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Abstract
‘Computer-Supported Cooperative Work’ is a young re-

search area considering applications with strong demands
on database technology. Especially design applications
need support for cooperation and some means for control-
ling their inherent dynamics. However, today’s CAD sys-
tems mostly consisting of a collection of diverse design tools
typically do not support these requirements. Therefore, an
encompassing processing model is needed that covers the
overall design process in general as well as CAD-tool ap-
plication in particular. As a consequence, this model has to
be rich enough to reflect the major characteristics of design
processes, e.g., goal-orientation, hierarchical refinement,
stepwise improvement as well as team-orientation and co-
operation. The CONCORD model that will be described in
this paper, reflects the distinct properties of design process
dynamics by distinguishing three levels of abstraction. The
highest level supports application-specific cooperation
control and design process administration, the second con-
siders goal-oriented tool invocation and work-flow man-
agement while the third level provides tool processing of de-
sign data. To achieve level-spanning control, we rely on
transactional facilities provided at the various system lay-
ers.

1. Introduction & Overview
Facing the growing complexity of technical products,

the process of design is typically carried out by a team of co-
operating designers rather than by a single person. Several
methodologies have been developed to structure the overall
design process and to support designers working on partial
design problems and cooperating with each other, e.g., by
negotiating their individual design goals or by exchanging
their partial results. However, today’s CAD systems typi-
cally do not support cooperative work in a satisfactory man-
ner. Exchange of preliminary results is usually done without
system support and control. In larger design teams this caus-
es inconsistencies in design objects which must be resolved
by hand with a considerable overhead. In our opinion, such
problems can be faced by extending database technology
with ‘cooperation capabilities’.

1.1 Computer-Supported Cooperative Work and
Database Technology
Computer-Supported Cooperative Work [SB92,

RMB92] is a young field of research which attracted much
attention in the last few years, especially in the design area.
Its goal is to provide a conceptual framework that supports
the requirements of cooperative work arrangements. In the
following, we will briefly discuss some major characteris-

tics of cooperative applications (also mentioned in
[RMB92] and [RSJK93]), thus distinguishing them from
other kinds of computer applications.

(1) Distribution: Ideally a complex design process is par-
titioned into a set of tasks to be carried out by a geographi-
cally dispersed team of designers, who use a computer-sup-
ported environment for collaboration. That network-based
environment comprises design tools and design data re-
pository as well as communication facilities.

(2) Coordination: On one hand, the designers work in
parallel, each on his individual task. On the other hand, ef-
fective communication facilities should enable the design-
ers to cooperate in order to produce a high quality product
within a shorter turnaround time (concurrent engineering).
These facilities have to support team decision-making as
well as negotiation concerning design goals and solutions
between the geographically scattered team members.

(3) Information sharing: Obviously, the foundation of
cooperation is sharing of information. Information about the
design process (e.g., constraints across multiple perspec-
tives) and information generated during the design process
(e.g., data derived by design tools) need to be managed. A
major issue is consistency maintenance during concurrent
change of the shared design information stored in common
data repositories.

Managing shared information has ever been in the realm
of database systems and the database research community
has traditionally tackled new problems arising in that area.
However, as discussed in [GS87a], cooperative applications
are placing a challenging and novel set of demands on data-
base technology. These involve, among others, the develop-
ment of adequate data representations, version control
mechanisms, activity management facilities, and concur-
rency control mechanisms. Further requirements arise while
coping with distributed and heterogeneous databases. In-
stead of addressing the whole problem area, in this paper we
will focus on the dynamic issues of cooperative applica-
tions, thereby abstracting from specific design data repre-
sentation and management via repositories. The main ques-
tions in the context of design dynamics are:
• How is data supply (checkout, checkin) and data process-

ing (preservation of reference locality) achieved for de-
sign tools?

• How can the ‘work flow’ of design (tool) applications be
(pre-)planned and scheduled in order to apply certain de-
sign methodologies?

• How can cooperation in concurrent engineering be con-
trolled in order to keep the design (i.e., the subject of co-
operation) consistent esp. in view of possible ‘failure’
cases?
It is commonly known that the traditional ACID para-

digm (atomicity,consistency,isolation,durability) of con-
ventional transactions [HR83] developed for small units of
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work accessing only few data items and with a short system
residence time is not applicable in cooperative work ar-
rangements. Serializability as the notion of correctness is
too restrictive. The isolation property builds ‘protective
walls’ among concurrent transactions and is therefore con-
trary to cooperation. Furthermore, the atomicity property is
not adequate for long duration activities as, for example, the
application of design tools. As a consequence, extended
transaction models have been proposed to support, among
others, cooperative applications.

1.2 Previous Work in Advanced Transaction
Models

We can find a lot of approaches in the literature pro-
posing advanced transactional models that try to support the
dynamics of new database applications. The first extensions
to flat ACID transactions were not proposed to support co-
operative work specifically. However, they introduced
some basic concepts which are also useful in cooperative
work arrangements. For example, the model of ‘Nested
Transactions’ [Mo81] allows with its non-vital subtransac-
tions for fine-granuled units of recovery and for the use of
subtransactions for contingency purposes. The ‘Sagas’
model [GS87b] is based on one hand on the idea to release
resources as soon as possible and on the other hand on the
concept of compensating transactions allowing for semantic
undo operations of already ‘committed’ transactions. These
basic ideas are also part of more recent proposals that were
(especially) targeted to reflect requirements of cooperative
work [El92]. Most of these approaches rely on (sub-)trans-
action hierarchies allowing for a natural mapping of real
cooperative units of work to a number of interdependent da-
tabase transactions (‘Cooperative Transaction Hierarchies’
[NRZ92], “Cooperative SEE Transactions’ [HHZB92],
‘Flex Transactions’ [KPE92], ‘Tool Kit Transactions’
[US92], ‘Multi Level Transactions’ [WS92]). On the other
hand, ‘Split Transactions’ [PKH88] and ‘ConTracts’
[WR92] support long-lived activities built upon only flat
transaction structures. The basic idea of ConTracts is to
model control flow between predefined actions (called
steps) which can be combined to atomic units (ACID trans-
actions). The modeling of control flow is a means to achieve
recoverability of design states where the loss of work is
minimized. This means that in the case of a failure, the ac-
tual context can be reestablished and the execution can be
continued. Furthermore, ConTracts allow to externalize
partial result, thereby relying on invariants for concurrency
control. This aspect leads us to the notion oftransaction
correctness appropriate in cooperation environments.
While serializability is too restrictive, some of the consid-
ered models introduce concepts to enable the user to specify
the correctness criteria (‘Cooperative Transaction Hierar-
chies’ [NRZ92], ‘Cooperative SEE Transactions’
[HHZB92], ‘Tool Kit Transactions’ [US92]). These ap-
proaches have in common that with every node in the trans-
action hierarchy a local database is associated. Special
mechanisms are attached to this so-calledobject pool in or-
der to control the concurrent work of the subtransactions
that are associated with that node. The ‘Tool Kit’ approach
allows the user to build a ‘heterogeneous’ transaction tree
with different types of subtransactions provided by an appli-
cation-specific transaction manager. On the other hand, the
‘Cooperative Transaction Hierarchies’ model allows the
user to specify the local correctness of a node by means of

‘patterns and conflicts’ [Sk91], which basically restrict the
possible sequences of actions on the node’s object pool.

Our approach is different from those considered so far.
We do not want to propose (yet) another advanced transac-
tion model. In the contrary, we built upon approved transac-
tion concepts. Our CONCORD model (Controlling Co-
opeRation in Design Environments), which will be dis-
cussed in this paper, provides a framework of generic facil-
ities allowing for flexible management of the design process
and for a controlled collaboration between designers. The
approach is targeted towards the primary subjects of design.
Sect.2 will give a brief overview of the CONCORD model.
Due to the diversity of the properties to support, we per-
ceived a layered approach, where each abstraction layer
provides a certain set of concepts inherent to design dynam-
ics. After introducing a particular approach to VLSI design
as our sample design process (Sect.3), we will detail in
Sect.4 on the concepts provided at each level. In Sect.5, we
introduce the activity managers that control a cooperative
design process. In addition to the discussion of their servic-
es, we outline a global failure model and identify the neces-
sary DBMS support. The last section gives a conclusion and
an outlook to further work.

2. Overview of the CONCORD Model
The CONCORD model captures the dynamics inherent

to design processes. It is developed in a top-down fashion
starting from the intricacies of design applications in order
to meet their inherent requirements, such as:
• hierarchical refinement anddecomposition of the design

tasks and the corresponding design objects,
• goal orientation of each design task as unit of work in the

design process,
• stepwise improvement of preliminary design states,
• team orientation andcooperation among design tasks,
• design-specific consistency of design tasks and design

states.
To reflect these different requirements, the CONCORD

model distinguishes three different levels of abstraction il-
lustrated in Fig.1.
Administration/Cooperation Level (AC level)

At the highest level of abstraction, we consider the more
creative and administrative part of design work. There, the
focus is on the description and delegation of design tasks as
well as on a controlled cooperation among the design tasks.
The central concept at this level is thedesign activity (DA).
A DA is the operational unit representing a particular design
task or subtask. During the design process, aDA hierarchy
can be dynamically constituted resembling (a hierarchy of)
concurrently active tasks. All relationships between DAs
are explicitly modeled, thus capturing design flow (cooper-
ation relationshipdelegation), exchange of design data (co-
operation relationshipusage), and negotiation of design
goals (cooperation relationshipnegotiation). The inherent
integrity constraints and semantics of these cooperation re-
lationships are enforced by a central system component,
called thecooperation manager.
Design Control Level (DC level)

Looking inside a DA reveals theDC level. There, the or-
ganization of the particular actions performed in order to
fulfill a certain (partial) design task is the subject of consid-
eration (work flow). Fig.1 shows at this level an execution
plan (script) of a particular design activity. This script mod-
els thecontrol/data flow between several design tool execu-
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tions. The operational unit serving for the execution of a de-
sign tool is thedesign operation (DOP). In order to control
the actions according to the scope of one DA, but without
restricting the designers’ creativity, flexible mechanisms for
specifying the work flow for a DA (scripts, constraints,
event-condition-action rules) are provided. The correctness
of tool executions is guaranteed by a system component,
called design manager. The design manager does also pro-
vide for recoverable script executions that is needed for lev-
el-specific and isolated failure handling as discussed in
more detail in Sect.5. Design tools are applied to improve
existing design states in order to finally reach at a design
state that completes the current (partial) design task. Design
states are captured by means of a version model managed by
the design data repository. The derivation of design states,
i.e. design object versions (DOV), by means of tool appli-
cations is supported by concepts provided at the TE level.
Tool Execution Level (TE level)

From the viewpoint of the DBMS or data repository, a
DOP is an ACID transaction. Due to long duration, it is in-
ternally structured by save/restore and suspend/resume fa-
cilities as illustrated in Fig.1. A DOP processes design ob-
ject versions in three steps. First, the input versions are
checked out from the integrated data repository. Second, the
loaded object data is processed by the design tool. Third, the
finally derived new version is propagated back to the data
repository (checkin operation). The derivation of schema-
consistent and persistent design object versions is guaran-
teed, again, by a central system component, calledtransac-
tion manager. It is also responsible for the isolated execu-
tion of DOPs and for recoverable DOP executions that are,
again, necessary for a level-specific and isolated failure
handling. The transaction manager employs mechanisms
provided by the advanced DBMS which manages the inte-
grated data repository.

The brief overview given above shows that we are going
on one hand a similar way as the ConTracts approach: we
claim that even in cooperative design applications there are

still units of work to be processed atomically (within the
larger activities of a designer), which need to be organized
by work-flow capabilities. These atomic units are encapsu-
lated as sequences of elementary operations and their inter-
mediate results need not to be seen by other designers.
Therefore, ACID transaction (at TE level) and work-flow
capabilities (at DC level) are an integral part of our model.
However, the cooperation aspect is missing in ConTracts.
For this reason, we propose an additional layer to reflect the
conviction that cooperation takes place on a higher abstrac-
tional niveau (AC level). To embed the semantics of coop-
eration, the CONCORD model provides a number of gener-
ic facilities which allow for modeling and managing the de-
sign process. Before discussing the modeling concepts in
more detail we will look into a particular and practically ap-
proved approach to VLSI design [Zi86] as our sample de-
sign process scenario.

3. A Methodology to VLSI Design
Electronic design is a CAD application area that is well-

known for its high demands for effective data management
facilities as well as for adequate support for design manage-
ment and design methodologies. In order to deal with the
ever increasing complexity of the design process, the design
methodology described in [Zi86] distinguishes four differ-
ent design domains as depicted in Fig.2.

The domainbehavior contains the functional specifica-
tion (e.g. algorithmic description) of the circuit to be de-
signed, whereas the domainstructure describes the compo-
sition of the design object in an abstract (realization inde-
pendent) manner. The aspects of the physical design are
concentrated in the two remaining domains. In the domain
floorplan the topography of the circuit is considered, which
is refined to the physical realization in the domainmask lay-
out. The second dimension of the design plane of Fig.2 is
given by the design object hierarchy that groups design ob-
jects at different levels. A sample four-level cell hierarchy
is sketched on the right-hand side of Fig.2. In this scenario

Advanced DBMS (object and version management)

Fig. 1: Abstraction Levels of the CONCORD Model
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Fig.2: Design Plane
cess depicted in Fig.3.

4. Modeling Concepts
In the following, we will discuss the main concepts of

the three abstraction layers of the CONCORD model. Start-
ing with the AC level, we firstly discuss the partitioning of
the overall design process into portions. Each portion re-
flects a clearly specified design (sub-)task that is mostly as-
sociated to a designer or a group of designers. Secondly, the
cooperation primitives to coordinate the parallel work of the
designers, i.e., the exchange of (preliminary) results and
other design relevant data will be explained. The concepts
will be illustrated by our chip planning example as de-
scribed in Sect.3.

4.1 The Administration/Cooperation Level
(AC Level)
As already mentioned in Sect.2, the central concept of

the AC level is the design activity. It provides adequate
structuring and communication primitives to model the
overall design process, thus defining the basis for coopera-
tion.
Design Activities

A design activity (DA), depicted in Fig.4a, is the opera-
tional unit realizing a design task. It can be best character-
ized by the following description vector consisting of four
parameters: <DOT(DOV0), SPEC, designer, DC>. The first
parameter DOT, which stands fordesign object type, gives
the type information for the design states of that DA, i.e., for
the design object versions (DOVs). All the DOVs created
within a DA are organized in aderivation graph, and be-
long to thescope of that very DA. Without further authori-

a chip is divided into modules representing arithmetic-logic
unit, control unit, and so on; each module, in turn, can be
partitioned into blocks at the next level (e.g., read-only
memory, instruction decode, etc.) and each of these blocks
is again partitioned into standard cells at the lowest level
(e.g., multiplexer, AND-circuit, etc.). The arrows of Fig.2
illustrate that the design process starts with a behavioral de-
scription of the circuit to be designed and then traverses the
design plane from left to right. The design is carried out by
application of design tools, thereby enhancing and complet-
ing previous work. In Fig.2, each arrow is assigned to a par-
ticular design tool by an associated number.

For simplicity purposes, we will only focus on the chip
planning phase of the VLSI design process (toolbox 5 in
Fig.2). Chip planning is a creative and cooperative process
which in most cases cannot be done without designer inter-
action and which proceeds as follows. In a top-down fash-
ion, a floorplan is computed for each cell of the hierarchy by
recursively applying the chip planner. These computations
are based on estimated information about its subcells (i.e.,
shape functions indicating the possible shapes of the sub-
cells provided by tool 3 in Fig.2). Further information about
the CUD (cell under design) and its subcells, e.g., the con-
nections of the subcells, is decoded in the module and net
list (cf. Fig.3). The most important input is the interface de-
scription of the CUD, expressing non-functional require-
ments as, for example, the shape of the CUD and the posi-
tions of the pin intervals on the CUD’s frame. As mentioned
previously, the chip planner is a tool box containing several
tools:bipartitioning, sizing, dimensioning, andglobal rout-
ing. Due to space restrictions we will not give a detailed de-
scription of the internal processing, but it is important to
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design process are reflected in par-
ticular concepts provided by the
CONCORD model. Design task del-
egation and design task hierarchy
(AC level) can be derived from the
design plane depicted in Fig.2, i.e.
from the partitioning of the design
process into phases, or from the ap-
plication of particular design tools
(indicated by the arrows in Fig.2) as
well as from the complex structure
of the VLSI cell hierarchy. In Sect.4
we will give an example. The DC
level is explicitly given by Fig.3
showing the work flow in chip plan-
ning, and the DOPs at the TE level
are reflected by the particular opera-
tions within the chip planning pro-
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know, that the designer may perform re-
iterations of parts of the internal tool ex-
ecutions in order to achieve optimal
space exploitation. As a result, the chip
planner arranges the subcells and the
connecting channels for wiring within
the given area of the CUD (floorplan).
This includes the interface descriptions
of the subcells which are input data for
subordinate planning steps.

Obviously, one can recognize that all
important characteristics of the VLSI

function
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Fig.4: Design Activities and DA Hierarchies
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Several motivations are conceivable w.r.t. the delegation of
design subtasks. Among those are the following ones:
• decompose a complex design task into more practical

units of work;
• transfer necessary design steps to companion designers,

who are specialists for this work;
• delegate a single design task several times and choose the

best of the delivered solutions;
• test alternative ways to reach the same subgoal.

The first point mentioned in that list leaves it open wheth-
er to completely split a design task or to delegate only parts
of the task. In the first case, it remains as own work of the
super-DA to control the design work of the subordinate DAs
in the hierarchy, and to synthesize the results delivered by
those sub-DAs. In the latter case, the super-DA itself has to
carry out design work, and further, to integrate the results
delivered by its sub-DAs with its own work. The third point
mentioned in the list above indicates that the DOTs (and
possibly the initial DOV) of the sub-DAs may be identical
or may overlap (cf. Fig.4 b). In this case, the scopes of dif-
ferent DAs contain data of the same type and cooperation
mechanisms (see below) have to be applied, whenever these
DAs want to exchange data.

The delegation concept can be illustrated by a very sim-
plified scenario in chip planning. Fig.5 shows a sample DA
(DA1) that is responsible for the planning of the initial DOV
indicated by the subtree of a cell hierarchy rooted at cell O.
It is further assumed that the specification of DA1 expresses
features for shape/area limitations and pin restrictions for O
indicated by the floorplan interface at the left-hand side of
DA1 in Fig.5. DA1 starts its work by applying the chip plan-
ner tool to CUD O with subcells A, ..., D. This leads to the
floorplan contents depicted at the right-hand side of DA1,
which is the basis for delegating further planning steps on
the subordinate hierarchy level indicated by the sub-DAs
DA2, DA3, DA4, and DA5.
Cooperation Primitives

From an abstract point of view, design proceeds in a co-
operative manner reflecting the conviction that a particular
goal can be achieved better and in shorter time if the DAs of
a DA hierarchy work together. In the CONCORD model co-
operation relationships between DAs are explicitly modeled

DA1
A B

DC

DA2 DA3 DA4 DA5DCBA

Fig.5: A Delegation Scenario within Chip Planning
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zation a DA is only allowed to read DOVs of its own deri-
vation graph. It is possible to initialize the scope of a newly
created DA with a first DOV (DOV0) serving as a basis for
the DAs work. This is an optional add-on to the first param-
eter, but if specified, the DA needs to start with this first ver-
sion and it will be an ancestor of all DOVs created within
that DA. The design task of a DA is specified in the param-
eter SPEC as a set of properties the DOV to be constructed
should possess. In our model, these properties are named
features [Kä91]. The SPEC parameter expresses the goal of
the design task and is therefore nameddesign specification.
In the simplest case, a feature in the design specification of
a DA constrains the value of an elementary data item to be
in a certain range. A more complicated feature can express
the need that the resulting DOVs have to pass a particular
test tool successfully. This exemplifies that the concept of
features also expresses some kind of abstraction allowing
for the specification of application-specific properties rele-
vant for design decisions. It is important to detect thequality
state of a certain DOV, in order to ascertain the ‘distance’
of the current design state from the final state defined by the
design specification. The quality state of a given DOV is de-
fined by the subset of features fulfilled and is determined by
the Evaluate operation. In the following, we distinguish
preliminary DOVs fulfilling at most a true subset of the
specification, fromfinal DOVs indicating that the DA has
reached its specified goal through fulfillment of the whole
feature set. The third parameter assigns to each DA a de-
signer. He will be responsible for the actions performed
within the DA. The fourth parameter, DC, indicates that a
certain design strategy has to be applied (by the designer).
This topic will be detailed in Sect.4.2.
Delegation

During its efforts to reach its specified design goal, a DA
may delegate parts of its own design task. This has to be
done by creating sub-DAs. The execution of theCre-
ate_Sub_DA operation implicitly establishes a relationship
calleddelegation. It can be employed iteratively spanning a
DA hierarchy as indicated in Fig.4b. There, DA1 has cre-
ated two sub-DAs, DA2 and DA3. The operation
Init_Design allows for the initiation of a design process by
the creation of the top-level DA (Fig.4 a). In Fig.4, the DOT
(and perhaps also an initial DOV) associated to a DA via ar-
row is indicated by circles (the same shade coding applies).
In delegation, a sub-DA’s specification always constitutes a
subgoal of the super-DA’s design goal. Here, the complex
structure of a DOT provides a natural basis for structuring
the design process. As a consequence, the DOT of the sub-
DA has to be a ‘part’ of the super-DA’s DOT. However, the
specification of a sub-DA needs not to be a subset of the su-
per-DA’s specification. In general, a subgoal is not auto-
matically derivable from the goal of the super-DA. It needs
to be specified by the designer assigned to the super-DA.
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(cf. Fig.1, AC level).
Thedelegation relationship is fundamental for modeling

cooperative design processes. We take up this relationship
type again, because it constitutes not only a way of delega-
tion between a super-DA and a created sub-DA, but also a
way of cooperation. Remember, a DA may create an arbi-
trary number of sub-DAs, as long as it is appropriate to
reach its own design goal. The sub-DA’s termination is the
precondition for the termination of the super-DA. The su-
per-DA keeps all the rights of the creator, i.e., it is able to
terminate a sub-DA (operationTerminate_Sub_DA) or to
modify its specification (operation
Modify_Sub_DA_Specification). Note that reformulations
of design goals are typical in design applications. On the
other hand, the sub-DA is only allowed to refine its own
specification by addition of new features or by further re-
stricting existing features. As soon as a sub-DA completes
its work by reaching one or more final DOVs, it has to send
a message to its super-DA (operation
Sub_DA_Ready_To_Commit). The sub-DA must not termi-
nate without the agreement of the super-DA for the follow-
ing reasons. It may be possible that the super-DA wants to
modify the sub-DA’s specification in such a way that it
would be appropriate for the sub-DA to keep the current re-
sults (design states and derivation graph) as a basis for de-
riving new DOVs on the way to reach the new goal. If the
modification of the sub-DA’s specification is not the inten-
tion of the super-DA, the sub-DA can be terminated, i.e.
committed, and the final DOVs devolve to the scope of the
super-DA. A further operation is
Sub_DA_Impossible_Specification, which informs a super-
DA that a sub-DA will not be able to fulfill the requirements
of its specification and therefore asks for a reaction of its su-
per-DA, e.g. termination of the sub-DA or modification of
its design specification. For example, one can assume in the
example of Fig.5 that after planning the subordinate levels
of cell A, DA2 realizes that the specified area is not suffi-
cient. This leads to an ‘impossible specification’ message
from DA2 to its super-DA DA1. A possible reaction of DA1
could be to modify the specifications of DA2 and DA3 by
giving DA2 more and DA3 less area. As a consequence, the
planning of the cell hierarchy subtrees rooted at cell A and
B will be redone using the modified area features.

Modifications of a DA specification can also be the re-
sult of negotiations between DAs. This leads to the second
relevant relationship type, callednegotiation. The subject
of this cooperation are the sub-DAs’ specifications. During
a negotiation process, one side may propose further refine-
ments of the design specification and the other side may
agree to or disagree with those proposals (operationsPro-
pose, Agree/Disagree). If two negotiating sub-DAs are not
able to reach an agreement, the super-DA has to be in-
formed (operation Sub_DAs_Specification_Conflict),
which then has to resolve this conflict. We allow negotia-
tion relationships between only the sub-DAs of the same su-
per-DA, because these sub-DAs contribute to a common de-
sign goal set by their common super-DA. A detailed discus-
sion of this cooperation model is described in [HKS92]. Ne-
gotiation relationships can be dynamically established be-
tween sub-DAs (operationPropose) or explicitly set by
their super-DA (operation
Create_Negotiation_Relationship). Suppose, starting from
the sample scenario of Fig.5, a negotiation relationship be-
tween DA2 and DA3 is set by DA1 concerning the area for

both subcells, A and B. Due to negotiation, the two connect-
ed sub-DAs are now allowed to move the borderline be-
tween A and B horizontally.

Besides the cooperation via design specification, a con-
trolled exchange of preliminary results (design states, i.e.
DOVs) of DAs is necessary. We model this data exchange
by the relationship typeusage. A requiring DA (operation
Require) may ask another DA (called the supporting DA)
for a DOV with a certain set of features satisfied. This fea-
ture set defines the quality needed in order to express rele-
vant design information for the requiring DA. A precondi-
tion for the usage relationship is that the requiring DA
knows about the design specification of the supporting DA.
From the view of the supporting DA, the delivered DOV
needs not be a final one w.r.t. its own specification. A DOV
becomes only visible along usage relationships, if it was
propagated by its DA (operationPropagate). All propagat-
ed DOVs have a certain quality state determined by the op-
erationEvaluate. ThePropagate operation gives a DA con-
trol over which of its DOVs arepre-released and, therefore,
are added to the scopes of other DAs connected via usage
relationships. This means, a single DOV may belong to sev-
eral scopes w.r.t. usage relationships. DAs which are not
connected by a usage relationship must not exchange data.

4.2 Design Control Level (DC Level)
As briefly mentioned in the introduction, the local pro-

cessing of design data within the scope of a DA is done in
atomic units of work, called design operations, which can be
organized by means of work-flow definitions.
Design Operations

We have already seen that design tools are mostly used
to accomplish the design task associated with a DA. In order
to abstract from a specific design tool, we call the action
performeddesign operation (DOP). Thus, DAs are made up
out of several DOPs that have to be executed in some spe-
cific order given by the design strategy of their DA. DOPs
are used to achieve stepwise improvement of (preliminary)
results, which are represented as DOVs (design states). A
DOP reads several (initial) DOVs belonging to the scope of
the initiating DA. It finishes by writing a resulting DOV,
which does not need to be a final one. Since the specific ver-
sion model and the applied notion of configurations are be-
yond the scope of this paper, we have taken here a simplify-
ing, yet sufficient, view. More detailed information on DOP
properties are given in Sect.4.3.
Internal Structure of a DA

Work-flow specification is the basic means to organize
tool applications within a DA in order to ensure a particular
design methodology. In general, it results in some pre-plan-
ning of a DA’s DOP executions given by the parameter
‘DC’ within the description vector assigned to a DA. It de-
fines an internal structure built upon DOPs and specific DA
operations, such as the evaluation (Evaluate) of the quality
state of DOVs, or operations serving for managing sub-DAs
(e.g.,Create_Sub_DA) and cooperation relationships (e.g.,
Propose, Agree/Disagree, Require, Propagate). This pre-
planning may comprise the whole DA or only parts of it.
Whenever several choices are left open or when there is a
need for work-flow modifications, the associated designer
(or the super-DA) has to specify how to continue using di-
rect interventions. In the following, we describe three basic
methods for work-flow specification.

One can view a design methodology as a template for
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DOP retrieves its input from the database and stores its re-
sult in the database. Hence, the only data which needs to
flow between DOPs or between DOPs and specific DA op-
erations (e.g., Evaluate) is the identification of a DOV to-
gether with some status information1.

4.3 Tool Execution Level (TE Level)
Although a DOP looks as an atomic operation when

viewed from the DC level, it has an internal structure that
provides facilities needed for long-lived (trans-) actions.

Since intermediate processing states of a DOP do not
represent relevant design states w.r.t. inter-DA cooperation,
it is reasonable to require that a DOP is atomic in the sense
that it is performed as a whole or not at all. Furthermore,
these intermediate states should not be visible outside the
DOP, because only final or propagated DOVs participate in
inter-DA cooperations. Whenever a DOP is finished, how-
ever, its results are to be made persistent in the form of a
DOV given to the data repository. Thus, a DOP can be as-
signed the properties of a “classic” transaction, i.e., the
ACID properties. Nevertheless, a DOP is not a “classic”
transaction, because it may last for a longer span of time, for
example, several hours or days in the case of a sophisticated
design tool. Therefore, one has to provide an internal struc-
ture for a DOP which supports the needs of long-lasting
transactions [KLMP84].

In addition to the checkin and checkout operations, there
are the following structuring facilities available at the TE
level (see Fig.1). Savepoints enable the designer2 to “wipe
out” anything he has changed later on or added to the ob-
jects under design. Consequently, intermediate states, to
which a designer might wish to return later, are explicitly
marked by the designer (Save operation). In case the design-
er wants to establish an earlier state, he selects the appropri-
ate savepoint and issues aRestore operation. Hence, save-
points serve as a means for user-initiated rollback to reach a
previously marked intermediate state. To enable a DOP to
last for several days, it must be possible to suspend (Sus-
pend operation) its work and resume (Resume operation) it
after a while. The state seen by the designer after aResume
operation must be equal to that seen when issuing theSus-
pend command.

5. Operational Concepts and Realization
Issues
After having described the most important concepts of

the CONCORD model, we now want to detail on the capa-
bilities of the activity managers that control the cooperative

1. In quite a number of cases (e.g. our chip planning DA given in Fig.3), the
in-memory data structure can be handed over from one DOP to the suc-
ceeding DOP.

2. In general, the designer associated with a particular DA also supervises
the DOPs to be executed in that very DA.

structure synthesis chip assembly

a) A partially undetermined script

“open”

inplace

mincut

cluster

sizing
shape function

generation OR•
b)

Fig.6: Sample Scripts
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primitive
orientation

in a script

Data flow

The discussion so far has concentrated
on control mechanisms for work-flow
specifications within a DA. However, one
may also want to describe data flow be-
tween DOPs, for instance to express that a
certain DOP has to continue the work of a
predecessor DOP. Thus, a control flow
edge between subsequent DOPs often im-
plies data flow, too. Note however that a

valid sequences of DOP executions within a DA. We call
such a template ascript. A script usually leaves some de-
grees of freedom to a designer which may include choosing
one of several alternative paths, performing any intermedi-
ate actions between two specified operations, perhaps con-
taining repetitions and branches for parallel actions. Thus, a
script usually allows for several concrete execution se-
quences. In our VLSI example (Sect.3), a DA which is to
design a chip starts with the structure synthesis and ends
with a chip assembly (cf. Fig.2). A script which fixes these
two operations and allows for arbitrary intermediate steps is
shown in Fig.6a. The use of “open” allows the specification
of partially or even completely undetermined templates. In
Fig.6, we employed graphical representations of scripts. Of
course, a script may also be specified using a kind of pro-
gramming language. A script may contain sequences,
branches for concurrent execution, alternative paths as well
as iterations. Fig.6b shows an example of a branch between
alternative paths: after shape function generation, the de-
signer has to decide how to proceed choosing among three
alternative methods.

On the other hand, there are dependencies between the
DOPs to be observed within a given design application do-
main (e.g., VLSI design, mechanical CAD, etc.). For in-
stance, one may require that a DOP of a certain type (e.g.,
chip assembly, see Fig.2) must not be applied before a DOP
of another type has successfully completed (e.g., structure
synthesis, see Fig.2), or that a certain DOP must always be
followed by another DOP of a specific type (e.g. pad frame
editor followed by chip planner, see Fig.2). Since we define
theseconstraints to hold for all DAs of a design application
domain, any script within must not contradict these con-
straints.

Cooperation relationships among DAs lead to asynchro-
nously occurring events within a DA (e.g.,Propose or Re-
quire operations), generally asking the receiving DA to re-
act or reply (e.g.,Agree/Disagree orPropagate operations).
For instance, one may want to define that aRequire opera-
tion of another DA causes the current DA to look for a qual-
ifying DOV and to (immediately) propagate, if found. Or a
cooperation operation of one DA (e.g.,
Modify_Sub_DA_Specification operation) may cause an-
other DA to stop its work at the current point and resume at
another point in the script. Those kinds of specifications
may be best expressed as(event, condition, action) rules,
since rules also correspond to exception handling in pro-
gramming languages, and are best suited to cope with asyn-
chronously occurring events. For example, the first of the
above mentioned rules can be written in the following way
assuming a sufficiently high-level rule language: WHEN
RequireIF (required DOV available)THEN Propagate.

Alternative paths

generationgeneration
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design process. Thereby, we review the tasks to be per-
formed by a certain activity manager, and we discuss a man-
ager’s reactions to specific failure situations derived from
an overall failure model. Before that, however, an overview
of the system architecture integrating the level-specific
managers will be given.

5.1 System Architecture
Design is generally performed on a network of ma-

chines, where the prevailing architecture is a workstation/
server environment (connected via a local area network,
LAN). Obviously, the shared design data repository and its
DBMS component are located on a server, which is either
embodied by a single machine or a complex of (local or dis-
tributed) machines. In contrast, the designer carries out his
design work at a (single- or multi-processor) workstation.

Since a DA typically comprises the design work of a sin-
gle designer, we assume that a DA is running on a single
workstation. Consequently, all actions executed within a
DA are managed and executed on that workstation, too.
This is necessary for three reasons. Firstly, in many cases
the designer has to specify input parameters for the design
tools. Secondly, designer interaction during tool execution
is necessary and essential, and, thirdly, the information de-
rived by a DOP is mostly subject to work-flow (data-flow)
management within the DA. Associating a DA with a work-
station has direct implications to the assignment of the ac-
tivity managers to their run-time (and hardware) environ-
ment. The design manager (DM) which handles the DA-in-
ternal work flow and the script-based processing is located
on the workstation side. The transaction manager (TM), in
turn, is responsible for the shared access of all designers and
design tools to the data repository at the server, controls the
data supply for workstations, and handles DOP executions.
It is, therefore, split into two subcomponents. The server-
TM handles checkout/checkin and controls concurrent ac-
cess to DOVs, thus residing on the server, whereas the cli-
ent-TM resides on the workstation managing the internal
structure of DOPs. The cooperation manager (CM) has to
manage the design environment set up by the cooperating
DA’s that are typically distributed across the workstations.
However, distributed maintenance of the information incor-
porating the inter-DA cooperation (e.g. cooperation rela-
tionships and cooperation operations) would be overly com-
plex due to the concurrent interactions and the distributed
state information. Therefore, the CM is represented by a
centralized component located at the server site, thus ex-
ploiting the global DBMS as information repository.

In case of system failures, it is important to rely on recov-
ery concepts that keep track of the distributed design envi-
ronment and its interacting system components. For that
end, the hierarchically cooperating activity managers (CM,
DM, as well as (server and client) TM) jointly accomplish
failure handling covering all architectural levels. The TM
provides recoverable DOPs, that is, recovery points are
used for restart after a failure. The DM relies on the recov-
erability of DOPs and accomplishesrecoverable script exe-
cutions by relying on persistent script information. The CM,
in turn, relies on the recoverability of script executions and
providesrecoverability of the distributed design environ-
ment by logging the cooperation protocols in the entire DA
hierarchy.

In the following subsections, we discuss in more detail
the specific tasks of each activity manager. In addition, we
show the specific measures for failure handling w.r.t. a

complete failure model.

5.2 The Transaction Manager (TM)
DOP Execution

As its most important task, the TM has to guarantee the
ACID properties of DOPs. Due to the atomicity property,
client-TM and server-TM have to accomplish a two-phase-
commit protocol for all their critical interactions, i.e., for
checkin and checkout, as well as forBegin-of-DOP and
End-of-DOP operations. The consistency property requires
that every derived DOV observes the constraints specified
in the underlying database schema, and the durability (of
derived DOVs) is guaranteed by the data repository, i.e. by
the logging and recovery methods of the server-TM. The
isolation property has to be achieved as well, but needs
some more clarifications. Concurrent work of multiple
DOPs on the same DOV is conceivable for the following
two cases:
• The DOPs were initiated by asingle DA with the shared

DOV belonging to that DA’s scope. In this case, each
DOP is expected to derive a new version concurrently and
to modify the DAs (single) derivation graph. This modi-
fication is done within a DOP’s checkin operation and
therefore the TM has to protect the proliferation of the
DA’s derivation graph, e.g. employing a locking protocol
based on short locks.

• The DOPs were initiated bymultiple DAs with the shared
DOV derived in one DA and with the other DAs being au-
thorized to read this DOV due to established usage rela-
tionships. In this case, the DOPs that concurrently work
on that DOV are to derive separate new versions that
make it to their own DAs’ derivation graphs, which are
disjoint from each other, thus preventing write conflicts.

In addition to that, a DA may acquire aderivation lock on
a certain DOV to prevent multiple checkout (and concurrent
processing) of this DOV for application-specific reasons. In
this case, the (server-) TM has to provide long-lasting isola-
tion for that DOV (e.g., long locks usually managed at the
server site). In contrast, short locks are fully sufficient to
protect a checkin or checkout operation. Obviously, we
heavily used the underlying versioning and version deriva-
tion concept in order to achieve information (DOV) sharing
as well as isolated execution (DOV derivation).
Failure Handling

A system failure is typically caused by a crash of work-
station or server. The impact of a server crash can be mini-
mized to only affect the server site due to a workstation-
server interface that is carefully designed according to max-
imum isolation between server and client components (TM)
as discussed in more detail in [HHMM88]. On the other
side, a workstation crash affects all the activities currently
running on that very machine. As a consequence, it causes
the loss of the context1 associated to an active DOP. Since
DOPs are long-lived transactions, it is inadequate to treat
system failures by rollback to the very beginning. Instead,
they need a stable processing environment. Hence, system
failures are handled by partial rollback torecovery points.
Recovery points act as “fire-walls” inside a DOP that limit
the scope of work lost in case of a failure and provide a start-
ing point after recovery [HR87]. These recovery points are

1. The context of a DOP consists of the current state of the design data and
on information about the state of the application program implementing
the DOP.



9

chosen automatically by the system after appropriate events
or time intervals and are transparent to design tool and de-
signer. In particular, after each checkout operation a recov-
ery point is set in order to avoid duplicate requests of a DOV
from the server in the case of a failure. Furthermore, the
mechanisms of recovery points are used to implement the
savepoint concept (see Sect.Sect.4.3). A recovery point
makes the current DOP context persistent. In order to cope
with system failures, the TM has to rely on the most recent
recovery point. A more detailed discussion of handling the
internal structure of DOPs is given in [HHMM88].
Commit and Abort

There are two operations initiating or finishing the DOP
processing, i.e., the operations Begin-of-DOP andEnd-of-
DOP. The first one is given by the DM (i.e., design manager
at the superordinate design control level) to indicate the start
of a new DOP (to the client-TM). Usually, it is accompanied
by the start parameters. Since the latter operation has to cov-
er two different outcomes of the DOP execution, it is split
into two separate operations. Whenever a DOP encounters
an inconsistent state or is not successful for some reasons
(sometimes even determined by the designer), it will abort
its activities. On the other side, if the DOP reaches a final
state, it issues a commit operation to close its processing.
For both, thecommit andthe abort operation, the server-TM
is firstly asked to release the derivation locks held (if any),
then the client-TM removes all its savepoints and its recov-
ery point, and finally gives the appropriate message (some-
times accompanied by some return parameters) to its DM.
Checkout and Checkin

Checkout and Checkin operations are separated fromBe-
gin-of-DOP and End-of-DOP operations, respectively. A
checkout operation is assumed to read a DOV from the serv-
er DBS. At this point it has to be tested that, firstly, the DOV
belongs to the scope of the DOP’s DA, and, secondly, there
is no incompatible derivation lock on the DOV. In case of a
successful checkout, the appropriate derivation lock is set to
achieve proper protection. The checkin operation behaves
as the complement to the checkout operation. It gives the
derived DOV to the DBMS for storing. The consistency of
the newly created DOV has to be checked and further, its
DA’s derivation graph is extended by the newly created
DOV, since this DOV now belongs to the scope of that DA.

In addition to these cases, a TM has to be able to deal
with the situation that the checkin operation isn’t successful
due to problems at the server site. This situation will occur,
for example, if a DOV was created that doesn’t fulfill the in-
tegrity constraints which are to be enforced by the server
DBMS. In this case, the server-TM has to inform the client-
TM which, in turn, has to indicate this ‘checkin failure’ sit-
uation to the DM, or some automatic (programmed) actions
take place, e.g. subsequent abort or commit1.

5.3 The Design Manager (DM)
The DM has to enforce the work flow within its DA and

to handle external events caused by cooperating DAs. From
a system point of view, work-flow execution may be done
similar to ConTracts [WR92]. The most important point
here is to be able to restore the most recent consistent pro-

1. In treating this situation as a commit, i.e., as a valid DOP termination,
we allow a kind of data flow between subsequent DOPs because the cur-
rent design state is still available. As a result, the data flow between
DOPs is not restricted to completely derived DOVs. This issue will not
be detailed in this paper.

cessing context in the case of a system failure as basic
means to continue processing with a minimum loss of work.
In the following, we will discuss these topics in more detail.
Work Flow Management

As already mentioned in Sect.4.2, a DA’s work results
from its script, the active rules, and the given constraints.
Whenever the work flow is unambiguous, the DM provides
automatic execution. This means that the DOPs are started
as defined by the work flow, provided all DOP parameters
are available (esp. the identifier of the input-DOVs). As
soon as a DOP finishes, the TM passes on the information
needed by the DM to proceed, i.e., commit/abort flag and a
handle to the DOP’s design data (e.g., the identifier of the
output-DOV).

In general, however, a fully automatic processing is not
possible. Work flow often depends on creative design de-
cisions which are to be taken during the design work and
cannot be preplanned. For that reason,  incomplete work-
flow specifications might become sufficient. In these cases,
a continuation of processing mostly requires designer inter-
action. A designer might be prompted to either provide
missing parameters for DOP executions, or to chose out of
several, alternative continuation possibilities. Beyond that,
the designer is allowed to step in (at certain points of script
execution) and cause the iteration of a sequence of executed
DOPs (starting from a different DOV or using modified in-
put parameters for DOP executions).
Coping with External Events

A change in the current work flow processing might be
necessary due to some external events. The first class of
events refers to the delegation relationship set between
DA’s (see Sect.4.1). Whenever the DA’s description vector
is modified by the super-DA (operation
Modify_Sub_DA_Specification) or the current specification
is impossible to fulfill (operation
Sub_DA_Impossible_Specification), DA execution has to
be restarted from the beginning. However, the designer may
choose any previously derived DOV as a starting point for
the new activation. Another important class of external
events is the withdrawal of a pre-released DOV by a sup-
porting DA (see Sect.4.1, usage relationships). The DM of
the requiring DA has to analyze (its log data, see below),
whether the pre-released DOV was used within a local DOP
thus affecting locally derived DOVs. If this is the case, the
processing needs to be stopped and the designer has to de-
cide on how to continue. Designer interaction has already
been discussed above. Note, there is no necessity for the de-
signer to invalidate his own results, if he concludes, for ex-
ample, that his current work is not negatively influenced by
that withdrawal.
Failure Handling

The DM is responsible for failure handling within a DA.
The system failure which affects the DM is the crash of the
workstation it runs on. After restart of the workstation, the
DM has to recover the last consistent state of DA execution,
in order to continue the script processing. Here, the DM re-
lies on the recoverability of the DOPs that has also been af-
fected by the workstation crash (see Sect.5.2). This requires,
in addition to a persistent script, the DM to log system ac-
tivities. A log entry capturing all DOP parameters is written
for each start and finish of a DOP execution. All interactions
between DM and TM are, again, accomplished by means of
safe communication2. By means of persistent script and per-
sistent log the DM is able to provide a forward-oriented con-
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text management in case of system failures.

5.4 The Cooperation Manager (CM)
The CM embodies the mediator between cooperating

DAs. It enforces that cooperation takes place only along es-
tablished cooperation relationships, and it further checks
each cooperative activity to comply with the integrity con-
straints of the underlying cooperation relationship (dis-
cussed in Sect.4.1). In order to do this, state information
about each DA in the hierarchy has to be maintained. This
information includes the description vector and the scope of
each DA as well as the established cooperation relation-
ships. In the following, we will focus on two important is-
sues: state transitions of DAs and cooperation correctness
due to visibility of preliminary information.

Cooperation Control by Means of State Transitions
In order to enforce proper DA reactions, different states

are distinguished within the lifetime of a DA (cf. Fig.7). The
stategenerated is assigned to a DA when it already got ini-
tiated via a description vector, but hasn’t begun its work so
far. In theactive state a DA performs its design work. The
statenegotiating is assigned to a DA whenever it is request-
ed to negotiate or wants to negotiate itself. As soon as a DA
changes to the statenegotiating, its internal processing is
suspended, and after returning to theactive state, internal
processing is resumed, maybe with a modified design spec-
ification. Of course, the associated designer can take over
control and properly react to the modifications agreed upon
(see Sect.5.3). Note, continuing the design work during ne-
gotiation might waste time and efforts.

After a DA has created a final DOV it should not be ter-
minated until the super-DA has accepted its result. Further,
it should not do any more work until the super-DA has is-
sued a corresponding request. We cover this situation with
the stateready for termination. This state will also be as-
signed to a DA which notified its super-DA that it will not
be possible to derive a final DOV satisfying the current de-
sign specification. The stateterminated indicates that a DA
has been terminated by its super-DA and vanished from the
DA hierarchy. The state transition graph shown in Fig.7 il-

2. This may be achieved by transactional RPC or by a specialized two-
phase-commit protocol [GR93].

lustrates the different states of a DA. There, events issued by
other (cooperating) DAs are marked by an asterisk.
Controlling the Dissemination of Preliminary Design
Information

The CM enforces limited visibility of DOVs by means of
the relationship types delegation and usage for which the
following restriction holds: a DA is only allowed to see
DOVs, which belong to its scope1. Otherwise, a committed
DOV would become generally accessible. Therefore, we
looked for a salient approach to control that kind of dissem-
ination. At the first sight, it seemed that the required protec-
tion could be achieved by some access control mechanisms.
However, such mechanisms typically do not support inher-
itance. Furthermore, they do not seem suitable because of
the high dynamics and the request flexibility needed in the
system. Therefore, we decided to develop a locking scheme
which uses an inheritance mechanism similar to that used in
nested transactions [Mo81]. It is important to distinguish
passing on DOVs within a DA from among DAs. In the first
case, a DOP has created a new DOV via checkin operation.
As mentioned in Sect.5.2, this newly created DOV becomes
part of its DA’s scope simply by inserting it into the DA’s
derivation graph. It is guaranteed by means ofscope-locks
that a DA’s derivation graph is isolated. Hence, the DOVs
derived in a DOP are passed on to only that DA. The second
case deals with restricted transfer of DOVs among DAs.
Transfer along delegation relationships is enabled via inher-
itance of scope-locks, whereas transfer along usage rela-
tionships is managed by scope-lock compatibilities. Refer-
ring to delegation relationships a super-DA inherits the
scope-locks on thefinal DOVs of its terminated sub-DAs
and then retains these locks. After finishing the top-level
DA all locks are released. The inherent differences to a
locking scheme for nested transactions are implied by the
processing and cooperation constraints of the CONCORD
model:
• difference in inheritance: only locks on final DOVs are

inherited, and a super-DA may read the final DOVs of a
sub-DA as soon as the sub-DA changes its state to ready-
for-termination;

• difference on isolation: a lock may be granted to a DA if
it has a usage relationship to the DA which retains the
lock (provided that the particular DOV has been propa-
gated and fulfills the required quality state).

Invalidation and Withdrawal of Pre-Released Design
Information

Whenever some preliminary design information got pre-
released, but later on changed or even removed, the CON-
CORD system has to react properly in order to guarantee a
minimum of consistency. There are two cases to be distin-
guished.Invalidation of pre-released design information,
i.e., of propagated DOVs along a usage relationship, is giv-
en as soon as it becomes clear that a pre-released DOV will
not be an ancestor of a final DOV in the supporting DA. In
this case, another DOV from the scope of that DA which
fulfills all the required (and possibly more) features of the
previously propagated DOV will be propagated by the CM
to the requiring DA for replacement. The other situation is
characterized by awithdrawal of pre-released design infor-
mation. If the DA is cancelled or the specification of the DA

1. Recall, a DA’s scope has been defined to include the DOVs of its deri-
vation graph, the final DOVs of its terminated sub-DAs, and the DOVs
that became visible along its usage relationships (see Sect.4.1).

Fig 7: Simplified State/Transition Graph for a DA
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Fig 8: Responsibilities and Interplay of Activity Managers
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is changed such that the features of a previously propagated
DOV are not part of a new specification, the propagation
has to be withdrawn. This causes the CM to send a notifica-
tion to all the (requiring) DAs that have seen that DOV sub-
ject to withdrawal. After having received this ‘withdrawal’
notification, the DAs (and their DMs or associated design-
ers) can react to this notification by means of the mecha-
nisms already discussed in Sect.5.3.
Failure Handling

The CM is also responsible for failure handling related to
the inter-DA structure. Here, we have to consider the system
failures crash of workstation and crash of server. To react to
a server crash, the CM only needs to hold persistent the DA-
hierarchy-describing information mentioned at the begin-
ning of this section. To that end it can employ the data man-
agement facilities of the server DBMS. For all communica-
tions between the nodes of the LAN, we assume reliable
communication protocols (transactional RPC, see Sect.5.3)
which insulate the cooperation protocols from network fail-
ures and workstation crashes. Hence, a workstation crash
does not affect the CM.

5.5 Interplay of Activity Managers
In this section we tried to clarify the tasks as well as the

interplay of all activity managers involved at the different
layers of the CONCORD model. As a kind of summary,
Fig.8 emphasizes our approach to joint activity manage-
ment and joint failure handling spanning all architectural
levels. Activity management including failure handling re-
lies on a sophisticated reliability concept that consists of
communication and execution/control reliability. The first
one refers to interactions between activity managers, where
reliable communication protocols are accomplished by
means of transactional RPC or by a specialized two-phase-
commit protocol [GR93].  The latter one refers to the reli-
ability of each manager’s control sphere.

6. Conclusions
In this paper, we described the CONCORD model,

which is our approach towards support for cooperative de-
sign. The CONCORD model provides means for perform-
ing tool-based design organized by certain design method-
ologies and allows to reflect the major characteristics of de-
sign processes such as goal orientation, hierarchical refine-
ment, stepwise improvement as well as team-orientation,
and cooperation.

As outlined in the course of the paper, the CONCORD
model was derived by analyzing cooperative design meth-
odologies. As a result from that, we followed a top-down
approach starting with a cooperation layer that is built upon
an activity model which, in turn, embeds classical ACID
transactions. We designed the CONCORD model along
those lines to be a layered approach that provides layer-spe-

cific modeling and controlling concepts that are used by the
superordinate layer as primitives to build upon:
• The AC level embeds cooperation semantics and sup-

ports application-specific exchange of (preliminary) de-
sign information under system control.

• The DC level allows the application of certain design
strategies and provides mechanisms for specification and
control of work flow.

• The TE level encapsulates long-living, yet atomic, units
of design work.
It is the fruitful combination of these concepts that gives

the model its flexibility and power. This top-down approach
may be the reason for the discrepancy between our results
and the capabilities of so-called extended transaction mod-
els which are typically developed in a bottom-up manner. In
contrast to those other approaches, we built upon practically
approved transaction concepts (ACID transactions, Con-
Tracts capabilities) and tried to separate the concepts into
the three consecutive layers according to their abstraction
capabilities. Consequently, we can take advantage of inher-
ent properties of a layered system approach, i.e., complexity
reduction, separation of responsibilities, isolation of usages
and testing, adaptability etc.

In a general setting, we can claim that there is a real need
to have all three levels. However, in specific cases it might
be sufficient to use only the capabilities provided at the TE
level or at the DC level, but not, for example, the concepts
available at the AC level. Those specific usages are directly
supported by the CONCORD approach due to its layered ar-
chitecture.

Throughout the paper, we tried to provide a fairly de-
tailed discussion of the salient concepts of the CONCORD
model. However, there is still more work to do especially
concerning an efficient realization. We mentioned the con-
cept of transactional RPC as a means to provide a save com-
munication protocol. However, it is clear to us that its real-
ization should exploit the most efficient concepts available
in the system (hardware) environment currently at hand. For
example, we can use the (X/OPEN) two-phase-commit pro-
tocol and its optimization alternatives [SBCM93] for LAN
communications (e.g. CM-DM communications and (cli-
ent-TM)-(server-TM) communications). In case of local
communications within the same machine (e.g. DM-TM
communications) we can use the same mechanism but im-
plemented more efficiently based on main memory commu-
nication.

Although the CONCORD model is not yet fully opera-
tional, we have already gained some first practical experi-
ences. The state of realization can be described as follows:
• Parts of the AC level have been implemented in such a

way that all the level-specific context data is managed by
the design data repository. Initial ‘in-the-field’ experi-
ments validating the modeling concepts of the AC level
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have been run in the design areas of VLSI and software
engineering. The results are very promising and will be
published in separate papers. Still missing is cooperation
control.

• Concerning the DC level, we are pretty confident that we
can benefit from the implementation and application ex-
periences of the work done on ConTracts [WR92]. There-
fore, we do not put high priority on that area.

• A first implementation of the TE level [HHMM88] is op-
erational on our design data repository (exhibiting a flex-
ible version concept [KS92] realized on the non-standard
DBMS PRIMA [HMMS87]).

In the future, we will concentrate on the AC level as well
as on inter-level coordination. The latter aspect involves not
only the collaboration of the level-specific activity manag-
ers, but also efficiency and optimization considerations
among the managers participating in joint work and failure
handling. Another aspect to be considered is the natural het-
erogeneity of the design environment. For simplicity pur-
poses, in this paper we assumed one logical server, i.e. a
central data repository under control of a DBMS compo-
nent. Especially w.r.t. pre-existing tools this view has to be
refined. A realistic approach needs to consider distributed
data management by heterogeneous facilities in order to
support data exchange and interoperability of these tools.
Since CONCORD has been designed to be a distributed,
transactional system we assume that heterogeneous and dis-
tributed data management does not influence the major
model of operation. Certainly, TM as well as CM have to be
adapted to these characteristics. This will be another focus
of future work.
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Fig. 1: Abstraction Levels of the CONCORD Model
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