is defined using a between construct
that takes lower and higher locklevels. An advantage of using such a partial order
is that if a class C is reimplemented, C can define additional classes it precedes
without requiring client reverification (whereas increasing the layer of a class does
require client reverification). However, establishing that this does not introduce a
cycle in the ordering might require the specifications of all classes in the program.
Furthermore, note that a subclass that precedes additional classes cannot be used
where a superclass is expected. Our coarse-grained way to define the ordering
mitigates this problem. It also requires less verification overhead.

The Spec# programming system [BLS05] combines the Boogie methodology with
a RII-like interpretation. Implementing our approach in Spec# is feasible and is
considered future work. This would ease the study of larger examples to confirm
the practicality of the approach.

9 Conclusion

The topic of this chapter is the formal interpretation and verification of invariants
in OO designs. Common scenarios are identified in which current interpretations
do not allow for (easy) specification. The reason is that current interpretations
do not account for the layering that is present in many OO designs. In particular,
these interpretations do not exploit the subordinate relations at the class level that
result from the layering. The chapter shows how these layers can be made explicit
in formal specifications with very little specification overhead. Furthermore, it
introduces a refined interpretation of invariants that exploits these explicit layers.
Together, this allows for easy specification of class level subordinate relations.
The chapter presents a sound and modular verification technique to establish that
programs satisfy the refined interpretation.
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A Appendix

This appendix presents a trace semantics for the Java-like language introduced in
section 2. This is done in two steps. First, a small-step semantics is introduced
using the transition relationù on states. Then, the trace semantics is defined
using this relation. Note that several of the terms used are defined in section 2.

The central notion is that of an (execution) state. A state σ is a 4-tuple
(σsf , σos , σstack , σstat) of a stack frame σsf , an object store σos , a call stack σstack

and an extended statement σstat . A call stack is a sequence of tuples (sf , v), where
sf is a stack frame and v is a local variable (the intuition is that on the call stack,
we store the stack frame at the point of a method call as well as the variable the
method’s return value should be assigned to). An extended statement is either a
statement or the symbol (the ’empty statement’).

as maps a state σ to an extended statement (the active statement).
as(σ) = nosemicolon(σstat). If σstat is a statement S1;S2, then
nosemicolon(σstat) = nosemicolon(S1). Otherwise, nosemicolon(σstat) = σstat .
dom(f ) yields the domain of (partial) function f . f [A 7→ B ] is the function like f ,
but with A mapped to B . This can be used whether or not A ∈ dom(f ). [] is the
empty function. arbitr takes a type T and returns a non-deterministically selected
value of type T . ⊲ denotes prefixing a sequence with an element. alloc takes a
class C and an object store os and returns a tuple of (1) a non-deterministically
selected object x of class C such that x /∈ dom(os), and (2) the heap like os,
but which also, for every class D ⊇ C , for every field f declared in D , maps x .f
to the default initial value for f ’s type. It is assumed class Object declares at
least one field. To simplify the presentation, it is assumed that every method
has exactly one parameter named p, and that there is no overloading: a class
does not declare two methods with the same name (there can be overriding:
class C and class D can both declare a method m). Removing these restrictions
is straightforward. If statement S is the body of method m declared in class
C , then body(C ,m) = S . If C is not Object and does not declare a method
m, then body(C ,m) = body(super(C ),m). Constructors are included for com-
pleteness. If S is the body of the constructor of C , then cbody(C ) = S .
In the reduction rules below, b ∈ BoolE, e ∈ SimpleE, {S1,S2,S3} ⊂ Stat,
ν ∈ values, x ∈ objects, sf ∈ stack frames, os ∈ object stores, and CS ∈ call stacks.
To improve readability, brackets around states are omitted.

sf, os,CS,S1ù sf ′, os′,CS′,S3

sf, os,CS,S1; S2ù sf ′, os′,CS′,S3; S2

sf, os,CS,S1ù sf ′, os′,CS′,

sf, os,CS,S1; S2ù sf ′, os′,CS′,S2

eval(b, sf, os) = true

sf, os,CS, if b then S1 else S2ù sf, os,CS,S1
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eval(b, sf, os) = false

sf, os,CS, if b then S1 else S2ù sf, os,CS,S2

eval(b, sf, os) = true

sf, os,CS, while b do S1ù sf, os,CS,S1; while b do S1

v ∈ dom(sf) eval(e, sf, os) = ν

sf, os,CS, v = eù sf[v 7→ ν], os,CS,

eval(b, sf, os) = false

sf, os,CS, while b do S1ù sf, os,CS,

eval(e, sf, os) = ν eval(r , sf, os) = x x .f ∈ dom(os)

sf, os,CS, r .f = eù sf, os[x .f 7→ ν],CS,

v /∈ dom(sf)

sf, os,CS,T vù sf[v 7→ arbitr(T )], os,CS,

eval(e, sf, os) = ν

sf, os, (sf ′, v) ⊲ CS, return eù sf ′[v 7→ ν], os,CS,

v ∈ dom(sf)
eval(r , sf, os) = x eval(e, sf, os) = ν body(type(x ),m) = S

sf, os,CS, v = r .m(e)ù [this 7→ x , p 7→ ν], os, (sf, v)CS,S

v ∈ dom(sf) eval(e, sf, os) = ν cbody(C ) = S alloc(C , os) = (os′, x )

sf, os,CS, v = new C (e)ù [this 7→ x , p 7→ ν], os′, (sf, v) ⊲ CS,S

If program P has a main method with a body S and a parameter of type T , then

the semantics of P is the following set of traces:

{Σ | isReduction(Σ) and hasProperFirstElem(Σ,S ,T ) and
noReducableLastElem(Σ)}, where

isReduction(Σ) holds if for every two consecutive states σ and σ′ in Σ, σù σ′,
and
hasProperFirstElem(Σ,S ,T ) holds if there is a ν ∈ T such that Σ[0] = ([p 7→
ν], [], ([], result),S ), and
noReducableLastElem(Σ) holds if either Σ is infinite, or has a last element σ such
that σ ⑧ù.

A program execution Σ terminates normally if it has a last element σ and σstat = .
In that case, σsf maps result to the value returned by the main method.





CHAPTER 6

Proving Consistency of Pure Methods and Model Fields

This chapter contains the following paper, with minor editorial changes: K. Rus-
tan M. Leino and Ronald Middelkoop. Proving Consistency of Pure Methods and
Model Fields. In Fundamental Approaches to Software Engineering (FASE 2009),
volume 5503 of LNCS, pages 231–245. Springer, 2009 [LM09]. It is available
online.

abstract Pure methods and model fields are useful and common specification
constructs that can be interpreted by the introduction of axioms in a program
verifier’s underlying proof system. Care has to be taken that these axioms do
not introduce an inconsistency into the proof system. This chapter describes and
proves sound an approach that ensures no inconsistencies are introduced. Un-
like some previous syntax-based approaches, this approach is based on semantics,
which lets it admit some natural but previously problematical specifications. The
semantic conditions are discharged by the program verifier using an SMT solver,
and the chapter describes heuristics that help avoid common problems in finding
witnesses with trigger-based SMT solvers. The chapter reports on the positive
experience with using this approach in Spec# for over a year.

1 Introduction

Pure methods and model fields [Cok05, CLSE05] are useful and common specifi-
cation constructs. By marking a method as pure, the specifier indicates that it
can be treated as a function of the state. It can then be called in specifications.
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pure T m(T ′ p)
requires P;

ensures Q;

Figure 1.1: Template

pure int bad()

ensures false;

{ return 4; }

Figure 1.2: Inconsistency

pure int n(int i)

ensures result = this.p(i);

pure int p(int i)

ensures result = this.n(i)+1;

Figure 1.3: Harmful indirect
recursion

Model fields provide a way to abstract from an object’s concrete data. A problem
with either technique is that it can introduce an inconsistency into the underlying
proof system. In this chapter, we discuss how to prove (automatically) that no
such inconsistency is introduced while allowing a rich set of specifications.

Starting from a review of the setting, the problem, and previous solutions, this
section leads up to an overview of our contributions.

Pure Method Specifications. Figure 1.1 shows the template for a pure
method specification (for simplicity, we show only a single formal parameter,
named p). As usual, requires declares the method’s precondition P , ensures
declares the method’s postcondition Q , and result denotes the method’s return
value. The only free variables allowed in P are this and p. In Q , result is allowed
as well.

A Deduction System. Marking method m as pure adds an uninterpreted total
function #m : C × T ′ → T (a method function [DL07]) to the specification
language. In predicates in the specification, the expression E0.m(E1) is treated as
syntactic sugar for #m(E0,E1). Furthermore, method function #m is axiomatized
in the underlying deduction system for first-order logic by the following axiom:1

∀σ ∈ Σ • [[∀this : C , p : T ′ • P ⇒ Q [#m(this, p)/result] ]]σ (6.1)

Here, Σ denotes the set of well-formed program states. Partial function [[E ]]σ
evaluates expression E to its value in state σ. [[#m(E0,E1)]]σ is defined as
#m( [[E0]]σ, [[E1]]σ). Other details of this evaluation are unimportant here.
P [E/v ] denotes the predicate like P , but with capture-avoiding substitution of
variable v by E . For instance, pure method has from Fig. 1.4 introduces un-
interpreted total function #has : Node × Object → bool, and axiom ∀σ ∈
Σ • [[∀this : Node, obj : bool •#has(this, obj) = #count(this, obj) > 0]]σ.

Consistency of Deduction System. If one is not careful, pure methods can
introduce an inconsistency into the deduction system. As an obvious example,
consider Fig. 1.2. This definition introduces false as an axiom into the deduction
system (more precisely, it introduces ∀σ ∈ Σ • [[∀this : C • false]]σ). So, it has to

1The axiomatization differs slightly in the presence of class invariants. To simplify the pre-
sentation, invariants are not considered.
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class Node {
Object val;

rep Node next;

pure int count(Object obj)

ensures result = (obj = this.val ? 1 : 0) +

(this.next = null ? 0 : this.next.count(obj));

pure bool has(Object obj)

ensures result = this.count(obj) > 0;

} //rest of class omitted

Figure 1.4: Singly linked list (see Sect. 4.1 for rep)

be ensured that for all possible values of the arguments of method function #m,
there is a value that the function can take. Insuring this by requiring a proof of
total correctness of the implementation of m before adding the axiom is highly
impractical. If #m is constrained only by the axiom introduced by m, then it
suffices to prove property (6.2):

∀σ ∈ Σ • [[∀this : C , p : T ′ • ∃x : T • P ⇒ Q [x/result] ]]σ (6.2)

If other axioms can also constrain #m, as is the case in the presence of mutual
recursion, then property (6.2) needs to simultaneously mention all methods in-
volved. We aim for sound modular verification, which means being able to verify a
program’s modules separately, just like a compiler performs separate compilation
of modules. If the mutual recursion can span module boundaries, then there may
be no verification scope that has information about all the methods that need
to be simultaneously mentioned. Therefore, the consistency of mutual recursion
among pure methods is usually stated in a form different from (6.2).

Previous Solutions. Darvas and Müller [DM06] prove that inconsistency is
prevented if the following two measures are taken: (A) the axiom that is introduced
into the deduction system for a method function #m is not proposition (6.1), but
(6.2) ⇒ (6.1), and (B) recursion in the pure method axioms is disallowed unless it
is direct and well-founded. For example, measure A prevents the pure methods in
Fig. 1.2 from introducing an inconsistency, and measure B forbids the specifications
in Fig. 1.3, whose axioms would otherwise introduce an inconsistency.

Darvas and Leino [DL07] discuss a problem with measure A, namely that an
axiom of the form (6.2) ⇒ (6.1) is unsuitable for automatic reasoning using today’s
trigger-based SMT solvers like Simplify and Z3 [DNS05, dMB08]. More specifically,
these solvers are unable to come up with a witness for the existential quantification
in (6.2) even in simple cases. This means that property (6.1) is ‘silently ignored’,
which renders the pure method useless (and possibly confuses the user).

To circumvent the practical problem with measure A, Darvas and Leino introduce
a simple syntactic check that allows one to conclude that (6.2) holds once and for
all [DL07]. Thus, (6.1) can be introduced as an axiom into the deduction system
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pure int findInsertionPosition(int N)

requires 0 ≤ N;

ensures 0 ≤ result & result ≤ N;

pure int max(int x, int y)

ensures (x ≤ y ⇒ result = y) &
(y ≤ x ⇒ result = x);

Figure 1.5: Previous syntactic checks forbid these methods; our semantic checks
allow them.

pure bool isEven(int n)

requires 0 ≤ n;

ensures

result = (n = 0 ? true : this.isOdd(n-1));

measuredBy 2n;

pure bool isOdd(int m)

requires 0 ≤ m;

ensures result ⑧= this.isEven(m);

measuredBy 2m+1;

Figure 1.6: Odd and even (see Sect. 4.3 for measuredBy)

without fear of inconsistencies. However, the syntactic check is restrictive and pre-
vents a number of natural and useful specifications, including the two in Fig. 1.5.
Syntactic checks cannot guarantee the consistency of findInsertionPosition,
because its result value is constrained by two inequalities, or of max, because its
result-value constraints are guarded by antecedents.

Measure B is a Draconian way of dealing with mutual recursion. The syntactic
check of Darvas and Leino [DL07] improves on this situation. However, this check
is still restrictive; for instance, it does not permit the example in Fig. 1.6.

A Glimpse of Our Semantic Solution. In our solution, we use heuristics to
guess candidate witness expressions for (2). Then we verify that in every pro-
gram state allowed by the pure method’s precondition, one of these candidates
establishes the postcondition. For example, for pure method max in Fig. 1.5, we
generate three candidate witnesses 1, x , and y , and construct a program snippet
of the form:

r := 1; if ((x ≤ y ⇒ r = y) & (y ≤ x ⇒ r = x )) { return r ; }
r := x ; if ((x ≤ y ⇒ r = y) & (y ≤ x ⇒ r = x )) { return r ; }
r := y ; return r ;

and then attempt to verify, using our program verifier’s machinery, that this pro-
gram snippet establishes the postcondition of the pure method.

Model Fields. Model fields introduce similar problems. A model field gives a
way to hide details of an object’s concrete state. Figure 1.7 gives an example
(taken from [LM06]) of the use of model fields: by updating the satisfies clauses,
e.g., to this.width = this.w and this.heigth = this.h, Rectangle can be
re-implemented with two ints w and h, without affecting the verification of other
classes. For every model field model T f satisfies Q in a class C , a total function
#f : C → T (an abstraction function) is added to the specification language. In
predicates in the specification, the expression E .f is treated as syntactic sugar
for #f (E ). Abstraction function #f is axiomatized in the deduction system by
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class Rectangle {
int x1,y1,x2,y2; //lower left and upper right corner

model int width satisfies this.width = this.x2-this.x1;

model int height satisfies this.height = this.y2-this.y1;

void scaleH(int factor)

requires 0 ≤ factor;

ensures this.width = old(this.width) ∗ factor/100;

{ this.x2 := (this.x2 - this.x1 ) ∗ factor/100 + this.x1; }
} //rest of class omitted

Figure 1.7: Model fields

an axiom ∀σ ∈ Σ • [[∀this : C • Q ]]σ.2 This axiom is not visible outside of C ’s
module. The axiomatization problems we have described for method functions
apply to abstraction functions as well: for the purpose of this chapter, a model
field f that satisfies predicate Q can be treated as a parameterless pure method
with postcondition Q , with result for this.f .

Contributions. The contributions of this chapter are the following:

1. We formalize and strengthen an implicit claim from [DL07]: No inconsistency
is introduced by axioms of the form (6.2) ⇒ (6.1) if every method function call
in a pure method m’s specification lies below m in a partial order ➔ (Sect. 2).

2. We present a much improved scheme that leverages the power of the theorem
prover to prove (6.2) once-and-for-all (Sect. 3).

3. We introduce a permissive definition for ➔ that improves on the one in [DL07]
and allows a greater degree of (mutual) recursion than before (Sect. 4).

We report on our experience and discuss related work in Sect. 5.

2 Avoiding Inconsistency

In this section, we identify proof obligations that allow axioms of form (6.1) to be
added to the deduction system without introducing inconsistencies.

Let there be N + 1 pure methods in the program fragment that is to be verified,
labeled m0, . . .mN . For simplicity, assume that there are no static pure methods
and that every pure method mi has exactly one formal parameter pi of type T ′

i

(extending to an arbitrary number of parameters is straightforward). Let Ti be
the return type of pure method mi . Let Ci be the class that defines mi . Let
predicates Prei and Posti be the pre- and postconditions of mi . PureAx , defined
below, represents the axioms introduced by pure methods (reformulated into a
single proposition). We use ≡ to define syntactical shorthands.

2More axioms might be added depending on the methodology, see Sect. 5.
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Definition 2.1 (PureAx ).

Speci ≡ Prei ⇒ Posti

MSpeci ≡ ∀this : Ci , pi : T ′
i • Speci [#mi(this, pi)/result]

PureAx ≡ ∀σ ∈ Σ • [[MSpec0 ∧ . . . ∧ MSpecN ]]σ

Let Prelude be the conjunction of all axioms in the deduction system that are not
introduced by a pure method. The goal is to find proof obligations POs such that
if Prelude is consistent and POs hold, then adding the axioms for pure methods
does not introduce inconsistencies. Theorem 2.1 formalizes this goal:

Theorem 2.1. Prelude ⇒ (POs ⇒ PureAx )

The remainder of this section discusses the proof obligations POs that we use to
ensure that Thm. 2.1 holds. The theorem itself is proven to hold in Ap. A. If
there is no recursion in pure method specifications, then Thm. 2.1 can be shown
to hold using POs ≡ PO1 (see [DM06]):

Definition 2.2 (PO1).

PO1i ≡ ∀σ ∈ Σ • [[∀this : Ci , pi : T ′
i • ∃result : Ti • Speci ]]σ

PO1 ≡ PO10 ∧ . . . ∧ PO1N

Note that PO1i is equivalent to proposition (6.2) from the introduction.

When there is (mutual) recursion, the crucial property that is in jeopardy is func-
tional consistency: if the same function is called twice from the same state and the
parameters of the two calls evaluate to the same values, then the two calls evaluate
to the same value. For instance, consider the methods in Fig. 1.3. If pure methods
add propositions of the form (6.1) to the deduction system, then these method
definitions allow one to deduce that #n(this, i) = #n(this, i) + 1, which con-
tradicts functional consistency of #n. More formally, since [[#mi(E0,E1)]]σ =
#mi( [[E0]]σ, [[E1]]σ) (see Sect. 1), it follows immediately that ∀σ ∈ Σ, i ∈
[0,N ]• [[∀c0, c1 : Ci , p0, p1 : T ′

i •c0 = c1∧p0 = p1 ⇒ #mi(c0, p0) = #mi(c1, p1)]]σ.
The proof obligations must ensure that the axioms introduced by pure methods
do not contradict functional consistency.

For convenience, we define the equivalence relation ∼:

Definition 2.3 (∼).

[[#mi(E0,E1) ∼ #mj (E2,E3)]]σ =def i = j ∧ [[E0 = E2 ∧ E1 = E3]]σ

Then ∀σ ∈ Σ • [[#mi(E0,E1) ∼ #mj (E2,E3) ⇒ #mi(E0,E1) = #mj (E2,E3)]]σ.

To ensure that recursive specifications do not lead to an axiomatization that con-
tradicts functional consistency, we require the verifier to ensure that a function
call in the axiomatization of #mi(o, x ) does not (indirectly) depend on the value
of #mi(o, x ). To this end, we introduce the strict partial order ➔ on method
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function calls (i.e., ➔ is an irreflexive and transitive binary relation on expressions
of the shape #mi(E0,E1)). The definition of ➔ is not relevant to the proof as long
as (1) ➔ is well-founded, and (2) the following lemma holds:

Lemma 2.2.

∀σ ∈ Σ, i , j ∈ [0,N ] • [[∀c0 : Ci , x0 : T ′
i , c1 : Cj , x1 : T ′

j •

#mi(c0, x0) ➔ #mj (c1, x1) ⇒ #mi(c0, x0) ⑧∼ #mj (c1, x1)]]σ

In Sect. 4, we present a definition of ➔ that is suitable for our proof system.
Proof obligation PO2, defined below, requires every method function call in the
specification of mi to lie below #mi(this, pi) in the order ➔ in every state in
which the result of the call is relevant.

Definition 2.4 (PO2). Let i , j ∈ [0,N ]. Let NrOfCallsi,j be the number of calls
to #mj in Speci . If l + 1 = NrOfCallsi,j , and k ∈ [0, l ], then
Calli,j ,k is the expression that is the k’th call to #mj in Speci
Speci,j ,k is Speci , but with a fresh variable substituted for the k’th call to #mj

Smalleri,j ,k ≡ Calli,j ,k ➔ #mi(this, pi)
NotReli,j ,k ≡ ∀ result : Ti , x : T ′

j • Speci,j ,k = Speci
PO2i,j ,k ≡ ∀σ ∈ Σ • [[∀ this : Ci , pi : T ′

i • Smalleri,j ,k ∨ NotReli,j ,k ]]σ
PO2i,j ≡ PO2i,j ,0 ∧ . . . ∧ PO2i,j ,l
PO2i ≡ PO2i,0 ∧ . . . ∧ PO2i,N
PO2 ≡ PO20 ∧ . . . ∧ PO2N

The intuition behind NotRel is that Calli,j ,k in Speci is not relevant in σ ∈ Σ
if the result value of Calli,j ,k is not relevant to the value of #mi(this, pi) in
σ. That is, for any value of result, the value of Speci is the same for any re-
sult of Calli,j ,k . As an extreme example, suppose Speci is false ⇒ result =

this.mi(p) + 1. Then Smalleri,i,0 never holds, but NotReli,i,0 always holds
as ∀σ ∈ Σ • [[∀ this : Ci , pi : T ′

i , result : Tj , x : T ′
j • (false ⇒ result =

this.mi(p) + 1) = (false ⇒ result = x + 1) ]]σ. Then PO2i,i,0 is met, and
hence PO2i is met. We show a more realistic example in Sect. 4.1.

In this section, we formalized the problem sketched in the introduction. Further-
more, we introduced high-level proof obligations that ensure that the extension of
the Prelude with the axiomatization of pure methods does not introduce inconsis-
tencies: in Ap. A we prove that Thm. 2.1 holds if POs ≡ PO1∧PO2. In the next
two sections, we address two remaining practical concerns: we provide heuristics
to prove PO1, and define the partial ordering ➔ used in PO2.

3 Heuristics for Establishing PO1

Proof obligation PO1 poses serious difficulties for automatic verification. Even in
simple cases, automatic theorem provers are unable to come up with a witness
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for the existential quantification ∃ result : Ti • Speci in PO1i . As a solution,
[DL07] proposes only to allow a pure method mi when (1) it has a postcondition
of the form result op E or E op result, where op is a binary operator from the
set {=,≥,≤,⇒,⇔}, and (2) E is an expression that does not contain result. If
these conditions are met, then E is a witness for the quantification, i.e., ∀σ ∈
Σ • [[∀this : Ci , pi : T ′

i • Speci [E/result]]]σ, and therefore PO1i holds.

This solution has the advantage that it only requires a simple syntactic check.
However, it is quite restrictive. Unfortunately, not much more can be done
with syntactic checks. For instance, consider method findInsertPosition from
Fig. 1.5. Here, 0 is a witness (as 0 ≤ N ⇒ 0 ≤ 0 ∧ 0 ≤ N). However, a syn-
tactic check cannot establish that 0 ≤ N. Our solution is to leverage the power of
the theorem prover. Consider the scheme below.

1. Find a witness candidate E .
2. If ∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i • Speci [E/result]]]σ can be established by the
theorem prover, then PO1i holds. Otherwise, the program is rejected.

This scheme is more powerful than the syntactic check of [DL07]. For instance, un-
like the syntactic check, it allows findInsertPosition, assuming that 0 is found
as a witness candidate. Before we discuss how to find witness candidates, we
improve on the scheme above in one important way. Consider method max from
Fig. 1.5. PO1 cannot be established for max using the scheme above, no mat-
ter which witness candidate is found. In particular, neither Specmax[x/result] nor
Specmax[y/result] holds. The problem is that the scheme requires that there is a
witness that holds in all cases. PO1 only requires that in all cases, there is a wit-
ness. The latter is true for max, but the former is not. If x ≤ y, then y is a witness.
If y ≤ x, then x is a witness. That is, Specmax[x/result]∨Specmax[y/result] holds.
Therefore, ∃result : int • Specmax holds, and PO1 holds. Based on this reasoning,
the scheme presented above is replaced by the more liberal scheme below.

1. Find witness candidates E0, . . . ,En .
2. If ∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i • Speci [E0/result] ∨ . . . ∨ Speci [En/result]]]σ
can be established by the theorem prover, then PO1i holds. Otherwise, the
program is rejected.

Next, we present an algorithm to find witness candidates for a pure method. We
assume that there is a function kind : Type → {Bool ,Enum,Num,Ref } that
distinguishes four kinds of types. The algorithm uses a Haskell-like switch that
uses pattern matching and does not fall through. For example, case A of B → C
D → E → F should be read as ‘if A matches B, then C, else if A matches D,
then E, else F’. The witness candidates for a pure method mi with return type Ti

and postcondition Posti are given by wcs(Ti ,Posti). Below, wcs and its helper
functions are defined, discussed and illustrated by a number of examples. Note
that ExprSet ≡ Set of Expression, and that |S | returns the size of set S .

Definition 3.1 (wcs).
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wcs : Type × Predicate → ExprSet
wcs(T ,P) =def case kind(T ) of
Bool → {true, false}
Enum → the enumerator list (i.e. the list of enumeration constants) of T
Ref → let euld(P) = 〈S0,S1,S2,S3〉 in S0 ∪ {null}
Num → let euld(P) = 〈S0,S1,S2,S3〉 in

S0 ∪ dupl(S1, |S3 | , true) ∪ dupl(S2, |S3 | , false) ∪ dupl({1}, |S3 | , true)

Definition 3.2 (euld).

euld : Predicate → ExprSet × ExprSet × ExprSet × ExprSet
euld(P) =def case P of
result = E or E = result → 〈{E}, {}, {}, {}〉
result ≥ E or E ≤ result → 〈{}, {E}, {}, {}〉
result ≤ E or E ≥ result → 〈{}, {}, {E}, {}〉
result ⑧= E or E ⑧= result → 〈{}, {}, {}, {E}〉
result > E or E < result → euld(result ≥ E + 1)
result < E or E > result → euld(result ≤ E − 1)
P0 ∨ P1 or P0 ∧ P1 → let euld(P0) = 〈S0,S1,S2,S3〉, and

euld(P1) = 〈S ′
0,S ′

1,S ′
2,S ′

3〉 in
〈S0 ∪ S ′

0,S1 ∪ S ′
1,S2 ∪ S ′

2,S3 ∪ S ′
3〉

¬P0 → let euld(P0) = 〈S0,S1,S2,S3〉 in
〈S3, addOrSub1(S2, true), addOrSub1(S1, false),S0〉

P0 ⇒ P1 or P1 ⇐ P0 → euld(¬P0 ∨ P1)
P0 ⇔ P1 → euld((P0 ∧ P1) ∨ (¬P0 ∨ ¬P1))
P0 ? P1 : P2 → euld((P0 ⇒ P1) ∧ (¬P0 ⇒ P2))

→ 〈{}, {}, {}, {}〉

Definition 3.3 (addOrSub1).

addOrSub1 : ExprSet × Bool → ExprSet
addOrSub1({E0, . . . ,En}, isAdd) =def

(isAdd ? {E0 + 1, . . . ,En + 1} : {E0 − 1, . . . ,En − 1})

Definition 3.4 (dupl).

dupl : ExprSet × N× Bool → ExprSet
dupl({E1, . . . ,En}, duplCnt , isAdd) =def

duplExpr(E1, duplCnt , isAdd) ∪ . . . ∪ duplExpr(En , duplCnt , isAdd)

Definition 3.5 (duplExpr).

duplExpr : Expression × N× Bool → ExprSet
duplExpr(E , duplCnt , isAdd) =def

(isAdd ? {E + 0, . . . ,E + duplCnt} : {E − 0, . . . ,E − duplCnt})

The intuition behind the wcs(T ,P) definition is as follows. If kind(T) ∈ {Bool,
Enum}, then there is no need to scan the postcondition for witness candidates. In-
stead, we make full use of the possibility to select multiple candidates and let every
value of the type be a witness candidate. If kind(T) ∈ {Num, Ref}, then function



168 Chapter 6. Proving Consistency of Pure Methods and Model Fields

euld is used to scan P for equalities, upper bounds, lower bounds, and d isequalities
that contain result. More precisely, assume euld(P) = (S0,S1,S2,S3). Let cnf (P)
yield the conjunctive normal form of P , and let test(P ,E ) ≡ cnf (P)[E/result].
Let E0,E1,E2 and E3 be elements of S0,S1,S2 and S3, respectively. Then for every
n ∈ N, each of test(P ,E0), test(P ,E1+n) and test(P ,E2−n) has a satisfied con-
junct. Also, at least one conjunct of test(P ,E3) contains an unsatisfied disjunct.
From euld ’s result, witness candidates are extracted and where needed duplicated
using function dupl .

We illustrate with several examples. Let kind(Ti) = Num. If Posti is re-
sult = 4, or result > 3, or result ≤ 4, then euld(Posti) is 〈{4}, {}, {}, {}〉,
〈{}, {4}, {}, {}〉, or 〈{}, {}, {4}, {}〉, respectively. In each case, wcs(Ti ,Posti)
= {4, 1}. As Posti [4/result] holds, Posti [4/result] ∨ Posti [1/result] holds as
well and PO1i is satisfied. Default witness 1 is included to handle, e.g., the
case where Posti is result ⑧= 4. Then euld(Posti) = 〈{}, {}, {}, {4}〉. Then
wcs(Ti ,Posti) = {1, 2}. As Posti [1/result] holds, PO1i is satisfied.

We track upper and lower bounds and the number of disequalities N to handle,
e.g., the case where Posti is result > 4 ∧ result ⑧= 5. Then euld(Posti) =
〈{}, {5}, {}, {5}〉, and wcs(Ti ,Posti) = {5, 6, 1, 2}. As Posti [6/result] holds, PO1i
is satisfied. More generally, by trying N different candidates that all satisfy the
bound, we are sure to find at least one that satisfies the disequality.

We combine the candidates found in subpredicates of conjunctions and disjunc-
tions to handle, e.g., the case where Posti is (result = 4 ∨ result > 8) ∧ re-
sult > 7. In this case, we know that euld(Posti) = 〈{4}, {9, 8}, {}, {}〉, and
wcs(Ti ,Posti) = {4, 9, 8, 1}. As Posti [9/result] holds, PO1i is satisfied.

A predicate ¬P is dealt with ’on the fly’, which is more efficient than distributing
the negation over the subexpressions of P . We interchange S0 and S3 as well as S1

and S2, and then add (subtract) 1 to each element of the new S1 (S2). The intuition
is the following. As was stated above, if E ∈ S1, then for every n a conjunct in
test(P ,E + n) holds. Then for every n, a conjunct in test(¬P ,E − 1− n) holds.
For example, ¬(result ≥ E ) equals result ≤ E − 1.

As an aside, note that in the cases where P is either P0 ⇔ P1 or P0 ? P1 : P2,
euld(P0) and euld(P1) are evaluated twice. These cases can be optimized at the
expense of a more complicated definition.

4 Defining the Ordering ➔

Our definition of ➔ builds on work in [DL07, DM06]. It uses a function Order
(defined below) that associates a tuple of numbers with an expression #mi(E0,E1)
in a state σ. Our definition of ➔ ensures that ➔ is a well-founded strict partial
order, and that Lem. 2.2 holds (as long as Order is well-defined):

Definition 4.1 (➔).
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[[#mi(E0,E1) ➔ #mj (E2,E3)]]σ =def

Order(#mi ,E0,E1, σ) is lexicographically ordered below Order(#mj ,E2,E3, σ)

As Def. 4.2 shows, the definition of Order uses three functions. RootDistance
associates a number with an object based on the well-founded strict partial order
on objects provided by ownership, an existing specification technique (Sect. 4.1).
RTVal associates a number with a method function based on a numbering scheme
that can be largely inferred automatically (Sect. 4.2). MeasuredBy yields a tuple
of numbers that is determined by a pure method’s measuredBy clause, and that
depends only on the values of the numerical parameters (Sect. 4.3). The definition
uses ⊲ to denote sequence concatenation.

Definition 4.2 (Order).

Order : Method Function × Expression × Expression × Σ → Sequence of Z

Order(#mi ,E0,E1, σ) =def 〈j ,RTVal(#mi)〉 ⊲ MeasuredBy(#mi ,E1, σ),

where j is ( [[E0]]σ ∈ Object ? −RootDistance( [[E0]]σ, σ) : 0)

Note that if #mj (E0,E1) occurs in the specification of mi , and σ does not map E0

to an object, then the first element of Order(#mj ,E0,E1, σ) is 0, thus requiring
that the call is not relevant in σ if PO2 is to hold.

4.1 Root Distance

Ownership, originally developed to enforce state encapsulation [Cla01, Mül02],
is a commonly used technique to make whole/part relations explicit in specifi-
cations (often applied to the modular verification of invariants [BDF+04, LM04,
MHKL08c, MPHL06]). The set of owners consists of the set of objects and the
special purpose owner root. In any given state, every object x is directly owned
by exactly one owner o, o ⑧= x . The owned relation is the transitive closure of the
directly owned relation. The intention is that an object x owns the objects that
are part of x , i.e., that belong to x ’s representation. Objects that are not part of
any other object are directly owned by root. The owned relation is required to be
irreflexive, as a whole is not a part of one of its parts. Therefore, ownership is a
well-founded strict partial order, which makes it suitable for use in the definition
of ➔.

In [DM06], it is suggested that ‘the height of an object in the ownership hi-
erarchy’ can be used to allow direct recursion. We formalize this notion and
apply it to general recursion. The owned relation ensures that every object is
owned by root. Let function RootDistance : Object × Σ → N be such that
RootDistance(x , σ) = n iff x is owned by exactly n objects in σ (we say x has
RootDistance n in σ). Then RootDistance induces a well-founded strict partial or-
der that is an extension of ownership: if object x is owned by object y in state σ,
then RootDistance(x , σ) > RootDistance(y , σ). Additionally, RootDistance orders
objects that are not ordered by ownership. For instance, if x and y have the same
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direct owner in state σ, and object z is owned by y , then x and z are not ordered
by ownership, but RootDistance(x , σ) < RootDistance(z , σ).

Note that given Defs. 4.1 and 4.2, [[#mi(E0,E1) ➔ #mj (E2,E3)]]σ = true when
[[E0]]σ = x , [[E2]]σ = y , and RootDistance(x , σ) > RootDistance(y , σ).

It is not necessary, and usually not possible, to determine an object’s absolute
RootDistance during static program verification. Rather, if mi ’s specification con-
tains a call #mj (E0,E1), one has to establish that the RootDistance of the this-
object is smaller than (or at least equal to) the RootDistance of the E0-object.
I.e., one reasons about the relative RootDistance. This involves reasoning about
ownership, which is often made explicit by extending types with ownership mod-
ifiers [CPN98] like rep and peer. Consider a state σ in which an object x has a
field f that refers to an object y . If the ownership modifier of f is rep, then x di-
rectly owns y and RootDistance(y , σ) = RootDistance(x , σ)+1. If it is peer, then
x and y have the same direct owner and RootDistance(y , σ) = RootDistance(x , σ).
Alternatively, ownership can be encoded into existing proof system concepts us-
ing a specification-only field owner [LM04]. If x.owner evaluates to y in σ, then
RootDistance(x , σ) = RootDistance(y , σ) + 1.

The use of RootDistance is illustrated by method Node.count in Fig. 1.4. Its
specification contains one call, to #count(this.next, obj). There are two cases,
each of which satisfies PO2.

1. [[this.next = null]]σ = false.
Then modifier rep on next allows the verifier to deduce that

RootDistance( [[this.next]]σ, σ) = RootDistance( [[this]]σ, σ) + 1;
2. [[this.next = null]]σ = true.

Then [[(this.next = null ? 0 : this.next.count(obj))]]σ = 0. Then NotRel
holds, which means that the value of [[#count(this.next, obj)]]σ is not rel-
evant.

The extension of ownership provided by RootDistance is useful for non-hierarchical
scenarios. For instance, Fig. 4.1 shows two classes and a possible object con-
figuration of an administration system. In this system, a Holding consists of
multiple Companies, and a Person that is part of the Holding can work for
multiple of these Companies. A Personnel object manages (access to) these
Persons. Classes Personnel and Person are omitted. Each has only one rel-
evant field. Personnel has a field rep Node myPers which refers to a linked list
of the Persons. Person has a field rep Node worksFor which refers to a linked
list of the Companies that Person works for. Class Node is found in Fig. 1.4. Pure
method Company.myPersonnel returns a linked list of all Persons that work for
that Company (e.g., if called on C1, it returns a single node with val P1). As-
sume that it can be deduced that Company.thePnel and Personnel.thePers are
never null (for instance because of an invariant or non-null annotation [FL03]).
Then the this.thePnel.myPers.has(p) call in Company.myPersonnel is allowed
as myPers is a rep field of a peer of this and thus has a higher RootDistance.
More formally, in any state σ ∈ Σ in which this evaluates to a Company ob-
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class Holding {
rep Node myComps;

rep Personnel myPnel;

} //rest of class omitted

class Company {
peer Personnel thePnel;

pure Node myPersonnel()

ensures ∀ Person p • (

result.has(p) ⇔
this.thePnel.myPers.has(p)∧
p.worksFor ⑧= null ∧
p.worksFor.has(this) );

} //rest of class omitted
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Figure 4.1: Administration System. H is a Holding, Pnel a Personnel, N’s are
Nodes, C’s Companies, and P’s Persons. Person P2 works only for C2, and P1
works for both C’s.

ject, RootDistance( [[this.thePnel.myPers]]σ, σ) = RootDistance( [[this]]σ, σ)+1.
Then [[#has(this.thePnel.myPersons, p) ➔ #myPersonnel(this)]]σ holds. Like-
wise, the p.worksFor.has(p) call is allowed if one can deduce that the Persons
in the list maintained by p.thePnel are owned by p.thePnel or by the Holding

that owns p.thePnel. We discuss the result.has(p) call in Sect. 5.

4.2 Recursion Termination Value

For the second ordering, a Recursion Termination Value (RTV) is associated with
each pure method [DL07]. A RTV is an element of the interval [0,maxRTV ],
where maxRTV is a sufficiently large constant, e.g. maxInt . RTVal(#mi) yields
the RTV associated with pure method mi .

Note that given Defs. 4.1 and 4.2,
[[#mi(E0,E1) ➔ #mj (E2,E3)]]σ = true

when RootDistance( [[E0]]σ, σ) = RootDistance( [[E2]]σ, σ), and
RTVal(#mi) < RTVal(#mj ).

The RTV can be specified explicitly. For instance, in Spec# explicit specification
of the RTV is done using the RecursionTermination attribute that takes an
integer parameter. The main advantage of the RTV ordering, however, is that it
is largely inferred automatically. This inference is complicated by the desire for
modular development (see Sect. 1).

Of course, the goal of the inference is to assign a RTV to every #mi such that
for every i , the inferred RTV is high enough to conclude PO2i . When the the
specification of mi is changed, the previously inferred RTV for #mi might no
longer be high enough (for instance, because the specification of mi now contains
a method call). Therefore, the inference is rerun prior to re-verification. But as a
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consequence of modular development, it is not possible to re-infer every RTV. In
particular, a RTV in a module that is hidden cannot be re-inferred. As a conse-
quence, if an inferred RTV were publicly visible, a change to a specification that
is hidden from a module M could indirectly invalidate the verification of M . That
is, suppose that mi and mj are defined in different modules, and that the proof
of PO2i depends on RTVal(#mj ) = n. Suppose a part of the specification of mj

that is hidden from mi is changed in such a way that re-inference of RTVal(#mj )
changes it to n + 1. Then the proof of PO2i no longer holds. While this does not
go against modular development technically (re-inference of RTVal(#mj ) consti-
tutes a change of public part of the specification of mi), it is not intuitive (as the
change is to an implicit part of the specification). Therefore, an inferred RTV is
private, and an explicitly specified RTV is public. As the specifier has committed
to the RTV, it is intuitive that changing it will require re-verification of modules
to which it is visible. We discuss an algorithm to infer the RTVs for a module M
in Ap. A. The outline is as follows. Construct a directed graph with a node N for
every method visible in M , and with an edge from N to node N ′ iff N ′ occurs in
the specification of N . For every N with an explicitly specified RTV i , label N
with i . For every N with an RTV that is hidden from M , label N with maxRTV .
For every remaining N , label N with the lowest value such that (1) N cannot
reach a node with a higher RTV , and (2) if possible, such that N cannot reach a
node with the same RTV . (1) is always possible, as maxRTV can be assigned to
all nodes. (2) can’t be achieved for nodes that are part of a cycle, nor for nodes
that can reach a maxRTV node.

4.3 The measuredBy Clause

The third ordering allows for directly or mutually recursive method functions.
We associate with pure method mi , a measuredBy clause that specifies a tu-
ple of numerical expressions 〈E1, . . . ,En〉. MeasuredBy(#mi ,E , σ) is defined as
〈 [[E1[E/pi ]]]σ, . . . , [[En [E/pi ]]]σ〉. For each such expression Ej , there is a proof
obligation that Prei ⇒ 0 ≤ Ej , which ensures that the ordering is well-founded.
We restrict the free variables in these expressions to be the numerical formal
parameters of mi , but one can easily imagine allowing other variables, too, for ex-
ample so that one can mention the RootDistance of a non-this object parameter.
By default, the measuredBy clause is tuple 〈0〉.

The use of the measuredBy clause is illustrated by Fig. 1.6, where it allows the
mutually recursive methods isEven and isOdd. For the call to this.isOdd(n-1)

in the specification of isEven, the reasoning is as follows. Consider an arbitrary
σ ∈ Σ. Assume r0, r1, r2, t0, t1, t2 ∈ Z such that Order(#isEven, this, n, σ) =
〈r0, r1, r2〉, and Order(#isOdd , this, n− 1, σ) = 〈t0, t1, t2〉. Then r0 = t0, as both
are determined by the RootDistance of the this-object (see Sect. 4.1). Also,
r1 = t1 as the same RTV is assigned to mutually recursive method functions (see
Sect. 4.2). Finally, r2 > t2 as r2 = [[2n]]σ, and t2 = [[(2m + 1)[n − 1/m]]]σ =
[[2n − 1]]σ. Thus, 〈t0, t1, t2〉 is ordered lexicographically below 〈r0, r1, r2〉. So, if



5. Related Work and Experience 173

C is the class that declares isEven and isOdd, then ∀σ ∈ Σ • [[∀ this : C, n : int •
#isOdd(this, n− 1) ➔ #isEven(this, n)]]σ. For the call to isEven(m) in the
specification of isOdd, the reasoning is similar (the essential observation being
that 2m + 1 > (2n)[m/n]). Together, these properties establish that PO2 holds.

5 Related Work and Experience

Frame properties for a model field f declared in a class C (see Sect. 1) are discussed
in [LM06]. Essentially, the idea is to add a specification-only field f to C , and
to extend the deduction system with a second axiom ∀σ ∈ Σ • [[∀this : C • P ⇒
this.f = #f (this)]]σ, where P (defined by the methodology) describes the con-
ditions under which the relation should hold. The methodology ensures that that
#f (this) is assigned to f whenever P becomes true. Breunesse and Poll sug-
gest desugaring a model field using its satisfies clause [BP03]. This simplifies the
treatment of model fields considerably, but does not account for recursion or for
visibility constraints on satisfies clauses.

Modeling partial functions by underspecified total functions in the underlying logic
can lead to unintuitive outcomes for the users of the specification language [Cha07].
Recent work by Rudich et al. [RDM08] discusses how to prevent such outcomes.
The work also discusses how to allow conditional use of the axioms introduced by
pure methods, as well as class invariants, when establishing PO1 (see Sect. 2).
Essentially, the idea is that if Smalleri,j ,k holds, then the axiom introduced by
mj , instantiated for Calli,j ,k , can be assumed when proving PO1i (see Defs. 2.2
and 2.4). More formally, let Pi,j ,k ≡ (Smalleri,j ,k? Specj [Calli,j ,k/result] : true).
Then PO1i can be weakened to ∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i •P ⇒ ∃result : Ti •
Speci ]]σ, where P consists of a conjunct Pi,j ,k for every i , j ∈ [0,N ], for every
k ∈ [0,NrOfCallsi,j − 1].

In Sect. 4.1, we discussed how our approach allows a number of the calls in the
specification of the myPersonnel method in Fig. 4.1. The call to result.has()
in that specification, however, is problematic. The axiom introduced by the pure
method describes a property that holds in every well-formed program state. There-
fore, the resulting list of Nodes has to exist in each such state (and contain the right
Persons). This is reflected in PO1, which cannot be proven to hold for this exam-
ple. Possible solutions to this problem are suggested in [DM06, Nau07, BNSS04].

The heuristic guesses of candidate witnesses and the accompanying semantics
checks in this chapter have been implemented in the Spec# programming system;
there is a partial implementation of RootDistance and the RTV scheme [DL07].
Pure methods occur frequently in practice, partly because Spec# by default treats
property getters as pure methods. The Spec#/Boogie test suite alone requires 148
consistency checks. From more than a year’s use, we find that, with one exception,
the heuristics adequately guess candidate witnesses that (for consistently specified
pure methods) the semantic checks quickly verify to ensure consistency.
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The one exception to this positive experience has been pure methods with a non-
null return type. The only non-null candidate witnesses that our heuristics guess
are fields or parameters of exactly those types—the heuristics cannot use calls to
constructors, as this would require one to first prove the consistency of the spec-
ifications of such constructors. Luckily, this case has occurred only for property
getters whose body returns a newly allocated object (see [LM08] for a technique
that allows such methods to be considered observationally pure). In the cases we
have found, these property getters were not used as pure methods, so we could
circumvent the problem by explicitly marking them non-pure.

6 Conclusions

Pure methods and model fields are useful and common specification constructs
that can be interpreted by the introduction of axioms in the underlying proof
system. Care has to be taken that these axioms do not introduce an inconsistency
into the proof system. In this chapter, we described and proved sound an approach
that ensures no inconsistencies are introduced, and we described heuristics for the
part of the approach that is problematic for trigger-based SMT solvers.

A Proof of Theorem

In this appendix, we prove Thm. 2.1. Ackermann’s substitution lemma [Ack54,
PS06] provides a way to prove the consistency of a system of axioms containing
mutually recursive uninterpreted functions. To formulate this lemma, a number
of shorthands are introduced first. Note that ⊲ is used both to concatenate an
element to a sequence, and to concatenate two sequences. Furthermore, note that
shorthand Calli,j ,l is introduced in Sect. 2.

Definition 1.1 (Callsi). If 0 ≤ i ≤ j ≤ N and 0 ≤ k < NrOfCallsi,j and
l + 1 = NrOfCallsi,j , then
Callsi,j is the sequence of expressions Calli,j ,0,. . . ,Calli,j ,l
Callsi is the sequence of expressions Calli,0⊲. . . ⊲Calli,N

Roughly, Ackermann’s substitution lemma says that a system of axioms that
contains uninterpreted total functions is equivalent to the same system, but
with (1) every Calli,j ,k replaced by a fresh variable xi,j ,k , and (2) for each
pair of calls to the same function Calli,j ,k and Calll,j ,m , an additional axiom
∀σ ∈ Σ • [[Calli,j ,k ∼ Calll,j ,m ⇒ xi,j ,k = xl,j ,m ]]σ that says that the two variables
that replace the two calls are equal when the two calls are.

To account for item 1, in shorthand NoMFSpeci defined below, every expression
Calli,j ,k in Speci is replaced by a variable xi,j ,k (i.e., NoMFSpeci contains no
method functions). Note that NoMFSpec also replaces result by a variable xi , as
result is replaced by method function call #mi(this, pi) in the axiom added to



A. Proof of Theorem 175

the proof system (see the definition of PureAx in Sect. 2). In the remainder of
this document, P [E0/v0] . . . [Ei/vi ] is abbreviated to P [E0, . . . ,Ei/v0, . . . , vi ].

Definition 1.2. If 0 ≤ i ≤ j ≤ N and k + 1 = NrOfCallsi,j , then
Xsi,j is the sequence of variables xi,j ,0,. . . ,xi,j ,k
Xsi is the sequence of variables Xsi,0⊲. . . ⊲Xsi,N
Xs is the sequence of variables Xs0⊲. . . ⊲XsN
TypedXsi,j is the sequence of variable declarations xi,j ,0 : Tj ,. . . ,xi,j ,k : Tj

TypedXsi is the sequence of variable declarations
xi : Ti ⊲ (TypedXsi,0⊲. . . ⊲TypedXsi,N )

TypedXs is the sequence of variable declarations TypedXs0⊲. . . ⊲TypedXsN

Definition 1.3.

NoMFSpeci : Ci × Ti×T0 × · · · × T0
︸ ︷︷ ︸

× . . .×TN × · · · × TN
︸ ︷︷ ︸

→ Pred

NrOfCallsi,0 NrOfCallsi,N
NoMFSpeci(o, x ,Xsi) =

def (Prei [o/this] ⇒ Posti [o, x/this, result])[Xsi/Callsi ]
NoMFSpecs ≡ NoMFSpec0(o0, x0,Xs0) ∧ . . . ∧ NoMFSpecN (oN , xN ,XsN )

To account for item 2, that is, for functional consistency, shorthand FC is intro-
duced.

Definition 1.4. If i , j , l ∈ [0,N ] and 0 ≤ k < NrOfCallsi,j and
0 ≤ m < NrOfCallsl,j , then
FCi,j ,k ,l,m ≡ Calli,j ,k ∼ Calll,j ,m ⇒ xi,j ,k = xl,j ,m
FCi,j ,k ,l ≡ FCi,j ,k ,l,0 ∧ . . . ∧ FCi,j ,k ,l,n , where n + 1 = NrOfCallsl,j
FCi,j ,k ≡ FCi,j ,k ,i ∧ . . . ∧ FCi,j ,k ,N ∧ (Calli,j ,k ∼ #mj (oj , pj ) ⇒ xi,j ,k = xj )
FCi,j ≡ FCi,j ,0 ∧ . . . ∧ FCi,j ,n , where n + 1 = NrOfCallsi,j
FCi ≡ FCi,0 ∧ . . . ∧ FCi,N

FC ≡ FC0 ∧ . . . ∧ FCN

As an aside, note that FC contains ‘double elements’ (e.g., FC0,0,0,1,0 ⇔
FC1,0,0,0,0) because both ∼ and = are symmetric. These double elements are
not essential to the proof but simplify the FC -definition.

Together, NoMFSpecs and FC allow for the formulation of NoMFAx , the analog
of PureAx defined in Sect. 2.

Definition 1.5 (NoMFAx ).

TypedFreeVars ≡ o0 : C0, p0 : T ′
0, . . . oN : CN , pN : T ′

N

NoMFAx ≡ ∀σ ∈ Σ•
[[∀TypedFreeVars • ∃TypedXs • NoMFSpecs ∧ FC ]]σ

Lemma A.1. NoMFAx ⇒ PureAx

Proof. Lemma A.1 is a variant of Ackermann’s substitution lemma.

Lemma A.2. Prelude ⇒ (POs ⇒ NoMFAx )
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Before we prove Lem. A.2, we prove the theorem formulated in Sect. 2.

Proof of Thm. 2.1. The theorem follows immediately from Lem. A.2, Lem. A.1,
and the fact that the method functions do not occur in Prelude.

To simplify the presentation of the proof of Lem. A.2, we assume that the pure
methods are labeled in a certain order.

Definition 1.6.

LabeledInOrder(σ) ≡ ∀i , j ∈ N • i < j ≤ N ⇒ [[#mj (oj , pj ) ⑧➔ #mi(oi , pi)]]σ

Note that the assumption is not essential to the proof: given a state σ, the pure
methods can always be relabeled in such a way that LabeledInOrder(σ) holds, as
➔ is a strict partial order. Given this ordering, the essential property is that if
i < j , then the value of #mi(oi , pi) is not constrained by the definition of #mj .
Let V be the set of values that an expression can evaluate to, e.g., the union of
the sets of objects, numerical values and booleans. The proof is based around
the following, rather technical definition that effectively functions as an induction
hypothesis.

Definition 1.7.

IH (n) =def n ≤ N + 1 ⇒
∀σ0 ∈ Σ • LabeledInOrder(σ0) ∧ σ0 maps TypedFreeVars to values ⇒
∃σ1 ∈ Σ, u0, . . . , un−1, v0, . . . vN ∈ V • σ1 is the state like σ0 except that
∀i ∈ N • i < n ⇒

(1) [[xi ]]σ1 = ui

(2) ∀j , k ∈ N • n ≤ j ≤ N ∧ k < NrOfCallsi,j ⇒ [[xi,j ,k ]]σ1 = vj
(3) ∀j , k ∈ N • j < n ∧ k < NrOfCallsi,j ⇒

if [[Calli,j ,k ∼ #mj (oj , pj )]]σ1, then [[xi,j ,k ]]σ1 = uj ,
else [[xi,j ,k ]]σ1 = vj

(4) [[NoMFSpeci(oi , xi ,Xsi)]]σ1

The definition of IH (n) allows to separate the proof of Lem. A.2 into two separate
concerns formulated by the two lemmas below.

Lemma A.3. POs ⇒ (∀n ∈ N • IH (n))

Lemma A.4. IH (N + 1) ⇒ NoMFAx

Proof of Lem. A.2. The lemma follows immediately from Lems. A.3 and A.4.

What remains to be proven are Lems. A.3 and A.4. Recall from Sect. 2 that
POs ≡ PO1 ∧ PO2. Proof of Lem. A.3 relies on an intermediate property that
states that PO1i is strong enough to establish that NoMFSpeci holds.



A. Proof of Theorem 177

Definition 1.8.
PO1′i ≡ ∀σ ∈ Σ • [[∀o : Ci , pi : T ′

i ,TypedXsi • ∃x : Ti • NoMFSpeci(o, x ,Xsi)]]σ
PO1′ ≡ PO1′0 ∧ . . . ∧ PO1′N

Lemma A.5. PO1i ⇒ PO1′i

Proof. Method functions in POi are uninterpreted functions. Method functions
do not occur in the prelude (i.e., the value of a method function is not restricted
by the prelude). Therefore, the proof of PO1 is valid no matter what values the
method functions evaluate to.

Proof of Lem. A.3. Proof is by induction on n. To simplify the presentation,
we only prove a weaker version of the theorem in which PO2 (see Sect. 2)
does not contain the NotRel disjuncts. That is, for the purpose of this proof,
PO2i,j ,k =def ∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i • Smalleri,j ,k ]]σ. Extending the proof to
account for the NotRel disjuncts is fairly straightforward given the definition of
NotRel .
Base (n = 0): Trivial, as the domain 0 ≤ i < n is empty (i.e., take σ1 = σ0).
Step: We assume POs and IH (n) and prove IH (n + 1). If n ≥ N + 1, then
IH (n + 1) holds trivially. That leaves the case where n < N + 1. Let σ0 ∈ Σ
be such that σ0 maps TypedFreeVars to values and let LabeledInOrder(σ0) hold.
Then, due to IH (n), there is a σ1 ∈ Σ such that ∃u0, . . . , un−1, v0, . . . vN ∈ V • σ1

is the state like σ0 except that ∀i ∈ N • i < n ⇒
(A1) [[xi ]]σ1 = ui

(A2) ∀j , k ∈ N • n ≤ j ≤ N ∧ k < NrOfCallsi,j ⇒ [[xi,j ,k ]]σ1 = vj
(A3) ∀j , k ∈ N • j < n ∧ k < NrOfCallsi,j ⇒

if [[Calli,j ,k ∼ #mj (oj , pj )]]σ1, then [[xi,j ,k ]]σ1 = uj ,
else [[xi,j ,k ]]σ1 = vj

(A4) [[NoMFSpeci(oi , xi ,Xsi)]]σ1

As POs holds, PO1 holds. Then PO1′ holds (Lem. A.5).
Then [[∀o : Cn , pn : T ′

n ,TypedXsn • ∃x : Tn • NoMFSpecn(o, x ,Xsn)]]σ1.
Then [[∀TypedXsn • ∃x : Tn • NoMFSpecn(on , x ,Xsn)]]σ1 (as o : Cn , pn : T ′

n ∈
TypedFreeVars , and TypedFreeVars are mapped to values by σ1).

Let σ2 ∈ Σ be the state like σ1, except that
(B1) ∀j , k ∈ N • n ≤ j ≤ N ∧ k < NrOfCallsn,j ⇒ [[xn,j ,k ]]σ2 = vj
(B2) ∀j , k ∈ N • j < n ∧ k < NrOfCallsn,j ⇒

if [[Calln,j ,k ∼ #mj (oj , pj )]]σ2, then [[xn,j ,k ]]σ2 = uj ,
else [[xn,j ,k ]]σ2 = vj

Then (B3) [[∃x : Tn • NoMFSpecn(on , x ,Xsn)]]σ2 (as TypedXn are mapped to val-
ues by σ2).

First, we prove that
(P1) ∀i , k ∈ N • i < n ∧ k < NrOfCallsi,n ⇒ [[Calli,n,k ⑧∼ #mn(on , pn)]]σ2.
Consider arbitrary i , k ∈ N such that that i < n ∧ k < NrOfCallsi,n+1 (if no
such i , k exist, then P1 holds trivially).
Then [[#mn(on , pn) ⑧➔ #mi(oi , pi)]]σ2 (due to LabeledInOrder(σ0)).
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Furthermore, [[Calli,n,k ➔ #mi(oi , pi)]]σ2 (due to PO2).
Then [[Calli,n,k ⑧∼ #mn(on , pn)]]σ2 (due to Lem. 2.2). Then P1 holds.

Next, we prove that
(P2) ∀k ∈ N • k < NrOfCallsn,n ⇒ [[Calln,n,k ⑧∼ #mn(on , pi)]]σ2.
Consider an arbitrary k ∈ N such that k < NrOfCallsn,n (if no such k exists,
then P2 holds trivially).
Then [[Calln,n,k ➔ #mn(on , pi)]]σ2 (due to PO2).
As ➔ is irreflexive, [[#mn(on , pi) ⑧➔ #mn(on , pi)]]σ2.
Then [[Calln,n,k ⑧∼ #mn(on , pi)]]σ2 (due to Lem. 2.2). Then P2 holds.

Now let σ3 ∈ Σ be the state like σ2, except that it maps xn : Tn to a value un

such that
[[NoMFSpecn(on , xn ,Xsn)]]σ3 (such a un exists due to B3).
Then it follows directly from B1 that
(C1) ∀j , k ∈ N • n < j ≤ N ∧ k < NrOfCallsn,j ⇒ [[xn,j ,k ]]σ3 = vj

Furthermore, it follows from B2, P1 and P2 that
(C2) ∀j , k ∈ N • j ≤ n ∧ k < NrOfCallsn,j ⇒

if [[Calln,j ,k ∼ #mj (oj , pj )]]σ2, then [[xn,j ,k ]]σ2 = uj ,
else [[xn,j ,k ]]σ2 = vj

Then, ∀i ∈ N • i < n + 1,
(D1) [[xi ]]σ3 = ui (due to A1 and the definition of σ3)
(D2) ∀j , k ∈ N • n + 1 ≤ j ≤ N ∧ k < NrOfCallsi,j ⇒ [[xi,j ,k ]]σ3 = vj

(due to A2 and C1)
(D3) ∀j , k ∈ N • j < n + 1 ∧ k < NrOfCallsi,j ⇒

if [[Calli,j ,k ∼ #mj (oj , pj )]]σ3, then [[xi,j ,k ]]σ3 = uj ,
else [[xi,j ,k ]]σ3 = vj

(due to A3 (case i < n ∧ j < n), and C2 (case i = n ∧ j ≤ n), and P1
and A2 (case i < n ∧ j = n))

(D4) [[NoMFSpeci(oi , xi ,Xsi)]]σ3 (due to A4 and the definition of σ3)

Then IH (n + 1) holds (σ3 meets the properties required from σ1 in the definition
of IH (n + 1)). That concludes the proof of the step case.

Proof of Lem. A.4. Let state σ0 ∈ Σ be such that (1) σ0 maps TypedFreeVars to
values, and (2) LabeledInOrder(σ0). Then, due to IH (N + 1), there is a σ1 ∈ Σ
such that ∃u0, . . . , uN , v0, . . . vN ∈ V • σ1 : Σ is the state like σ0 except that
∀i ∈ N • 0 ≤ i < N + 1 ⇒

(A1) [[xi ]]σ1 = ui

(A2) ∀j , k ∈ N • j < N + 1 ∧ k < NrOfCallsi,j ⇒
if [[Calli,j ,k ∼ #mj (oj , pj )]]σ1, then [[xi,j ,k ]]σ1 = uj ,

else [[xi,j ,k ]]σ1 = vj
(A3) [[NoMFSpeci(oi , xi ,Xsi)]]σ1

Then (B1) [[NoMFSpecs]]σ1 (due to A3).

Next, we prove that (B2) [[FC ]]σ1

Consider arbitrary i , j , k , l ,m ∈ N such that i , j , l ≤ N ∧k < NrOfCallsi,j ∧m <
NrOfCallsl,j (if no such i , j , k , l ,m exist, then B2 holds trivially). Four cases can
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be distinguished:
or (1) [[Calli,j ,k ∼ #mj (oj , pj ) ∧ Calll,j ,m ∼ #mj (oj , pj )]]σ,
or (2) [[Calli,j ,k ⑧∼ #mj (oj , pj ) ∧ Calll,j ,m ⑧∼ #mj (oj , pj )]]σ,
or (3) [[Calli,j ,k ∼ #mj (oj , pj ) ∧ Calll,j ,m ⑧∼ #mj (oj , pj )]]σ,
or (4) [[Calli,j ,k ⑧∼ #mj (oj , pj ) ∧ Calll,j ,m ∼ #mj (oj , pj )]]σ.

In case 1, [[xi,j ,k ]]σ1 = [[xl,j ,m ]]σ1 = uj (due to A2).
In case 2, [[xi,j ,k ]]σ1 = [[xl,j ,m ]]σ1 = vj (due to A2).
In either case, [[xi,j ,k = xl,j ,m ]]σ1.
In case 3 and case 4, [[Calli,j ,k ⑧∼ Calll,j ,m ]]σ1.
Then in all four cases, [[Calli,j ,k ∼ Calll,j ,m ⇒ xi,j ,k = xl,j ,m ]]σ1.
Then [[FCi,j ,k ,l,m ]]σ1.
Furthermore, if [[Calli,j ,k ∼ #mj (oj , pj )]]σ1, then [[xi,j ,k ]]σ1 = [[xj ]]σ1 = uj (due
to A2 and A1).
Then [[Calli,j ,k ∼ #mj (oj , pj ) ⇒ xi,j ,k = xj ]]σ1.
Then B2 holds.

Then [[∃TypedXs • NoMFSpecs ∧ FC ]]σ0 (due to B1, B2, and the definition of σ1).
Then ∀σ ∈ Σ • [[∀TypedFreeVars • ∃TypedXs • NoMFSpecs ∧ FC ]]σ (as σ0 maps
TypedFreeVars to arbitrary values, and as LabeledInOrder(σ0) was introduced for
convenience but is not essential to the proof).
Then NoMFAx holds.

Then every lemma used in the proof of Thm. 2.1 has been proven to hold, which
concludes this appendix.





CHAPTER 7

Conclusions

In this chapter we revisit the research questions posed in Chap. 1, discuss our
contributions, and give directions for future work related to the topics of this
thesis.

1 Question 1: Client-level Algebraic Specification

The first research question is the following.

Question 1 What are the syntax and semantics of a client specification based
on algebraic specification, independent of the implementation used?

Contributions. We have contributed a specification technique in which a client
specification consists of an algebraic specification and a canonicity function.
(Chap. 2). The signature of the algebraic specification formalizes the vocabu-
lary of the client’s problem domain, and its axioms formalize equalities between
terms in that vocabulary. The technique is suitable when the client problem can
be formulated in terms of the desired input/output behavior of the implementa-
tion, where an implementation is viewed as a black box that rewrites terms into
other terms. The semantics of a client specification is a set of black boxes that
rewrites terms into an equivalent canonical (i.e. most basic) form. Which terms
are of a most basic form is formalized by the canonicity function.

As the technique views an implementation as a black box, any implementation
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technique can be applied, be it functional or imperative. To apply an implemen-
tation technique, a notion of satisfaction needs to be defined that abstracts the
implementation to a black box. We have contributed a notion of satisfaction for
class-based implementations that uses an additional problem-independent presen-
tation layer to bridge the gap between the input and output of a black box and
the input and output of a class-based implementation.

Future Work. A useful extension would be to provide a notion of satisfaction
for a full OO implementation rather than a class-based implementation. Other
future work is to apply the technique to other implementation paradigms, e.g. the
functional paradigm.

2 Question 2: Programmer-level Algebraic Spec-

ification

The second research question is the following.

Question 2 When reasoning about an OO implementation, how can we use
programmer-level algebraic specification to capture and exploit an abstract view
of a state?

Contributions. We have contributed an implementation approach that formal-
izes and extends ideas from [Hoa72], Hoare’s seminal paper on data abstraction at
the semantical level (Chap. 2). The approach uses a client specification based on
algebraic specification as a starting point for development. We complement the
Hoare-style approach, which essentially encodes the term provided as input by the
client in an OO state, with a special purpose method that is responsible for 1)
making the result canonical, and 2) encoding the canonical result in a way that is
suitable for display to the client. The approach uses an algebraic specification to
reason about executions using an abstract view of the state, where the behavior
of a method is abstracted to a function that is interpreted using a model of the
specification. It also uses algebraic specifications to formalize the relation between
the abstract view of a user of a(n object of a) class, and the more concrete view
of the implementer of that class.

Future Work. Future work is to extend the approach to account for layers of
specifications, where part of the implementation consists of reused library code
that comes with its own specification. Another possible direction for future re-
search is to combine the approach with techniques based on programmer-level OO
specifications. This would allow for implementations that rely in part on coopera-
tion between objects that together implement a common purpose, thus mitigating
the inherent limitations of the approach.
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3 Question 3: Programmer-Level OO Specifica-

tion

The third research question is the following.

Question 3 When reasoning about an OO implementation, how can we use
programmer-level OO specification to capture and exploit an abstract view of a
state?

Overall Contribution and Future Work. OO implementations typically con-
tain many implementation patterns that cannot all be captured in the same way.
We have contributed techniques to capture several common patterns (described in
more detail below), and exploit them through more liberal semantics of invariants.
Future work is to combine these techniques with existing techniques that capture
and exploit abstract views for other implementation patterns, as well as to come
up with specification techniques for other implementation patterns. Another in-
teresting topic for future research is to make the abstract view a more central part
of the semantics of specifications, as current OO specification techniques capture
abstractions, but do not really reason at the level of the abstract view. That is,
current techniques still deal with the entire OO state rather than just the abstract
values of the currently relevant objects.

Contribution - Cooperation-based Invariants. We have contributed the
programmer-level specification constructs inc and coop (Chap. 3). The inc con-
struct allows a method specification to make explicit that a certain enumeration
of invariants does not have to hold when that method is executed. The coop
construct allows a field specification to make explicit that a certain enumeration
of invariants might be invalidated when the field is updated. This allows for the
specification and verification of OO designs in which in the process of updating one
object, other objects with which it together implements a common purpose must
be updated as well. We have generalized these constructs to consider sets rather
than enumerations, and have removed a limitation on method calls in control flow
statements. (Chap. 4).

Contribution - Layer-based Invariants. We have contributed a programmer-
level specification technique to capture layers in OO architectures, and we have
exploited these layers by providing a more liberal semantics of class invariants
(Chap. 5). We have motivated that OO architectures often consists of several
layers, where an object in a higher layer is not relevant to the purpose of an object
in a lower layer. We have shown that several object structures in higher layers
may share a sub-structure in a lower layer. Our specification technique makes the
layers in a design explicit using a simple numbering scheme. We have observed
that an object in a higher layer is not part of the abstract view from an object in a
lower layer. We have exploited this by a more liberal semantics of invariants that
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allows that the invariant of a higher-layer object does not hold when a method of
a lower-layer object is executing.

4 Question 4: Verification

The fourth research question is the following.

Question 4 Having used the techniques from research questions 2 and 3, how
can we provide matching verification approaches?

Verification has been been discussed for every topic studied in this thesis. Addi-
tionally, we have contributed a verification approach for consistency of pure meth-
ods and model fields. Specific contribution as well as future work are discussed in
more detail below.

Contribution - A verification approach for cooperation-based invariants.
We have contributed a verification approach for cooperation-based invariants that
uses flow analysis to determine which invariants must be established at which
points in the method body (Chap. 4).

Contribution - A verification approach for layer-based invariants. We
have contributed a verification approach for layer-based invariants that extends
the ownership technique from [MPHL06] with constructs for capturing layers
(Chap. 5). The technique allows static reasoning (i.e., reasoning using simple
syntactic restrictions like those of a type system) about layer relations between
objects. It uses these layer relations to make explicit, through proof obligations,
which invariants must be established at which points in a method body. The proof
obligations are formulated in a way that is suitable for automatic verification using
the Boogie verification system [BLS05].

Contribution - A verification approach for consistency of pure methods
and model fields. We have contributed a verification technique for pure meth-
ods and model fields, which are existing specification techniques for capturing an
abstract view of the state in OO specifications (Chap. 6). Both can be interpreted
by the introduction of an axioms in the underlying proof system. The verification
technique allow to ensure that such an axiom does not introduce an inconsistency
into the proof system. The verification technique comes with heuristics that that
make it amenable to automatic verification with trigger-based SMT solvers.

Future Work. We have sketched a verification approach to establish that an
implementation that has been developed using algebraic specifications to reason
about the execution at an abstract level, satisfies a client specification based on al-
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gebraic specifications and a canonicity function. Future work is to further develop
this approach.

It may be useful to investigate a verification approach for cooperation-based invari-
ants that is based on assumptions and assertions at specific points in the method
body. Such an approach may be more intuitive though better separation of con-
cerns and would be more directly suitable to automatic verification using existing
verification systems. A similar approach was taken in [SD10], which build on
the work in this chapter. Other future work would be to place the layer-based
invariants approach in the unified framework from [DFMS08].

The experience with the verification approach for consistency of pure methods
and model fields in the test suites for the Spec# and Boogie specification and
verification tools has been positive. However, the heuristics approach can be im-
proved to correctly guess witnesses in more cases. In particular, the heuristics
can be improved to deal with pure methods that return a newly created object.
Furthermore, it seems possible to apply this verification technique to prove that
algebraic specifications of abstraction operators as discussed in Chap. 2, do not
introduce inconsistencies into the proof system (which is a verification requirement
formulated in Sect. 5.3 of Chap. 2). Other future work is to apply the approach
to more specifications from the ’real world’.
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Summary

Capturing and Exploiting Abstract Views of States in OO Verification

In this thesis, we study several implementation, specification and verification tech-
niques for Object-Oriented (OO) programs. Our focus is on capturing conceptual
structures in OO states in abstractions, and then exploiting such an abstract view
of the state in specification and implementation approaches in a way that allows
for formal verification.

Generally, an OO state consists of many objects that reference each other in pos-
sibly complicated ways. At the same time, at any one point in the execution
of the program, we can often reason about what is happening using an abstract
view of the state that is much less complicated. To further improve the quality of
implementations, better techniques must be developed for 1) specification of the
abstract views that are used by the client and the programmer, and 2) the veri-
fication that an implementation satisfies its specification. This thesis contributes
to that effort.

We distinguish between client-level and programmer-level specification. A client-
level specification acts as a contract between the client and the implementer. A
programmer-level specification allows to reason formally about the implementa-
tion. We consider two specification formalisms that differ in the basic abstract
view that is used: Algebraic Specification and OO Specification.

We consider both client-level and programmer-level specifications based on alge-
braic specification. We contribute a novel syntax and semantics for the former,
and we contribute an implementation approach for OO implementations based on
the latter. We show that the implementation approach is suitable for problem-
independent verification.

We propose the programmer-level OO specification constructs inc and coop. The
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inc construct allows a method specification to make explicit that a certain enumer-
ation of invariants does not have to hold when that method is executed. The coop
construct allows a field specification to make explicit that a certain enumeration
of invariants might be invalidated when the field is updated. This allows for the
specification and verification of OO designs in which in the process of updating
one object, other objects with which it together implements a common purpose
must be updated as well.

We then generalize the inc and coop constructs by removing a restriction to enu-
merations of invariants. For instance, this is needed in the well-known Observer
Pattern, where a Subject can have an arbitrary and dynamically changing num-
ber of Observers. A more general interpretation of invariants and accompanying
proof system are provided as well.

We contribute a programmer-level OO specification technique to capture layers in
OO architectures, and we exploit these layers by providing a more liberal semantics
of class invariants. We also provide a verification technique for the semantics.
Layers are an abstraction at the architectural level in OO implementations that
designate certain object structures in the design as sub-structures that are shared
by other structures. An object in a higher layer is not relevant to the purpose of an
object in the sub-structure. Given this intuition, an object in a higher layer is not
part of the abstract view from an object in a lower layer. Therefore, the invariant
of a higher layer object does not have to hold when a method of a lower-layer
object is executing.

Finally, we contribute a verification technique for pure methods and model fields,
which are existing specification techniques for capturing an abstract view of the
state in OO specifications. A method that is pure can be used as a function in
predicates in class specifications. The function is axiomatized using the pre- and
postcondition that are specified for the method. A model field abstracts part of the
concrete state of an object into an abstract value. This too introduces an additional
axiom in the underlying reasoning. The technique contributed establishes that
such additional axioms do no introduce inconsistencies into the formal reasoning.
It comes with heuristics that that make it amenable to automatic verification.
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